
Wind Energ. Sci., 1, 115–128, 2016
www.wind-energ-sci.net/1/115/2016/
doi:10.5194/wes-1-115-2016
© Author(s) 2016. CC Attribution 3.0 License.

Year-to-year correlation, record length, and
overconfidence in wind resource assessment

Nicola Bodini1,2, Julie K. Lundquist1,3, Dino Zardi2, and Mark Handschy4,5

1Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, USA
2Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

3National Renewable Energy Laboratory, Golden, Colorado, USA
4Enduring Energy, LLC, Boulder, Colorado, USA

5Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder,
Boulder, Colorado, USA

Correspondence to: Mark Handschy (mark.handschy@colorado.edu)

Received: 22 April 2016 – Published in Wind Energ. Sci. Discuss.: 2 May 2016
Revised: 20 July 2016 – Accepted: 12 August 2016 – Published: 24 August 2016

Abstract. Interannual variability of wind speeds presents a fundamental source of uncertainty in preconstruc-
tion energy estimates. Our analysis of one of the longest and geographically most widespread extant sets of
instrumental wind-speed observations (62-year records from 60 stations in Canada) shows that deviations from
mean resource levels persist over many decades, substantially increasing uncertainty. As a result of this per-
sistence, the performance of each site’s last 20 years diverges more widely than expected from the P50 level
estimated from its first 42 years: half the sites have either fewer than 5 or more than 15 years exceeding the
P50 estimate. In contrast to this 10-year-wide interquartile range, a 4-year-wide range (2.5 times narrower) was
found for “control” records where statistical independence was enforced by randomly permuting each station’s
historical values. Similarly, for sites with capacity factor of 0.35 and interannual variability of 6 %, one would
expect 9 years in 10 to fall in the range 0.32–0.38; we find the actual 90 % range to be 0.27–0.43, or three times
wider. The previously un-quantified effect of serial correlations favors a shift in resource-assessment thinking
from a climatology-focused approach to a persistence-focused approach: for this data set, no improvement in
P50 error is gained by using records longer than 4–5 years, and use of records longer than 20 years actually
degrades accuracy.

1 Introduction

Wind power is becoming less expensive and nowadays rep-
resents a very attractive low-emissions choice for electricity
production. Its economy depends on generation plants be-
ing sited where enough wind blows to make development
worthwhile; “resource assessments” are intended to iden-
tify such sites. Assessments can be carried out in different
ways (Landberg et al., 2003), but predictions about future
wind “climate” are based on historical observations. To pro-
vide sufficient history without decades of delay while mea-
surements are collected at a target site, so-called measure–
correlate–predict (MCP) techniques are used to infer wind
resource levels by correlation with a longer record available

for a nearby reference site. A wide variety of functional re-
lationships have been investigated; see reviews by Brower
(2012) and by Carta et al. (2013).

Resource assessment inaccuracies and uncertainties arise
not only from less than perfect target and/or reference wind-
speed correlation, including missing data (Salmon and Tay-
lor, 2014), but also from many instrumental and model uncer-
tainties (Mortensen et al., 2013; Lackner et al., 2008). Here,
though, we focus on the “Predict” step in resource assess-
ment. To avoid uncertainties associated with the full energy
assessment, such as the modeling of flow over complex ter-
rain, extrapolation of wind speeds to hub height, wake losses,
turbine availability, and so on, we analyze only the extent to
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which historical anemometer measurements can be used to
predict future ranges of the same anemometer measurements.
(We convert anemometer measurements to modeled turbine
capacity factor just to give an appropriate variability scale.)

Given wind’s natural variability, an important question is
how long a history is needed to both adequately estimate its
mean level and to characterize the range of expected year-
to-year variation. Previous authors have been of two minds.
Justus et al. (1979) and Corotis (1980) both concluded that
a single year’s measurements were sufficient to give an esti-
mate of the long-term mean accurate to 10 % with 90 % con-
fidence, and that correlation with longer records at nearby
sites offered the potential for only marginal improvement.
Concern over possible trends and the magnitude of variabil-
ity over longer horizons, though, has driven examination of
multi-decadal winds, using both direct observations (Palu-
tikof et al., 1985; Earl et al., 2012; Früh, 2013; Azorin et
al., 2014; Watson et al., 2015), and reconstructions using nu-
merical weather prediction (NWP) reanalysis data (Palutikof
et al., 1992; Albers, 2004; Bett et al., 2013; Kirchner-Bossi
et al., 2014; Bett et al., 2016), with the uncertainties of re-
analysis data examined by Rose and Apt (2015, 2016). Con-
sidering seven sites in Great Britain and Ireland, each with
more than 55 years of records, Palutikof et al. (1985) sug-
gested, “it is vital to consider the longest available wind-
speed records, in order to obtain the best possible estimate
of the range of variability of the future wind regime”. Ana-
lyzing a 125-year reconstruction of geostrophic winds (winds
computed from surface atmospheric pressure measurements)
in Germany, Albers (2004) found that the error in “predict-
ing” the mean of a given 20-year period decreased as the
length of the preceding period on which the estimate was
based increased, until the length of the estimating period had
increased to about 35 years. On this basis he recommended
that resource assessments should be based on a historical
record of at least 30 years’ length. Taking a middle ground,
Brower (2012, p. 163) stated “the benefit of going beyond
about 10–15 years of reference data is limited”. The effects of
correlation between measurements made at times more than
a few hours apart are rarely considered in published anal-
yses of resource-assessment methodologies, although hub-
height wind speeds exhibit anomalies persisting for at least
12 months (Klink, 2007) that complicate regression analysis
(Pryor and Ledolter, 2010).

Here, we focus on how statistics derived from historical
time-series records are used to predict the future exceedance
levels employed in resource assessments. We use 62 years
of homogenized monthly wind speed records from 60 Cana-
dian stations (Environment and Climate Change Canada,
2016), as described in Sect. 2. To reveal the consequences
of any unwarranted assumptions of statistical independence,
we analyze for each station both its actual record and a
“control” record of statistically independent values produced
by randomly permuting the station’s chronological values.
We quantify estimation inaccuracy both as exceedance er-

rors and as energy errors, using concepts also introduced
in Sect. 2. As we describe in Sect. 3, comparing the errors
in estimates made from the chronological and randomized
records unambiguously reveals that interannual correlations
are responsible for larger than expected estimation errors and
also for the growth of these errors with record length. This
result is consistent with a slow power-law decay of year-to-
year correlation, or “long-term persistence”, which we dis-
cuss further in Sect. 4, and suggest that estimators explicitly
accounting for year-to-year correlation behavior would en-
able both more accurate predictions and a correct assessment
of confidence.

2 Data and methods

2.1 Canadian wind speed data set

We base our analysis here on one of the longer observational
data sets of instrumental wind speed records available, a 62-
year (1953–2014) record of monthly average wind speeds
from 156 Canadian meteorological stations (Environment
and Climate Change Canada, 2016). The stations stretch east-
to-west from Vancouver to Halifax and north-to-south from
the U.S. border to the Arctic Circle. These data, from the Na-
tional Climate Data Archive of Environment Canada, have
been carefully homogenized by Wan et al. (2010). The ho-
mogenization process adjusted all wind speeds recorded at
nonstandard anemometer heights to 10 m height using a log-
arithmic profile and surface-roughness-length data. Further,
mean shifts from changes in anemometer height, type, or lo-
cation, whether recorded in station histories or detected by
statistical testing as part of the homogenization process, were
also adjusted by comparison of each station’s observational
wind-speed record with a geostrophic wind reconstruction
from independent surface pressure data. Using the homog-
enized data, Wan et al. (2010) found statistically significant
downward trends in wind speed over the period over most
of Canada except the Arctic and Maritime provinces, which
exhibited an upward trend. St. Martin et al. (2015) used a re-
lated wind speed data set to investigate spatial correlation and
geographic diversity in the wind resource.

2.2 From wind speed to capacity factors

For more relevance to wind-turbine energy production we
convert monthly Environment Canada wind speeds to mod-
eled turbine capacity factor (monthly electric energy pro-
duction divided by turbine capacity). Since we begin with
monthly averages the conversion is necessarily crude; with
our interests focused on correlation effects, though, it suf-
fices that low wind speeds translate to low capacity factor and
high wind speeds to high capacity factor, with a variability
scale comparable to that of real wind plant. Since we judge
resource-assessment accuracy by comparing the exceedance
levels in the final 20 years of each site’s data to estimates
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based on the previous years’ data, systematic conversion er-
rors will not affect accuracy so long as we treat data from the
final 20 years and from the preceding years in the same way.

As shown by Lackner et al. (2008), the errors introduced
by deriving capacity factors from a Weibull or Rayleigh
statistical model of wind-speed distribution instead of di-
rectly from a wind-speed time series are only a few per-
cent. We suppose that a monthly mean value u in the En-
vironment Canada records arises as the average of more-
frequently-sampled wind speed values u′ drawn from a
Weibull distribution having cumulative distribution function
1− exp[−(u′/c)k] with shape factor k = 2 and scale factor
c = 2π−1/2u; we convert speeds u′ drawn from this distri-
bution into instantaneous capacity factors x′ using a power
curve loosely modeled on that of a 1.5-MW-class turbine:

x′ =
v1+ b · v1

3

[v0β + (v1+ b · v13)β ]1/β
, (1)

where v1 ≡ (au′−3.5ms−1)/(13.5−3.5ms−1) is a normal-
ized instantaneous hub-height wind speed, and parameters
v0 = 2.244, b = 3.72, and β = 5.21 control the power-curve
shape. For all but the two windiest stations we set a = 1.35=
(80/10)(1/7), to account for wind speeds being greater at 80 m
hub height than at 10 m measurement height according to a
wind-profile power law with exponent appropriate for neutral
stability conditions (Walter et al., 2009). For those two sta-
tions, with 10 m average wind speeds of 7.6 and 8.3 m s−1,
we set a = 1 to avoid having sustained operation at rated
power compress the modeled capacity-factor variability scale
(or equivalently, “to model a larger turbine”). We set x′ to
zero for au′ < 3.5 m s−1. We do not model turbine cut-out as
this complication has a negligible effect on variability scale.
Averaging the x′ values for a given u by Monte Carlo simula-
tion yields the corresponding monthly mean capacity factor
x(u), which we parameterize as

x(u)= 1.08
v2

2.5

1+ v23.27 , (2)

for au≥ 0.922 m s−1 (otherwise, 0) using a second normal-
ized wind speed v2 ≡ (au− 0.922ms−1)/(8.835ms−1).

To avoid any effects of seasonal cycles in the subsequent
analysis, we average the 12 monthly capacity factor values
in a calendar year, and then work with these annual averages,
62 per station. To deal with data gaps, unavoidably present in
such an extended data set, we assign null weights to missing
monthly data. Furthermore, for each station we calculate an
average seasonal cycle as the average of all the Januaries, all
the Februaries, and so on (for both wind speed and modeled
capacity factor) over the station’s 62-year record. In years
where our annual average is calculated from less than 12 data
points, we then make an adjustment according to the fraction
the available data represent of the average seasonal cycle. All
the statistical functions calculated in the following analysis
are thus weighted to take into account how many data points
are available.
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Figure 1. Ratio of the standard deviation σ of the 62 annual average
capacity factors to their mean µ, vs. µ, for each station. Filled sym-
bols: the 60 selected stations; open symbols: the discarded stations.
Dashed line is the least-squares linear trend for all the 156 stations
(slope of −0.47, R2

= 0.39); solid line is the least-squares linear
trend for the 60 selected stations (slope of −0.24, R2

= 0.15).

2.3 Stations selection process

In line with our focus on energy resource assessment, we
eliminated from further consideration those stations with
wind speeds too low for practical wind turbine deployment.
We calculated, for each station, the ratio of the (weighted,
always according to the number of available data) standard
deviation σ of the 62 annual average capacity factors to their
62-year weighted average µ. This simple indicator of vari-
ability is plotted vs.µ in Fig. 1. The least-squares linear trend
in the plot reveals that the less windy sites tend to be more
variable (R2

= 0.39), in accordance with the findings of Rose
and Apt (2015). For each of the 156 stations, we further cal-
culated the final 20-years average capacity factor M̂ , where
20 years are considered in our work as the expected lifetime
of a wind plant, yielding the distribution plotted in Fig. 2. As
the histogram shows, there is a significant number of stations
that, using the 1.5 MW turbine, would have low capacity fac-
tors; to focus on the most plausible sites we eliminated from
further analysis the 83 stations with capacity factor less than
20 %. Imposing this cut-off also reduced the trend observed
in Fig. 1 (R2

= 0.15). We further eliminate another 13 sta-
tions that have more than a single isolated year with no or
scant monthly data. Nine of the remaining 60 stations had
a single year with no recorded monthly values; one had 2
years missing. In these cases, we fill in the missing annual
value with the arithmetic mean of the values of the preceding
and following years.

2.4 Trends and need for a 30-stations subset

Wan et al. (2010) found significant decreasing trends in wind
speeds for most of the Canadian stations. We quantified these
trends by calculating1µ̂, the difference between the average
capacity factors of the final 20 years and the next-to-final
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Figure 2. Histogram for the final 20-years average capacity factor
M̂ for the 156 stations. The 83 eliminated stations with capacity
factor less than 20 % are shaded.
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Figure 3. Difference 1µ̂ between the final 20 years average ca-
pacity factor and next-to-final 20 years average capacity factor vs.
62-year long-term average capacity factor µ for the 30 stations of
the near-zero trend subset (filled) and for all the 60 considered sta-
tions (filled + open).

20 years. Figure 3 plots 1µ̂ vs. µ for the 60 stations we
analyze; 46 have a decreasing trend according to this defi-
nition. To enable our subsequent analysis to contemplate re-
source assessment statistics in the absence of such prominent
trends we also contrive a smaller set of stations selected so
that the average trend of the subset is near zero. This subset
was selected by including all 14 stations with positive 1µ̂
and then adding stations with negative 1µ̂ until the sum of
the set’s 1µ̂ values was near zero, while attempting to keep
the marginal distribution of µ values similar to that of the 14
positive-1µ̂ stations and to end up with a distribution of1µ̂
values roughly symmetric around zero. Filled dots in Fig. 3
show 1µ̂ vs. the long-term average capacity factor µ for the
30 stations in this subset.

2.5 Error categories and quantification

Resource assessments use quantiles or exceedance indices
to characterize a site’s wind resource. P50 expresses an en-
ergy production level chosen so that the fraction of time it
is exceeded is expected to be half or 50 %, and thus in some
sense characterizes the expected “average” production level.
A higher-denominated index value, such as P90, expresses a
lower energy production level or “floor” that should be ex-
ceeded more often. Thus, it gives a sense of the financial
“downside” risk. Estimators of this type are known in statis-
tical quality control as β-expectation tolerance intervals (in
contrast to β-content tolerance intervals) (Krishnamoorthy
and Mathew, 2009). Although there exist many such estima-
tors that do not rely on detailed assumptions about the form
of distribution whose quantiles are being estimated, knowing
the form does enable more efficient estimation. Our annual-
average capacity factor data often have nearly normal distri-
butions, but, as we establish here, are far from independent
year to year. Nevertheless, we proceed for illustration’s sake
under the simplifying assumptions that each station’s annual
capacity factor values x are independent and identically dis-
tributed (iid) normal random variables, and derive P50 and
P90 estimates from estimates µ̂ and σ̂ of population mean µ
and standard deviation σ .

We hold out the final 20 years of each station’s record,
representing a typical lifetime of a wind plant, as its “actual”
production, and attempt to “predict” the actual production
using estimates derived from capacity-factor values sampled
from preceding years. To analyze the performance of the P50
and P90 estimates we count the (weighted) number of years
in the station’s final 20-year segment having capacity factor
in excess of the estimator’s value and divide by 20 (adjusted
for weight), “expecting” the result to match the estimator’s
denomination (i.e. 50 or 90 %).

To facilitate comparison to standard resource assessment
metrics, we portray the error of our estimates or forecasts
both as exceedance errors and as energy errors. Exceedance
errors represent the difference of the actual from the targeted
exceedance (e.g. “only 40 % of the stations exceeded their es-
timated P50 level”). Energy errors represent the difference of
the actual from the targeted capacity-factor quantile (e.g. “the
median capacity factor of the station’s final 20 years was 0.32
compared to an estimated P50 of 0.37”). Further, for both
portrayals, we quantify both the spread and the “bias” – bias
in the forecasting sense of the difference between mean fore-
cast and mean observation rather than in the statistical sense
of difference between true value and expected value of an
estimator.

Assuming each station’s final 20 capacity-factor values
are independent and symmetrically distributed, the distribu-
tion of energy errors should, as j becomes large enough that
the error of the estimated level becomes small compared to
σ , tend towards a binomial distribution with n= 20, and
p = 0.5 (P50) or p = 0.9 (P90). The quartiles of these bi-
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Figure 4. Average interannual variability 〈CVj 〉 of wind speed vs. time-segment length j for each of 60 stations: (a) actual data, (b) randomly
permuted data.

nomial distributions are 0.4–0.5–0.6 and 0.85–0.90–0.95, re-
spectively. With regard to the distribution of P50 energy er-
rors, we define a statistic t as

t ≡ (M̂ − µ̂j )

[
(20− 1)Ŝ2

+ (j − 1)σ̂ 2
j

20+ j − 2

(
1
20
+

1
j

)]−1/2

,

(3)

where M̂ is the mean and Ŝ2 the variance of the final 20 ca-
pacity factors. Under the assumption that both the final 20
and the preceding j capacity-factor values are iid normal,
this statistic has Student’s t distribution with 20+ j − 2 de-
grees of freedom, and with mean (and median) of zero.

3 Results

3.1 Interannual variability

We first examine the potential effect of record length on re-
source assessment statistics by quantifying the interannual
variability (IAV) of wind speed. For each station, we cal-
culate the sample means µ̂ and variances σ̂ 2 for all possi-
ble contiguous segments of length j , allowing overlap: 62
segments of 1-year duration, 61 segments of 2-years dura-
tion, and so on, up to only one 62-year time segment, with
weighted sample variance defined as

σ̂ 2
=

j∑
i=1

wi(ui − µ̂)2
·
jeff

jeff− 1
, (4)

where the wi are the normalized data-availability weights
of the annual-average wind-speed data ui , and j indicates
the sample size (length in years of the data segment over
which IAV is calculated). The second factor above, with
1/jeff ≡

∑j

i=1(wi)2, corrects for sample-size bias in a man-
ner similar to the usual N − 1 term in the denominator of
unweighted sample variance. As usual, we define IAV as the
coefficient of variation (the ratio of sample standard devia-
tion to sample mean), but correct for bias arising from the
square-root operation in σ̂ as an estimator of the population

standard deviation:

CVj ≡
σ̂/b(jeff)

µ̂
;

b(s)≡
[

2
s− 1

]1/2 0( s2 )

0( s−1
2 )
; 0(s)= (s− 1)! (5)

Dividing σ̂ by b(jeff) gives, at least for normally distributed
u, an unbiased estimate of the standard deviation (Kenney,
1940, p. 135). Then for each station we calculated 〈CVj 〉
as the average of CVj over all segments of length j . In
this way, we get a set of 60× 62 coefficients of variation
〈CVj,`〉, where j indicates the length of the time segment
(j = 3, . . .,62) while ` indexes the station (`= 1, . . .,60).
Using a general technique that we will use repeatedly to ex-
plore the effect of year-to-year correlation, we randomly per-
muted the order of each station’s 62 annual average wind-
speed values, destroying any correlation, and then repeated
the calculation of 〈CVj,`〉 using this “control” data set. Fig-
ure 4 plots, with one trace per station, the average interannual
variability vs. segment length for wind speed u.

Figure 4 compares the CV based on actual data to the CV
based on randomized data, and clearly shows that, for the ac-
tual chronological data (a), 〈CVj 〉 systematically increases
with segment length j , while, for the randomized data (b),
it is independent of segment length. We also analyzed raw
hourly data from Environment Canada that had not been ho-
mogenized and saw similar behavior, but with a faster growth
of IAV with j . The increase in interannual variability with the
length of the considered record can only result from year-to-
year correlation. As our results show, sample IAV is still in-
creasing at the 62-year limit of our record, which is already
substantially longer than the data sets typically used for en-
ergy resource assessment.

3.2 P50 estimation

Under the assumptions of independence and normality, a
“prediction” of the median, or P50, can be calculated from a
sample of historical values simply as the sample mean µ̂. To
evaluate how P50 estimation performance depends on record
length, we calculated, for each selected station (`= 1, . . .,60
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Figure 5. Fraction of each of the selected 60 station’s final 20 years with capacity factor exceeding its P50 estimate µ̂j,` for actual (a) and
randomized (b) data.

or, for the low-trend subset, `= 1, . . .,30), the weighted
mean µ̂j,` of the immediately preceding j annual capacity
factors (j = 1, . . .,42), and then counted the (weighted) num-
ber of the final 20 years having a capacity factor exceeding
µ̂j,`. For example, µ̂5,11 signifies a P50 estimate predicting
years 43 to 62 of station 11’s performance, the estimate cal-
culated as the resource-level average over years 38–42. Fig-
ure 5 shows results for all 60 stations. For estimates made
from the randomly shuffled capacity-factor data (b), the frac-
tion of final-segment values exceeding the estimate averages
around 50 %, and as j increases more than half of the sta-
tion trajectories in fact fall within the expected binomial in-
terquartile range of 0.4–0.6. For estimates made from the ac-
tual data (a), on the other hand, the stations’ exceedance frac-
tions remain widely spread for all j values, with much less
apparent convergence towards any central value, with only
9 of the 60 stations having exceedance fraction within the
expected interquartile range.

Focusing on the 30-station low-trend subset, the his-
tograms of Fig. 6 show that the distribution of exceedances
for the chronological data (a) is very different from bino-
mial, while the distribution of exceedances of an instance of
random data (b) is close to binomial. The differences from
binomial distribution are statistically significant: Pearson’s
χ2 test p values of magnitude of 10−7 (chronological data)
vs. 0.03 (randomized data). The quartiles of the 30-station
exceedances are 40–52–60 % for the randomized data but
20–40–75 % for the chronological data (the exceedances take
values different from multiples of 1/20 because of our data
weighting). Trends or no, year-to-year correlations increase
the exceedance error range, here by a factor of 2.7 compared
to the expected 20 % binomial interquartile range.

To characterize bias in the P50 estimator, we also calcu-
late the exceedance fraction averaged across all 60 stations,
as shown in Fig. 6c. The curves show the weighted fraction of
the 20× 60 values that exceed their respective P50 estimate,
equivalent to the average across the traces in Fig. 5 at each j
value. This perhaps comes as close as we can come to mea-
suring what we desired to predict: the expected fraction of
capacity factor values exceeding the estimator value. For the
randomized data (red) the P50 estimator is indeed exceeded

about half the time. However, for the actual data (blue) the
exceedance fraction has its maximum value of 48 %, for a
j = 3 year sample, and declines further thereafter as record
length is increased out to 42 years. This behavior reflects the
widespread decreasing trend in wind speeds reported by Wan
et al. (2010). When the analysis is repeated with the low-
trend subset of 30 stations, Fig. 6d, the average exceedances
for both actual and random data vary around the expected
value of 50 % without the large excursion seen for the whole
60-station data set. But, since the subset was selected to have
just the property that average resource level over the final
20 years match that of the previous 20 years, this comes as no
surprise. The estimator’s bias for the larger set of 60 stations
may be more indicative of expected behavior for instances
where continuing trends cannot be separated a priori from
random behavior.

To characterize the magnitude of the energy estimation
error, we calculate the t statistic according to Eq. (3), with
j = 42 results shown for the low-trend set of 30 stations in
Fig. 6e and f. The 5–95 % range (light horizontal bars) nearly
matches the theoretically expected 90 % confidence interval
(black bar) for the randomized data (f), but is more than
three times wider than expected for the actual chronologi-
cal data (e). In the case of a hypothetical set of sites with an
average capacity factor of 0.35 and 6 % IAV, this increased
error would translate into an interval of 0.27< P50< 0.43
being required to capture 90 % of the sites vs. the range
0.32< P50< 0.38 expected for statistically independent an-
nual capacity factors.

We also calculate the mean absolute energy error (MAE)
of the P50 estimates:

MAEj =
1
n

n∑
`=1
|ej,`|, (6)

where the energy estimation error ej,` is defined as the dif-
ference between the median of the `th station’s final 20
capacity-factor values and µ̂j,`. Figure 6g shows results for
the whole set of 60 stations; Fig. 6h depicts the low-trend
subset of 30. To distinguish the effects of year-to-year cor-
relation we also compute MAEj using a randomly permuted
instance of the 62 annual capacity factors for each one of
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Figure 6. P50 estimator performance. (a), (b) Distribution of fractions of each of the 30 low-trend station’s final 20 years with c.f. exceeding
estimated P50 (µ̂42,`) for actual and randomized data, with expected binomial distribution (gray); horizontal bars extend across the central
two quartiles (binomial: black bar; data: light bars). (c), (d) P50 bias for all 60 stations, and for the 30 stations with low average trend. (e),
(f) Distribution of t statistic, theoretical pdf (curve), and 90 % confidence intervals (theoretical: black bar; data: light bars) for difference
between µ̂42 and M̂ for actual and randomized data, respectively, of 30 low-average-trend stations. (g), (h) P50 estimate MAE for all 60
stations and for 30 stations with low average trend.

the considered stations, shown as red traces in Fig. 6g and
h. The plots reveal that for the randomized data the MAE al-
ways decreases as the sample size j increases, as expected
for uncorrelated data. However, for the actual data the result
is quite different. Figure 6g shows that, for the full 60-station
data set, the best prediction (lowest MAE) of the 20-year av-

erage energy production is reached using just a short 4–5 year
segment immediately preceding the final target period, sim-
ilar to the finding of Früh (2013). For the low-trend subset
of 30 stations, the MAE for actual data declines very slightly
from j = 6 to j = 18. It increases thereafter, although more
slowly than for the data from all 60 stations. However, for
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Figure 7. Sixty-station Mean Absolute P50 Error derived from es-
timate based on 5-year sample segment separated final 20-year seg-
ment by indicated interlude.

both the set of 60 stations and the low-trend subset, the P50
estimation MAE for actual data always remains larger than
the MAE obtained for randomly permuted data; interannual
correlation increases error in estimating future energy pro-
duction.

To provide additional insight into the effect of year-to-year
correlation, we again estimate the P50 of each station’s final
20-year segment, but now using a fixed 5-year sample, sepa-
rated from the final segment by a p year interlude. Figure 7
shows the P50 MAE for the 60 stations vs. the length p of the
interlude, with the blue trace representing the actual chrono-
logical data and the red trace the randomly permuted data, as
before. For the chronological data the 5-year time segment
immediately preceding the target period produces the best
P50 prediction while going further back in time consistently
increases the energy error. For the randomized data set, on
the other hand, this effect is totally absent: the estimation er-
ror stays essentially constant regardless of how far back we
look. A similar result is found also considering the low-trend
30 stations.

As these results show, year-to-year correlation has sub-
stantial impacts on the estimation of P50. When the prepon-
derance of the stations appear to exhibit a secular trend it is
perhaps not surprising that P50 estimates will exhibit bias.
However, even for a group of stations without a predominant
trend, where bias is essentially eliminated, error in the P50
estimate is still always more than would be expected on the
basis of uncorrelated samples, for all record lengths. Little
improvement in error is gained by using records longer than
4–6 years, and in fact using records longer than 18 years ac-
tually degrades accuracy.

3.3 P90 estimation

The degree of resource variability, and hence financial risk,
can be indicated by a “floor”, or a production level enough
lower than P50 that it is only rarely not exceeded. P90, for ex-

Sample size

Di
ffe

re
nc

e 
fr

om
 1

.2
82

Figure 8. Values of k (table), and difference of k from 10 % normal
quantile vs. sample size j .

ample, indicates a production level expected to be exceeded
90 % of the time, or in 9 years out of 10. To estimate P90 we
again proceed, for illustration’s sake, under the simplifying
assumptions that each station’s annual capacity factor values
x are independent and normally distributed, enabling our P90
estimator q̂10 to be determined from the two parameters that
completely characterize that distribution:

q̂10 = µ̂− kσ̂, (7)

where µ̂ and σ̂ are the mean and standard deviation of the
sample of annual-average capacity-factor values from which
the estimate is being made (Wilks, 1941; Krishnamoorthy
and Mathew, 2009, p. 295).

According to the definition of P90 we desire an estimator
such that E{Pr[x > µ̂− kσ̂ ]} = 0.9, where E{·} denotes ex-
pectation and Pr[·] probability. If the estimate is being made
from a sample comprising j iid normally distributed annual
capacity-factor averages x, then x and µ̂ both have expected
mean µ, and have variance σ 2 and σ 2/j , respectively. Thus,
(x− µ̂)/(σ

√
1+ 1/j ) has the unit normal distribution and

(j − 1)σ̂ 2/σ 2 has the χ2 distribution with j − 1 degrees of
freedom. Since (x−µ̂)/(σ̂

√
1+ 1/j ) then has Student’s t dis-

tribution with j−1 degrees of freedom, the constant k needed
for estimator q̂10 in Eq. (7) is determined by

k =Qt,j−1(0.1)
√

1+ 1/j, (8)

where Qt,ν is the quantile function (inverse CDF) of Stu-
dent’s t distribution with ν degrees of freedom. As shown in
Fig. 8, these values of k are larger than 1.282, the 10 % quan-
tile of the unit-normal distribution (Mortensen et al., 2013),
especially for small sample sizes, but approach it for large j ,
as expected.

To evaluate how P90 estimation errors depend on record
length, we calculate P90 estimates using the weighted means
and standard deviations of the immediately preceding j an-
nual capacity factors according to Eq. (7), and then count the
(weighted) number of each station’s final 20 years having a
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Figure 9. Fraction of each of the 60 stations’ final 20 years with capacity factor exceeding P90 estimate for (a) actual data and (b) randomized
data. The count of both years exceeding the estimate and total years were weighted according to the number of underlying data.

capacity factor exceeding the value of its P90 estimate, with
results shown in Fig. 9. To distinguish the effects of year-to-
year correlation, we again carried out this procedure for both
the actual chronological data and for an instance of each sta-
tion’s data having the 62 values randomly permuted. As can
be seen in Fig. 9, which plots all 60 stations, while the ex-
ceedance values for the randomized data converge on 90 %
as sample size j is increased, the values for the actual data
remain widely scattered. The low-trend subset of 30 stations
gives a similar result.

As for the P50 estimates, we examine the distribution of
the fractions of the final 20 years’ capacity factors exceeding
the estimated P90 for the low-trend subset of 30 stations. If
the final 20 years were independent, the exceedance counts
would have approximately binomial distributions, this time
with p = 0.9 and interquartile range of 85–95 %. Figure 10a
shows that the distribution of exceedances for the actual
data differs much more significantly from the expected bi-
nomial distribution (p value of Pearson’s χ2 test of the order
of 10−24) than does the distribution for randomly-permuted
data, Fig. 10b (p value of 0.03). The quartiles of the 30-
station exceedances are 85–90–95 % for the randomized data
but 80–95–100 % for the chronological data: the interquartile
range is twice the expected 10 % range of the binomial dis-
tribution. Year-to-year correlation clearly shows its influence
in widening the confidence interval of a P90 prediction, even
for a set of stations with little average long-term trend.

The average across all 60 stations of the exceedance of the
final 20 capacity factors, as seen in Fig. 10c, declines from 85
to 65 % with increasing j for the actual chronological data.
For this data set, estimator q̂10 thus grossly underestimates
risk when using long records, with up to 1 year in 3 falling
below the supposed P90 instead of the desired 1 in 10. Sus-
picions about an improper definition of the estimator are al-
layed by its performance with randomized data, where the
average exceedance in fact stays about 90 % essentially in-
dependent of j . Bias is largely eliminated when using the
low-trend subset of 30 stations, as seen in Fig. 10d. In this
case, the average exceedance for estimates made from both
the chronological data and the randomly permuted data vary

around the expected value of 90 %, without any large system-
atic trend.

Figures 10e and f show the distribution of energy errors
for the low-trend subset. Energy error here is the difference
between the 10 % quantile of each station’s final 20 years,
calculated according to Definition 5 of Hyndman and Fan
(1996), and its P90 estimate made from the preceding j =
42 years. For the chronological data, half the stations have
capacity-factor errors within the range −0.021 to +0.013,
while for the randomized data the range is−0.008 to+0.013,
or 1.5 times smaller.

We also calculate the mean absolute value of this error
vs. j , with results for all 60 stations in Fig. 10g and for the
low-trend subset of 30 in Fig. 10h. Again, we reveal the ef-
fects of year-to-year correlation by also calculating MAE us-
ing a randomly permuted instance of each station’s 62 an-
nual capacity factors, with traces shown in red. For the ran-
domized data, the MAE decreases as the sample size j in-
creases, as expected. However, for the actual chronologi-
cal data, Fig. 10 shows that for both all 60 stations (g) and
the low-trend sub-set of 30 (h), the best predictions (lowest
MAE) of the 10 % quantile of energy production in the fi-
nal 20 years are obtained using estimates derived from the
preceding 6–20 years (without much difference across that
range), and that records longer than 20 years increase the
MAE. At j = 42, MAE for the low-trend subset reaches a
value twice what would be obtained if the samples were inde-
pendent. Moreover, as seen previously for the P50 estimation
errors, for both the full 60-station set and the low-trend 30-
station subset, the P90 MAE for actual data is always larger
than the MAE obtained for randomly permuted data: year-
to-year correlation increases P90 estimation error whether or
not the data exhibit overall secular trends.

Our P90 estimator q̂10 relies on separate estimates of sam-
ple mean µ̂ and sample standard deviation σ̂ . We perform a
“thought experiment” to see which makes the larger contri-
bution to P90 error. First, we calculate P90 estimates using
the actual mean of the final 20 years instead of estimating it
from a sample of preceding years, but still relying on the pre-
ceding years’ sample estimate of σ̂ . Then, we turn the tables,
and estimate P90 estimates using the actual standard devia-
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Figure 10. (a), (b) Distribution of fractions of each of the 30 low-trend station’s final 20 years with c.f. exceeding estimated P90 (j = 42) for
actual and randomized data with binomial PDF (gray) and central two quartiles (binomial: black bar; data: light bars). (c), (d) P90 bias for all
60 stations, and for the 30 stations with low average trend. (e), (f) Distribution of difference between q̂10 and the data set’s 10 % quantile for
actual and randomized data, respectively, of 30 low-average-trend stations (light horizontal bars: central two quartiles). (g), (h) P90 estimate
MAE for all 60 stations and for 30 stations with low average trend.

tion of the final 20-year segment, but with the mean estimated
from the preceding years. Of course an assessment engineer
could never see the 20 target years, but the exercise can help
us isolate the effects of errors in scale from the effects of
error in location. Carrying out this thought experiment with
estimators that still are expected to have 90 % exceedance un-
der our iid assumptions requires k values different than those

used before where both µ̂ and σ̂ are estimated from preced-
ing years.

For the first half of the thought experiment, we utilize the
actual mean M̂ of each station’s final 20 annual capacity fac-
tors. In this case, the difference between a particular one of
the final capacity factors xα and the mean of all 20 can be
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Figure 11. P90 “thought experiment”. (a), (b) Average exceedance of P90 estimator, using the actual mean of the final 20 years, for all 60
stations, and for the subset of 30 stations with global near-zero trend, respectively. (c), (d) Average exceedance using the actual standard
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each station’s P90 estimate. Blue: actual data; red: randomly permuted data.
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For the sample standard deviation of the preceding j years,
(j − 1)σ̂ 2/σ 2 has the χ2 distribution with j − 1 degrees of
freedom as before. Thus, the estimator for this special case
can be calculated as

q̂10
′
= µ̂−

√
20
19

Qt,j−1(0.1)σ̂, (10)

whereQt,ν is again the quantile function for the t-distribution
with ν degrees of freedom. As can be seen in Fig. 11a and b,
bias for both chronological and randomly permuted data is
small in this case, regardless of trend: using the actual means
of the final 20 years greatly reduces P90 bias.

For the second half of the thought experiment, we utilize
the actual sample standard deviation Ŝ of each station’s fi-
nal 20 years, but estimate the mean µ̂ from the preceding
j -years as we did originally. In this case the final 20 x values
and Ŝ are not independent, which complicates expressing k
in terms of standard probability distributions. Instead we ap-
proximate it by Monte Carlo, creating sets of samples of j
and of 20 iid normal-distributed random numbers (100 000

of each), and calculating µ̂ values from the j -member sam-
ples and Ŝ values from the 20-member samples. We then vary
k until approximately 1 800 000 of the 2 000 000 values in the
20-member samples exceed their sample’s estimator. Bias for
this P90 estimator behaves much like that of our original esti-
mator: substantial bias for the larger set of stations and little
for the low-trend subset, as seen in Fig. 11c and d, respec-
tively.

4 Discussion and conclusions

The primary purpose of resource assessment is to quantify fi-
nancial risk and returns, and to this end it is important that re-
source assessments quantify their degree of certainty. Using
simple estimators generated from sample mean and variance
(µ̂ for P50 and µ̂− kσ̂ for P90), we have analyzed homog-
enized wind speed data from 60 weather stations in Canada,
each with a 62-year record, with a goal of untangling the
influence of interannual variability and year-to-year correla-
tion on estimates of financial risk. By randomly permuting
each station’s record, we created control data sets with se-
quences guaranteed to be statistically independent. Check-
ing the exceedance-level estimates P50 and P90 on these
randomized sequences confirms several anticipated charac-
teristics of the estimators. The frequency with which the
estimated levels are exceeded for the randomized time se-
ries indeed averages around 50 and 90 %, indicating that the
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distributions of annual-average resource levels are approxi-
mately normal, without much skew (which would bias sam-
ple mean µ̂ as an estimator of P50 or the resource median)
or excess kurtosis (which would bias µ̂− kσ̂ as an estima-
tor P90 or the 10 % quantile). Hitting the target exceedance
frequency does require calculating k for the P90 estimator
from the t distribution. Improperly setting k = 1.282, the
10 % quantile of the normal distribution, would give P88 es-
timates when applied to samples of length j = 10, for exam-
ple. With these P50 and P90 estimators, the mean absolute
energy error (MAE) of the estimated capacity-factor quan-
tiles falls monotonically with record length, as expected. We
checked estimator performance by counting the number of
years in the final 20 of each station’s record having a resource
level exceeding an estimate made from a preceding segment
of the record. When the estimation segment was substantially
longer than 20 years the distribution of the count was essen-
tially binomial with n= 20, and p = 0.5 or 0.9. These results
show that, save for the assumption of statistical independence
of the input data, the estimation methods are adequately for-
mulated.

The performance of the estimators using the actual chrono-
logical records is quite another story. When considering the
entire set of 60 stations, both the P50 and P90 estimates
exhibited strong bias, grossly over-predicting resource lev-
els actually attained in the final 20 years of each station’s
record. This bias is consistent with widespread decreasing
wind speeds identified by Wan et al. (2010). Errors only fell
with record length for the first few preceding years (4 years
for P50 and 10 years for P90); for records longer than 5 years
(P50) or 18 years (P90), error rose with sample length. Us-
ing a sub-set of 30 stations contrived to have near-zero av-
erage resource trend (same 30-station-average level for the
final 20 years as for the preceding 20 years) essentially elim-
inates estimation bias, but both energy and exceedance error
spreads increase with sample length for records longer than
18 years, and are 2–3 times larger than either theoretical ex-
pectations or errors obtained from the same estimation pro-
cedures applied to randomized data. Thus, even absent over-
all trends, year-to-year correlation in the chronological data
reduces P50 and P90 certainty.

The higher errors of the estimates made from the chrono-
logical data must arise from non-zero correlation (lack of sta-
tistical independence) since these data are identical to the
randomized control data except for sequence. One might
hope to account for the higher errors in estimates made from
the correlated data in terms of an “effective number” of inde-
pendent samples (Bayley and Hammersley, 1948; Corotis et
al., 1977). For example, if the autocorrelation function of a
sequence of wind speed measurements was found to have an
exponential form and to fall to 1/e in a lag time of τ = 6 h,
then a sequence of hourly measurements having total dura-
tion T � τ could be considered to comprise j = T/(2τ )=
T/(12 h) independent samples, and confidence intervals for
its mean value could be correctly estimated using this value

of j . However, this approach relies on the autocorrelation
function having a finite sum or integral.

Previous work finds, though, that wind speeds seem to ex-
hibit “long-term persistence”, with autocorrelation of a hy-
perbolic form τ−α which cannot be summed. Wind’s persis-
tence was first noted by Haslett and Raftery (1989) in their
analysis of 18-year wind speed records from 12 stations in
Ireland. Subsequently Bakker and van den Hurk (2012) used
annual-mean geostrophic winds reconstructed from 12 sea-
level pressure records with 75–126 year lengths, and found
statistically significant persistence over the North Sea, Great
Britain and Ireland and along the Scandinavian coast. Sim-
ilarly, Tsekouras and Koutsoyiannis (2014) analyzed 20 ob-
servational wind-speed records from stations in Western Eu-
rope, with record lengths ranging from 65 to 107 years,
and found persistence in all. These findings place year-to-
year correlations in wind-speed records in the same class as
those exhibited by river flows (Hurst, 1951) and a wide va-
riety of other climatological (Pelletier and Turcotte, 1997;
Koscielny-Bunde et al., 1998; Ault et al., 2013) and geo-
physical (Witt and Malamud, 2013) processes. Our findings,
that interannual wind speed variability (σ̂/µ̂) continues to
increase with segment length out to the 62-year limit of our
chronological data while for randomly permuted data it re-
mains essentially constant, are also consistent with persis-
tence. Because of the scale-free nature of the decay of persis-
tent correlations, the effective number of independent sam-
ples per unit record length does not approach a constant, and
attempts to use this approach will “underrate uncertainty by
a factor which tends to infinity with increasing number of
observations” (Beran, 1989).

In light of the persistence behavior, it is premature to dis-
miss the larger estimation errors from the 60-station set as be-
ing somehow a spurious result attributable to nonstationarity.
Persistent processes are characterized by seeming “trends”
that spontaneously appear and disappear in a way that is
actually entirely random (Beran et al., 2003, p. 3), making
it difficult to identify statistically significant “real” trends
(Cohn and Lins, 2005). Will the “stilling” trends in ground-
level wind speed observations (Klink, 2002; McVicar et al.,
2008; Pryor et al., 2009; Vautard et al., 2010) reverse, in the
way that “global dimming” has now become “global bright-
ening” (Müller et al., 2014)? The increasing availability of
multi-decade wind speed data sets, including the Twentieth
Century Reanalysis Project (Compo, 2011) in addition to the
other multi-decadal works cited above, should enable an im-
proved appraisal of the impact of trends on wind develop-
ment risks.

We have shown here that year-to-year correlations in re-
source level produce large effects, seemingly not recognized
or incorporated into current estimation practice, degrading
the certainty of pre-construction wind energy estimates. For
primitive estimators, of the type utilized here, longer records
do not provide better estimates of future energy production.
Since ignoring available data would not – and must not –
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be a reasonable solution, statistical approaches that explic-
itly account for the observed year-to-year correlation should
be considered. One parsimonious approach would be to uti-
lize estimation procedures based on long-term-persistence
phenomenology, such as the pioneering comprehensive MCP
technique proposed some time ago by Haslett and Raftery
(1989). Given the distinctive nature of year-to-year change
in the wind resource we further suggest that it might be pro-
ductive to dissociate resource “variability” from instrumen-
tal and model “uncertainty” in resource assessment presenta-
tions.

5 Data availability

The homogenized monthly average windspeed source data
used in this work are freely available on the Environment
Canada website (Environment and Climate Change Canada,
2016). The weighted annual-average capacity factors we de-
rived from these data are available in the Supplementary Ma-
terial here, along with a map showing locations of the 60
selected Environment Canada stations.

The Supplement related to this article is available online
at doi:10.5194/wes-1-115-2016-supplement.
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