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Abstract. Given a wind farm with known dimensions and number of wind turbines, we try to find the optimum
positioning of wind turbines that maximises wind-farm energy production. In practice, given that optimisation
has to be performed for many wind directions, and taking into account the yearly wind distribution, such an
optimisation is computationally only feasible using fast engineering wake models such as the Jensen model.
These models are known to have accuracy issues, in particular since their representation of wake interaction is
very simple. In the present work, we propose an optimisation approach that is based on a hybrid combination of
large-eddy simulation (LES) and the Jensen model; in this approach, optimisation is mainly performed using the
Jensen model, and LES is used at a few points only during optimisation for online tuning of the wake-expansion
coefficient in the Jensen model, as well as for validation of the results. An optimisation case study is considered,
in which the placement of 30 turbines in a 4 km by 3 km rectangular domain is optimised in a neutral atmospheric
boundary layer. Optimisation for both a single wind direction and multiple wind directions is discussed.

1 Introduction

Wind turbines are often clustered together in wind farms to
save the cost of land and cabling. However, aerodynamic
interactions between the turbines in the form of so-called
wakes (low-speed regions) that form behind wind turbines
lead to power reductions in “waked” turbines of up to 50 %
compared to a lone-standing wind turbine in undisturbed
flow (Barthelmie et al., 2010). These interactions are very
important when considering the topological placement of
wind turbines in large wind farms.

In order to optimally design wind-farm layout, models are
necessary that accurately predict the aerodynamic turbine–
wake interaction effects. Such models need to be very fast,
as wind-farm design optimisation needs to consider the full
spectrum of wind directions over a wind farm’s operational
lifetime, thus requiring many thousands of model evalu-
ations. Moreover, wind-farm design is a multidisciplinary
problem in which the aerodynamic wake-interaction model
is only one of the models, next to turbine load models,
lifetime analysis, economic investment models, etc. (see,
e.g., Zaaijer, 2013). Today, the wake model that is most used

is the Jensen model (Jensen, 1983; Katic et al., 1986). It is
a simple and fast model, but it is known to be inaccurate
when looking at individual power predictions of turbines in
various waked conditions (Barthelmie et al., 2009; Gaumond
et al., 2014; Niayifar and Porté-Agel, 2015). Layout optimi-
sation of wind farms using fast wake models has been inves-
tigated in numerous studies (Marmidis et al., 2008; Emami
and Noghreh, 2010; Kusiak and Song, 2010; González et al.,
2010; Saavedra-Moreno et al., 2011; Du Pont and Cagan,
2012; Chowdhury et al., 2012; Samorani, 2013; Chen et al.,
2013b). However, the accuracy of such optimisation results
has always remained a concern in view of the limited relia-
bility of wake models, and this has recently led to a renewed
interest in the formulation of accurate but fast wake models
(Stevens et al., 2015; Niayifar and Porté-Agel, 2015).

In the last five years, the detailed simulation of wind-farm–
atmospheric-boundary-layer interaction and turbine wake in-
teractions based on high-fidelity simulation tools such as
large-eddy simulation (LES) have become very popular (see,
e.g., Meyers and Meneveau, 2010; Calaf et al., 2010; Yang et
al., 2012; Meyers and Meneveau, 2013; Wu and Porté-Agel,
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2013; Allaerts and Meyers, 2015), leading to many new in-
sights into the flow physics of wind farms. Given known and
constant meteorological conditions, these types of models
provide a detailed time-resolved prediction of the turbulent
flow in a wind farm with resolution of spatial flow structures
in the order of 20 m and temporal fluctuations in the order
of 10 s. Although it is computationally infeasible in LES of
wind farms to resolve all the detailed flow physics, such as
the turbine blade-boundary layers (with length scale below
a millimetre), these models do lead to quite accurate predic-
tions of wakes and wake merging when compared to wind-
tunnel and field experiments (Porté-Agel et al., 2011; Wu and
Porté-Agel, 2013; Munters et al., 2016a). Unfortunately, LES
of wind farms requires supercomputing and simulation times
that are several hours to days for one single atmospheric con-
dition. Hence, these models are not useful for layout optimi-
sation purposes.

In the current work, we investigate a hybrid approach in
which the Jensen model is used during optimisation, but we
use LES to gradually adapt the Jensen model and verify the
optimisation results. To this end, the wake-expansion coeffi-
cient in the Jensen model is iteratively fitted based on LES.
In itself, tuning of the wake-expansion coefficient (e.g. to ex-
periments) is quite common, but it is well known that the
coefficient depends on atmospheric conditions and farm lay-
out, and it may also best depend on streamwise distance into
the farm (Stevens et al., 2015). Therefore, a coefficient that
is tuned a priori will not fit all possible scenarios that are en-
countered during layout optimisation of a wind farm over its
relevant range of atmospheric conditions. In a hybrid Jensen–
LES approach, it is possible to adapt the coefficient a posteri-
ori during optimisation depending on layout, wind direction,
etc. The main focus of the current work is on the formula-
tion of an approach that is computationally feasible, given the
very high costs of performing LES (even in a hybrid Jensen–
LES optimisation). We demonstrate the proposed methodol-
ogy on a moderately sized wind farm of 30 turbines in a 4 km
by 3 km farm area.

This paper is organised as follows. In Sect. 2 the mathe-
matical formulation for the optimisation problem is stated,
and the simulation models (both Jensen and LES) and the
optimisation methodology are introduced. In Sect. 3, results
are presented. First, the different steps in the algorithm are
highlighted for a single wind-direction optimisation case in
Sect. 3.1–3.3. Subsequently, in Sect. 3.4, some results for op-
timisation with multiple wind directions are discussed. Fi-
nally, conclusions are presented in Sect. 4.

2 Problem description and methodology

In Sect. 2.1, the optimisation problem description is intro-
duced. Subsequently, the Jensen model is briefly reviewed in
Sect. 2.2. The LES simulation environment is discussed in

Sect. 2.3, and finally the hybrid Jensen–LES approach and
the optimisation method are presented in Sect. 2.4.

2.1 Problem description

Consider a set of Nt turbines that are to be placed in a fixed
domain �. Given constant atmospheric conditions and wind
direction (parameterised in a vector µ), the average power
output of a turbine at position xi in the wind farm is

P i(xi,µ)=
1
T

T∫
0

Pi(xi, t,µ)dt, (1)

where Pi(xi, t,µ) corresponds to the instantaneous power
output of the turbine (given atmospheric conditions µ),
which is subject to turbulent wind fluctuations, and T is a
time averaging window that is sufficiently long to average
out the turbulence effects. Note that the Jensen model (see
Sect. 2.2) directly predicts P i of turbines in a wind farm,
while, for example, experimental measurements as well as
results from LES (see Sect. 2.3) yield Pi(xi, t,µ) and thus
explicitly require the above time averaging.

The optimisation problem that we consider is formulated
as follows:

maximise
xi

∫ ∑Nt

i=1
P i(xi,µ)fp(µ)dµ

subject to xi ∈�, ∀i ∈ {1, · · ·,Nt}

‖xi − xj‖2 ≥ dmin

∀i,j ∈ {1, · · ·,Nt}, i 6= j,

(2)

where � is the wind-farm domain in which turbines can be
freely placed and fp(µ) is the joint probability density func-
tion of atmospheric conditions µ over which optimisation
needs to be carried out (e.g. the yearly wind-direction dis-
tribution, atmospheric stability class). Finally, dmin is a con-
straint on the minimum distance between turbines. In theory,
the minimum distance between turbines is 1.0D (with D the
rotor diameter). In the current study, we will consider a dmin
of 2.0D for all optimisation cases.

The solution of the above optimisation problem requires
a model for P i(xi,µ). This is discussed next in Sect. 2.2 for
the Jensen model and in Sect. 2.3 for the LES model. To solve
the above optimisation problem, we use the cross-entropy op-
timisation method (De Boer et al., 2005; Rubinstein, 1999) in
combination with a hybrid Jensen–LES model as discussed
in Sect. 2.4. Finally, note that, for ease of notation, we drop
µ as an argument in P i . In fact, the conditions µ (e.g. wind
direction, turbulence intensity) are implicity contained on the
set-up and boundary conditions of the respective models be-
low.

2.2 The Jensen wake model

We briefly review the Jensen wake model as originally devel-
oped by Jensen (1983) and Katic et al. (1986).
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The model commences by assuming that each turbine gen-
erates a radially and azimuthally uniform wake that linearly
expands with downstream distance from the turbine. Using
simple mass conservation, this allows the velocity deficit
generated by turbine i to be described as

1Ui(si)= U∞
1−

√
1−CT,i

(1+ kwsi/R)2 , si > 0, (3)

where CT,i is the turbine thrust coefficient and si = (x−xi) ·
ef is the downstream axial distance from the turbine, and ef
the unit vector in the mean-flow direction. Obviously, si > 0.
Upstream of a turbine, its own generated wake has a ve-
locity deficit 1Ui = 0. Furthermore, kw is the linear wake-
expansion coefficient, and R is the rotor radius. Correlations
exist that relate kw to the incoming atmospheric boundary
layer; for example (Lissaman, 1979; Frandsen, 1992)

kw =
u∗

U∞
=

κ

ln(zh /z0)
(4)

is commonly used, with κ the von Kármán constant, zh the
turbine hub height, and z0 and u∗ the surface roughness and
friction velocity of the incoming atmospheric boundary layer.
Note that, in the current study, we will use LES to adapt kw in
our optimisation procedure as discussed in Sect. 2.4. Finally
note that the wake expansion is vertically restricted by the
ground once the wake radius grows larger than the turbine
hub height. However, the ground is not directly modelled,
but instead mirror turbines are added below the ground, with
wakes that are included in the wake-merging model (Lis-
saman, 1979) (see below).

In order to estimate the power output P i , the turbine’s in-
coming mean velocity is required. It is modelled as Ui,in =
U∞−1Ui,in, with U∞ the wind-farm inflow velocity at hub
height and 1Ui,in the upstream velocity deficit experienced
by turbine i. The deficit 1Ui,in is heuristically modelled by
quadratically adding upstream wake deficits as follows:

1Ui,in =

∑
j∈Si

(1Uj (sij ))2

1/2

. (5)

Here Si is the set of all upstream turbines that have a wake
that geometrically intersects with turbine i and sij is the dis-
tance along the wind direction between turbine i and j . In
order to include the effect of the ground on wake develop-
ment, mirror turbines (below the ground) are added to the set
Si for each turbine whose wake is restricted by the ground.
It is furthermore possible that wakes only partially overlap,
in which case the rotor area of the inflow turbine is split into
regions with different overlaps. More details on the approach
can be found in Rathmann et al. (2007).

Once the turbine inflow velocitiesUi,in are determined, the
power per turbine is calculated as

P i(xi)=
1
2
CP,iρU

3
i,in, (6)

where CP,i is the wind turbine’s power coefficient. For an
ideal turbine, CP,i follows from axial momentum theory
from, i.e.

CP,i =
1
2
CT,i[1−

(
1−CT,i

)1/2
]. (7)

For a real turbine, CP,i can be expressed as a function of CT,i
and wind speed, using either a mapping specific to the turbine
or blade-element momentum theory, and this can be straight-
forwardly used in the Jensen model. In the current study, we
will simply use above ideal relationship, as our main focus is
on the development and demonstration of the hybrid Jensen–
LES approach, and not so much on the specifics of the se-
lected turbine model.

2.3 Large-eddy simulation environment and simulation
set-up

Simulations are performed using SP-Wind, developed at
KU Leuven (Meyers and Meneveau, 2010, 2013; Allaerts
and Meyers, 2015; Goit and Meyers, 2015; Munters et al.,
2016a). SP-Wind solves the filtered incompressible Navier–
Stokes equations, which are given by

∇ · ũ= 0 (8)
∂ũ

∂t
+ ũ · ∇ũ=−

1
ρ
∇p̃+∇ · τM−f , (9)

where ũ(x, t)= [̃u1, ũ2, ũ3] is the resolved velocity field, p̃
is the pressure field, and τM is the sub-grid-scale (SGS)
model. We use a standard Smagorinsky model (Smagorin-
sky, 1963) with Mason and Thomson’s wall damping (Mason
and Thomson, 1992) to model the SGS stress. Furthermore,
−f represents the forces (per unit mass) introduced by the
turbines on the flow. In LES of wind-farm boundary layers,
this turbine-induced force is commonly modelled using an
actuator-disc model (ADM), as full meshing of the turbine
blades and geometry leads to computational grids that are
too large for current-day computers. Expressed for turbine i,
this force corresponds to (Meyers and Meneveau, 2010; Goit
and Meyers, 2015):

f (i)
=

1
2
C′T,i V̂

2
i

which are given by

∇ · ũ = 0 (8)
∂ũ

∂t
+ ũ · ∇ũ = −1

ρ
∇p̃+∇ · τM −f (9)
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f (i) =
1
2
C ′T,iV̂

2
i Ri(x)e⊥ i= 1 · · ·Nt, (10)10

where e⊥ represents the unit vector perpendicular to the turbine disk, and Ri(x) is a geometrical smoothing function that

distributes the uniform surface force of the turbine over surrounding LES grid cells, with
∫

Ω
Ri(x)dx′ =A and A the turbine
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CT =
C ′T

(1 +C ′T /4)2
(11)

which provides a direct relation between the thrust coefficient used in the Jensen model, and the disk-based thrust coefficient
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T∫

0

∫∫∫
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∇ · ũ = 0 (8)
∂ũ
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∇ · ũ = 0 (8)
∂ũ
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flow angles into account (see Appendix A in Goit and Mey-
ers, 2015, for a detailed formulation). Based on axial mo-
mentum theory, we have (Calaf et al., 2010)

CT =
C′T

(1+C′T/4)2 , (11)

which provides a direct relation between the thrust coeffi-
cient used in the Jensen model and the disc-based thrust co-
efficient used in the LES model. Finally, given the velocity
field ũ(x, t) from a LES, the average power output for tur-
bine i is determined from

P i(xi)=
1
T

T∫
0

∫ ∫ ∫
f (i)
· ũdxdt. (12)

In Fig. 1 a typical snapshot of a horizontal velocity field
ũ1(x, t) is shown, including an outline of the simulation
domain that is considered in the current study. The main
domain size is Ly ×Lx ×Lz = 8.0× 6.0× 1.0 km3, where
x is always the main flow direction and z is the vertical
direction. The wind farm is inserted in a subdomain �=
4.0 km× 3.0 km (also marked on the figure). At z= 0 a clas-
sical high-Reynolds-number wall-stress boundary condition
is used (Moeng, 1984; Bou-Zeid et al., 2005), which is pa-
rameterised by the ground surface roughness z0, for which
we use z0 = 0.1 m. At z= Lz a symmetry condition is used,
and in the y direction periodic boundary conditions are used.
Finally, at x = 0 an inflow boundary condition is used.

The inflow is generated in a separate precursor simula-
tion (also shown in Fig. 1), which employs shifted peri-
odic boundary conditions to avoid artificial spanwise lock-
ing of the typical low-speed streaks observed in boundary
layers (see Munters et al., 2016b, for details). For the pre-
cursor simulation, a domain size of 8.0× 6.0× 1.0 km3 is
selected. The precursor simulation is driven by a constant
pressure gradient, which corresponds to ∇p∞ /ρ = u2

∗ /Lz,
where u∗ = (τw /ρ)1/2 is the friction velocity in the precur-
sor domain. In the current work, we are interested in region
II operation of wind turbines for which C′T can be presumed
to be constant. Given that also z0 and zh are fixed, simulation
results remain dynamically equivalent for any selected value
of u∗, with velocity scaling proportionally with u∗ and time
scaling inversely proportionally with u∗. An output of our
precursor simulation (given z0 = 0.1 m) is the hub-height ve-
locity uh ≈ 17.5u∗. Thus, to obtain a realistic region II hub-
height velocity of, for example, 8 m s−1, it suffices to select
u∗ = 0.457 m s−1. However, since all later results and com-
parisons with the Jensen model are normalised with inflow
velocity, or with first-row power output, the exact value of
u∗ is not further important (in our simulations, we just use
u∗ = 1).

For the discretisation of the governing equations, SP-Wind
uses a pseudo-spectral method in the horizontal directions,
applying the 3/2 rule for dealiasing (Canuto et al., 1988).
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Figure 1. Snapshot of an instantaneous velocity field in the precur-
sor domain and main simulation domain obtained from SP-Wind.
Left panels: precursor, with side view (top) and plan view (bottom).
Right panels: main, with side view (top) and plan view (bottom).
Wind-farm area � is shown in the green dashed box, and the fringe
region with the green dash-dot line.

In the vertical direction, a fourth-order energy-conservative
finite-difference discretisation scheme is used (Verstappen
and Veldman, 2003). Non-periodic boundary conditions in
the x direction are implemented using a fringe-region tech-
nique, with a fringe region located in the last 2 km of the
domain (for details, see Spalart and Watmuff, 1993; Stevens
et al., 2014; Munters et al., 2016a, b). Mass is conserved by
using a Poisson equation for the pressure, which is solved us-
ing a direct solver. Finally, time integration is performed us-
ing a classical four-stage fourth-order Runge–Kutta scheme.
For the simulations discussed in this paper, a fixed time step
of 0.4 s corresponding to a Courant–Friedrichs–Lewy (CFL)
number of approximately 0.4 is used. The computational
grid for the main domain corresponds to Ny ×Nx ×Nz=
256×256×80; this is also the case for the precursor domain.
For nonlinear operations we use the 3/2 dealiasing rule, so
that all nonlinear operations in real space are performed on
384×384×80 grids for both domains. Simulation parameters
are summarised in Table 1.

In the current study, we consider a rectangular fixed wind-
farm domain� of 4.0 km by 3.0 km (see above), in which 30
turbines are to be optimally placed. We take generic wind
turbines with a diameter of D = 100 m and hub height of
zh = 100 m each. The selected disc-based and standard thrust
coefficients correspond to C′T = 2.0 and CT = 8/9 respec-
tively. The choice of turbines, simulation domain, and se-
lected computational grids corresponds to the typical case
set-ups found in Calaf et al. (2010) and Meyers and Men-
eveau (2013), and we refer the reader to these studies for
detailed grid sensitivity analysis, for example.

Finally, simulations are initialised by first performing a
spin-up of the turbulence in the precursor simulation. Start-
ing from a logarithmic mean profile with random pertur-
bations, the precursor simulation is advanced in time for
15 000/u∗ s so that realistic turbulence can develop. Subse-
quently, for every wind-farm layout, the precursor and main
domain are run simultaneously, and an additional spin-up pe-
riod of 2000/u∗ s is simulated. This corresponds to at least
5u∗ flow-through times of the main domain. At this point in
time, time averaging of LES results is started.
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Algorithm 1: Main Algorithm. A summary of the overall procedure used to obtain the optimum wind-farm layout. Values

used in the current study are NL = 10, NR = 5.
Input: Dimensions Lx and Ly of the wind-farm domain, Number of wind-turbines Nt, diameter of wind-turbines D, minimum

acceptable distance between the wind-turbines dmin

Output: Optimum value of wake expansion coefficient, an optimum wind-farm layout

1 Generate a set of NL LES cases for initial calibration of the Jensen model (choose aligned, staggered, and random layouts)

2 Using the available LES data and Algorithm 3, optimise the wake expansion coefficient for the Jensen model by minimising the error

between LES and Jensen wind-farm powers over the different NL layouts

3 Using Algorithm 2 and the Jensen model, find the optimum wind-farm layout

4 Verify the optimisation results using LES

5 Add the optimum layout to the set of LES cases; add an additional set of NR− 1 random layouts (that satisfy all constraints); remove

NR (<NL) cases that have the lowest energy function from the LES data set

6 Repeat steps 2 to 5 until the error between the LES and Jensen model in the optimal layout is less than a pre-specified threshold

non-smooth problem

max
xi

Nt∑

i=1

P i(xi) +
Nt∑

i=1

i−1∑

j=1

hij(xi,xj) (14)

s.t.

xi ∈ Ω, ∀i ∈ {1, · · · ,Nt}, (15)

where5

hij(xi,xj) =




−∞ ‖xi−xj‖2 < dmin

0 otherwise
(16)

This formulation is fully equivalent to (2).

The CE method for solving the optimal placement problem now essentially involves three steps. In a first step, a set of Ns

uniformly distributed random samples of the optimisation parameters xi are generated with a given mean value m(0) and

deviation d(0) (note that bothm and d have dimension 2×Nt). At startup (iteration 0), no prior knowledge of the optimisation10

problem is available, so we chose the mean and deviation such that the distribution spans the whole feasible parameter range

Ω. In the second step, samples are sorted according to their cost functional value. The best Nb <Ns samples are chosen, and

the mean m(k)
b and deviation d(k)

b of this set (in iteration step k) is calculated. In a third step, a next generation of samples

(iteration step k+ 1) is then created using a uniform distribution with mean and deviation

m(k+1) =m(k) +α(m(k)
b −m(k)) (17)15

d(k+1) = d(k) +α(d(k)
b −d(k)) (18)

10

.
.

.

.
.

.

.
.

Table 1. Simulation parameters. Results remain dynamically equiv-
alent for any selected value of the friction velocity u∗. The hub-
height velocity obtained in the precursor simulation corresponds to
uh≈ 17.5 u∗.

Total domain size (with 8 km× 6 km× 1 km
fringe region)
Total domain size 6 km× 6 km× 1 km
(without fringe region)
Optimisation domain size 4 km×3 km
Turbine diameter 100 m
Turbine height 100 m
Driving pressure −u2

∗ / 1000 m s−2

gradient (precursor)
Surface roughness 0.1 m
Grid size 256× 256× 80
Cell size 31.25 m× 23.44 m× 12.5 m
Time step 0.4/u∗ s

In Fig. 2, a detailed convergence analysis of the farm
power and the power output of a single turbine is shown for
an aligned wind-farm layout (corresponding to Case 4 in Ta-
ble 2 below). In Fig. 2a, a power histogram is shown for the
wind farm, as well as for two individual turbines in the farm.
Figure 2b shows results of the relative error εP of the time
average as a function of the averaging time T (see Eq. 1),
where

εP (T )=
1
T

∫ T
0 P (t)dt −P ref

P ref
. (13)

For reference P ref we use an average obtained over a pe-
riod of 40/u∗ h (with u∗ = 0.457 m s−1 taken as a realistic
value, this corresponds to averaging over 88 h in physical
time). It is seen from the figure that, for limited averaging
times, errors can be quite significant, in particular when look-
ing at the single-turbine average. In fact, it is well known
that the time average in turbulent flows converges as T −1/2

(see, e.g., Tennekes and Lumley, 1972). This is also seen in

Fig. 2b: errors decrease fast at low values of T , but after-
wards convergence stagnates. This is particularly problem-
atic when looking at the turbine average power, which re-
quires roughly 15 to 20/u∗ h to converge within 1 % of the
reference average (requiring excessive computational costs
– see below). It is further seen that the error on the over-
all wind-farm power converges significantly faster, i.e. an
error of 1 % is reached after approximately 5/u∗ h. This is
related to the fact that Nt partly uncorrelated turbine power
signals are accumulated. Therefore, in order to limit com-
putational effort related to LES in a hybrid Jensen–LES ap-
proach, we will formulate our approach based on matching
LES and Jensen farm power levels. In order to avoid overfit-
ting of the Jensen wake-expansion coefficient, we use an en-
semble of different wind-farm layouts that gradually evolve
during optimisation towards layouts that are more optimal in
terms of power extraction. This approach is further discussed
in Sect. 2.4.

In terms of computational cost, the spin-up of the pre-
cursor simulation is the most expensive (but needs to be
done only once), amounting to 32 h of wall-clock time on
the ThinKing cluster of the Flemish Supercomputer Cen-
tre, using eight Ivy Bridge nodes consisting of two 10-core
“Ivy Bridge” Xeon E5-2680v2 CPUs (2.8 GHz, 25 MB level
3 cache) for a total of 160 cores. Wind-farm spin-up takes
around 14 h of wall-clock time on the same processor layout.
Subsequent averaging takes around 9 h of wall-clock time
per 3600/u∗ s of wind-farm time. In order to keep overall
computational costs under control, we limit time averaging
in the current work to 3600/u∗ s (roughly corresponding to
at least 9u∗ flow-through times). This yields an expected er-
ror level on the power output of 2 % (see discussion above
and Fig. 2b). In practice, for optimisation over a single at-
mospheric condition µ (e.g. a single wind direction), it may
be advisable to use at least 5/u∗ h for the current case set-
up. However, when considering optimisation over a range of
conditions, the impact of this variability will be further aver-
aged out.
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Algorithm 2: The outline of the cross–entropy optimisation method for finding the optimum wind-farm layout. Values

used in the current study are Niters = 2000, Ns = 1000, M = 200.
Input: Value of the wake expansion parameter kw, domain Ω, minimum distance dmin.

Output: An optimum wind-farm layout that generates maximum amount of energy.

1 for k← 1 to Niters

2 Generate Ns random layouts, where each random sample consists of a set coordinates xi (i= 1 · · ·Nt). Samples are uniformly

distributed with mean value of mk−1 and deviation of dk−1. Initial mean and deviation values are set to span the whole domain

Ω;

3 if k > 1 then

4 Replace the first sample with SOPT;

5 for j← 1 to Ns

6 Calculate the total power of layout j (omit hij in energy function for k ≤M ).

7 Sort the Ns samples based on their total generated power in descending order.

8 Choose the best Nb samples (we use Nb = 0.4Ns).

9 Set mk−1
b and dk−1

b to be the mean and deviation of the best Nb samples.

10 Calculate mk and dk using (17,18).

11 Set the best sample as the optimum layout SOPT.

cheap. In fact, as further discussed below, the main cost in our overall hybrid method remains associated with performing the

LES.

3 Results

In the current section, optimisation results are discussed. First of all, in §3.1, the initial LES database for calibration of the

Jensen model is constructed. Next, optimisation results of the Jensen only model are discussed in §3.2. Subsequently, hybrid5

Jensen–LES optimisation results are presented in §3.3. Finally, optimisation for multiple wind directions is discussed in §3.4.

3.1 Set-up of LES database for initial calibration

A first step in Algorithm 1 is the generation of a LES database that is a starting point for the calibration of the Jensen model.

Here we choose a mix of staggered, aligned layouts, and randomly generated layouts. An overview of the different cases, and

their generated power is provided in Table 2. We normalize all results with the power output of a ‘wakeless’ wind-farm, i.e. a10

wind-farm consisting of turbines that all have undisturbed inflow. In order to normalize all LES results in the same way, we use

the averaged power output of turbines located in the first row of the aligned and staggered layouts and multiply it by Nt (= 30)

to find the ‘wakeless’ wind-farm output. We then state every wind-farm power output as a percentage of this ‘wakeless’ wind-

12

Figure 2. Convergence analysis of wind-farm and turbine power of an aligned wind-farm case (Case 4 in Table 2). (a) Probability density
function of wind-farm power output and power output of a front-row and back-row turbine. (b) Convergence error εP as a function of
averaging time T for the wind-farm power, and for the power of a front-row and back-row turbine. Blue line: wind-farm power; green line:
first-row turbine; red line: last-row turbine.

2.4 Hybrid Jensen–LES approach and cross-entropy
optimisation

In the current manuscript, we propose a hybrid Jensen–LES
approach for wind-farm layout optimisation. To that end, the
layout optimisation is based on the Jensen model, but the
wake-expansion coefficient kw is iteratively used to fit the
Jensen model to a set of LES data that is gradually adapted
to the layouts that are explored during optimisation. The ap-
proach is summarised in Algorithm 2. Here, we describe
the approach considering a single atmospheric condition µ
(see Eq. 2), e.g., a single wind direction. Generalisation is
straightforward, and optimisation over different wind direc-
tions will be discussed in Sect. 3.4.

In a first step, a set of NL LES cases of regular and ran-
dom layouts are generated. This set is used to fit kw using
Algorithm 4 (see below). Subsequently, layout optimisation
is performed using the Jensen model and Algorithm 3 (see
further below). The optimal layout is then added to the set of
LES cases, and a number of NR− 1 (NR < NL) additional
random layouts are added as well. Moreover, the NR LES
cases with lowest generated powers are removed from the
set. This new set is used to refit kw, subsequently starting a
new layout optimisation. By doing so, the LES data set used
for fitting is gradually taking more optimal layouts into ac-
count, while layouts that are least optimal are removed from
the set.
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Algorithm 3: The outline of the cross–entropy optimisation method for optimising the wake expansion coefficient in the

Jensen model using the LES data. Values used in the current study are N iters = 50, N = 1000.
Input: Total power of NL wind-farm layouts obtained from LES simulations, each having Nt wind-turbines.

Output: An optimum value for kw that minimises the error between predicted LES wind-farm power and Jensen wind-farm power.

1 Set the initial mean value m(0) and deviation s(0);

2 for i← 1 to Niters

3 Generate N random scalar samples, with uniform distribution with mean value of m(i−1) and deviation of s(i−1);

4 if i > 1 then

5 Replace the first sample with kw,OPT ;

6 for j← 1 to N

7 Using sample j as kw in the Jensen model, calculate the relative wind-farm power of NL layouts.

8 Define ej as the sum of absolute value of errors between the Jensen model and LES wind-farm powers for the NL layouts.

9 Sort the N samples based on their error value ej for j ∈ {1, · · · ,N}, in ascending order.

10 Choose the first (best) Nb samples (we normally set Nb = 0.4N ).

11 Set m(i) and s(i) to be the mean and deviation of the best Nb samples.

12 Set the best sample as the optimum value kw,OPT.

Table 2. Large Eddy Simulation results for different wind-farm layouts. Power output normalized with respect to total power of a wind-farm

consisting of ‘first-row’ turbines. Average LES power is 69.97%.

Case No. Description Relative wind-farm Power

1 Aligned with 5D× 5D Spacing 51.81%

2 Aligned with 6D× 5D Spacing 56.76%

3 Aligned with 7D× 5D Spacing 60.80%

4 Aligned with 8D× 5D Spacing 64.36%

5 Staggered with 8D× 5D Spacing 83.60%

6 Gradually staggered with 8D Spacing 87.40%

7 Randomly generated with dmin = 2D 79.28%

8 Randomly generated with dmin = 3D 76.16%

9 Randomly generated with dmin = 4D 78.66%

10 Randomly generated with dmin = 5D 80.49%

farm output. Looking at the results of Table 2 it is apparent that the aligned cases perform quite poor in terms of relative power

output, considerably worse than the staggered cases, but also worse than any of the random layouts that we investigated.

13

The procedure described above directly uses wind-farm
power to fit the wake-expansion coefficient and avoids using
errors on individual turbine power output. As discussed in
Sect. 2.3, this reduces the need for time averaging in the LES,
and significantly lowers computational costs. Moreover, by
including NL different layouts, potential overfitting of kw is
avoided, and the influence of remaining LES convergence er-
rors on the optimal fit is further reduced.

For the layout optimisation in Algorithm 3 and the opti-
mal fit of kw in Algorithm 4, we employ the cross-entropy
(CE) method. This method was originally developed to es-
timate the probability of rare events. Later on, it was re-
alised that it is also very effective in solving difficult non-
convex optimisation problems. The method is explained in
detail by De Boer et al. (2005) and Rubinstein (1999), among
others. Here, we briefly review the main features of the ap-
proach, as well as further detailing how we use it in a hybrid
Jensen–LES optimisation of wind-farm layout. In our hybrid
Jensen–LES optimisation approach of wind-farm layout, we
use the CE method both for Jensen-based layout optimisa-
tion, as well as for the adaptive fitting of the Jensen wake-
expansion coefficient against a range of LES results (as fur-
ther detailed below). However, it is important to emphasise
that any feasible optimisation method may be used for this.
For instance, recently, some work has focussed on the use
of a gradient-based layout optimisation approach in combi-
nation with engineering wake models (Fleming et al., 2016),
while others have previously looked into the use of, for exam-
ple, a particle-swarm method (Wan et al., 2010) and genetic
algorithms (Chen et al., 2013a).

First of all, the optimisation problem Eq. (2) is slightly re-
formulated in order to better cope with the second inequality
constraint (as further discussed below, the first constraint is
more straightforward to enforce directly). Therefore, we con-

sider following a non-smooth problem,

max
xi

Nt∑
i=1

P i(xi)+
Nt∑
i=1

i−1∑
j=1

hij (xi,xj ) (14)

subject to
xi ∈�, ∀i ∈ {1, · · ·,Nt}, (15)

where

hij (xi,xj )=
{
−∞ ‖xi − xj‖2 < dmin

0 otherwise. (16)

This formulation is fully equivalent to Eq. (2).
The CE method for solving the optimal placement problem

now essentially involves three steps. In a first step, a set of
Ns uniformly distributed random samples of the optimisation
parameters xi are generated with a given mean value m(0)

and deviation d(0) (note that both m and d have dimension
2×Nt). At startup (iteration 0), no prior knowledge of the
optimisation problem is available, so we chose the mean and
deviation such that the distribution spans the whole feasible
parameter range �. In the second step, samples are sorted
according to their energy function value. The best Nb <Ns

samples are chosen, and the mean m(k)
b and deviation d(k)

b of
this set (in iteration step k) is calculated. In a third step, a next
generation of samples (iteration step k+ 1) is then created
using a uniform distribution with a mean and deviation of

m(k+1)
=m(k)

+α(m(k)
b −m

(k)), (17)

d(k+1)
= d(k)

+α(d(k)
b − d

(k)), (18)

where the parameter α is selected in the [0,1] range, speci-
fying how conservative or exploratory the algorithm is. This
procedure continues until the end condition is met, which is
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usually set by specifying the maximum number of iterations.
We also transfer the optimum value in each generation to the
next generation, so that the energy function value of the op-
timum in each generation increases monotonically.

The treatment of the constraint xi ∈� is straightforward.
Whenever a turbine location in a sample falls outside �, the
location is simply orthogonally projected on the boundary of
�. Note that turbines in samples in the initial generation al-
ways fall in �, but in later generations, this is not always the
case. Though the projection on � will slightly change the
distribution, as relatively more sample points can end up on
the boundary, we did not find this to hamper the convergence
of our algorithm. Finally, the treatment of the distance con-
straint is implicitly handled by the energy function formula-
tion and does not, in principle, require any further attention.

Given the Jensen model, and an input for the wake-
expansion coefficient kw, the cross-entropy layout optimisa-
tion is summarised in Algorithm 2, and specific choices are
documented. We run the cross-entropy optimisation scheme
for Niter = 2000 iterations; however, we find it beneficial for
convergence and computational efficiency to omit hij in the
energy function during the first M iterations, and to only en-
force the hij constraint for k > M . We take M = 200 in our
implementation.

The standard deviation of samples in the cross entropy
scheme eventually converge to zero. Once the standard de-
viation has become small, and if the algorithm is locked in a
local optimum, it will no longer break away from it. To re-
duce the chance of this happening, we reset the calculated
value of d after 1000 iterations. For turbines with x coordi-
nate less than 0.5 km or bigger than 3.5 km, we reset their
corresponding deviation to [0.5,0.5], and for the rest we re-
set the deviation to [Lx/2,Ly/2]. This can be interpreted as
running the cross entropy in two stages. Both run for 1000
iterations: the first runs starting with a uniform distribution
in �, and the second starts with the optimum layout of the
first stage as the mean value for its initial population. In the
interest of simplicity, this detail is not included in the outline
of Algorithm 2.

A second algorithm that is used in Algorithm 1 is the fit-
ting of the wake-expansion coefficient kw to the LES data.
Fitting kw is also a non-convex optimisation problem, and
therefore we simply use the CE method again, but now for a
scalar field. This is summarised in Algorithm 3. For this fit-
ting, we found a number of iterations, Niters, of 50 sufficient
for good convergence.

We remark here that Algorithm 3 can in principle be used
to fit more complicated relations for kw. For instance, intro-
ducing the heuristic dependence kw = a+ bx (or similar ex-
pressions), and fitting a and b instead of the mean value of
kw, may be an interesting approach to represent the down-
stream development of kw in the wind farm related to in-
creased turbulence levels. In the current work, we did not
further explore this type of parameterisations of kw, as a sim-
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Figure 3. Layout and relative turbine power output for four of the
cases listed in Table 2. Relative power results are obtained from
large-eddy simulations. Turbine locations are marked with coloured
disk: size and colour scale by relative power. Plot boundary (red
line) corresponds to boundaries of domain � (see Fig. 1).

ple fit of the mean value already leads to very satisfactory
results (see next section).

Finally, we remark that the CE method is a global opti-
misation method. However, its convergence to the global op-
timum in a finite number of iterations can only be formally
proven for some specific conditions; in practice, convergence
depends on a number heuristic choices and is difficult to for-
mally prove (see, e.g., Rubinstein and Kroese, 2013, for de-
tails). In fact, this is a disadvantage that all global optimisa-
tion methods share. However, the main advantage of using
a global method is the fact that the algorithm does not get
trapped in local optimums that easily. Moreover, the disad-
vantage of the high number of function evaluations required
for such global methods to work well is not really an issue,
as Jensen-model evaluations are extremely cheap. In fact, as
further discussed below, the main cost in our overall hybrid
method remains associated with performing the LES.

3 Results

In the current section, optimisation results are discussed.
First of all, in Sect. 3.1, the initial LES database for calibra-
tion of the Jensen model is constructed. Next, optimisation
results of the Jensen only model are discussed in Sect. 3.2.
Subsequently, hybrid Jensen–LES optimisation results are
presented in Sect. 3.3. Finally, optimisation for multiple wind
directions is discussed in Sect. 3.4.

3.1 Set-up of LES database for initial calibration

A first step in Algorithm 2 is the generation of a LES
database that is a starting point for the calibration of the
Jensen model. Here we choose a mix of staggered, aligned,
and randomly generated layouts. An overview of the differ-
ent cases and their generated power is provided in Table 2.
We normalise all results with the power output of a “wake-
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Table 2. Large-eddy simulation results for different wind-farm layouts. Power output normalised with respect to total power of a wind-farm
consisting of “first-row” turbines. Average LES power is 69.97 %.

Case no. Description Relative wind-farm power

1 Aligned with 5D× 5D spacing 51.81 %
2 Aligned with 6D× 5D spacing 56.76 %
3 Aligned with 7D× 5D spacing 60.80 %
4 Aligned with 8D× 5D spacing 64.36 %
5 Staggered with 8D× 5D spacing 83.60 %
6 Gradually staggered with 8D spacing 87.40 %
7 Randomly generated with dmin= 2D 79.28 %
8 Randomly generated with dmin= 3D 76.16 %
9 Randomly generated with dmin= 4D 78.66 %
10 Randomly generated with dmin= 5D 80.49 %

less” wind farm, i.e. a wind farm consisting of turbines that
all have undisturbed inflow. In order to normalise all LES re-
sults in the same way, we use the averaged power output of
turbines located in the first row of the aligned and staggered
layouts and multiply it by Nt (= 30) to find the “wakeless”
wind-farm output. We then state every wind-farm power out-
put as a percentage of this “wakeless” wind-farm output.
When looking at the results of Table 2 it is apparent that the
aligned cases perform quite poorly in terms of relative power
output and considerably worse than the staggered cases, but
they also perform worse than any of the random layouts that
we investigated.

In Fig. 3 the layout and relative power output of individ-
ual turbines are shown for an aligned and a staggered lay-
out as well as for two of the random layouts. Wind direc-
tion is always from left to right. First of all, we remark that
there is still considerable variability at turbine level that is
due to the limited averaging period of 3600/u∗ s. As shown
in Fig. 2b, variability in the turbine power average is in the
order of ±5 % or more, and this is in line with the variability
observed in the first row of Fig. 3. We verified that first-row
turbine averages all converge to a relative power of 100 %
when averages of up to 15/u∗ h are used. Finally, we note
that the accumulated farm power is much better converged.

3.2 Comparison of Jensen model and LES results

Without access to reference results that can serve to tune kw
in the Jensen model, it is possible to resort to Eq. (4) to deter-
mine kw. Using this equation for our simulation set-up leads
to

kw =
0.41

ln(100/ 0.1)
= 0.060.

Here we briefly compare the Jensen model using this value
with LES results. To do so, we use the 10 layouts presented
in Table 2.

A comparison of flow fields as generated by the Jensen
model and LES is shown in Fig. 4. It is seen that the aver-

Figure 4. Comparison of Jensen model and LES for an aligned and
random layout.

aged flow data of LES are much smoother as a result of tur-
bulent mixing. In contrast, in the Jensen model, wakes have
a sharp boundary, also leading to sharply marked overlap re-
gions. Note that mirror wakes also occur more downstream
in the farm. Some features are not represented at all by the
Jensen model. For instance, in the random layout, it is seen
that side-by-side wakes can influence each other. Such be-
haviour is not parameterised in the Jensen model.

However, the most relevant property from a power optimi-
sation point of view is the total error in the predicted power.
In Table 3, the average power output from LES and the
Jensen model is compared. It is seen that the Jensen model
using kw = 0.060 is very accurate for some cases, but not
so for others. In particular, the cases that have a higher rel-
ative power extraction are generally predicted worse by the
Jensen model, than the cases with a lower relative power (the
most prominent exception is Case 6). Another trend is that
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Table 3. Comparing outputs of LES and the Jensen wake model
with kw= 0.060.

Case Relative Relative Error
power power
(LES) (Jensen

model)

Aligned 5D× 6D 51.21 % 52.30 % −1.09 %
Aligned 6D× 6D 55.93 % 57.98 % −2.05 %
Aligned 7D× 6D 60.13 % 62.88 % −2.75 %
Aligned 8D× 6D 63.34 % 66.83 % −3.50 %
Staggered 8D 82.33 % 86.81 % −4.48 %
Gradually staggered 8D 85.77 % 89.18 % −3.41 %
Random1 78.29 % 85.20 % −6.91 %
Random2 74.77 % 82.30 % −7.53 %
Random3 77.96 % 84.95 % −6.99 %
Random4 79.17 % 84.04 % −4.87 %
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Figure 5. Comparing the wind-turbine power generation obtained
from LES data (black numbers) and Jensen model (red numbers).
Turbine locations are marked with coloured disk: size and colour
scale by relative power. Plot boundary (red box) corresponds to
boundaries of domain � (see Fig. 1).

the regular cases are better predicted than the irregular cases.
However, in the context of optimisation, it is not important
for the Jensen model to be accurate over a wide range of dif-
ferent layouts. Far away from the optimal layout, the required
accuracy can be allowed to be considerably lower than close
to the optimum. In this sense, Algorithm 2 gradually adapts
the Jensen model through its wake-expansion coefficient to
better fit more performing layouts.

Finally, when looking at turbine level in Fig. 5 for one of
the random layouts (i.e. Case 10), it is seen that errors at the
turbine level are much larger than the error on the accumu-
lated power reported in Table 3. Again, from an optimisation
point of view, this is less of an issue as long as a coupled ap-
proach in combination with LES is used to adapt the model
and verify the overall results close to the optimum. We fur-
ther notice here that the statistical errors on the averaged tur-
bine power output from LES are still significant due to the
limited time of averaging (in the order of 5 % – see discus-
sion in Sect. 3.1).
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from large-eddy simulations. Turbine locations are marked with
coloured disk: size and colour scale by relative power. Plot bound-
ary (red line) corresponds to boundaries of domain � (see Fig. 1).
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tion obtained after iteration 2. Relative power results are obtained
from large-eddy simulations. Turbine locations are marked with
coloured disk: size and colour scale by relative power. Plot bound-
ary (red line) corresponds to boundaries of domain � (see Fig. 1).

3.3 Hybrid Jensen–LES optimisation

Using Algorithm 2, we now optimise the wind-farm lay-
out with a single constant wind direction given the set-up
in Fig. 1 and wind coming from the left. Strictly speaking,
this corresponds to the situation where fp(µ) in Eq. (2) cor-
responds to a Dirac delta function centred around an eastern
wind direction, so that the integral over atmospheric condi-
tions in Eq. (2) drops out. Optimisation over different wind
directions is briefly discussed in Sect. 3.4. For the single
wind-direction case considered here, only three outer itera-
tions are required in the algorithm to converge to an optimal
layout and optimally tuned Jensen model. Intermediate re-
sults of these iterations are discussed below.

In iteration 1, we start Algorithm 2 with the initial cases
shown in Table 2. Using these 10 cases, we use Algorithm 4
to optimise the value of kw, finding a value of kw = 0.055.
Subsequently, this value is used to optimise the layout using
Algorithm 3. The resulting optimal layout is shown in Fig. 6.
Table 4 summarises the relative LES and Jensen power, as
well as errors for the 10 initial training cases and for the
newly obtained optimal layout. The relative power generated
by the newly found optimum corresponds to 90.5 % (evalu-
ated using the LES), but the error with the Jensen model is
still noticeable, i.e. −2.62 %.
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Table 4. Iteration 1: comparing outputs of LES and Jensen wake
model with kw= 0.055.

Case Relative Relative Error
power power
(LES) (Jensen

model)

Aligned 5D× 6D 51.21 % 49.59 % 1.62 %
Aligned 6D× 6D 55.93 % 55.40 % 0.53 %
Aligned 7D× 6D 60.13 % 60.17 % −0.04 %
Aligned 8D× 6D 63.34 % 64.22 % −0.88 %
Staggered 8D 82.33 % 85.78 % −3.46 %
Gradually staggered 8D 85.77 % 92.27 % −6.50 %
Random1 78.29 % 84.52 % −6.23 %
Random2 74.77 % 81.23 % −6.46 %
Random3 77.96 % 84.51 % −6.55 %
Random4 79.17 % 83.27 % −4.10 %

Optimum iter. 1 90.51 % 93.13 % −2.62 %

Table 5. Iteration 2: comparing outputs of LES and Jensen wake
model with kw= 0.036.

Case Relative Relative Error
power power
(LES) (Jensen

model)

Staggered 8D 82.33 % 79.01 % 3.32 %
Gradually staggered 8D 85.77 % 93.06 % −7.29 %
Random1 78.29 % 81.81 % −3.52 %
Random3 77.96 % 82.27 % −4.31 %
Random4 79.17 % 77.80 % 1.37 %
Random5 79.54 % 82.06 % −2.52 %
Random6 76.01 % 78.67 % −2.65 %
Random7 80.96 % 83.50 % −2.54 %
Random8 76.25 % 78.04 % −1.79 %
Optimum iter. 1 90.51 % 90.17 % 0.34 %

Optimum iter. 2 92.04 % 91.88 % 0.17 %

In iteration 2, we add optimal layout 1 and four additional
random layouts to the LES database and remove the 5 layouts
with lowest relative power. Using Algorithm 4, we find a new
value kw = 0.036 that best fits the Jensen model to the LES
data. Subsequently, using Algorithm 3, a new optimal layout
is found, which is shown in Fig. 7. Furthermore, an overview
of relative powers from LES and Jensen is shown in Table 5.
It is seen that the new optimal layout leads to a relative power
of 92.8% (evaluated using LES), but in contrast to the first it-
eration, the error with the Jensen model remains now limited
to 0.17 %.

As can be seen, the two optimum layouts, although ob-
tained using different values of kw, have the same general
structure.

Table 6. Optimum values of kw obtained in different iterations of
Algorithm 2.

Iteration optimum Relative LES
no. kw power of

corresponding
optimum

layout

1 0.055 % 90.51 %
2 0.036 % 92.04 %
3 0.036 % NA

NA: not available.

In iteration 3, we repeat the procedure a third time and find
(almost) the same value for kw. Only the fourth digit differs,
and the resulting new optimal layout remains the same. In
fact, we observed that up to changes in the second digit, the
value of kw does not significantly influence the optimal lay-
out. Finally, the error between the Jensen model and the LES
is below 1 %, which corresponds roughly to the statistical av-
eraging accuracy of the LES. We conclude that the algorithm
is converged.

After initial set-up of the LES database, each main opti-
misation step requires 2.5×106 Jensen evaluations per itera-
tion and five LES evaluations. Wall time for the Jensen eval-
uations (per iteration) corresponds roughly to 1.25 h on one
Ivy Bridge node of the ThinKing cluster of the Flemish Su-
percomputer Centre. Total wall time for LES (per iteration,
and excluding the precursor spin-up time – see Sect. 2.3)
amounts to approximately 70 h on eight nodes of the Flemish
Supercomputer, equivalent to 560 node hours. Even though
the Jensen model is 500 000 times more evaluated per itera-
tion than LES, the total LES cost is roughly 500 times more
expensive and the LES wall time is roughly 50 times longer.

Given this single wind direction, the optimal layout leads
to a relative wind-farm performance of around 93 % of a
wakeless wind farm, which is considerably higher than a typ-
ical aligned or staggered layout. Moreover, when looking at
the layout that was found in Fig. 7, it is observed that turbines
are grouped into two main clusters – one at the front of the
farm and one at the back of the farm, leaving a large stream-
wise distance in between for wake recovery. Obviously, this
result is particular for a single wind direction. In the next
section, we study the cases with multiple wind directions.

Finally, we remark that it is difficult to prove formal con-
vergence of the CE method that we use for our optimisation
(see discussion at the end of Sect. 2.4), and optimisation is
terminated based on a maximum number of iterations in Al-
gorithms 2 and 3. Therefore, we checked the dependence of
our results versus the initial starting point of the optimisa-
tion. We found that a change in initial distribution leads to
slight shifts in the turbine locations, but this does not sig-
nificantly influence the value of the power extraction. More-
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over, we also experimented with the use of gradient-based
optimisation using the CE optimum as a starting point of
the gradient-based method. To this end, we employed Mat-
lab’s fmincon routine. Unfortunately, including all nonlinear
distance constraints did not work (given 30 turbines, there
are 435 distance constraints). Omitting these in the gradient-
based method, we found that turbine locations again slightly
shift, but that power increases by 0.4 % only, indicating the
obtained CE optimum is well converged. Overall, we find
that the energy function is relatively flat near the region of
optimal power production – i.e. small shifts in the turbine
locations do not lead to significant changes in power output.

3.4 Optimisation for multiple wind directions

We now consider optimisation over a wind-direction distri-
bution. Two cases are considered. The first corresponds to
a uniform wind distribution over an angle of ±7.5◦, repre-
senting a case with a dominant wind direction. The second
corresponds to a uniform wind distribution over an angle of
±180◦, representing a case without a dominant wind direc-
tion.

In order to properly represent power output over the wind
distribution using the Jensen model, we sample the uniform
distributions in 1.5◦ increments, and the integral in Eq. (2)
is discretised using a Riemann sum based on these intervals
each with constant probability. For LES evaluations, we use a
much coarser sampling: for the dominant wind-direction case
we use only three directions and for the uniform 360◦ case
eight directions. The error between Jensen model and LES
is only defined relying on these distinct directions. In this
way, the overall computational costs related to LES remains
limited compared to the additional Jensen model evaluations
that are performed.

We first focus on the dominant wind-direction case and
perform an optimisation using the Jensen model and kw =

0.036 obtained in the previous section. An overview of the
errors between Jensen model and LES for the optimal layout
is given in Table 7. It is seen that errors are already below
2 % for all directions, and therefore we do not further per-
form iterations using Algorithm 2 here. The overall optimal
power output corresponds to 93.67 %, and the related layout
is shown in Fig. 8. It is seen that the optimal layout for the
dominant wind direction very much resembles the layout for
the single wind-direction case. Turbines are again clustered
in two large groups, one in front and one at the back of the
wind farm.

Finally, we look at optimisation for the uniform wind dis-
tribution. Again we perform optimisation using the Jensen
model and kw = 0.036. An overview of the errors for the
optimal layout is provided in Table 8. Also, errors are now
overall relatively low, and so, for the sake of saving compu-
tational resources, we do not perform further iterations using
Algorithm 2. We further find that, overall, the average power
output of the optimised layout corresponds to 93.45 %. This
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Table 7. Dominant wind-direction case – evaluation of optimal lay-
out. Relative power for three different wind directions comparing
outputs of LES and Jensen wake model with kw= 0.036.

Wind direction Relative Relative Error
(degrees) power power

(LES) (Jensen
model)

0 93.08 % 91.91 % 1.17 %
7.5 94.27 % 93.21 % 1.06 %
−7.5 93.44 % 92.43 % 1.02 %
Average (0, 7.5, −7.5) 93.67 % 92.51 % 1.08 %
Average (−7.5, 1.5, 7.5) – 92.53 % –

compares to 71.73 and 75.25 % for the aligned 8D×6D and
for staggered layout respectively.

The optimal layout itself is shown in Fig. 9. In contrast
to the layout found for the dominant wind direction, tur-
bines are now spread out much more evenly throughout the
domain. Moreover, a number of turbines, i.e. seven, are lo-
cated on the domain boundary. We remark here that, for sim-
ilar optimisation cases in the literature, turbines sometimes
end up at the domain corners (see, e.g., Réthoré et al., 2014
or Feng and Shen, 2015), but this is not the case for all
studies (e.g. Du Pont and Cagan, 2012). Currently, we are
not sure whether this is possibly related to domain shape,
size, and number of turbines, or whether this is related to
the existence of local optimums or convergence of the op-
timisation method. Using a hybrid method that combines a
global method with a gradient-based approach, as proposed
by (Réthoré et al., 2014), and exploring a large number of
optimisation starting points, may be required for studying
this in more detail. This is an interesting topic for further
research.

4 Conclusions

In the current work, we proposed a hybrid Jensen–LES ap-
proach for layout optimisation of wind farms. The Jensen
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Table 8. Uniform 360◦ case – evaluation of optimal layout. Relative
power for eight different wind directions, comparing outputs of LES
and Jensen wake model with kw= 0.036.

Wind direction Relative Relative Error
(degrees) power power

(LES) (Jensen
model)

0 87.11 % 89.16 % −2.05 %
45 96.08 % 96.06 % 0.03 %
90 94.75 % 94.37 % 0.39 %
135 96.27 % 95.27 % 1.00 %
180 87.97 % 89.41 % −1.45 %
−135 97.36 % 96.35 % 1.01 %
−90 94.59 % 94.37 % 0.23 %
−45 95.46 % 94.91 % 0.55 %
Average 93.45 % 93.55 % −0.10 %

model is a wake model that is sufficiently fast to allow,
in principle, wind-farm optimisation over different wind di-
rections and using global optimisation approaches that take
into account the non-convex nature of the optimisation prob-
lem. Large-eddy simulations are much more accurate than
the Jensen model, but they are by orders of magnitude too
slow to be used for wind-farm layout optimisation. There-
fore, we introduce a nested optimisation approach in which
the Jensen model is used as a surrogate model. In the inner
loop, the Jensen model is used to perform the layout optimi-
sation, while in an outer loop, the wake-expansion coefficient
in the Jensen model is adapted to better fit LES results of the
gradually evolving optimal layouts.

In the current study, layout optimisation of a wind farm
of 30 turbines on a 4 km× 3 km area is considered. For this
set-up, we found that an iterative fitting of the average wake-
expansion coefficient in the Jensen model during optimisa-
tion to be sufficient, leading to errors below 1 % for the opti-
mal layout. For larger wind-farm layouts, wind-farm areas
that are more complex, or including different atmospheric
stratification regimes, it may be necessary to consider a more

complex parameterisation of the wake-expansion coefficient.
This may include dependence of the wake-expansion coeffi-
cient on wind direction, Obukhov scale, or downstream loca-
tion in the wind farm. These are topics for further research.

Finally, the layouts found for the current set-up differed
greatly depending on the wind-direction scenario. In the case
of a dominant wind direction, turbines were clustered to-
gether at the front and back of the wind-farm area, allow-
ing for maximum wake recovery in between. For a 360◦ uni-
formly distributed wind rose, turbines are evenly spread out
over the domain. However, this is a result of optimisation of
energy yield only, given a number of turbines and wind-farm
area, and the effect of wake–wake and wake–boundary-layer
interaction. In practice, wind-farm layout optimisation is a
multidisciplinary problem that includes effects and costs of
turbine loading, costs of installation, maintenance, cabling,
etc. The full inclusion of a hybrid Jensen–LES model in such
an optimisation framework is also an important topic of fur-
ther research.

5 Data availability

Data sets supporting this article can be found in a figshare
repository (Bokharaie et al., 2016), consisting of wind farm
flow fields, power and layout data for the different cases in
the current paper.
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