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Abstract. Actuator cylinder theory is an effective approach for analyzing the aerodynamic performance of
vertical axis wind turbines at a conceptual design level. Existing actuator cylinder theory can analyze single
turbines, but analysis of multiple turbines is often desirable because turbines may operate in near proximity
within a wind farm. For vertical axis wind turbines, which tend to operate in closer proximity than do horizontal
axis turbines, aerodynamic interactions may not be strictly confined to wake interactions. We modified actuator
cylinder theory to permit the simultaneous solution of aerodynamic loading for any number of turbines. We
also extended the theory to handle thrust coefficients outside of the momentum region and explicitly defined the
additional terms needed for curved or swept blades.

While the focus of this paper is a derivation of an extended methodology, an application of this theory was
explored involving two turbines operating in close proximity. Comparisons were made against two-dimensional
unsteady Reynolds-averaged Navier–Stokes (URANS) simulations, across a full 360◦ of inflow, with excellent
agreement. The counter-rotating turbines produced a 5–10 % increase in power across a wide range of inflow
conditions. A second comparison was made to a three-dimensional RANS simulation with a different turbine
under different conditions. While only one data point was available, the agreement was reasonable, with the
computational fluid dynamics (CFD) predicting a 12 % power loss, as compared to a 15 % power loss for the ac-
tuator cylinder method. This extended theory appears promising for conceptual design studies of closely spaced
vertical axis wind turbines (VAWTs), but further development and validation is needed.

1 Introduction

Blade element momentum theory combines momentum the-
ory across an actuator disk with blade element theory to pre-
dict the aerodynamic loading of horizontal axis wind turbines
(HAWTs). This theory has been very successful and is heav-
ily used in many analysis and design applications (Hansen,
2008; Manwell et al., 2009; Burton et al., 2011; Ning, 2014).
Its primary advantage is computational speed while still pro-
viding reasonably accurate performance predictions.

Streamtube theory attempts to apply the same concept
to vertical axis wind turbine (VAWT) aerodynamic perfor-
mance estimation (Templin, 1974). Each cross section of
the VAWT (constant height) is approximated as an actua-
tor disk through the mid-plane, which results in a cross-
plane actuator line in the 2-D plane. However, this model is

a rather poor representation of a VAWT as it requires con-
stant flow parameters across the entire disk. An extension
of this theory is multiple streamtube theory, where, instead
of using one large streamtube passing through the VAWT,
the VAWT cross section is discretized into multiple stream-
tubes each with an independent induction factor (Wilson
and Lissaman, 1974; Strickland, 1975). An additional exten-
sion, double multiple streamtube theory (Paraschivoiu, 1981,
1988; Paraschivoiu and Delclaux, 1983), utilizes two actua-
tor disks to represent the upstream and downstream sides of
the cylinder (Fig. 1). In this model, momentum losses can oc-
cur on both the upwind and downwind faces. Double multi-
ple streamtube theory has been widely used for aerodynamic
analysis of VAWTs.
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328 A. Ning: Multiple VAWT AC theory
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Figure 1. Double multiple streamtube concept with multiple
streamtubes along the VAWT (one shown) and separate “actuator
disks” on both the upstream and downstream surfaces.

While double multiple streamtube theory is a useful im-
provement over single streamtube models, it is clearly a
forced application of the actuator disk concept to a VAWT.
A more physically consistent theory for VAWTs, called ac-
tuator cylinder theory, was developed by Madsen (Madsen,
1982; Madsen et al., 2013). Actuator cylinder theory has
been shown to be more accurate than double multiple stream-
tube theory (Ferreira et al., 2014), while still retaining com-
parable computational speed.

One limitation of actuator cylinder theory is that it is de-
rived only for a single isolated turbine. We are interested in
performance of VAWT farms and thus need to predict perfor-
mance of multiple VAWTs in proximity to each other. This
paper extends the methodology for use with any number of
VAWTs, extends applicability to turbines not operating in the
momentum region, and adds computation details for blades
that are curved or swept. The primary purpose of this paper
is to derive the new methodology, but some example trade
studies of VAWT pairs are also discussed.

2 Theory development

The actuator cylinder theory begins with the assumption
that a vertical slice of a VAWT can be modeled as a two-
dimensional problem. Figure 2 shows a 2-D representation
of the VAWT, with only one of the blades shown for simplic-
ity, and defines the coordinate system used in this derivation.
The VAWT produces a varying normalized radial force per
unit length q(θ ) as a function of azimuthal position along
the VAWT. We define the positive direction for this force
q as positive radial outward (and thus positive radially in-
ward for the loads the fluid produces on the VAWT). Us-
ing the two-dimensional, steady, incompressible, Euler equa-
tions, and (for the moment) neglecting nonlinear terms, the
induced velocities at any location in the plane can be shown
to be given by the following integrals (Madsen et al., 2013;
Madsen, 1982):

u(x,y)=
1

2π

2π∫
0

q(θ )
[x+ sinθ ] sinθ −

[
y− cosθ

]
cosθ

[x+ sinθ ]2
+
[
y− cosθ

]2 dθ

✓
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y

V1

q(✓)

Figure 2. A canonical 2-D slice of a VAWT (only one blade shown)
and the coordinate system used.
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Figure 3. Integration path for a point inside the cylinder.
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v(x,y)=
1

2π

2π∫
0

q(θ )
[x+ sinθ ]cosθ +

[
y− cosθ

]
sinθ

[x+ sinθ ]2
+
[
y− cosθ

]2 dθ,

(1)

where the x, y position is measured from the center of a
unit radius turbine, and velocities are normalized by the
freestream velocity. For evaluation points inside the cylin-
der the {inside and wake} term applies, and for evaluation
points downstream of the cylinder both the {inside and wake}
and {wake only} terms apply. These two terms are based on
an integration path through the cylinder, where θ = cos−1y

(Fig. 3). For brevity, the derivations of the above equations
are omitted, but details are available in the above-cited pa-
pers from Madsen.

These two equations for the induced velocities (Eq. 1) are
applicable for any x, y location; however, we are primarily
interested in the induced velocities only at locations on the
current turbine and on other turbines. To facilitate computa-
tion we discretize the description of each actuator cylinder
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into n panels centered at the azimuthal locations:

θi = (2i− 1)
π

n
for i = 1. . .n,

1θ =
2π
n
. (2)

Furthermore, as is done in the original version, we assume
piecewise constant loading across each panel. These loca-
tions are the points of interest where will compute the radial
forces and subsequently the induced velocities.

In general, we need to compute the induced velocity at
every location on a given VAWT using contributions from
all VAWTs (including itself). In the following derivation we
adopt the notation that index I is the turbine we are evalu-
ating the velocities at, and index i represents the azimuthal
location on turbine I where we are evaluating. Index J will
refer to the turbine producing the induced velocity, and index
j will indicate the azimuthal location on turbine J where the
load is producing the induced velocity (Fig. 4).

Using the azimuthal discretization, the induced velocities
at a point (x,y) are expressed as a sum of integrals over indi-
vidual panels. Recall that Eq. (1) is normalized based on the
current VAWT radius and the freestream velocity. Because
we are now considering multiple VAWTs with potentially
different radii, we need to be more explicit in defining the
normalized quantities. The generalized definitions of the x,y
evaluation positions are

x∗i =
(
xi − xJc

)
/rJ ,

y∗i =
(
yi − yJc

)
/rJ , (3)

where xJc is the x location of the center of turbine J . If I = J
(i.e., we are evaluating the turbine’s influence on itself), then
this definition is identical to the single-turbine case where the
x and y locations are then distances from the VAWT center
normalized by its radius.

The velocity used in normalizing the induced velocities
and the radial loading must be the same, and for that pur-
pose we continue to use the freestream velocity. We intro-
duce the asterisk superscript on the induced velocities for
clarity (e.g., u∗ = u/V∞). The expressions for induced ve-
locity at the cylinder surface depend on whether we evaluate
just upstream of the actuator disk or just downstream. The
end result is the same, as long as we are consistent. In the
following derivation we evaluate on the upstream surfaces
for both halves of the actuator disk.

u∗i =
1

2π

∑
j

qj

θj+1θ/2∫
θj−1θ/2

(x∗i + sinφ) sinφ− (y∗i − cosφ)cosφ
(x∗i + sinφ)2+ (y∗i − cosφ)2 dφ

− qn+1−i {I = J, i > n/2}

− qJk + qJn+1−k {I 6= J, −1≤ y∗i ≤ 1, x∗i ≥ 1}

I

J

i

j
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✓j

Figure 4. Influence of load at location j of turbine J onto location
i of turbine I .

(
where index k satisfies θJk = cos−1y∗i

)
v∗i =

1
2π

∑
j

qj

θj+1θ/2∫
θj−1θ/2

(x∗i + sinφ)cosφ+ (y∗i − cosφ) sinφ
(x∗i + sinφ)2+ (y∗i − cosφ)2 dφ (4)

In these integrals we have replaced θ in the integration with
the dummy variable φ in order to avoid confusion with the θ
terms appearing in the integration limits. The term −qn+1−i
arises when evaluating the influence of a turbine on itself. Be-
cause we chose to evaluate on the upstream surfaces, the up-
stream half of the VAWT is considered outside of the VAWT,
but the aft half is in the inside of the cylinder. This implies
that for the aft half (i.e., i > n/2) the −q(cos−1y) term must
be added. This corresponds to the loading on the front half of
the turbine with the same y value. Based on our discretiza-
tion, its location can be indexed directly as −qn+1−i .

The following two terms for u arise when turbine I is in
the wake of turbine J . Actuator cylinder theory only includes
the wake term when an evaluation point is directly down-
wind from a source point (e.g., the blue region in Fig. 5).
The condition corresponds to x∗i ≥ 1 and −1≤ y∗i ≤ 1 and
x∗i

2
+ y∗i

2
≥ 1. For this wake area, both of the terms in Eq. 1

are applicable. The index k corresponds to the location where
θJk = cos−1y∗i . Note that cos−1y∗i will likely not line up ex-
actly with an existing grid point θk on turbine J , but we have
assumed piecewise constant loading across a given panel, so
k will correspond to the panel that is intersected.

This model is based on integration paths like those shown
in Fig. 3 and thus ignores the effect of wake expansion and
viscous decay. An alternative is to ignore the wake terms
and instead apply a momentum deficit factor from some
other VAWT wake model. For example, we have developed a
reduced-order wake model based on computational fluid dy-
namics (CFD) simulations that predicts the velocity deficit
behind a VAWT (Tingey and Ning, 2016). Rather than use
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J

Figure 5. Wake region from actuator cylinder theory highlighted in
blue (and extending downstream).

the above wake terms, one could use the separate wake model
to evaluate the velocity deficit at each control point and sub-
tract the deficit from u∗. Because the focus on this paper is on
actuator cylinder theory, we will use the simple wake model
that naturally arises within the theory itself, but this method-
ology provides a convenient hook to insert any wake model.

For convenience in the computation, Eq. (4) can be ex-
pressed as a matrix vector multiplication where the loading
q is separated from the influence coefficients.

u∗I = AxI J qJ
v∗I = AyI J qJ (5)

The matrix AyI J is given by

AyI J (i,j )=
1

2π

θj+1θ/2∫
θj−1θ/2

(x∗i + sinφ)cosφ+ (y∗i − cosφ) sinφ
(x∗i + sinφ)2+ (y∗i − cosφ)2 dφ. (6)

For the AxI J matrix we divide the contributions between
the direct influence and the wake influence: AxI J = DxI J +
WxI J , where

DxI J (i,j )=
1

2π

θj+1θ/2∫
θj−1θ/2

(x∗i + sinφ) sinφ− (y∗i − cosφ)cosφ
(x∗i + sinφ)2+ (y∗i − cosφ)2 dφ, (7)

WxI J (i,j )=



−1 if − 1≤ y∗i ≤ 1 and x∗i ≥ 0
and x∗i

2
+ y∗i

2
≥ 1 and j = k

1 if − 1≤ y∗i ≤ 1 and x∗i ≥ 0
and x∗i

2
+ y∗i

2
≥ 1

and j = n− k+ 1
0 otherwise,

(8)

where index k corresponds to the panel where θJk =

cos−1y∗i .
If we are evaluating the influence of a turbine on itself

(e.g., I = J ) then the computations in the Ax matrix can
be simplified. We can expand using the definitions for x

and y along the cylinder (x∗i =−sinθi and y∗i = cosθi for
i = 1. . .n). As long as i 6= j , then the integral in Eq. (7) eval-
uates to 1θ/2. When i = j the value of the integral depends
on which side of the cylinder we evaluate on. It converges
to π (−1+ 1/n) just outside of the cylinder and π (1+ 1/n)
just inside. Because we chose to evaluate on the upstream
surface on both halves of the cylinder, the integral evalu-
ates to π (−1+1/n) on the upstream half of the cylinder and
π (1+ 1/n) on the downstream half of the cylinder.

DxI I (i,j )=


1θ/(4π ) if i 6= j
(−1+ 1/n)/2 if i = j and i ≤ n/2
(1+ 1/n)/2 if i = j and i > n/2

(9)

WxI I (i,j )=
{
−1 if i > n/2 and j = n+ 1− i
0 otherwise (10)

If a user elects to use a more sophisticated wake model the
Wx term can simply be ignored and a separate momentum
deficit factor can be applied.

2.1 Faster computation

The bulk of the computational effort is contained in comput-
ing the influence coefficient matrices AxI J and AyI J . These
computations consist of a double loop iterating across all
evaluation positions i on turbine I for each source position
j on turbine J (which is itself contained in a double loop
across all turbines I and J ). Fortunately, some of this com-
putation can be simplified. The expressions in Eqs. (6), (9),
and (10) apply for the cases where I = J , or in other words
for computing the influence of the turbine on itself. A signif-
icant benefit to this equation form is that the matrices depend
only on the discretization of the cylinder and not on the de-
tails of the blade shape or loading. For a preselected number
of azimuthal segments (e.g., n= 36), these matrices can be
precomputed and stored. This is true no matter what size ra-
dius the VAWT is.

If I 6= J , some reduction in computational requirements
is also possible. For each VAWT pair (I 6= J ), if the two
VAWTs are of equal radius, then pairs of influence coeffi-
cients between them are exactly the same. As seen in Fig. 6,
the distance vector from the center of one turbine to the eval-
uation point on a separate turbine is exactly equal and oppo-
site to a vector originating from the center of the other tur-
bine and terminating at an azimuthal location diametrically
opposite to the first evaluation point’s azimuthal location. As
long as these two VAWTs are of equal radius, these two vec-
tors will always be equal and opposite. This corresponds to
x∗ and y∗ switching signs in Eqs. (6) and (7). However, the
evaluation locations are always 180◦ apart in location. This
corresponds to switching the sign on all sin and cos terms.
The two sign changes cancel out and thus the two evalua-
tion coefficients will be exactly the same. In other words, for
all pairs of VAWTs that are of equal radii, only one set of
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✓
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Figure 6. The influence coefficient calculations between a pair of
VAWTs will always have paired locations that have exactly equal
and opposite distance vectors if the two VAWTs are of equal radius.
These two evaluation locations result in the exact same influence
coefficients, reducing the amount of calculations that must be per-
formed.

influence coefficients need be computed. The influence coef-
ficients for the other VAWT can be mapped over directly. In
equation form this is given by

DxJ I
(

(i+ n/2)modn, (j + n/2)modn
)

= DxI J (i,j ), ∀ i = 1. . .n, j = 1. . .n (if rI = rJ ) (11)

and similarly for Ay . Note that there is no symmetry in the
wake terms (Eq. 8). If a second turbine is in the wake of the
first, the first turbine will clearly not be in the wake of the
second turbine.

Finally, we can reduce the number of computations re-
quired for VAWTs that have large separation distances.
If a VAWT pair has a large separation distance (e.g.,√(
xIc − xJc

)2
+
(
yIc − yJc

)2
> 10rI ), then when iterating

across index i the value for positions xi and yi will change
very little. The computation can be simplified by neglecting
these very minor changes and instead using the distance be-
tween VAWT centers (independent of i):

x∗i →
(
xIc − xJc

)
/rJ ,

y∗i →
(
yIc − yJc

)
/rJ . (12)

With this simplification the matrices in Eqs. (6) and (7) can
be computed by iterating only in j and filling an entire col-
umn per iteration. Additionally, for these large separations
the wake terms should be negligible and can be skipped in
the computation.

2.2 Body forces

With the induced velocities u∗ and v∗, we can compute the
body forces produced by the VAWT. The volume forces pro-
duced by the VAWT are modeled as acting along an infinites-
imally small radial distance and in a direction normal to the
surface of the cylinder (the tangential component is much
smaller than the normal force and can be reasonably ne-
glected in the volume forces of the Euler equations). The

x

y

✓j
�r

rj

rj�
✓

Figure 7. In-plane area for volume force at a given azimuthal sta-
tion.

radial volume force is

fr(θ )=
F ′r

rj1θ1r

L

ρV 2
∞

, (13)

where F ′r is an azimuthally averaged radial force per unit
length in a direction pointing into the center of the cylinder,
rj is the radius of the local VAWT cross section, and rj1θ1r
is the in-plane area across which the force acts (Fig. 7). The
last term comes from the normalization of the Euler equa-
tions, where L is some relevant length scale.

Because the force acts across an infinitesimal small radial
distance, the radial force acts as a pressure jump

q(θ )= lim
ε→0

1
L

rj+ε∫
rj−ε

fr(θ )dr

= lim
ε→0

1
L

rj+ε∫
rj−ε

F ′r
rj1θdr

L

ρV 2
∞

dr,

=
F ′r
rj1θ

1
ρV 2
∞

. (14)

Here, the 1/L is necessary to be consistent with the normal-
ization. It does not matter which reference length is used in
normalizing q(θ ) because the length scales cancel.

Figure 8 shows the relative components of velocity in the
frame of the airfoil. It consists of contributions from the
freestream velocity, the velocity due to rotation, and the in-
duced velocities from itself and other turbines.

V j = V∞(1+ uj )x̂+V∞vj ŷ−�j rj t̂ (15)
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n̂

t̂

x̂

ŷ

V1(1 + uj)

V1vj

✓j

⌦jrj

Figure 8. Relative components of velocity in the frame of the air-
foil.

n̂

t̂

x̂

ŷ

✓j

V1(1 + uj) sin ✓j � V1vj cos ✓j

V1(1 + uj) cos ✓j + V1vj sin ✓j + ⌦jrj

Figure 9. Components of velocity resolved into n̂− t̂ plane.

Using the following coordinate transformations,

x̂ =−cosθj t̂ − sinθj n̂

ŷ =−sinθj t̂ + cosθj n̂, (16)

the velocity can be expressed in the n̂–t̂ plane as

V j =
[
−V∞(1+ uj ) sinθj +V∞vj cosθj

]
n̂

+
[
−V∞(1+ uj )cosθj −V∞vj sinθj −�j rj

]
t̂ . (17)

These velocity components are depicted in Fig. 9.
If we define the magnitudes

Vnj ≡ V∞(1+ uj ) sinθ −V∞vj cosθ,

Vtj ≡ V∞(1+ uj )cosθ +V∞vj sinθ +�j rj , (18)

then

V j =−Vnj n̂−Vtj t̂ (19)

and the magnitude of the local relative velocity and local in-
flow angle (Fig. 10) are

Wj =

√
V 2

nj +V
2
tj ,

W

� t̂

n̂

cn

ct

cl

cd

Figure 10. Definition of normal and tangential force coefficients.

φj = tan−1

(
Vnj

Vtj

)
. (20)

The angle of attack, Reynolds number, and lift and drag co-
efficients can then be estimated as

αj = φj −β

Rej =
ρWj c

µ

clj = f (αj ,Rej )

cdj = f (αj ,Rej ). (21)

This can be rotated into normal and tangential force coef-
ficients (note that cn is defined as positive in the opposite
direction of n̂ in Fig. 10).

cnj = clj cosφj + cdj sinφj
ctj = clj sinφj − cdj cosφj (22)

We can resolve these normal and tangential loads into a
radial, tangential, and vertical coordinate system. In doing
so, we will account for blade curvature, as is often used with
VAWTs, an example of which is shown in Fig. 11. The total
force vector is resolved as

F =
1
2
ρW 2(−cnn̂+ ct t̂)1a, (23)

where the negative sign results from the coordinate system
definition seen in Fig. 10. From Fig. 11 we see that the area
of the blade element is

1a = c1s = c
1z

cosδ
, (24)

and the unit vector n̂ can be expressed as

n̂= cosδr̂ + sinδẑ. (25)

Thus, the force vector per unit depth (unit length in the z di-
rection) is

F ′ =
ρW 2c

2cosδ

(
− cn cosδ r̂ − cn sinδ ẑ+ ct t̂

)
. (26)
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n̂

r̂

ẑ

�
dz

ds =
dz

cos �

Figure 11. Cross-sectional length of blade segment for small
changes in height. Blade curvature increases the area of the blade
element for unit height, but sweep has no effect on the blade ele-
ment area as it is a shearing operation.

We can simplify these expressions for the three instantaneous
force components:

R′ =−cn
1
2
ρW 2c

T ′ = ct
1
2
ρW 2 c

cosδ

Z′ =−cn
1
2
ρW 2c tanδ. (27)

Note that the radial force is unaffected by blade curvature
because although the in-plane normal force varies with the
cosine of the local curvature angle δ (Fig. 11), the area over
which the force acts varies inversely with the cosine of the
angle. Blade sweep is also permitted; however, it is assumed
that the sweep is accomplished through shearing rather than
rotation. In other words, it assumed that the airfoils are still
defined relative to the streamwise direction as opposed to
normal to the local blade sweep. Thus, sweeping does not
increase the area of the blade element.

For equating with the actuator cylinder theory, only the ra-
dial force is of interest (but all components will be of use for
computing overall power and loads). Because the blades are
rotating we need to compute an azimuthally averaged value
of the radial loading (recalling that the sign convention for a
positive radial loading is inward for loads the fluid produces
on the VAWT):

F ′rj = cnj
1
2
ρW 2

j c
B1θ

2π
. (28)

Substituting this radial loading into Eq. (14), we find that the
radial volume force can be expressed as

qj = cnj
1
2
ρW 2

j c
B1θ

2π
1

rj1θ

1
ρV 2
∞

. (29)

After simplification, the radial force is

qj =
Bc

4πrj
cnj

(
Wj

V∞

)2

. (30)

Defining solidity as is typically done for a VAWT (σ =
Bc/r), the normalized radial force per unit length becomes

qj =
1

4π
σj cnj

(
Wj

V∞

)2

. (31)

2.3 Correction factor

Madsen et al. (2013) note that the induced velocities from
the linear solution fit well at low loading, and at high loading
they produce good trends but with significant error in overall
magnitude. For a uniform loading across a 2-D actuator disk,
this linear solution can be shown to produce the following
relationship between the thrust coefficient and the induction
factor (a =−u/V∞):

CTlinear = 4alinear. (32)

We can equate this thrust coefficient prediction to that of
blade element momentum theory in order to produce a cor-
rection factor for alinear. We extend the approach used by
Madsen to consider more than just the momentum region.
The relationship between the thrust coefficient and the induc-
tion factors varies more generally depending on the induction
factor (Wilson and Lissaman, 1974; Buhl Jr., 2005):

CT =


4a(1− a) a ≤ 0.4 (momentum)
2
9

(7a2
− 2a+ 4) 0.4< a < 1 (empirical)

4a(a− 1) a > 1 (propeller brake).

(33)

In order to get the same induction factor from the linear so-
lution, as would be predicted by blade element momentum
theory, we need to multiply our predicted induced veloci-
ties (and thus the thrust coefficient) by the correction factor
ka = CTlinear/CT.

The correction factors become

ka =


1/(1− a) (momentum)
(18a)/(7a2

− 2a+ 4) (empirical)
1/(a− 1) (propeller brake).

(34)

In order to determine the value of a to use in the above equa-
tion we first find the thrust coefficient. The instantaneous
thrust coefficient can be found from Eq. (27) using the co-
ordinate system definition that

X′ =−R′ sinθ − T ′ cosθ

=
1
2
ρW 2c

(
cn sinθ − ct

cosθ
cosδ

)
. (35)

The instantaneous thrust coefficient is

CTinst =
X′

1
2ρV

2
∞(2r)
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=

(
W

V∞

)2
c

2r

(
cn sinθ − ct

cosθ
cosδ

)
, (36)

where the other normalization dimension comes from the dis-
tributed loads, which are a force per unit length in the z di-
rection. To get the total thrust coefficient we need to compute
the azimuthal average:

CT =
B

2π

2π∫
0

CTinst (θ )dθ

=
σ

4π

2π∫
0

(
W

V∞

)2(
cn sinθ − ct

cosθ
cosδ

)
dθ. (37)

From the thrust coefficient we can compute the expected in-
duction factor by reversing Eq. (33):

a =



1
2

(
1−

√
1−CT

)
CT ≤ 0.96 (momentum)

1
7

(
1+ 3

√
7
2
CT− 3

)
0.96< CT < 2 (empirical)

1
2

(
1+

√
1+CT

)
CT > 2 (propeller brake).

(38)

Finally, this induction factor allows us to compute the correc-
tion factor from Eq. (34). These factors should be multiplied
against the induced velocities, but because that is the quantity
we need to solve for, we must multiply against their predicted
values.

Because this correction is derived for an isolated turbine,
the correction factors k1. . .kN should be precomputed for
each individual turbine in isolation rather than as part of the
coupled solve of all turbines together.

2.4 Matrix assembly and solution procedure

From the proceeding discussion it should be noted that com-
puting loads depends on the induced velocities, but comput-
ing the induced velocities depends on the loads. Thus, an it-
erative root-finding approach is required. We can assemble
the self-induction and mutual induction effects into one large
matrix composed of block matrices. We also need to apply
the various correction factors k for turbine J . To solve all
induced velocities as one large system we will concatenate
the u and v velocity vectors into one vector: w = [u;v]. In
the equation below, the symbol � represents an element-by-
element multiplication.

u1
u2
...

uN
−−

v1
v2
...

vN


=



k1
k2
...

kN
−−

k1
k2
...

kN



Figure 12. Example two-dimensional discretization in height and
azimuthal position of swept surface (side view).
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q1
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.
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.

qN

 (39)

We now have a matrix vector expression of the form w = Aq,
but because q depends on w we must solve for w using a
root-finding method. The residual equation is

f (w)= Aq(w)−w = 0. (40)

Any good n-dimensional root finder can be used. This pa-
per uses the modified Powell hybrid method as contained in
hybrd.f of Minpack.

2.5 Variations in height

The actuator cylinder theory computes all loads in two-
dimensional cross sections. We can use a representative sec-
tion to represent the whole turbine (which is more appropri-
ate for an H-Darrieus geometry, ignoring wind shear), or we
can additionally discretize the turbine along the height and
compute loads at each section.

For each azimuthal station of interest, the solution is pro-
jected onto the instantaneous locations of the blade dis-
cretization as shown in Fig. 12. For an unswept blade, this
involves just a straightforward transfer of forces as the blade
discretization would typically be exactly aligned with the
surface discretization. However, for swept blades, interpola-
tion is necessary to resolve the forces along the curved blade
path. Furthermore, for a swept blade, the normal and tangen-
tial directions change along the blade path. For swept blades,
each point along the blade is at some azimuthal offset (1θ )
from a reference point (e.g., relative to the equatorial blade
location), and the total normal force, tangential force, and
torque produced by the blade are (again 1θ = 0 for unswept
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blades)

Rblade(θ )=
∫ [

R′(θ +1θ )cos(1θ )

− T ′(θ +1θ ) sin(1θ )
]
dz

Tblade(θ )=
∫ [

R′(θ +1θ ) sin(1θ )

+ T ′(θ +1θ )cos(1θ )
]
dz

Zblade(θ )=
∫
Z′(θ +1θ )dz

Qblade(θ )=
∫
rT ′(θ +1θ )dz. (41)

Now that the forces as a function of θ are known for one
blade, the forces for all B blades can be found. We let 12j
represent the offset of blade j relative to the first blade:

12j = 2π (j − 1)/B. (42)

The resulting forces in the inertial frame are then

Xall-blades(θ )=
B∑
j=1
−Rblade(θ +12j ) sin(θ +12j )

− Tblade(θ +12j )cos(θ +12j )

Yall-blades(θ )=
B∑
j=1

Rblade(θ +12j )cos(θ +12j )

− Tblade(θ +12j ) sin(θ +12j )

Zall-blades(θ )=
B∑
j=1

Zblade(θ +12j ). (43)

In this representation the velocities at each height can be
different to account for wind shear or other wind distribu-
tions. This derivation is provided for completeness, but be-
cause of the increased computational expense, and to be con-
sistent with the other comparisons we are making in this pa-
per, we will focus on using one 2-D slice for the entire tur-
bine.

2.6 Power

In addition to the thrust coefficient and instantaneous loads,
which have already been defined, we are also interested in
computing the power coefficient. This is easily computed
from the instantaneous tangential load given in Eq. (27) (or
Eq. 43). The torque (per unit length) is then

Q= rT ′, (44)

and the azimuthally averaged power is

P =
�B

2π

2π∫
0

Q(θ )dθ. (45)

This is a periodic integral, and care should be taken in inte-
grating near the boundaries because of the way the discretiza-
tion is defined (θ1 does not start at 0). The power coefficient
per unit length is then

CP =
P

1
2ρV

3
∞(2r)

. (46)

2.7 Clockwise rotation

The following derivation assumed counterclockwise rotation.
For clockwise rotation a few minor changes must be made.
Nothing in the influence coefficients needs changing as those
are purely based on location. The only change for clockwise
rotation is that the direction of t̂ is reversed, as is the direction
of the �r velocity vector in Figs. 8 and 9. The consequence
is that the tangential velocity in Eq. (18) must be redefined
as (note the two minus signs)

Vtj ≡−V∞(1+ uj )cosθ −V∞vj sinθ +�j rj . (47)

Additionally, the change in tangential direction affects the
computation of the thrust coefficient. In Eq. (35) the sign is
reversed on the second part of the equation. The consequence
is that the total thrust coefficient (Eq. 37) would be computed
as

CT =
σ

4π

2π∫
0

(
W

V∞

)2(
cn sinθ + ct

cosθ
cosδ

)
dθ. (48)

For transferring loads to an inertial frame, or for com-
puting total blade loads with curved blades, a couple more
changes are required. Equation (43) replaces the plus sign in
front of Tblade with a minus sign (for both the X and Y equa-
tion) and Eq. (41) is modified as

Rblade(θ )=
∫ [

R′(θ +1θ )cos(1θ )

+ T ′(θ +1θ ) sin(1θ )
]
dz

Tblade(θ )=
∫ [
−R′(θ +1θ ) sin(1θ )

+ T ′(θ +1θ )cos(1θ )
]
dz. (49)

3 Two turbine interactions

This methodology was implemented and made open-source
(https://github.com/byuflowlab/vawt-ac) in Julia, which is a
dynamic programming language designed for scientific com-
puting (http://julialang.org). For single-turbine cases the im-
plementation was verified against Madsen’s results (Madsen
et al., 2013). Our focus here is on multiple-turbine cases, and
for simplicity on two turbine cases.

The first configuration we examine is the Mariah Wind-
spire 1.2 kW VAWT, which has been the subject of multiple
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Table 1. Mariah Windspire 1.2 kW VAWT parameters.

Diameter 0.6 m
Chord 0.128 m
Number of blades 3
Height 6.1 m
Airfoil Du-06-W-200

experimental and computational studies (Dabiri, 2011; Araya
et al., 2014; Zanforlin and Nishino, 2016). Specifically, we
compare against published 2-D unsteady Reynolds-averaged
Navier–Stokes (URANS) simulations of two closely interact-
ing turbines (Zanforlin and Nishino, 2016). This paper was
one of the few interacting VAWT studies with sufficient de-
tail to make a good comparison. The turbine parameters for
this turbine are shown in Table 1. Wind tunnel data for the
lift and drag coefficients of this airfoil are available for a few
different conditions (Claessens, 2006).

Before comparing turbine pairs, we compared the per-
formance of the isolated turbine to experimental data. The
National Renewable Energy Laboratory (NREL) conducted
field studies with the same turbine while installed at the Na-
tional Wind Technology Center (Huskey et al., 2009). The
isolated power coefficient and power, as a function of wind
speed, are shown using the actuator cylinder method as com-
pared to the experimental data in Fig. 13. The computational
method overpredicts the power somewhat, which is not sur-
prising considering that our 2-D simulations do not include
the tower, struts, or tip losses and predict aerodynamic rather
than electrical power. The published CFD data overpredict
power by about the same percentage relative to experimen-
tal data, for similar reasons (Zanforlin and Nishino, 2016).
We were not able to compare directly to the CFD data set,
because the corresponding experimental data set from Wind-
ward Engineering was no longer available (in particular the
rotation speed schedule was needed). Instead, we compared
to the NREL data set, which tabulated the corresponding ro-
tation speed for each wind speed. Overall, the agreement in
the power performance trends is quite reasonable.

For a pair of closely spaced turbines we used the same
conditions as in the CFD study, namely two identical tur-
bines separated by two diameters (center to center), with
the incoming wind direction varied around a full 360◦. The
tip-speed ratio was set at 2.625 for both turbines, which is
an average of the two tip-speed ratios used in Zanforlin’s
study (2.55, 2.7, which produce essentially the same results).
The relative power of the pair of turbines, as compared to
their power in isolation, is plotted versus the wind direc-
tion in Fig. 14. Also shown for comparison are the CFD re-
sults from the URANS study (Zanforlin and Nishino, 2016).
While small differences exist, the overall agreement is very
good. Benefits on the order of 5–10 % are observed across
a relatively wide range on inflow angles. These results are
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Figure 13. Power and power coefficient (separate y axes), as a func-
tion of wind speed for the Windspire 1.2 kW turbine. Lines are from
the actuator cylinder method (AC), and circles are from the NREL
experimental data.

Figure 14. Normalized power as a function of wind direction on a
polar plot, with an overlay of the turbine rotation directions. Results
shown for both the actuator cylinder method (AC) and the CFD re-
sults of Zanforlin and Nishino (2016).

also in alignment with those observed experimentally for this
same turbine (Dabiri, 2011).

Repeating this exercise for many different separations
(e.g., two diameters was used in the previous case) requires
a different visualization approach; otherwise, the plots over-
lap and become difficult to see. Instead of changing the wind
direction for a fixed turbine position, we move the turbines
around for a fixed wind position. The position of turbine 1
is fixed, and the position of turbine 2 is swept in concentric
circles ranging from 1 diameter (no separation) to 6 diame-
ters between turbine centers. The lower bound is of course
unrealistically close, but because some VAWT concepts em-
ploy dual rotors with very close spacings, the smallest possi-
ble lower bound was used to observe trends across a broader
range. By moving the turbines we can show the effect of rel-
ative separation and changing wind direction (via rotated po-
sitions) simultaneously.
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Figure 15. The first turbine is fixed in the center, and the second
turbine is moved around in concentric circles with the wind incom-
ing from the left. The contours show the normalized power of the
two turbines (sum of their power normalized by sum of their power
in isolation). The color scale is centered on 1.0 so that regions of
beneficial interference can be more clearly seen. The color scale fo-
cuses on a small region (0.9–1.1) for the same reason. The blank
areas are waked regions, in which the power drops below the range
of the color scale and so are not plotted.

Figure 15 shows the normalized power (total power of
the turbines relative to their total power in isolation) as a
function of the position of turbine 2 for counter-rotating tur-
bines. Overlays of turbine 1 (fixed) and turbine 2 (position
changed) are shown on the plots. The blank regions upstream
and downstream of turbine 1 are regions where one of the tur-
bines is in the other’s wake. In these cases, the power drops
by a large amount, well below the range of the color bars.
The color bar range was chosen to highlight the mutual in-
terference outside of the wake, which is of greater interest.
We observe large regions of beneficial interference of around
5–10 % for closely spaced turbines (with benefits exceeding
10 % for very close spacings).

For counter rotating turbines, two configurations are pos-
sible: the Counter Up and the Counter Down configuration
(Fig. 16). In Fig. 15 the upper half of the figure corresponds
to the Counter Up configuration, and the lower half cor-
responds to the Counter Down configuration. For the cur-
rent turbine and conditions, the Counter Down configuration
shows somewhat larger benefits across a wider range of in-
flow angles, consistent with the reported CFD studies. A co-
rotating configuration was also explored, which yielded very
similar regions of beneficial interference. The figures were
so similar in these conditions that a separate plot for the co-
rotating case is not shown.

A second turbine and condition set came from a three-
dimensional incompressible Navier–Stokes simulation (Ko-
robenko et al., 2013). This turbine was a 3.5 kW H-Darrieus
from Cleanfield Energy Corporation. The turbine parameters
are listed in Table 2. Wind tunnel data for the airfoil were ex-

V1 V1

Counter up Counter down

Figure 16. Two cases for a counter rotating pair of turbines.
“Counter Up” refers to the pair with a rotation direction facing up-
stream at their closest interface, whereas the “Counter Down” con-
figuration rotates downstream at their closest interface.

Table 2. Cleanfield 3.5 kW VAWT parameters.

Diameter 2.5 m
Chord 0.4 m
Number of blades 3
Height 3 m
Airfoil NACA 0015

tracted from Sandia wind tunnel tests (Sheldahl and Klimas,
1981). The lift and drag coefficients change significantly at
the Reynolds number of this turbine (275 000), and so to pro-
vide the best estimate possible the coefficient data were in-
terpolated between the two nearest data sets: Re= 160 000
and Re= 360 000.

Because three-dimensional CFD is more computationally
intensive, only one case was included in that study to com-
pare against. That case consisted of two turbines in the
Counter Down configuration, separated (tower to tower) by
2.64 rotor radii. The turbines were operated at a tip-speed
ratio of 1.5, which was the optimal condition for the single-
turbine configuration. The CFD study reported a decrease in
power for the counter-rotating pair, although the amount of
decrease was not specified. Fortunately, torque vs. azimuth
plots were presented. Extracting that data from the plot and
integrating shows that the CFD simulations predicted a 12 %
decrease in power for the counter-rotating pair as compared
to the isolated turbines.

Actuator cylinder theory was used for the same turbine at
the optimal tip-speed ratio predicted using AC theory. A de-
crease in power for the Counter Down configuration was also
observed of about 15 %. However, the optimal tip-speed ratio
differed from the experimental data (Bravo et al., 2007). The
nondimensional power curves were very similar, but with
a shift in tip-speed ratio. To be consistent, the optimal tip-
speed ratio was used in both cases (2.9 for the actuator cylin-
der case). Without more data to compare against, the robust-
ness of this configuration to other conditions could not be
assessed.

A third data set was examined, which came from wind tun-
nel tests of co- and counter-rotating VAWT pairs (Ahmadi-
Baloutaki et al., 2015). This study used very high solidity
rotors and found beneficial interference for counter-rotating
turbines across all wind speeds tested. For co-rotating tur-
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Figure 17. The top row is for the linear actuator cylinder theory, showing streamlines for an isolated turbine. The left panel shows the
induced velocity only, while the right panel includes the freestream. The bottom row shows the same conditions, but with the full Euler
equations (Madsen, 1982).

bines, beneficial interference was realized across some wind
speeds, and detrimental interference at others. The turbines
used in this wind tunnel study were inefficient under the con-
ditions tested, with an extremely small power coefficient of
2× 10−3 (corresponding power of under 0.3 W). The per-
cent increase in power of turbine pairs was significant, but
in absolute terms the power increase was very small. Sim-
ilar relative benefits with actuator cylinder theory were ob-
served depending on the assumed airfoil data. This turbine
used a custom-made airfoil section and, without correspond-
ing wind tunnel data, detailed comparisons to actuator cylin-
der theory were not possible.

In addition to comparing power output, we compared the
induced velocity field generated by the VAWT. Ultimately,
this induced velocity is what changes the incoming flow field
for a second turbine. The streamlines for the induced veloc-
ity field of the isolated VAWT and the total velocity field
(with freestream added) are shown in Fig. 17. For compar-
ison, the streamlines for a solution based on the full Euler
equations are shown below (Madsen, 1982). Although the
actuator cylinder theory uses a linearization and only adds
a nonlinear correction, the induced and total velocity fields
compare well to those from the Euler equations. These in-

duced velocities were also found to compare well to that
from an unsteady panel simulation of a VAWT (see Figs. 3.7
and 3.8 in Ferreira, 2009).

A properly positioned pair of VAWTs can produce power
increases, but one must be careful in extrapolating results to
the wind farm. Even in just the two-turbine case, the over-
all benefits may or may not be realized depending on the
site conditions. Although power increases of around 5–10 %
may be realized across a wide range of inflow angles, for in-
flow angles that create wake interference the power loss can
drop by 50 %. As an example, assuming a uniform wind rose
(wind equally probable in all directions), the data in Fig. 14
yield an expected value of power of around 90 % of that in
isolation (both using this method and the CFD results). In
other words, with a uniform wind rose the wake losses over-
whelm the benefits of close spacing. A more directional wind
rose, on the other hand, could realize overall power increases.

Additionally, a wind farm consists of many turbines, and
accounting for wake effects across the full wind rose is es-
sential. VAWTs tend to produce shorter wakes than HAWTs,
which can help alleviate some of the spacing challenges.
However, if turbines are intentionally positioned close to-
gether to create beneficial interference, then they also have
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the potential to create strong power losses through wake ef-
fects.

Beneficial interference may be possible not just for pairs
of turbines, but for carefully positioned arrays of turbines,
as demonstrated in 2-D URANS simulations (Bremseth and
Duraisamy, 2016). However, the benefits have only been ex-
plored with one wind direction. Our past research in HAWT
wind farm optimization suggests that when optimizing tur-
bine positioning under uncertainty of wind direction, the op-
timal configurations spread out and are not in aligned rows
in order to minimize wake interference (Fleming et al., 2016;
Gebraad et al., 2016). Further investigation is needed to bet-
ter understand how to optimize VAWT farms.

4 Conclusions

Actuator cylinder theory is a fast and often effective analysis
method to predict aerodynamic loads and power of vertical
axis wind turbines. In this paper we derive an extension to ac-
tuator cylinder theory for multiple interacting turbines. Addi-
tional extensions were provided that apply to both the single-
turbine and multiple-turbine cases: thrust coefficients outside
of the momentum regions, and curved or swept blades.

Comparisons to published data for VAWT pairs showed
reasonable agreement in predicting relative power changes
and induced velocities using actuator cylinder theory. How-
ever, more data are needed to better assess the conditions un-
der which the multiple actuator cylinder theory is effective.
Like blade element momentum methods, the accuracy and
usefulness of actuator cylinder theory is highly dependent on
providing accurate airfoil coefficient data.

For closely spaced VAWTs, we observed cases with bene-
ficial interference across a wide range of inflow angles, with
peak power increases exceeding 10 %. In other cases, detri-
mental interference was observed. The conditions that affect
the interactions depend on many things, including the airfoil
aerodynamic performance, the tip-speed ratios, and solidi-
ties. Our focus here is to demonstrate the actuator cylinder
theory and not to make a thorough investigation of closely
interacting VAWTs, but more illumination on this topic is
needed.

Further improvements to actuator cylinder theory are
needed, as are more detailed validation studies. An improved
wake model is necessary because the wakes in actuator cylin-
der theory are inviscid, do not decay, and do not spread. Our
recent work has developed the first VAWT wake model de-
rived from computational fluid dynamics simulations that is
parametrized for turbines with different tip-speed ratios and
solidities (Tingey and Ning, 2016). Models like this could
be combined with actuator cylinder theory to better predict
turbine–wake interactions.

Because of the model’s sensitivity to the airfoil data, fur-
ther data collection and improved methods of applying ro-
tational corrections specific to VAWTs may be needed. Al-

though the method was only demonstrated in 2-D, as outlined
in the methods section, extensions to 3-D are straightforward
using a strip-wise approach, but tip-loss corrections should
be added. Additionally, appropriate methods for accounting
for losses through struts and the tower will likely improve
aerodynamic performance estimates.

5 Data availability

Source code for my implementation of this actuator cylinder
method has been made publicly available (Ning, 2016a), as
well as code and supplementary files used to generate the
data figures in this paper (Ning, 2016b).

Edited by: J. Meyers
Reviewed by: two anonymous referees
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