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Abstract. Mesoscale model predictions of wind, turbulence, and wind energy capacity factors are evaluated
in the Altamont Pass Wind Resource Area of California (APWRA), where the diurnal regional sea breeze and
associated terrain-driven speedup flows drive wind energy production during the summer months. Results from
the Weather Research and Forecasting model version 4.4 using a novel three-dimensional planetary boundary
layer (3D PBL) scheme, which treats both vertical and horizontal turbulent mixing, are compared to those using
a well-established one-dimensional (1D) scheme that treats only vertical turbulent mixing. Each configuration
is evaluated over a nearly 3-month-long period during the Hill Flow Study, and due to the recurring nature of
the observed speedup flows, diurnal composite averaging is used to capture robust trends in model performance.
Both model configurations showed similar overall skill. The general timing and direction of the speedup flows
is captured, but their magnitude is overestimated within a typical wind turbine rotor layer. Both also fail to
capture a persistent observed near-surface jet-like flow, likely due to the limited grid resolution that is typical
of mesoscale models. However, the 3D PBL configuration shows several minor improvements over the 1D PBL
configuration, including improved wind speed and turbulence kinetic energy profiles during the accelerating
phase of the speedup events, as well as reduced positive wind speed bias at surface stations across the APWRA
region. Using a mesoscale wind farm parameterization, modeled capacity factors are also compared to monthly
data reported to the US Energy Information Administration (EIA) during the study period. Although the monthly
trend in the data is captured, both model configurations overestimate capacity factors by roughly 7 %–11 %.
Through model evaluation, this study provides confidence in the 3D PBL scheme for wind energy applications
in complex terrain and provides guidance for future testing.
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1 Introduction

Accurate mesoscale simulations of winds in the atmospheric
boundary layer are essential for wind energy resource assess-
ment and forecasting of wind power production. However,
while wind turbines are often sited in regions of complex ter-
rain to take advantage of local wind accelerations, mesoscale
models are likely to experience larger errors in these regions
(Jiménez and Dudhia, 2013; Olson et al., 2019; Chow et al.,
2019; Radünz et al., 2021). Errors may result from a vari-
ety of interrelated effects, including underresolved terrain,
model numerics, and the treatment of atmospheric turbulence
and its interplay with atmospheric stability and diurnal cy-
cles.

First and foremost, complex terrain is usually underre-
solved in mesoscale models, a subset of numerical weather
prediction (NWP) models. Historically, NWP models were
run with horizontal grid spacing on the order of 10–100 km.
However, with ongoing advances in computing power, opera-
tional NWP models may now be run at higher resolution. For
example, the High-Resolution Rapid Refresh model (HRRR;
Benjamin et al., 2016; Dowell et al., 2022), maintained by
the National Oceanographic and Atmospheric Administra-
tion (NOAA), covers the continental United States with a
3 km horizontal grid spacing. Recently, NWP models have
been tested with 1 km or sub-kilometer grids (e.g., Olson
et al., 2019), but their ability to capture local terrain-driven
flow variability at the grid scale or smaller is inherently lim-
ited.

Complex-terrain errors can also result from model nu-
merics. NWP models generally use a terrain-following co-
ordinate system (e.g., Gal-Chen and Somerville, 1975) be-
cause it provides a straightforward implementation of surface
boundary conditions. However in regions with steep terrain,
the grid becomes skewed, leading to model errors that of-
ten manifest as numerical diffusion (see, e.g., Arthur et al.,
2021). A variety of approaches have been taken in the litera-
ture to address these grid-related errors, including hybrid ver-
tical coordinate systems, improved finite-difference stencils,
and immersed boundary methods (see discussion in Arthur
et al., 2022), but these are not a focus of the present study.

All atmospheric models require a parameterization for the
effects of subgrid-scale (SGS) turbulence, and this study fo-
cuses on the treatment of atmospheric turbulence as an im-
portant source of model variability. In a mesoscale model,
vertical turbulent mixing is typically parameterized using
a one-dimensional (1D) planetary boundary layer (PBL)
scheme. Horizontal turbulent mixing is assumed to be small
and is therefore neglected in the governing equations. This
assumption is valid in coarse-grid simulations but may be
violated in higher-resolution simulations (Honnert and Mas-
son, 2014; Mazzaro et al., 2017; Muñoz-Esparza et al., 2017;
Doubrawa and Muñoz-Esparza, 2020), especially in regions
with complex terrain or other sources of horizontal hetero-
geneity.

To address this issue, Kosović et al. (2020) and Ju-
liano et al. (2022) implemented a three-dimensional (3D)
PBL scheme within the widely used Weather Research and
Forecasting model (WRF; Skamarock et al., 2019). The
scheme is intended for use within the turbulence “gray zone”
(Wyngaard, 2004), within which neither traditional 1D PBL
schemes nor large-eddy simulation (LES) schemes are nec-
essarily appropriate (see further discussion in Chow et al.,
2019). Gray-zone resolution is a function of atmospheric sta-
bility, with PBL depth being a proxy (e.g., Rai et al., 2019),
but is typically considered to span a horizontal grid spacing
of 100 m to 1 km.

The 3D PBL scheme parameterizes both vertical and hor-
izontal turbulence shear stresses and turbulent fluxes, as well
as their divergences, using the framework of Mellor and Ya-
mada (1974, 1982), which is based on a prognostic equation
for the SGS turbulence kinetic energy (TKE). In this way,
the scheme is similar to the 1D Mellor–Yamada–Nakanishi–
Niino (MYNN) level 2.5 model (Nakanishi and Niino, 2006)
available in WRF but with full 3D treatment of turbulent mix-
ing. It should be noted that with MYNN or other 1D PBL
schemes, a two-dimensional (2D) form of the Smagorinsky
model (Smagorinsky, 1963) is often used to add additional
horizontal diffusion and can thus be considered a form of
smoothing to improve numerical stability (e.g., Smagorin-
sky, 1993).

In an effort to further develop the WRF 3D PBL scheme
for wind energy applications, Rybchuk et al. (2022) coupled
it to the mesoscale wind farm parameterization of Fitch et al.
(2012). Hereafter denoted WFP, the Fitch et al. (2012) pa-
rameterization accounts for the presence of wind turbines by
adding drag and TKE to the flow within the turbine rotor re-
gion. These effects are aggregated over each horizontal grid
cell based on the number of turbines located within the cell.
The Fitch et al. (2012) WFP is coupled to the MYNN PBL
scheme in the standard WRF release (including the bug fix
of Archer et al., 2020), allowing for direct comparisons with
the 3D PBL implementation.

The initial work of Juliano et al. (2022) and Rybchuk
et al. (2022) focused on developing and testing the 3D PBL
scheme in idealized model configurations, mostly with flat
terrain or over open water. Juliano et al. (2022) considered
idealized convective boundary layer and sea breeze tests, as
well as a mountain–valley test with simple terrain, while
Rybchuk et al. (2022) considered the offshore environment.
Arthur et al. (2022) and Wiersema et al. (2023) subsequently
evaluated 3D PBL performance relative to standard WRF op-
tions in real complex-terrain scenarios. However, further test-
ing of the model is necessary to ensure its robustness.

With this in mind, the present work has two main goals.
The first is to evaluate the 3D PBL scheme in a complex-
terrain region that is relevant to wind energy. The second
is to build on the work of Rybchuk et al. (2022) by testing
the WFP coupled to the 3D PBL scheme in a realistic con-
figuration with terrain. Ultimately, this work aims to better
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establish the utility of the 3D PBL scheme for wind energy
applications.

2 Data and methods

2.1 Case study and observational data

The Altamont Pass Wind Resource Area (APWRA) is a col-
lection of wind plants located in a gap within the Diablo
Range of north–central California. The gap is just east of San
Francisco Bay and south of the San Francisco Bay delta and
is roughly bounded by Mount Diablo to the northwest and
the greater Diablo Range to the southeast (see Fig. 1).

With nearly 200 turbines and roughly 326 MW of installed
capacity spread over six plants (excluding very small, old
65 kW turbines), the APWRA is the fifth-largest wind en-
ergy installation in California and one of the oldest commer-
cial wind farms in the United States, with the first turbines
installed in 1981 (see Hoen et al., 2018). The typical annual
cycle of wind energy production in the APWRA is shown in
Fig. 2 in terms of monthly capacity factors, defined as the
ratio of actual production to the maximum possible produc-
tion (i.e., if all turbines operated at full capacity) during each
month.

The turbines in the APWRA are especially productive over
the summer months when a synoptic pressure difference be-
tween the ocean and the land drives westerly/southwesterly
winds that are channeled through the Altamont Pass (see,
e.g., Zaremba and Carroll, 1999). These winds are modu-
lated by diurnal temperature variability, which enhances the
land–sea pressure difference, leading to peak wind speeds
in the late afternoon to early evening, local time (see, e.g.,
Wharton et al., 2015). The regularity of the summertime
speedup events combined with the importance of terrain-
induced wind acceleration makes them a useful case study
for evaluating mesoscale models (see, e.g., Banta et al.,
2020, 2023).

The Hill Flow Study (HilFlowS; Wharton and Foster,
2022) consisted of two vertically profiling ZephIR300 lidars
and a 52 m meteorological tower deployed at Lawrence Liv-
ermore National Laboratory Site 300, roughly 10 km south-
east of the APWRA wind plants, during the mid-to-late sum-
mer of 2019. HilFlowS was conducted along three parallel
ridgelines that run northwesterly to southeasterly in the Di-
ablo Range, making them perpendicular to the predominant
summertime southwesterly (onshore) wind direction. Lidars
were deployed on the first two (upwind) parallel ridgelines at
the Western Observation Point (WOP; Atmosphere to Elec-
trons, 2019c) and Eastern Observation Point (EOP; Atmo-
sphere to Electrons, 2019b), which are separated by a line-
of-sight distance of 860 m. The WOP ridgeline has a higher
peak (527 m a.m.s.l., meters above mean sea level), while the
EOP peak is slightly lower (448 m a.m.s.l.). The ridgeline
slopes are 22 and 13°, respectively, along the predominant
wind direction of 240°. The meteorological tower (Atmo-

sphere to Electrons, 2019a) is found on the third ridgeline
and is at an elevation of 395 m a.m.s.l. The study area and
surrounding region are largely covered by grassland. All in-
strument and turbine locations are included in Fig. 1.

Wind speed data from the two lidars are used here to evalu-
ate model performance between the surface and 150 m a.g.l.
(meters above ground level), spanning the vertical range of
the turbines in the APWRA. Both lidars gathered horizontal
wind speed, wind direction, and vertical velocity data at 10,
20, 30, 38, 50, 60, 70, 80, 90, 120, and 150 m a.g.l. (note
that 38 m is a fixed calibration height) between 9 July
and 23 September 2019. Horizontal wind speed, direction,
air temperature, and air pressure data are also available at
1 m a.g.l. from an onboard meteorological station, although
only the wind speed and direction data are used here.

While the lidars completed their scan strategy roughly
once every 15 s, the data have been averaged in 10 min in-
tervals, as in Wharton and Foster (2022). Over the study pe-
riod, the WOP lidar had greater than 98 % data availability
for horizontal wind speed and direction and roughly 90 %
data availability for vertical velocity. The EOP lidar ran on
solar and battery power, which resulted in slightly lower data
availability of roughly 84 % and 77 %, respectively. Lower
data availability for the vertical velocity relative to the hori-
zontal is a result of the standard quality control filtering ap-
plied by the lidars when calculating 10 min averages, which
removes the vertical velocity when rain or fog is detected.
Diurnal composite averages over the nearly 3-month-long
data record were analyzed by Wharton and Foster (2022) and
were shown to be robust; a similar composite-averaging ap-
proach is used in the present study for model evaluation.

Horizontal wind speed, wind direction, and vertical veloc-
ity are calculated from lidar observations using the velocity-
azimuth display (VAD) technique for each measurement
height. Note that the ZephIR300 does not have a vertically
pointing beam; thus, vertical velocities are not measured di-
rectly. TKE is calculated using high-frequency variance mea-
surements during postprocessing (see Sect. 3.1.2). Reported
accuracy for the ZephIR300 in ideal site conditions (e.g., flat,
homogeneous terrain) is ± 0.25 % for wind speed and direc-
tion. However, the HilFlowS experiment was not conducted
under these ideal conditions. In hilly terrain, assumptions
about the horizontal homogeneity of the flow across the li-
dar’s observation volume may be invalid, leading to errors
in the measured horizontal wind speed as large as ±10 %
(Bingöl et al., 2009). Although Bingöl et al. (2009) did not
quantify errors in vertical velocities, these are also expected
to be present in complex terrain due to the ZephIR300 lidar’s
lack of a vertically pointing beam.

An earlier experiment in the APWRA (Wharton et al.,
2015) that used identical ZephIR300 lidars to measure hill
speedup flows and their effects on power production assessed
terrain-induced measurement errors with the Dynamics soft-
ware package provided by ZephIR Ltd. As discussed therein,
the software converts raw lidar line-of-sight velocity data
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Figure 1. A map of the study region, zooming in from (a) the US west coast to (b) the WRF model domain to (c) the APWRA. Included in
panels (b) and (c) are the locations of observation stations (black symbols) used for model evaluation; the locations of APWRA wind turbines
at the time of the HilFlowS study (colored by their rated power); and terrain elevation as represented in the model, with water shown in blue.
Dashed-line boxes indicate zoomed-in regions in the next panel to the right, while the dotted-line box in (b) indicates the region shown in
Fig. 7.

Figure 2. Monthly capacity factors for the six wind plants in the APWRA based on Energy Information Administration (EIA)-reported data
(EIA, 2023a, b) averaged over 2014–2021. The shaded area represents ± 1 standard deviation. The average over all plants is weighted by
plant capacity as noted in the legend. Note that Summit Wind became operational in 2021.

into unbiased measurements of wind speed and wind di-
rection for hilly sites, based on the work of Bingöl et al.
(2009). In Wharton et al. (2015), conversion factors for all
wind directions and measurement heights ranged from+1 %
to +8 % for the hill lidar, within the range of the Bingöl
et al. (2009) study. Moreover, the correction factors associ-
ated with the predominant wind direction were closer to zero:
+3 % for the hill lidar and −2 % for the base lidar near the
bottom of the hill.

The conversion factors in Wharton et al. (2015) were cal-
culated for a hill that is similar to those at the HilFlowS
site and are presented here for additional context. How-
ever, conversion factors are not recalculated for the present
study. Rather, the potential±10 % calculated by Bingöl et al.
(2009) is used to conservatively bound the potential mean er-
ror in the measured horizontal wind speed. It should be noted
that prior to the HilFlowS experiment, the lidars were cross-
compared and showed high agreement (see Wharton and
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Foster, 2022), providing confidence in their use for model
evaluation.

To supplement lidar observations, wind speed and temper-
ature data are available from the meteorological tower at 10,
23, and 52 m a.g.l. Wharton and Foster (2022) used these data
to assess atmospheric stability via the bulk Richardson num-
ber; here, the temperature data are used for model evaluation.
Furthermore, before the start of HilFlowS, the lidars were de-
ployed at the base of the meteorological tower to assess in-
strument agreement. That dataset showed strong agreement
between the lidars and the tower, with r2 values of 0.97–0.99
for all measurement levels.

To further examine the spatial variability in model perfor-
mance, 10 m wind speed data from nearby surface meteoro-
logical stations in the MesoWest network (MesoWest, 2023)
are used. Although proprietary turbine data from the AP-
WRA wind plants are not generally available, public power
production data reported to the United States Energy In-
formation Administration (EIA) on a monthly basis (EIA,
2023a, b) are used to evaluate estimates of wind power pro-
duction from the WFP. Note that site-specific wind power
studies have been performed previously in the APWRA, as
presented in Wharton et al. (2015) and Bulaevskaya et al.
(2015).

Rios et al. (2025) used HilFlowS lidar data to evaluate
the aforementioned HRRR model, which is used frequently
for forecasting within the wind energy industry (Shaw et al.,
2019). Rios et al. (2025) found that while HRRR captured the
general diurnal trend of the observed speedup events, it over-
estimated hub-height wind speeds (by as much as 3 m s−1)
during nighttime hours and underestimated hub-height wind
speeds by as much as 2 m s−1 during daytime hours. Wind
speed errors also varied spatially and as a function of the pre-
dominant wind direction associated with different synoptic
conditions. These results serve as a baseline for the present
study, which explores the effects of increased grid resolu-
tion (relative to HRRR) and PBL treatment on model perfor-
mance.

2.2 Model configuration

2.2.1 Domain and model options

A fork of the WRF model version 4.4 (Juliano and Arthur,
2025) is employed with a horizontal grid spacing of 1 km
over the 120× 120 km domain depicted in Fig. 1b. The
model is initialized on 6 July 2019, 00:00 UTC, allowing
for roughly 2 d of spinup time prior to observational compar-
isons, and run through 24 September 2019, 00:00 UTC. Ini-
tial and boundary conditions are derived from hourly HRRR
analysis fields (at the zeroth forecast hour), but interior nudg-
ing is not employed due to the relatively small domain. The
WRF name list and wind turbine specification files used in
this study are archived under Arthur (2024).

Simulations are completed with two model configurations,
varying only the treatment of SGS turbulent mixing. The first
configuration is treated as a control and roughly corresponds
to the standard HRRR setup, while the second configuration
employs the 3D PBL scheme. Recall that HRRR uses a hor-
izontal grid spacing of 3 km; the present value of 1 km was
chosen to increase the resolution relative to HRRR while also
approaching both the upper limit of traditional mesoscale
models and the lower limit of the turbulence gray zone.

In the control configuration, vertical turbulent mix-
ing is treated using the MYNN level 2.5 PBL scheme
(bl_pbl_opt= 5), while horizontal mixing is not treated ex-
plicitly; rather, horizontal smoothing is employed using
WRF’s 2D Smagorinsky scheme (km_opt= 4). In the second
configuration, both vertical and horizontal turbulent mixing
are treated using the 3D PBL scheme. In both configurations,
local curvilinear-grid metric terms are used in the calcula-
tion of horizontal gradients (as with WRF’s diff_opt= 2), al-
though diff_opt is set to 0 when the 3D PBL scheme is used.
All other model options are identical between the two con-
figurations.

Note that following Rybchuk et al. (2022), Arthur et al.
(2022), and Wiersema et al. (2023), the PBL approximation
(Mellor, 1973; Mellor and Yamada, 1982) is used within the
3D PBL scheme (pbl3d_opt= 1) to improve computational
efficiency and numerical stability (see discussions therein
and in Juliano et al., 2022). Indeed, the full 3D PBL scheme
was found to be computationally unstable in the present
domain, likely due to the turbulence-length-scale calcula-
tion. This was also the case in the complex-terrain studies
of Arthur et al. (2022) and Wiersema et al. (2023). With
the PBL approximation, the divergences of horizontal tur-
bulence shear stresses and turbulent fluxes are retained in
the prognostic equations for momentum and scalars, respec-
tively. However, horizontal gradients are neglected in the sys-
tem of equations used to calculate the stresses and fluxes,
allowing them to be determined analytically. Horizontal gra-
dients are also neglected in the prognostic equation for TKE.
Thus, TKE production due to horizontal shear, which has
been found by previous studies to be important in complex
terrain (Zhong and Chow, 2012; Muñoz-Esparza et al., 2016;
Goger et al., 2018), is not considered here. Potential rami-
fications of using the PBL approximation in this study are
discussed further below.

For consistency with the HRRR forcing, the present model
runs use the HRRR atmospheric physics suite following
Benjamin et al. (2016). This includes the Rapid Update
Cycle (RUC) land–surface model (sf_surface_physics= 3),
the Thompson aerosol-aware microphysics scheme
(mp_physics= 28; Thompson and Eidhammer, 2014),
and the RRTMG radiation schemes (ra_sw_physics= 4
and ra_lw_physics= 4; Iacono et al., 2008). However, for
compatibility with the 3D PBL scheme, the revised MM5
surface layer scheme (sf_sfclay_physics= 1) is used instead
of the MYNN scheme (sf_sfclay_physics= 5). Additionally,
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following Arthur et al. (2022), WRF’s option to add positive
definite sixth-order horizontal diffusion (diff_6th_opt= 2)
is used in both configurations, with a factor of 0.25. The
added diffusion is purely numerical and is used to damp
grid-scale noise. However, to prevent over-diffusion in
regions of sloping terrain, where numerical diffusion is
already expected to be relatively large, the added sixth-order
diffusion is linearly damped between slopes of 0 and 0.05
(2.86°) and is turned off for larger slopes (using the name list
options diff_6th_slopeopt= 1 and diff_6th_thresh= 0.05).

The vertical grid spacing is modified from HRRR in the
present study to increase the vertical grid resolution within
the turbine layer. HRRR uses 50 vertical levels, with a verti-
cal grid spacing of1z≈ 16 m at the surface such that the first
half level (the lowest level at which temperature and veloci-
ties are calculated) is located at roughly 8 m a.g.l. The verti-
cal grid spacing is stretched above the surface, as detailed in
Benjamin et al. (2016), with a domain top of roughly 25 km.
Here, 1z is held constant at 16 m between the surface and
roughly 300 m a.g.l. (19 levels) and is stretched by a factor of
1.1 above, with a total of 69 levels. Although Tomaszewski
and Lundquist (2020) and Rybchuk et al. (2022) recommend
setting 1z to 10 m or less with the WFP, this was found to
be computationally unstable for the 3D PBL run; ongoing
improvements to the 3D PBL scheme may alleviate this is-
sue in the future. Note also that the present model runs use
WRF’s standard terrain-following vertical coordinate system
(hybrid_opt= 0), as in Arthur et al. (2022). Although WRF’s
hybrid vertical coordinate (hybrid_opt= 1) is used in HRRR
version 3 (used here for model forcing; see Dowell et al.,
2022), the hybrid coordinate system primarily affects predic-
tions above the boundary layer and is therefore not consid-
ered here.

2.2.2 Wind turbine representation

The Fitch et al. (2012) WFP, including the bug fix of Archer
et al. (2020), is used in both model runs to predict the power
output by APWRA turbines during the study period. Tur-
bines are represented in the WFP by their location, hub
height, rotor diameter, and power and thrust curves. The nec-
essary WRF-WFP input files used in this study are archived
under Arthur (2024). For consistency with Rybchuk et al.
(2022), the wind farm TKE factor (WRF namelist variable
windfarm_tke_factor), which controls the amount of TKE
added to the flow, is set to 1. This differs from the value of
0.25 used by Archer et al. (2020). As of the time of this writ-
ing, there is no clear consensus in the literature on the optimal
choice for this parameter (Larsén and Fischereit, 2021; Ali
et al., 2023). Note that although wind farm wake dynamics
are predicted by the WFP, they are not a focus of the present
study. Moreover, wakes are not expected to reach the Hil-
FlowS observation sites, given the complex terrain and pre-
dominant wind direction of 240°.

At the time of the study period, the APWRA consisted of
171 total turbines spread across 5 wind plants, summarized
in Table 1.

Turbine locations (as shown in Figs. 1 and 7) and speci-
fications are extracted from the United States Wind Turbine
Database (Hoen et al., 2018). However, the present analysis
excludes very small (65 kW), old turbines that are still listed
in Hoen et al. (2018).

Because the power and thrust curves for the actual AP-
WRA turbines are generally proprietary, comparable pub-
licly available curves are used here (see Table 1). The Gen-
eral Electric (GE) 2.3, Siemens 2.3, and GE 1.7 MW AP-
WRA turbines are matched as closely as possible to the
generic dataset of NREL (2022), which is based on the Open-
FAST model (https://github.com/OpenFAST, last access:
23 January 2023) and includes both power and thrust curves.
However, since lower-power turbines are not included in the
NREL (2022) dataset, additional curves are gathered from
the dataset of wind-turbine-models.com (2024b, a). Within
this dataset, a power curve for the Vestas 0.66 MW turbine
is available (wind-turbine-models.com, 2024b); however, the
thrust curve must be interpolated from the generic NREL-
1.7 model. For the Mitsubishi 1.0 MW turbine, a comparable
power curve from a Bonus 1.0 MW turbine (wind-turbine-
models.com, 2024a) is used, again with a thrust curve inter-
polated from the generic NREL-1.7 model.

The modeled APWRA turbines have the same total rated
capacity of 264.24 MW as the installed turbines at the time
of the study period (Table 1). Furthermore, Siedersleben
et al. (2020) demonstrated that the exact details of the power
and thrust curves are not critical to WFP performance. Ulti-
mately, modeled capacity factors rather than raw power pro-
duction estimates are presented below. Thus, the effect of
differences between the actual and modeled turbine speci-
fications is expected to be small.

3 Model evaluation

3.1 Vertical variability

3.1.1 Wind speed, wind direction, and temperature

Model performance is first evaluated through comparison to
lidar observations from the HilFlowS experiment (Wharton
and Foster, 2022). The instantaneous model error EVAR is
defined as

EVAR = VARWRF−VAROBS, (1)

where VAR is the meteorological variable: horizontal wind
speed V , wind direction φ, or vertical velocity w. The er-
ror is calculated at 10 min intervals, corresponding to the
frequency of the processed lidar data as well as the model
output. This calculation requires spatial interpolation of the
model data to the lidar measurement locations. Model data
are first interpolated horizontally to the latitude and longitude
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Table 1. A summary of wind plants in the APWRA during the summer 2019 study period. Actual turbine specifications are based on Hoen
et al. (2018), while modeled specifications are based on the best-available public data, as described in the text. Turbines are listed in terms of
the manufacturer (Mfr), the rated power PR (see colors in Fig. 1), the hub height H , and the rotor diameter D. The manufacturer is listed as
“NREL” when the generic dataset of NREL (2022) is used. Note that the 62 MW Summit Wind plant shown in Fig. 2 was installed after the
study period and is therefore not included here. The Patterson Pass and Patterson Wind plants (included in Hoen et al., 2018), which consist
of very small (65 kW), old turbines, are also not considered in the analysis.

Actual Modeled

Wind plant No. of turbines Mfr-PR [MW] H , D [m] Mfr-PR [MW] H , D [m]

Golden Hills North 20 GE-2.3 80, 116 NREL-2.3 80, 116
Vasco 34 Siemens-2.3 80, 101 NREL-2.3 80, 107
Golden Hills 48 GE-1.7 80, 100 NREL-1.7 80, 103
Buena Vista 38 Mitsubishi-1.0 55, 61 Bonus-1.0 55, 54
Diablo Winds 31 Vestas-0.66 60, 47 Vestas-0.66 60, 47

Total 171 264.26 MW 264.26 MW

of the lidar using nearest-neighbor interpolation and are then
linearly interpolated to the lidar vertical levels. Although sev-
eral figures herein present observed wind speed and direction
from the lidar’s onboard meteorological station at 1 m a.g.l.,
model errors are not evaluated at this height because extrap-
olation below the first half level (at roughly 8 m a.g.l.) would
be required. Additionally, note that Eφ is adjusted to account
for the cyclical nature of the wind direction: if the raw Eφ
value is less than −180° (greater than 180°), it is adjusted by
+360° (−360°).

Due to the day-to-day consistency of the observed speedup
events, diurnal composite averages are used to summarize
model performance over the nearly 3-month-long study pe-
riod (see Fig. 3).

The diurnal composite bias is therefore defined as

BVAR = 〈VARWRF−VAROBS〉C = 〈EVAR〉C, (2)

where the angle brackets denote a time average, in this case
a diurnal composite denoted by the subscript C. A positive
bias indicates an overestimate by the model, while a nega-
tive bias indicates an underestimate. Composite averages are
performed between 9 July 2019, 00:00 PST and 23 Septem-
ber 2019, 00:00 PST such that only complete days in local
time (PST=UTC−8) are included in the analysis. Model re-
sults in Fig. 3 are shown for the 3D PBL configuration, al-
though those for the MYNN configuration are visually sim-
ilar; more detailed comparisons between the two are dis-
cussed below. Note that while the figures in this section are
shown at the WOP site for brevity, the discussion generally
applies to both sites unless otherwise noted. A selection of
time–height-averaged error metrics are shown for both sites
in Table 2.

As presented in Wharton and Foster (2022), observed
winds at the study site begin to accelerate around midday,
reaching a peak between 15:00 and 21:00 PST. Winds then
decelerate over the course of the night, reaching a minimum
between 06:00 and 09:00 PST (Fig. 3a). The speedup flows,

which are channeled through the Altamont Pass, are predom-
inantly southwesterly (230–250°), while daytime flows are
more variable (Fig. 3c). The speedup flows at the study site
are associated with subsidence, a negative vertical velocity
(blue colors in Fig. 3e), and increased horizontal wind speeds
near the surface (yellow colors in Fig. 3a). This suggests that
vertical convergence leads to horizontal divergence and an
acceleration of the flow near the surface.

While the model captures the timing and direction of the
speedup flows well (Fig. 3b, d), wind speeds are generally
overestimated above 30 m a.g.l., especially between 00:00
and 03:00 PST (red colors in Fig. 3b). Conversely, wind
speeds are underestimated near the surface, indicating that
the model fails to capture near-surface accelerations. This
highlights an inherent limitation of the vertical grid setup,
which, although finer than HRRR, has only one to two model
levels (1z≈ 16 m) within the observed jet-like flow layer be-
low roughly 30 m a.g.l. While the model captures some neg-
ative vertical velocities at the study site during the speedup
events (see contours in Fig. 3f), its vertical velocities are too
weak and thus do not translate to near-surface accelerations
of the magnitude seen in the observations.

Several time–height average error metrics (following e.g.,
Chang and Hanna, 2004; Smith et al., 2018; Wiersema et al.,
2020; Arthur et al., 2022) are used to compare the perfor-
mance of the two model configurations over the course of
the study period. The fractional bias is defined as

FBVAR =

〈
EVAR

〉
0.5

(〈
|VARWRF|

〉
+
〈
|VAROBS|

〉) , (3)

and the normalized mean absolute error is defined as

NMAEVAR =

〈
|EVAR|

〉
0.5

(〈
|VARWRF|

〉
+
〈
|VAROBS|

〉) , (4)

where angle brackets denote a time average over 9 July 2019,
00:00 PST–3 September 2019, 00:00 PST, and the overbar
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Figure 3. Diurnal composite-average WOP lidar observations and 3D PBL model bias: positive bias indicates an overestimate by the model,
while negative bias indicates an underestimate. Shown are wind speed V (a, b), wind direction φ (c, d), and vertical velocity w (e, f). Note
that panels (a) and (c) include data from the lidar’s onboard meteorological station at 1 m a.g.l., but model errors are not evaluated at this
height. To contextualize the vertical velocity bias in (f), contour lines are shown for the modeled vertical velocity 〈wWRF〉C in 0.1 m s−1

increments. Dotted lines in panels (a) and (b) indicate the rotor-swept area of the most prevalent generic turbine model in the simulations,
with hub height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).

denotes a vertical average over available lidar measurement
heights. Note that the absolute value operation in the denom-
inator is only relevant for the vertical velocity, which has
both positive and negative values; the horizontal wind speed
is positive by definition.

For the wind direction, the scaled average angle is defined
as

SAA=
1

N
〈
VWRF

〉 N∑
i=1

VWRF,i |Eφ,i |, (5)

where N is the total number of observations (in both time
and height) for the given lidar. SAA weighs wind direction
errors based on the modeled wind speed at the given obser-
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vation location and time, assuming that directional errors at
low wind speeds are less impactful.

Error metrics are summarized in Table 2 for both model
configurations and lidar sites.

The metrics shown in the table are time averaged over
the full study period and vertically averaged over two sepa-
rate layers: the rotor layer (lidar measurement heights of 30,
38, 50, 60, 70, 80, 90, and 120 m a.g.l.) and a near-surface
layer below the rotor layer (lidar measurement heights of
10 and 20 m a.g.l.). The rotor layer is based on the most
prevalent generic turbine model in the simulations, with hub-
height H = 80 m and rotor diameterD = 103 m (NREL-1.7;
see Table 1). Overall, error metrics are nearly equal for the
MYNN and 3D PBL configurations, with a slight overesti-
mate of the wind speed in the rotor layer and a larger under-
estimate near the surface.

Model performance is examined in more detail using
composite-average wind speed profiles, presented in Fig. 4.

During the onset of the speedup events, the 3D PBL con-
figuration predicts faster wind speeds than the MYNN con-
figuration throughout the lidar range, showing reduced neg-
ative bias compared to the observations, especially below
hub height (assumed to be 80 m; Fig. 4, 12:00–15:00 PST).
This may be due to slightly improved predictions of verti-
cal mixing of higher momentum from aloft; during this time,
prior to jet development, the winds follow a standard quasi-
logarithmic profile. The 3D PBL scheme has been shown
previously, in idealized tests, to improve model performance
during daytime convective conditions (Juliano et al., 2022).

During the peak of the speedup flow, however, the 3D
PBL configuration begins to overestimate wind speeds below
hub height, showing a slightly more pronounced jet near the
surface relative to the MYNN configuration (Fig. 4, 18:00–
21:00 PST). This pronounced jet persists into the night for
both model configurations until roughly 00:00 PST. Then, as
the flow decelerates in the early morning, both model con-
figurations tend to overestimate wind speeds throughout the
rotor layer (Fig. 4, 03:00–06:00 PST). Finally, when the flow
reaches a minimum around 09:00 PST, both models underes-
timate wind speeds throughout the rotor layer, with a slightly
larger underestimate in the 3D PBL configuration.

To expand upon the composite-average wind speed anal-
ysis in Fig. 4, results from a sample day during the study
period, 21 July 2019, are presented in Appendix A. This day
was chosen to highlight differences between the 3D PBL and
MYNN configurations, while also showing consistency with
the composite-average results. The same day was highlighted
in the original HilFlowS study (Wharton et al., 2015, see
Fig. 5 therein). The reader is referred to Appendix A for ad-
ditional discussion.

Taken together, wind speed error metrics (Table 2),
composite-average profiles (Figs. 3 and 4), and results from
the sample day (Fig. A1) suggest that for both model configu-
rations, the predicted amount of vertical mixing is inadequate
to transport higher momentum downward from aloft. This re-

sults in a persistent negative wind speed bias below roughly
30 m a.g.l. throughout the day. During speedup events, too
much momentum remains within the rotor layer. Although
both model configurations produce a pronounced jet below
hub height and reduced wind speeds above (Fig. 4, 21:00–
06:00 PST), wind speeds are generally overestimated in the
rotor layer and underestimated near the surface.

Further development and testing of the 3D PBL scheme
could lead to more accurate wind speed predictions, espe-
cially if the near-surface vertical resolution is increased. No-
tably, the 3D PBL scheme allows more runtime flexibility
in turbulence treatment (via, e.g., the closure constants) rela-
tive to MYNN and other 1D PBL schemes, which could fa-
cilitate improved predictions of vertical mixing. However, as
mentioned previously, the 1 km horizontal grid spacing of the
present simulations inherently limits the ability of the model
to capture the observed flows. In particular, the hilly topogra-
phy of the HilFlowS site, including the individual ridgelines
on which the lidars were deployed, is not fully captured (see
Fig. 1).

To further contextualize model wind speed biases, it is im-
portant to recall (see Sect. 2.1) that conically scanning lidars
such as the ZephIR300 deployed during HilFlowS are known
to experience errors in complex terrain. These errors result
from violating the assumption of homogeneity that the li-
dars use to deduce the horizontal and vertical wind speeds. In
particular, Bingöl et al. (2009) found horizontal wind speed
errors as large as 10 %, while Wharton et al. (2015) found
comparable or smaller values for a similar site in the AP-
WRA. As a conservative estimate, the findings of Bingöl
et al. (2009) imply mean horizontal wind speed errors as
large as roughly 1.5 m s−1 in the HilFlowS lidar observations
(see gray bounding lines in Fig. 4). In general, the expected
maximum lidar error is smaller than the model bias, espe-
cially near the surface. Thus, the potential lidar error is not
expected to affect the present conclusions related to model
evaluation.

To complement wind profile comparisons at the lidar sites,
temperature profiles at the meteorological tower site are
shown in Fig. 5.

Note that the meteorological tower is on a similar hill to
that found at WOP and EOP and is separated by a line-of-
sight distance of 950 m from EOP. The 3D PBL configura-
tion shows slightly better agreement with the observed tem-
perature profile for most hours of the day, especially during
daytime conditions when the vertical temperature gradient
is negative (09:00–15:00 PST). This time corresponds to re-
duced wind speed bias at both lidar sites. Small improve-
ments in the temperature prediction are also seen during the
evening transition, as the vertical temperature gradient be-
comes positive (18:00–21:00 PST). At this time, the 3D PBL
scheme produces a more pronounced near-surface jet but
shows larger wind speed bias relative to MYNN, as discussed
above.
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Table 2. Error metrics, as defined in Eqs. (3), (4), and (5), for each model configuration at each lidar site. Metrics are time averaged over the
full study period and vertically averaged over two separate layers: the rotor layer (lidar measurement heights of 30, 38, 50, 60, 70, 80, 90,
and 120 m a.g.l.) and a near-surface layer below the rotor layer (lidar measurement heights of 10 and 20 m a.g.l.). The rotor layer is based
on the most prevalent generic turbine model in the simulations, with hub height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see
Table 1).

Site WOP WOP WOP WOP EOP EOP EOP EOP
vertical layer near-surface near-surface rotor rotor near-surface near-surface rotor rotor
model 3D PBL MYNN 3D PBL MYNN 3D PBL MYNN 3D PBL MYNN

FBV −0.29 −0.28 0.069 0.059 −0.34 −0.33 0.034 0.024
NMAEV 0.35 0.34 0.25 0.25 0.40 0.39 0.26 0.25
SAA [°] 12 12 12 12 13 13 12 12
FBw −0.98 −0.96 −0.32 −0.30 −0.15 −0.14 0.24 0.25
NMAEw 1.2 1.2 0.94 0.94 0.69 0.68 0.73 0.73

3.1.2 Turbulence kinetic energy

Both the 3D PBL and MYNN schemes parameterize SGS
turbulence shear stresses and turbulent fluxes using a prog-
nostic equation for the SGS TKE. Thus, TKE predictions can
provide insights into model performance. TKE estimates are
also available from the HilFlowS lidars and are calculated as

TKE=
1
2

(
〈u′2〉+ 〈v′2〉+ 〈w′2〉

)
, (6)

where u, v, and w denote velocities in the zonal, merid-
ional, and vertical directions, respectively, and brackets de-
note 10 min averages. Perturbation quantities, denoted by the
prime symbol, are calculated as the difference between the
high-frequency (15 s) time series and a detrended time series
based on 2 min averages.

Note that both the observed and modeled TKE values
have inherent limitations. The lidar TKE estimates are spa-
tially averaged over the lidar’s conical scanning volume and
are time averaged in 10 min windows. Furthermore, the es-
timated TKE is limited by the 15 s sampling frequency (see
additional discussion in Sathe et al., 2011). Lidar TKE es-
timates are also influenced by complex terrain, as discussed
above for wind speeds. The modeled TKE is fully parameter-
ized (i.e., it is assumed that there is no resolved TKE) in each
model grid cell and is output as an instantaneous value every
10 min. Ultimately, these limitations preclude direct compar-
ison of observed and modeled TKE values (i.e., bias calcula-
tions). In what follows, the time–height structure of the TKE
is compared qualitatively between the observations and the
model, while only the modeled TKE values are compared
quantitatively.

Observed and modeled TKE profiles are shown in Fig. 6
for the WOP site.

At midday, observed TKE is elevated throughout the li-
dar’s vertical range due to surface heating and associated
atmospheric instability. The speedup flows are also acceler-
ating during this time, leading to peak TKE values below
50 m a.g.l. due to shear associated with the jet-like veloc-
ity profile (Fig. 6a, 12:00–18:00 PST). Both model config-

urations capture elevated TKE during this time (Fig. 6b, c).
However, the MYNN configuration generally predicts larger
TKE values relative to the 3D PBL configuration. This is
likely because the 3D PBL scheme with the PBL approx-
imation introduces additional horizontal mixing relative to
MYNN without added TKE production due to horizontal
shear. Reduced TKE in the 3D PBL configuration is asso-
ciated with improved velocity profile predictions at midday
(see Fig. 4, 12:00–15:00 PST), although the near-surface jet-
like flow is not captured accurately by the model. During and
after the peak of the speedup flow (18:00–09:00 PST), the
observations and both model configurations show increased
TKE near the surface, with reduced values aloft.

In their cold-air-pool case study, Arthur et al. (2022) also
found that the 3D PBL scheme with the PBL approxima-
tion predicts lower TKE values compared to MYNN and that
times of reduced TKE values in the 3D PBL configuration
were associated with improved velocity profile predictions.
It is important to note that modeled TKE predictions depend
on parameters such as the turbulence length scale and clo-
sure constants, which differ in the between the MYNN and
3D PBL schemes as configured here (and in Rybchuk et al.,
2022; Arthur et al., 2022; Wiersema et al., 2023). These pa-
rameters were not varied in the present study, although the
reader is referred to Arthur et al. (2022) for a discussion of
model sensitivity.

3.2 Horizontal variability

MesoWest stations are used to examine horizontal variability
in model performance around the APWRA turbines. MesoW-
est wind data are generally available at 10 m a.g.l. (MesoW-
est, 2023). Here, wind speed data are used from select sta-
tions shown in Figs. 1 and 7.

For clarity in the analysis, only stations along the primary
wind direction (230–250°; see Fig. 3c) are considered. Fur-
thermore, overlapping stations and those reporting predomi-
nantly 0 m s−1 velocity readings are excluded.
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Figure 4. Diurnal composite-average wind speed profiles, shown for WOP lidar observations and both model configurations. Potential mean
error bounds of ±10 % are also shown for the lidar observations following Bingöl et al. (2009). Profiles are averaged over the hour indicated
at the top of each panel, and model data have been interpolated to the vertical levels of the lidar, as in Fig. 3. Note that data are included
from the lidar’s onboard meteorological station at 1 m a.g.l., but model errors are not evaluated at this height. The shaded regions show ±1
standard deviation over the given hour of the diurnal composite. Dotted lines indicate the rotor-swept area of the most prevalent generic
turbine model in the simulations, with hub height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).

The fractional bias, defined in Eq. (3), is used to evalu-
ate the spatial variability in model wind speed errors. FBV
is similar to the NMAEV metric defined in Eq. (4), but it in-
cludes the sign of the error. While this value tends to be small
over the full profile due to averaging over both positive and
negative bias values at different measurement heights (see
Table 2 and Fig. 4), at a single height it more reliably quanti-
fies model over- vs. underestimates.

Spatial evaluation of model performance shows that the
3D PBL scheme tends to reduce model overestimates of the
10 m wind speed relative to MYNN. As summarized in the
inset of Fig. 7, the 3D PBL configuration has a lower 10 m
FBV value at all but 1 of the 20 stations with positive bias.

At the eight locations with negative bias, the value for the
3D PBL configuration tends to be more negative, as is true at
both lidar sites and the meteorological tower. This suggests
that model underestimates are related to near-surface jet-like
flows (as shown in Fig. 4). However, additional vertical pro-
file data would be necessary for confirmation.

4 Wind energy predictions

4.1 Hub-height and rotor-equivalent wind speeds

To better establish the utility of the 3D PBL scheme for wind
energy applications, model evaluation is extended to wind-
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Figure 5. Diurnal composite-average temperature profiles (T0 = 300 K), shown for the HilFlowS 52 m meteorological tower and both model
configurations. Profiles are averaged over the hour indicated at the top of each panel, and model data have been interpolated to the vertical
levels of the tower observations. The shaded regions show ±1 standard deviation over the given hour of the diurnal composite. Note that the
vertical-axis range is limited to the tower height.

energy-specific quantities, including hub-height and rotor-
equivalent wind speeds. The rotor-equivalent wind speed
VEQ is often used in wind energy resource and turbine perfor-
mance assessment (Wagner et al., 2014) and is recommended
by the International Electrotechnical Commission (IEC) for
determining power curves and annual energy production (see
Van Sark et al., 2019). VEQ more accurately captures the ki-
netic energy flux through the rotor-swept area, compared to
a single hub-height wind speed measurement VHH. However,
substantial differences between VEQ and VHH are generally
only seen at times of high shear (e.g., Van Sark et al., 2019;
Redfern et al., 2019).

Following Wagner et al. (2014), the rotor-equivalent wind
speed is defined as

VEQ =

(
Nh∑
i=1

V 3
i

Ai

A

)1/3

, (7)

where Nh is the number of observation heights, A is the total
rotor-swept area, and

Ai =

zi+1∫
zi

2
√
R2− (z−H )2dz (8)

is the area of the rotor disk segment corresponding to the ith
observation height, with rotor radius R and hub height H .
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Figure 6. Diurnal composite-average TKE at the WOP lidar site, shown for the observations (a), the 3D PBL model configuration (b), and
the MYNN model configuration (c). Dotted lines indicate the rotor-swept area of the most prevalent generic turbine model in the simulations,
with hub height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).

The integral in Eq. (8) is evaluated analytically, with zi and
zi+1 representing the lower and upper bounds of the ith rotor
disk segment, which are by definition located halfway be-
tween available observation points. Here, VEQ is calculated
using both HilFlowS lidar data and model predictions. The
modeled wind speed profiles are interpolated to the lidar ob-
servation locations as in the bias calculations in Sect. 3.

As in Figs. 3 and 4, a diurnal composite average captures
the trend of the hub-height and rotor-equivalent wind speeds
during the study period (see Fig. 8 for WOP and Fig. 9 for
EOP).

The observed hub-height wind speed gradually increases
over the course of the day, reaching a peak around 18:00 PST.
It then decreases gradually, reaching a minimum around
09:00 PST. The observed rotor-equivalent wind speed fol-
lows a similar trend. Note that here, VEQ is calculated with a
hub heightH = 80 m and a rotor diameterD = 103 m, which
correspond to the most prevalent generic turbine model in the
simulations (NREL-1.7; see Table 1) and is also representa-
tive of most APWRA turbines (see discussion in Sect. 2.2.2
and Table 1).

The hub-height and rotor-equivalent wind speeds are gen-
erally underestimated at both sites during the ramp-up por-
tion of the speedup event (09:00–15:00 UTC). The 3D PBL

configuration shows improved predictions during this time,
reducing the negative bias by as much as 50 %. Then, dur-
ing the peak and decreasing portion of the speedup event,
the modeled hub-height and rotor-equivalent wind speeds
are generally overestimated (15:00–09:00 UTC) by as much
as a factor of roughly 2. While the 3D PBL configuration
shows larger overpredictions than the MYNN configuration
at the peak of the speedup event, its performance is similar
to or slightly better than MYNN for the rest of the night.
Hub-height and rotor-equivalent wind speeds for the sample
day shown in Appendix A reinforce these composite-average
trends.

The difference between the observed hub-height and rotor-
equivalent wind speeds is larger at EOP than at WOP, high-
lighting differences in vertical shear between the sites despite
similar wind climatology overall. As shown in Wharton and
Foster (2022), the EOP site has lower wind speeds in the bot-
tom half of the rotor layer for an 80 m turbine, causing VEQ
to be lower than VHH (see Fig. 7b therein). This variability is
not captured in the model, which predicts similar hub-height
and rotor-equivalent wind speed values at both sites. Thus,
at the EOP site, model bias values are larger for VEQ by as
much as 2 m s−1 compared to VHH. At the WOP site, bias val-
ues for both quantities are similar. This analysis demonstrates
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Figure 7. Fractional wind speed bias FBV at 10 m a.g.l. for the MYNN (purple) and 3D PBL (green) configurations at meteorological
observation stations in the APWRA. Station markers are colored by the sign of the bias in the MYNN configuration: blue for negative and
red for positive. Gray contour lines are shown at 100 m intervals between 100 and 1000 m a.g.l., and gray dots represent cell centers on the
1x = 1 km model grid. The portion of the domain shown here is highlighted by the dotted-line box in Fig. 1b. Inset is a summary of 10 m
FBV at all stations, sorted in descending order based on the value for the MYNN configuration.

the potential effect of using VEQ when evaluating model per-
formance for wind energy applications in regions with highly
sheared wind speed profiles.

4.2 Monthly capacity factors

Although the flows at the HilFlowS lidar locations are ex-
pected to be representative of those experienced by the AP-
WRA turbines, more localized effects may contribute to
turbine performance (see, e.g., Wharton et al., 2015; Bu-
laevskaya et al., 2015). For this reason, the Fitch et al. (2012)
WFP is used in both model runs to represent the interac-
tion between the APWRA turbines and the diurnal speedup
events. Because Rybchuk et al. (2022) considered only an
ocean environment with no terrain in their testing of the 3D
PBL-WFP implementation, the present case study presents
an opportunity to further evaluate the implementation in a
realistic complex-terrain scenario.

Diurnal composite-average capacity factors for the WFP-
modeled APWRA turbines are shown by month in Fig. 10
to illustrate changes in production over the roughly 3-month-
long study period.

The overall trend is similar to that shown in Fig. 2, with the
highest capacity factors in July, a slight decrease in August,
and a more substantial decrease in September. However, the
same diurnal trend remains, indicating the prominence of the
speedup flows throughout the mid-to-late summer.

The capacity factors in Fig. 10 follow the trend of the
hub-height and rotor-equivalent wind speeds at both lidar
sites (shown in Figs. 8 and 9). Notably, however, there is a
roughly 3 h delay in the timing of the peak and minimum
capacity factors relative to the modeled wind speeds at the
HilFlowS lidar sites. This suggests differences in the timing
of the speedup flows between the HilFlowS site and the AP-
WRA, despite their relative proximity, and highlights the in-
fluence of terrain on power production.

To further evaluate the performance of the 3D PBL-WFP
configuration during the HilFlowS study period, modeled
monthly capacity factors are compared to those calculated
using publicly available data (Fig. 11).

The EIA collects monthly plant-level-generation data
within the United States (EIA, 2023a, b, as shown in Fig. 2).
These data are depicted in Fig. 11 (black bars) as an aver-
age over the five wind plants shown in Table 1, weighted by
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Figure 8. Diurnal composite-average hub-height wind speed VHH and rotor-equivalent wind speed VEQ. (a) Results for WOP lidar obser-
vations, including potential mean error bounds of ± 10 % following Bingöl et al. (2009), and both model configurations. (b) Model bias,
including a summary of time-averaged absolute error values in m s−1. In (a), the shaded regions show±1 standard deviation over the diurnal
composite for VHH. VEQ is calculated with hub heightH = 80 m and rotor diameterD = 103 m, corresponding to the most prevalent generic
turbine model in the simulations (NREL-1.7; see Table 1).

rated plant capacity. Because plant-level information is not
available in WRF output, modeled monthly capacity factors
in Fig. 11 (colored bars) are shown as an average over the
APWRA as a whole.

Overall, the modeled monthly capacity factors follow the
decreasing trend evident in the EIA data. However, the model
generally overestimates the reported values by roughly 7 %–
11 %. Several factors likely contribute to this overestimate.
Most notably for this study, overestimated wind speeds in
the model, especially during the night (see Figs. 3, 4, 8, and
9), likely lead to overestimated power production. Addition-
ally, the model does not account for turbine downtime, for
example, due to curtailment or maintenance, which reduces
the reported monthly production; this likely also contributes
to model overestimates.

Keeping these caveats in mind, the 3D PBL configura-
tion predicts slightly lower monthly capacity factors rela-
tive to the MYNN configuration (roughly 1 % or less; see
Fig. 11). However, differences are more pronounced in the
monthly diurnal composite-average comparisons, especially
at night (see Fig. 10, 18:00–06:00 PST) when the capacity
factors in the 3D PBL configuration are up to roughly 6 %
smaller than those in the MYNN configuration. These re-

sults, along with those in Figs. 4, 8, and 9, suggest that the
3D PBL scheme’s wind power predictions may be slightly
closer to reality. However, comparisons to higher-frequency
(e.g., hourly) turbine- or plant-level data are necessary for a
more robust evaluation.

Although turbine- and plant-level data are not output by
the WFP, grid-cell-level data reveal some spatial variability
in the modeled monthly capacity factor. Figure 12 shows the
capacity factor and total capacity in each model grid cell that
contains turbines.

Results are based on the 3D PBL configuration, although
those for the MYNN configuration are qualitatively simi-
lar. The capacity factor tends to be higher in the central-to-
southeastern portion of the APWRA, where the southwest-
erly speedup flows are less obstructed by upstream terrain.
This trend is consistent across the 3 months of the study pe-
riod, although the overall capacity factors decrease notice-
ably in September. It should be noted that the Summit Wind
plant, which became operational in 2021 after the study pe-
riod, is located in the central APWRA to the southwest of
the turbines considered here (see Hoen et al., 2018). This lo-
cation is generally upstream of other plants during the sum-
mertime and likely takes advantage of the spatial trend in the
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Figure 9. As in Fig. 8 but for the EOP site.

Figure 10. Diurnal composite-average capacity factor by month
during the study period for modeled APWRA turbines.

capacity factor seen in Fig. 12. However, spatial variability
in the APWRA capacity factor is expected to change season-
ally due to shifts in the synoptic forcing and the predominant
wind direction.

5 Conclusions

This study examined mesoscale model predictions of bound-
ary layer winds and turbulence in the Altamont Pass Wind
Resource Area of California, where the diurnal regional
sea breeze and associated terrain-driven speedup flows drive

Figure 11. Comparison of modeled vs. EIA-reported (EIA,
2023a, b) monthly capacity factors in the APWRA during the study
period.
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wind energy production during the summer months. The re-
curring nature of these terrain-driven wind accelerations, as
well as their importance to the wind energy industry, makes
the APWRA a useful test bed for numerical weather predic-
tion. In particular, this study focused on the treatment of tur-
bulence in mesoscale models, which require a PBL scheme
to parameterize subgrid-scale turbulent mixing. The WRF-
based 3D PBL scheme of Juliano et al. (2022), which treats
both vertical and horizontal turbulent mixing (here, using the
PBL approximation), was evaluated in comparison to a tra-
ditional 1D PBL scheme, MYNN, which treats only vertical
turbulent mixing.

Both PBL treatments were tested during the nearly 3-
month-long HilFlowS experiment (Wharton and Foster,
2022), which took place near the APWRA in the summer of
2019. As noted by Banta et al. (2020) in their study of recur-
ring marine-air intrusions, capturing repeated flow dynam-
ics and thus repeated model errors allows for robust model
evaluation. Here, as in Banta et al. (2020), composite aver-
aging was used to analyze model errors over the course of
the study period. Model predictions were evaluated against
data from two profiling lidars and a meteorological tower de-
ployed during HilFlowS, as well as surface meteorological
stations within the MesoWest network. Thus, both vertical
and horizontal variability in model performance was exam-
ined.

In terms of overall model skill, the 3D PBL and MYNN
configurations performed similarly over the duration of the
study period, with both capturing the general timing and di-
rection of the speedup flows but overestimating their magni-
tude within a typical wind turbine rotor layer. Additionally,
neither model configuration captured the persistent jet-like
flow observed by the lidars, and thus both models underes-
timated near-surface wind speeds. Similar performance be-
tween the two configurations suggests that both are limited
by the chosen mesoscale resolution, which does not fully
represent the effects of complex terrain on local wind pro-
files. It follows that in the present case study, strong synoptic
conditions may drive model performance more than the PBL
scheme does.

Despite overall similarities in performance, several minor
differences were found between PBL treatments. In terms
of vertical variability, the 3D PBL scheme demonstrated
slightly improved predictions of wind speed profiles dur-
ing the afternoon acceleration phase of the diurnal speedup
flows, and this was associated with reduced TKE relative
to MYNN. Additionally, the 3D PBL scheme showed ev-
idence of a more pronounced near-surface jet and reduced
wind speeds aloft. Although this evidence is muted in the di-
urnal composite average, it is more pronounced on the given
sample day (see Appendix A). In terms of horizontal variabil-
ity, the 3D PBL scheme showed reduced positive wind speed
bias at most MesoWest surface stations within the APWRA.
This suggests that it more accurately captures horizontal vari-
ability over complex terrain.

In future studies, the use of increased horizontal resolu-
tion could help to further distinguish 3D PBL performance
relative to MYNN. As model grid spacing progresses fur-
ther into the gray zone, larger horizontal gradients will be
resolved, leading to differences in flow predictions. The 3D
PBL scheme has been tested successfully in the past with
horizontal grid spacing between 250 and 750 m (Juliano
et al., 2022; Arthur et al., 2022; Wiersema et al., 2023). Note
that careful model setup, including use of the PBL approx-
imation, is still generally required to ensure model stabil-
ity. With further development of the 3D PBL scheme to im-
prove stability, additional gains relative to MYNN or other
1D schemes may be found. Ultimately, however, accurate
simulation of the observed jet-like flow at the HilFlowS site
will likely require increased vertical resolution and the use of
a LES closure scheme.

To further evaluate the 3D PBL scheme for wind energy
applications, the mesoscale wind farm parameterization of
Fitch et al. (2012) was employed. The WFP was recently
coupled to the 3D PBL scheme by Rybchuk et al. (2022) and
was tested in an idealized ocean environment. The present
study provided an opportunity to test the 3D PBL-WFP im-
plementation compared to the standard WRF implementation
with MYNN in a realistic complex-terrain scenario. Overall,
the 3D PBL-WFP performs similarly to the MYNN-WFP,
providing additional confidence in the implementation.

Modeled capacity factors capture the general diurnal trend
in the observed speedup flows but are roughly 7 %–11 %
larger than EIA-reported values in the APWRA. This is likely
due to overestimated wind speeds during the peak and de-
celerating phase of the speedup events, as well as other fac-
tors including turbine operation and differences between the
modeled and actual turbines. However, because wind power
is proportional to the cube of wind speed over much of a tur-
bine’s operational range, small relative improvements in the
modeled wind speed translate to more noticeable improve-
ments in modeled power production. Consistently over the 3-
month study period, the 3D PBL configuration reduced over-
estimates of monthly capacity factors relative to the MYNN
configuration.

In closing, this study has helped to establish the utility of
the 3D PBL scheme for wind energy applications in complex
terrain. Its overall similar performance to MYNN, a much
more established PBL scheme, is encouraging, as is evidence
of improved performance under certain conditions and across
the spatially heterogeneous APWRA. However, the 3D PBL
scheme requires additional development and testing to con-
firm its robustness. As mentioned above, the 3D PBL scheme
allows more runtime flexibility in turbulence treatment rela-
tive to MYNN and other 1D PBL schemes, which could facil-
itate rapid performance improvements. Ultimately, increased
understanding of model sensitivity to grid spacing and tur-
bulence closure parameters (e.g., length scales, closure con-
stants, and use of the PBL approximation) will guide the use
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Figure 12. Spatial variability in modeled monthly capacity factors in the APWRA during the study period using data from the 3D PBL
configuration. Circles are shown for each model grid cell that contains turbines; the color scale represents the capacity factor, and the size of
the circle represents the total capacity in the given cell. Gray contour lines show the terrain at 100 m intervals between 100 and 1000 m a.g.l.,
and gray dots show cell centers on the 1x = 1 km model grid.

of the 3D PBL scheme for high-resolution numerical weather
prediction and wind energy applications.

Appendix A: Sample day

To complement the composite-average wind speed results
shown in the main text, this appendix shows results from a
sample day during the study period: 21 July 2019. This day
was chosen to highlight differences between the 3D PBL and
MYNN configurations, while also showing consistency with
the composite-average results. The same day was highlighted
in the original HilFlowS study (Wharton and Foster, 2022;
see Fig. 5 therein). Wind speed profiles at WOP are shown in
Fig. A1, corresponding to Fig. 4 in the main text.

Hub-height and rotor-equivalent wind speed time series at
WOP are shown in Fig. A2, corresponding to Fig. 8 in the
main text.

On this day, during the peak of the evening speedup flow
(18:00–03:00 PST), the 3D PBL configuration predicts a
more pronounced jet-like wind speed profile (with its wind
speed maximum closer to the surface) than the MYNN con-
figuration does. This leads to improved predictions of the
hub-height and rotor-equivalent wind speeds. However, both
model configurations overestimate the observed rotor-layer
wind speed during this time, while underestimating the near-
surface wind speed. There is also evidence of reduced error
for the 3D PBL configuration during the onset of the speedup
event (09:00–15:00 PST). These results are generally consis-
tent with the composite average, while also highlighting po-
tential model improvements when the 3D PBL configuration
is used.
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Figure A1. Wind speed profiles on 21 July 2019, shown for WOP lidar observations and both model configurations. Potential mean error
bounds of± 10 % are also shown for the lidar observations following Bingöl et al. (2009). Profiles are averaged over the hour indicated at the
top of each panel, and model data have been interpolated to the vertical levels of the lidar. Note that data are included from the lidar’s onboard
meteorological station at 1 m a.g.l., but model errors are not evaluated at this height. The shaded regions show ±1 standard deviation over
the given hour of the sample day. Dotted lines indicate the rotor-swept area of the most prevalent generic turbine model in the simulations,
with hub height H = 80 m and rotor diameter D = 103 m (NREL-1.7; see Table 1).
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Figure A2. Hub-height wind speed VHH and rotor-equivalent wind speed VEQ on 21 July 2019. (a) Results for WOP lidar observations,
including potential error bounds of ±10 % following Bingöl et al. (2009), and both model configurations. (b) Model error, including a
summary of absolute error values (in m s−1) time averaged over the day. VEQ is calculated with hub height H = 80 m and rotor diameter
D = 103 m, corresponding to the most prevalent generic turbine model in the simulations (NREL-1.7; see Table 1).

Code and data availability. All HilFlowS observational data
used in this work are publicly available through the United
States Department of Energy’s Atmosphere to Electrons
Data Archive and Portal (https://a2e.energy.gov/about/dap);
each dataset is cited individually in the main text
(https://doi.org/10.21947/1571454, Atmosphere to Electrons,
2019a; https://doi.org/10.21947/1571453, Atmosphere to Elec-
trons, 2019b; https://doi.org/10.21947/1571455, Atmosphere
to Electrons, 2019c). MesoWest data are available through
MesoWest (2023) (https://synopticdata.com/mesowest-users/).
The WRF code used in this work is available on GitHub at https:
//github.com/twjuliano/WRF/tree/develop_3dpbl_on_top (Juliano,
2022), commit f04c02387bdf9f3ab5f93a1b4b28c5f35c05a950,
and is archived on Zenodo (see Juliano and Arthur, 2025,
https://doi.org/10.5281/zenodo.15724251). The WRF config-
uration files are also available on Zenodo (see Arthur, 2024,
https://doi.org/10.5281/zenodo.13871641). Modeled wind tur-
bine specifications are based on data from the NREL (2022)
(https://github.com/nrel/openfast-turbine-models/tree/main/
iea-scaled) and wind-turbine-models.com (2024b, a) (https:
//en.wind-turbine-models.com/turbines/697-bonus-b54-1000,
https://en.wind-turbine-models.com/turbines/13-vestas-v47), as
described in the text and summarized in Table 1.
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Kosović, B., Munoz, P. J., Juliano, T. W., Martilli, A., Egh-
dami, M., Barros, A. P., and Haupt, S. E.: Three-dimensional
planetary boundary layer parameterization for high-resolution
mesoscale simulations, J. Phys. Conf. Series, 1452, 012080,
https://doi.org/10.1088/1742-6596/1452/1/012080, 2020.

Larsén, X. G. and Fischereit, J.: A case study of wind farm ef-
fects using two wake parameterizations in the Weather Re-
search and Forecasting (WRF) model (V3.7.1) in the pres-
ence of low-level jets, Geosci. Model Dev., 14, 3141–3158,
https://doi.org/10.5194/gmd-14-3141-2021, 2021.

Mazzaro, L. J., Muñoz-Esparza, D., Lundquist, J. K., and Linn,
R. R.: Nested mesoscale-to-LES modeling of the atmospheric
boundary layer in the presence of under-resolved convective
structures, J. Adv. Model. Earth Sy., 9, 1795–1810, 2017.

Mellor, G. L.: Analytic prediction of the properties of stratified
planetary surface layers, J. Atmos. Sci., 30, 1061–1069, 1973.

Mellor, G. L. and Yamada, T.: A hierarchy of turbulence closure
models for planetary boundary layers, J. Atmos. Sci., 31, 1791–
1806, 1974.

Mellor, G. L. and Yamada, T.: Development of a turbulence closure
model for geophysical fluid problems, Rev. Geophys., 20, 851–
875, 1982.

MesoWest: Synoptic Data, https://synopticdata.com/
mesowest-users/ (last access: 13 October 2023), 2023.

Muñoz-Esparza, D., Sauer, J. A., Linn, R. R., and Kosović, B.: Lim-
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