

Supplement of

Life cycle assessment of New Jersey offshore wind

Meghann Smith et al.

Correspondence to: Meghann Smith (smithmeg@montclair.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material

S1. Explanation of impact categories Table S1. Description of ReCiPe 2016 midpoint and endpoint impact categories

	Represents the environmental effects at an earlier stage in the cause-effect chain, focusing on specific, measurable
	impacts. These categories provide more detailed, robust indicators for specific environmental problems, making them
Midpoint impact categories	useful for understanding the direct contributions of a process to various environmental issues.
	Reflects the potential for climate change due to greenhouse gas emissions, expressed in kg CO2 eq (kilograms carbon
Global warming	dioxide equivalent).
	Reflects the depletion of the ozone layer caused by substances like CFCs, expressed in kg CFC-11 eq (kilograms
Stratospheric ozone depletion	chloroflourocarbon-11 equivalent).
· · · ·	Reflects potential health effects from exposure to ionizing radiation, expressed in kBq Co-60 eq (kilobecquerel Cobalt-
Ionizing radiation	60 equivalent).
	Reflects the formation of ground-level ozone and its impact on respiratory health, expressed in kg NOx eq (kilograms
Ozone formation, Human health	nitrogen oxides equivalent).
	Reflects the impact of fine particulate matter on human health, expressed in kg PM2.5 eq (kilograms particulate matter
Fine particulate matter formation	2.5 equivalent).
Ozone formation, Terrestrial	Reflects the damage from ozone formation on plant life and growth, expressed in kg NOx eq (kilograms nitrogen
ecosystems	oxides equivalent).
	Reflects the acidification of soils due to emissions like SO2, expressed in kg SO2 eq (kilograms sulfur dioxide
Terrestrial acidification	equivalent).
	Reflects nutrient pollution in freshwater systems leading to excessive plant growth, expressed in kg P eq (kilograms
Freshwater ecotoxicity	phosphorus equivalent).
Marine ecotoxicity	Reflects nutrient pollution in marine ecosystems, expressed in kg N eq (kilograms nitrogen equivalent).
Human carcinogenic toxicity	Reflects cancer risks from chemical exposure, expressed in kg 1,4-DCB (1,4-dichlorobenzene).
Human non-carcinogenic toxicity	Reflects non-cancer health impacts from chemicals, expressed in kg 1,4-DCB (1,4-dichlorobenzene).
	Reflects the impact of land occupation and transformation on biodiversity, expressed in m2a crop eq (square meters of
Land use	land used annually for crops equivalent).
Mineral resource scarcity	Reflects the depletion of mineral resources, expressed in kg Cu eq (kilograms copper equivalent).
Fossil resource scarcity	Reflects the depletion of fossil fuel resources, expressed in kg oil eq (kilograms oil equivalent).
Water consumption	Reflects freshwater usage impacts, expressed in m3 (cubic meters).
Endpoint impact categories	
Human health	Reflects the overall health damage due to pollutants, expressed in DALYs (disability-adjusted life years).
Ecosystems	Reflects biodiversity loss and ecosystem damage, expressed in species.year (species per year).
Resources	Reflects long-term economic impact due to depletion of resources, expressed in USD2013 (United States Dollar 2013).

S2. Life Cycle Inventory

S2.1. Raw material supply Table S2. LCI – IEA Wind 15-MW Turbine

Units	Component	Weight	Process
for	_	per unit	
OSWF		(tons)	
105	Tower + monopile	2178	
	Low-alloyed steel	2069.1	Steel, low-alloyed, hot rolled {GLO} market for steel, low-alloyed, hot rolled Cut-off, U
	Aluminum		Aluminium, primary, ingot {IAI Area, North America} market for aluminium, primary, ingot Cut-off,
		30.492	U
	Copper	8.712	Copper, cathode {GLO} market for copper, cathode Cut-off, U
	Plastic (PET)		Polyethylene, high density, granulate {US} polyethylene, high density, granulate, recycled to generic
		30.492	market for high density PE granulate Cut-off, U
	Electronics for control units	30.492	Electronics, for control units {GLO} market for electronics, for control units Cut-off, U
	Lubricating oil	8.712	Lubricating oil {RoW} market for lubricating oil Cut-off, U
105	Nacelle	449.20	
	Yaw system, ball bearing	95.00	Steel, low-alloyed, hot rolled {GLO} market for steel, low-alloyed, hot rolled Cut-off, U
	Yaw system, drive + brake	5.00	Steel, low-alloyed, hot rolled {GLO} market for steel, low-alloyed, hot rolled Cut-off, U
			Steel, chromium steel 18/8, hot rolled {GLO} market for steel, chromium steel 18/8, hot rolled Cut-off,
	Hub	190.00	U
	Electronics for control units	5.00	Electronics, for control units {GLO} market for electronics, for control units Cut-off, U
	Copper	5.00	Copper, cathode {GLO} market for copper, cathode Cut-off, U
	Transformer LV	40.00	Transformer, low voltage use {GLO} market for transformer, low voltage use Cut-off, U
	Cast iron	109.20	Cast iron {GLO} market for cast iron Cut-off, U
105	Generator	371.50	
	Iron	181.00	Cast iron {GLO} market for cast iron Cut-off, U
	Copper	9.00	Copper, cathode {GLO} market for copper, cathode Cut-off, U
			Permanent magnet, for electric motor {GLO} market for permanent magnet, for electric motor Cut-off,
	Magnet	24.20	U
	Rotor	86.20	Reinforcing steel {GLO} market for reinforcing steel Cut-off, U
	Stator	71.10	Reinforcing steel {GLO} market for reinforcing steel Cut-off, U
105	Rotor	196.00	
			Steel, chromium steel 18/8, hot rolled {GLO} market for steel, chromium steel 18/8, hot rolled Cut-off,
	Chromium steel	98.00	U
	Cast iron	98.00	Cast iron {GLO} market for cast iron Cut-off, U
315	Blade	65.00	
			Carbon fibre reinforced plastic, injection moulded {GLO} market for carbon fibre reinforced plastic,
	Carbon-fiber	5.5	injection moulded Cut-off, U

		Glass fibre reinforced plastic, polyamide, injection moulded {GLO} market for glass fibre reinforced
Fiberglass	52	plastic, polyamide, injection moulded Cut-off, U
PVC foam	4.55	Polyvinylchloride, bulk polymerised {GLO} market for polyvinylchloride, bulk polymerised Cut-off, U
Steel	3.25	Reinforcing steel {GLO} market for reinforcing steel Cut-off, U

Table S3. LCI - Power Transmission

Component	Total Weight	Process
	(tons)	
Offshore substation	10,900	
Steel	10,900	Steel, chromium steel 18/8 {GLO} market for steel, chromium steel 18/8 Cut-off, U
Inter-array submarine cables	15,400	
Copper	6,160	Copper, cathode {GLO} market for copper, cathode Cut-off, U
Polyethylene	4,620	Polyethylene terephthalate, granulate, amorphous {US} polyethylene terephthalate, granulate, amorphous, recycled to generic market for amorphous PET granulate Cut-off, U
Polypropylene	770	Polypropylene, granulate {GLO} market for polypropylene, granulate Cut-off, U
Galvanized steel	3,850	Steel, chromium steel 18/8 {GLO} market for steel, chromium steel 18/8 Cut-off, U
Inter-link submarine cables	1,500	
Copper	675	Copper, cathode {GLO} market for copper, cathode Cut-off, U
Polyethylene	375	Polyethylene terephthalate, granulate, amorphous {US} polyethylene terephthalate, granulate, amorphous, recycled to generic market for amorphous PET granulate Cut-off, U
Polypropylene	75	Polypropylene, granulate {GLO} market for polypropylene, granulate Cut-off, U
Galvanized steel	375	Steel, chromium steel 18/8 {GLO} market for steel, chromium steel 18/8 Cut-off, U
Export HVDC cables (offshore substation to landfall point)	5,040	
Copper	2,772	Copper, cathode {GLO} market for copper, cathode Cut-off, U
Polyethylene	1,260	Polyethylene terephthalate, granulate, amorphous {US} polyethylene terephthalate, granulate, amorphous, recycled to generic market for amorphous PET granulate Cut-off, U
Polypropylene	252	Polypropylene, granulate {GLO} market for polypropylene, granulate Cut-off, U
Galvanized steel	756	Steel, chromium steel 18/8 {GLO} market for steel, chromium steel 18/8 Cut-off, U
Export cables (landfall point to		
onshore substation)	800	
Copper	400	Copper, cathode {GLO} market for copper, cathode Cut-off, U
Polyethylene	240	Polyethylene terephthalate, granulate, amorphous {US} polyethylene terephthalate, granulate, amorphous, recycled to generic market for amorphous PET granulate Cut-off, U
Polypropylene	40	Polypropylene, granulate {GLO} market for polypropylene, granulate Cut-off, U
Galvanized steel	120	Steel, chromium steel 18/8 {GLO} market for steel, chromium steel 18/8 Cut-off, U

S2.2. Assembly, transportation, and installation Table S4. LCI - Assembly, transportation, and installation

Component	Amount	Process
Land transformation from	219.2 km2	Transformation, from seabed, unspecified
Land transformation to	219.2 km2	Transformation, to unspecified, used
Land occupation	6.58E6 m2y	Occupation, seabed, infrastructure
Fuel consumption	55,000 ton	Diesel {GLO} market group for diesel Cut-off, U
Electricity consumption	5,410,534.72	PJM electricity generation mix
	MJ	
Natural gas	47.02%	Electricity, high voltage {WECC, US only} electricity production, natural gas, combined cycle power plant Cut-off, U
Coal	9.64%	Electricity, high voltage {WECC, US only} electricity production, hard coal Cut-off, U
Hydro	1.42%	Electricity, high voltage {WECC, US only} electricity production, hydro, reservoir, alpine region Cut-off, U
Nuclear	29.44%	Electricity, high voltage {WECC, US only} electricity production, nuclear, pressure water reactor Cut-off, U
Onshore wind	6.33%	Electricity, high voltage {WECC, US only} electricity production, wind, >3MW turbine, onshore Cut-off, U
Solar	4.16%	Electricity, low voltage {WECC, US only} electricity production, photovoltaic, 570kWp open ground installation, multi-Si Cut-off, U
Oil	0.32%	Electricity, high voltage {WECC, US only} electricity production, oil Cut-off, U
Geothermal	0.57%	Electricity, high voltage {WECC, US only} electricity production, deep geothermal Cut-off, U
Other	1.1%	Electricity, high voltage {WECC, US only} electricity production, natural gas, combined cycle power plant Cut-off, U
Transport – suppliers to NJWP		
Transport, freight, sea	1.41E8 tkm	Transport, freight, sea, bulk carrier for dry goods {GLO} market for transport, freight, sea, bulk carrier for dry goods Cut-off, U
Transport, freight, lorry	4.72E4 tkm	Transport, freight, lorry >32 metric ton, EURO6 {RoW} market for transport, freight, lorry >32 metric ton, EURO6 Cut-off, U
Fuel consumption	58.5 tons	Diesel {GLO} market group for diesel Cut-off, U
Transport – NJWP to OSW farm		
Transport, freight, sea	8.18E7 tkm	Transport, freight, sea, bulk carrier for dry goods {GLO} market for transport, freight, sea, bulk carrier for dry goods Cut-off, U
Fuel consumption	38.4 tons	Diesel {GLO} market group for diesel Cut-off, U

S2.3. Operation and maintenance Table S5. LCI - Operation and maintenance

Component	Amount	Process
Lubricating oil	8.71 ton	Lubricating oil {RoW} market for lubricating oil Cut-off, U
Transport, freight, sea	1.22E3 tkm	Transport, freight, sea, tanker for liquid goods other than petroleum and liquefied natural gas {GLO}
		market for transport, freight, sea, tanker for liquid goods other than petroleum and liquefied natural gas
		Cut-off, U

S2.4. Dismantling, transportation, and end-of-life.

Table S6. LCI – Dismantling, transportation, and end-of-life

Component	Amount	Process
Land transformation from	219.2 km2	Transformation, from seabed, infrastructure
Land transformation to	219.2 km2	Transformation, to seabed, unspecified
Land occupation	6.58E6 m2y	Occupation, sea and ocean
Fuel consumption	55,000 ton	Diesel {GLO} market group for diesel Cut-off, U
Electricity consumption	5,410,534.72	PJM electricity generation mix (see table 3 for breakdown)
	MJ	
Transport – NJWP to OSW farm	1p	See table 3 for breakdown

S2.5. Conventional and renewable electricity generation sources for comparison analysis

Table S7. LCI – Conventional and renewable electricity generation sources for comparison analysis

Source	Process
Coal	Electricity, high voltage {WECC, US only} electricity production, hard coal Cut-off, U
Natural gas	Electricity, high voltage {WECC, US only} electricity production, natural gas, conventional power plant Cut-off, U
Oil	Electricity, high voltage {WECC, US only} electricity production, oil Cut-off, U
Nuclear, PWR	Electricity, high voltage {WECC, US only} electricity production, nuclear, pressure water reactor Cut-off, U
Nuclear, BWR	Electricity, high voltage {WECC, US only} electricity production, nuclear, boiling water reactor Cut-off, U
Solar	Electricity, low voltage {WECC, US only} electricity production, photovoltaic, 570kWp open ground installation, multi-Si Cut-off,
	U
Hydro, flow	Electricity, high voltage {WECC, US only} electricity production, hydro, run-of-river Cut-off, U
Hydro, reservoir	Electricity, high voltage {WECC, US only} electricity production, hydro, reservoir, alpine region Cut-off, U
Onshore wind	Electricity, high voltage {WECC, US only} electricity production, wind, >3MW turbine, onshore Cut-off, U

S3. Results Table S8 . Midpoint and endpoint combined results – functional unit 1kWh – Offshore Wind Farm

Phase							1	l					2	3	4
Impact category	Unit	Total	Blade	Tower + Monopile	Rotor	Nacelle	Generator	Cables - landfall to substation	Export submarine cables	Inter-array submarine cables	Inter-link submarine cables	Offshore substation	Assembly, transit, install	0&M	Disassembly, transit, EOL
Global	kg CO2	1.27E-	2.14E-	4.68E-	5.33E-	1.40E-	1.19E-	2.78E-	1.85E-	5.13E-	5.30E-	7.97E-	3.64E-	1.11E-	7.73E-
warming	eq	02	03	03	04	03	03	05	04	04	05	04	04	07	04
Stratospheric ozone depletion	kg CFC11 eq	4.60E- 09	1.24E- 09	1.13E- 09	1.24E- 10	4.47E- 10	4.71E- 10	2.57E- 11	1.76E- 10	4.17E- 10	4.49E- 11	2.04E- 10	8.99E- 11	2.72E- 14	2.30E- 10
Ionizing	kBq Co-	5.99E-	9.37E-	1.98E-	2.46E-	7.51E-	9.14E-	2.20E-	1.46E-	3.88E-	4.00E-	4.14E-	6.13E-	3.85E-	9.53E-
radiation	60 eq	04	05	04	05	05	05	2.20E	05	05	06	05	0.152	09	06
Ozone formation, Human health	kg NOx eq	3.62E- 05	4.22E- 06	1.29E- 05	1.36E- 06	4.37E- 06	3.36E- 06	2.08E- 07	1.43E- 06	3.41E- 06	3.67E- 07	2.02E- 06	1.23E- 06	5.45E- 10	1.39E- 06
Fine particulate matter formation	kg PM2.5 eq	3.75E- 05	3.05E- 06	1.00E- 05	1.62E- 06	5.59E- 06	3.05E- 06	4.02E- 07	2.77E- 06	6.47E- 06	7.00E- 07	2.84E- 06	4.65E- 07	1.63E- 10	5.37E- 07
Ozone formation,															
Terrestrial	kg NOx	3.83E-	4.36E-	1.37E-	1.43E-	4.57E-	3.52E-	2.13E-	1.46E-	3.50E-	3.76E-	2.10E-	1.46E-	7.29E-	1.62E-
ecosystems	eq	05	06	05	06	06	06	07	06	06	07	06	06	10	06
Terrestrial	kg SO2	8.11E-	7.07E-	1.86E-	1.83E-	1.04E-	6.80E-	1.21E-	8.37E-	1.89E-	2.07E-	2.99E-	1.31E-	3.80E-	1.44E-
acidification	eq	05	06	05	06	05	06	06	06	05	06	06	06	10	06
Freshwater	kg 1,4-	9.71E-	4.62E-	3.26E-	2.07E-	1.27E-	7.89E-	1.32E-	9.12E-	2.08E-	2.26E-	3.14E-	2.27E-	2.36E-	5.10E-
ecotoxicity	DCB	06	07	06	07	06	07	07	07	06	07	07	08	11	08
Marine	kg 1,4-	5.00E-	2.51E-	1.93E-	1.53E-	5.23E-	4.33E-	2.60E-	1.72E-	4.41E-	4.52E-	2.36E-	3.19E-	5.58E-	3.65E-
ecotoxicity	DCB	06	07	07	08	08	06	09	08	08	09	08	08	12	08

Human															
carcinogenic	kg 1,4-	4.50E-	2.63E-	5.56E-	1.26E-	7.37E-	3.04E-	9.80E-	6.78E-	1.53E-	1.67E-	2.51E-	7.54E-	4.15E-	1.32E-
toxicity	DCB	01	03	02	02	02	02	03	02	01	02	02	04	07	03
Human non-															
carcinogenic	kg 1,4-	5.09E-	4.54E-	1.03E-	4.04E-	6.80E-	3.35E-	1.06E-	7.34E-	1.64E-	1.79E-	6.74E-	3.40E-	4.11E-	2.30E-
toxicity	DCB	03	05	03	05	04	04	04	04	03	04	05	06	09	04
	m2a crop	6.60E-	5.93E-	1.37E-	5.93E-	8.90E-	4.36E-	1.36E-	9.39E-	2.10E-	2.30E-	9.88E-	5.72E-	5.56E-	2.80E-
Land use	eq	03	05	03	05	04	04	04	04	03	04	05	06	09	04
Mineral															
resource		1.15E-	8.01E-	4.97E-	1.01E-	2.50E-	9.43E-	1.91E-	1.27E-	4.18E-	4.28E-	1.34E-	1.33E-	5.75E-	2.40E-
scarcity	kg Cu eq	02	05	03	03	03	04	05	04	04	05	03	05	09	05
Fossil															
resource		7.37E-	9.40E-	1.53E-	6.34E-	1.01E-	5.62E-	1.58E-	1.09E-	2.44E-	2.67E-	1.06E-	1.01E-	8.71E-	3.92E-
scarcity	kg oil eq	02	04	02	04	02	03	03	02	02	03	03	04	08	04
Water		4.73E-	3.70E-	1.15E-	1.49E-	5.35E-	1.19E-	3.43E-	2.36E-	5.55E-	5.99E-	2.62E-	9.39E-	2.71E-	1.01E-
consumption	m3	04	05	04	05	05	04	06	05	05	06	05	06	09	05
Human		9.04E-	4.45E-	3.06E-	5.00E-	1.54E-	7.44E-	7.02E-	4.83E-	1.15E-	1.24E-	7.23E-	7.00E-	1.23E-	2.46E-
health	DALY	08	09	08	09	08	09	10	09	08	09	09	10	09	13
		7.86E-	9.14E-	2.36E-	2.55E-	9.55E-	7.47E-	6.87E-	4.73E-	1.10E-	1.19E-	3.99E-	1.61E-	3.04E-	5.41E-
Ecosystems	species.yr	11	12	11	12	12	12	13	12	11	12	12	12	12	16
		1.26E-	1.74E-	2.73E-	3.49E-	9.84E-	1.08E-	2.96E-	1.99E-	5.22E-	5.46E-	5.63E-	2.16E-	2.19E-	3.76E-
Resources	USD2013	03	04	04	05	05	04	06	05	05	06	05	04	04	08

Table S9. Midpoint results – functional unit 1 kWh – Comparison Analysis

Impact category	Unit	MSO	Coal	Natural Gas	Oil	Nuclear, PWR	Nuclear, BWR	Solar	Hydro, flow	Hydro, reservoir	Onshore wind
Global warming	kg CO2 eq	1.27E-02	1.02E+00	6.21E-01	2.05E+00	6.83E-03	7.21E-03	5.96E-02	4.60E- 03	7.07E- 03	2.22E-02
	kg	1.2712 02	1.021+00	0.212 01	2:051:00	0.051 05	7.212 05	5.901 02	05	05	2.221 02
Stratospheric	CFC11								8.68E-	2.76E-	
ozone depletion	eq	4.60E-09	2.81E-07	1.18E-07	1.00E-06	4.04E-09	4.42E-09	2.17E-08	10	09	8.22E-09
Ionizing	kBq Co-								1.04E-	2.47E-	
radiation	60 eq	5.99E-04	3.77E-03	2.18E-03	4.10E-03	6.93E-01	7.88E-01	4.04E-03	04	04	8.96E-04

Ozone											
formation,	kg NOx								1.73E-	2.05E-	
Human health	eq	3.62E-05	2.10E-03	5.67E-04	6.75E-03	3.44E-05	3.63E-05	1.59E-04	05	2.05L- 05	7.60E-05
Fine particulate	cq	J.02E-0J	2.101-05	J.07E-04	0.751-05	5.44L-05	5.051-05	1.391-04	05	05	7.001-05
matter	kg PM2.5								9.30E-	1.04E-	
formation	eq	3.75E-05	6.69E-04	9.83E-05	3.83E-03	2.71E-05	2.84E-05	1.22E-04	9.30E- 06	05	7.30E-05
Ozone	eq	5.75E-05	0.0915-04	9.83E-05	5.851-05	2.71E-05	2.0412-03	1.22E-04	00	05	7.3012-03
formation,											
Terrestrial	kg NOx								1.79E-	2.12E-	
	-	3.83E-05	2.12E-03	6.64E-04	7.01E-03	3.55E-05	3.75E-05	1.68E-04	1.79E- 05	2.12E- 05	7.96E-05
ecosystems	eq	5.83E-03	2.12E-03	0.04E-04	7.01E-03	5.55E-05	5./3E-03	1.08E-04	1.29E-	1.66E-	7.90E-03
Terrestrial	kg SO2	0.11E.05	2 OCE 02	2 2 (E 04	1.215.02	2.245.05	2.525.05	2.575.04			1.925.04
acidification	eq	8.11E-05	2.06E-03	2.36E-04	1.21E-02	3.34E-05	3.52E-05	2.57E-04	05	05	1.83E-04
Freshwater	1 10	0.715.06		1.245.05	2.005.05	4 205 07	4.525.06	2 105 05	1.14E-	1.45E-	2 205 05
eutrophication	kg P eq	9.71E-06	6.04E-04	1.24E-05	2.90E-05	4.30E-06	4.53E-06	3.19E-05	06	06	2.20E-05
Marine	1								1.03E-	1.35E-	1.045.04
eutrophication	kg N eq	5.00E-06	4.07E-05	1.22E-06	3.45E-05	1.27E-05	1.35E-05	2.89E-06	07	07	1.34E-06
Terrestrial	kg 1,4-								1.91E-	2.85E-	
ecotoxicity	DCB	4.50E-01	3.38E-01	2.24E-01	7.17E+00	2.43E-01	2.55E-01	1.45E+00	02	02	1.10E+00
Freshwater	kg 1,4-								2.24E-	2.12E-	
ecotoxicity	DCB	5.09E-03	2.15E-02	2.73E-03	5.29E-03	1.12E-03	1.17E-03	1.26E-02	04	04	4.55E-02
Marine	kg 1,4-								3.02E-	2.97E-	
ecotoxicity	DCB	6.60E-03	2.96E-02	3.60E-03	1.24E-02	1.57E-03	1.64E-03	1.65E-02	04	04	5.55E-02
Human											
carcinogenic	kg 1,4-								1.87E-	1.89E-	
toxicity	DCB	1.15E-02	5.00E-02	7.55E-03	2.06E-02	2.94E-03	3.02E-03	1.01E-02	03	03	1.13E-02
Human non-											
carcinogenic	kg 1,4-								3.20E-	4.88E-	
toxicity	DCB	7.37E-02	8.72E-01	4.90E-02	1.83E-01	8.77E-02	9.30E-02	1.48E-01	03	03	1.92E-01
	m2a crop								2.09E-	8.86E-	
Land use	eq	4.73E-04	1.11E-02	2.28E-03	1.09E-02	2.66E-04	2.97E-04	2.10E-02	04	05	1.10E-03
Mineral	_										
resource									8.12E-	9.45E-	
scarcity	kg Cu eq	7.92E-04	4.37E-04	4.32E-04	8.18E-04	6.98E-04	7.35E-04	7.71E-04	05	05	9.25E-04
Fossil resource									9.21E-	1.18E-	
scarcity	kg oil eq	3.79E-03	2.70E-01	2.29E-01	5.57E-01	1.82E-03	1.91E-03	1.49E-02	04	03	5.28E-03
Water									3.86E-	2.93E-	
consumption	m3	1.11E-04	9.62E-04	3.28E-03	3.34E-03	2.93E-03	2.96E-03	2.00E-03	05	02	2.34E-04