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Abstract. In response to the issue of limited new energy output leading to poor smoothing effects on grid-
connected load fluctuations, this paper proposes a load-power smoothing method based on “one source with
multiple loads”. The method comprehensively considers the proximity between the source and the load, as
well as the correlation between their power fluctuations, using these factors as evaluation criteria for source-
side and load-side matching in regional power grids. Initially, loads are clustered and divided based on power
frequency division. The EEMD algorithm is then applied to obtain wind and solar energy outputs with greater
complementarity and smoother fluctuations, leveraging their low-frequency correlation. Subsequently, a load-
tracking coefficient is used to compare the matching degree between wind–solar power output and different
loads, selecting the most compatible load and output for source–load matching and smoothing. Concurrently, a
gray-wolf-optimization (GWO) algorithm based on Tent chaotic mapping is employed to optimize edge energy
storage at different load sides, minimizing overall grid-connected load-power fluctuations. Numerical results
demonstrate that the proposed method can fully utilize the stable output from the low-frequency correlation of
wind and solar energy, combined with energy storage, to significantly reduce the fluctuation rate of regional
grid-connected loads. This effectively promotes local absorption of source loads, thereby alleviating the pressure
on the grid side caused by the randomness and volatility on both sides of the source load.

1 Introduction

In response to China’s dual carbon goals, new power sys-
tems utilizing renewable energy sources like wind and photo-
voltaic are rapidly advancing. The installed capacity of wind
turbines and photovoltaic units, crucial components of re-
newable energy, is growing (Xi, 2020; Gao, 2022). How-
ever, both wind and photovoltaic power generation are highly
volatile and stochastic, leading to increased pressure on grid-
side dispatch when parallelized with traditional load de-
mands (Qu and Ye, 2023; Lee and Baldick, 2017; Ma et al.,
2020; Oh and Son, 2022; Li et al., 2022). Often, the installed
capacity of wind–solar units in a region is insufficient to meet
local load demands, or their utilization is limited, resulting in
low-efficiency suppression of load fluctuations.

Despite these challenges, the consistency of regional
source–load fluctuations can be leveraged to improve local
consumption of wind–solar power and reduce grid-side pres-

sure from load-power fluctuations, which is crucial for re-
gional grid-connected dispatch. One effective strategy is the
use of wind–solar correlation for regional power suppression,
which has been extensively studied (Liang et al., 2023; Hu
et al., 2024; Xie et al., 2017; Tan et al., 2022; Dong et al.,
2018; Haensch et al., 2024; Wang et al., 2020; Zhao et al.,
2020). By considering the complementary characteristics of
wind and solar power, volatility and randomness in the orig-
inal output can be reduced. For instance, typical wind–solar
output scenarios can be generated based on wind–solar cor-
relation, aiding in optimal scheduling for microgrids.

The traditional energy optimization dispatching strategy is
distinct from the source–load matching strategy, which fo-
cuses on regional renewable energy consumption and grid-
connected power fluctuation reduction. Source–load match-
ing is implemented based on evaluating the load-tracking
degree, which considers the smoothness of the load track-
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ing and residual load curve (Zhu et al., 2024). To enhance
load tracking, different tracking coefficient models are estab-
lished based on the overall system fluctuation’s smoothness
(Shi et al., 2023; Mitrofanov and Baykasenov, 2022; Beluco
et al., 2008). Additionally, the Copula function can evalu-
ate source–load matching, inverting the energy side’s com-
plementary characteristics (Ren et al., 2024). However, these
methods are often limited to considering power differences
or fluctuation similarities between the source and load, or
they only address matching between single power and load
sides.

In this paper, we propose a source–load matching strategy
based on wind–solar complementarity and the “one source
with multiple loads” concept. We prioritize the more stable
low-frequency wind–solar output to match load-power fluc-
tuations according to load-tracking criteria. We also optimize
the edge storage charging and discharging strategy for each
load group using the gray-wolf-optimization (GWO) algo-
rithm with Tent chaotic mapping, aiming to minimize over-
all load fluctuation in regional grid connections and reduce
power fluctuations on both sides of the grid.

Unlike current research on microgrid or regional source–
load matching models, which typically consider a single
power side and a single load group, this paper delves deeper
into the impact of different power-side suppression abili-
ties on various load groups, influencing regional grid fluc-
tuations. We construct a “one source with multiple loads”
regional grid framework, utilizing a typical wind–solar co-
generation plant and multiple load groups with edge storage.
K-medoid clustering is used to categorize loads into groups
with typical energy use characteristics. Based on the comple-
mentary low-frequency correlation of wind–solar power, the
source-side power output is smoothed. The proposed load-
tracking index is then employed to track load–side power
fluctuations, reducing regional grid-connected power fluctu-
ations.

The framework of “the one source with many loads” re-
gional grid is shown in Fig. 1.

The primary contributions of this paper are as follows:

– Frequency decomposition of the daily wind–solar out-
put, correlation analysis of the decomposed low-
frequency components and generation of a daily sce-
nario set of wind–solar low-frequency output are per-
formed. Euclidean distance is then used to compare
each scenario to the original output of the correspond-
ing day, and the closest day is selected as a replacement
of the output of that day.

– The load is clustered based on the rough K-means of
variational firefly optimization. The load-tracking eval-
uation criteria proposed in this paper are used to com-
pare the matching degree between the output scenario
and each load group. The load group with the highest
source–load matching degree is selected as the output
satisfaction object for that day.

Figure 1. “One source with multiple loads” regional power grid
framework.

Figure 2. Flow chart of regional source–load matching and stabi-
lizing method.

– The gray-wolf-optimization algorithm based on Tent
chaotic mapping is used to optimize each load–side
edge energy storage leveling strategy to minimize the
fluctuation of regional grid-connected load, promote the
level of wind–solar consumption and reduce the pres-
sure of grid-side dispatch.

The specific steps of power leveling are shown in Fig. 2.

2 Source–load matching for regional wind–solar
systems

2.1 CEEMD-based wind–solar output frequency
decomposition

In this paper, based on a previous study (Mahdavi et al.,
2023), we further study the smoothing effect of the source-
side power output on the load-side fluctuation. Based on
not changing the capacity configuration in the original re-
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gion, the obtained typical daily scenario set of wind–solar
power output and the load scenario are source–load-matched
to achieve the power fluctuation smoothing at the regional
grid connection.

To better achieve the decomposition effect, this paper
adopts the CEEMD (complementary ensemble empirical
mode decomposition) algorithm to decompose the frequency
of the original wind–solar output data. CEEMD has the char-
acteristics of independent and homogeneously distributed ad-
dition of white noise with opposite signs to the original signal
for auxiliary decomposition. It can compensate for the short-
comings of modal mixing in the traditional empirical mode
decomposition (EMD) while better reducing the noise re-
maining in the original signal and decomposition errors (Liu
et al., 2024). The specific decomposition steps are as follows.

1. Add a pair of random Gaussian white noise values – one
positive and one negative – to the original sequence as
follows:

X+(t)= x(t)+µ+(t) (1)
X−(t)= x(t)+µ−(t), (2)

where X+ (t) and X−(t) are the sequences after adding
positive and negative random Gaussian white noise, re-
spectively, and µ+ (t) and µ−(t) represent the positive
and negative Gaussian white noise components, respec-
tively.

2. Use the EMD decomposition of the newly generated
signal to obtain the intrinsic mode function (IMF) com-
ponents of each order:

X+(t)=
m∑
i=1

c+i (t)+ r+(t) (3)

X−(t)=
m∑
i=1

c−i (t)+ r−(t), (4)

where c+i (t) and c−i (t) are the ith IMF components of
the decomposition, and r+ (t) and r−(t) are the remain-
ing terms of the decomposition.

3. Repeat the above steps n times. Each repetition adds a
new and different sequence of paired Gaussian white
noise.

4. Sum up the IMF components obtained from each repe-
tition to take the mean value as the final decomposition
result. The final ci(t) and r(t) are expressed as follows:

ci(t)=
1

2n

n∑
i=1

(c+ji(t)+ c
−

ji(t)) (5)

r(t)=
1
n

n∑
i=1

(r+j (t)+ r−j (t)), (6)

where c+ji (t) and c−ji(t) are the ith IMF components
obtained from the decomposition at the j th repetition,

r+j (t) and r−j (t) are the residuals obtained from the de-
composition at the j th repetition, ci(t) is the ith IMF
component from the final decomposition, and r(t) is the
remaining amount of final decomposition.

2.2 Rough-load clustering optimized by the mutation
firefly algorithm

This paper uses a variational strategy and a firefly algorithm
with differential evolution to optimize the traditional cluster-
ing algorithm (Wei et al., 2023). The rough K-means algo-
rithm is an improvement of the classicalK-means algorithm,
and the difference is that the algorithm divides the sample
objects that cannot be determined into the boundary set of
the class. The division is based on the presence or absence
of other clustering centers with a difference between the dis-
tance and the minimum distance from the sample object be-
ing less than a given threshold.

The core concepts of rough set theory are upper approx-
imation and lower approximation rather than boundary do-
main. The variation in the number of objects in the lower
approximation and boundary set, along with the variability
in object distribution, dynamically adjusts the center-of-mass
weights. The relative distance is

T ′ =

{
t :

d(xn,mk)
d(xn,mh)

≤ ξ ∧h 6= k

}
. (7)

The variant firefly optimization algorithm makes full use
of the information of individual firefly populations through
a double-variant strategy, which significantly improves the
ability of the algorithm to jump out of the local optimum
and converge to the global optimum with probability one,
given a large-enough number of iterations. The new objec-
tive function value is constructed as the firefly light intensity
for the initial clustering centroid search, and the optimal so-
lution found by the firefly algorithm is used as the clustering
center of the algorithm for clustering iterations:

I = f (x)=
(
O

I

)λ
, (8)

where I is the intraclass distance, which is the sum of the
distances from each data sample in each class to its cluster
center, and O is the interclass distance, which is the distance
between the cluster centers. When λ≥ 1, the data may be out
of range if the number of samples and the number of dimen-
sional bases are large, and λ= 1/2 is taken in this study.

2.3 Load-tracking evaluation criteria

This paper considers the proximity of source–load power-
magnitude and the correlation degree of source–load-power
fluctuation as evaluation criteria of source-side load track-
ing. Based on the fact that Spearman’s coefficient and Eu-
clidean distance present complementary advantages and dis-
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advantages, in order to measure correlation, Euclidean dis-
tance and rank correlation coefficient are used to calculate
them, respectively. The equation is shown in the following
way:

maxθ i = α1δ
i
1+α2δ

i
2, (9)

where θ i is the match between the source-side output and
the ith load group; δi1 is the tracking coefficient between the
source-side output and the ith load group; δi2 is the corre-
lation between the normalized source-side output and the ith
load group; α1 and α2 are the weight coefficients of the corre-
sponding indicators; and the initial ratio of the two is selected
as 1 : 1 in this paper, considering their different effects on the
matching degree.

λi =

√√√√ T∑
t=1

(P t −Lti)
2 (10)

ξ i1 =
λi

N∑
n=1

λn

, (11)

where P t and Lti are the output power and the load power of
the ith load group at moment t , respectively; T is the num-
ber of moments of that day (T = 24); and λi and λn are the
Euclidean distances between the source-side output and the
power of the ith and nth load groups, respectively, for that
day.N is the total number of load groups. ξ i1 is the Euclidean
distance between the normalized source-side output and the
ith load group.

δi1 = 1− ξ i1 (12)

Spearman rank correlation coefficient was used to do a cor-
relation analysis between wind–solar low-frequency output
and each load power. Spearman correlation coefficient is
a nonparametric statistical method of rank correlation us-
ing monotonic equations in statistics to evaluate the corre-
lation between two statistical variables. The basic idea is
that there are three binary distributions of random vectors
(m1,n1) , (m2,n2) and (m3,n3) with the difference between
the probability that at least one of them occurs in concert with
the other distributions and the probability that at least one of
them does not occur in concert with the other distributions
as the correlation indicator describing the random variables
(Wei et al., 2023), which is calculated as the following equa-
tion:

τ = 1− [6
T∑
t=1

d2
t /T (T 2

− 1)], (13)

where τ is the Spearman correlation coefficient between any
two vectors; T is the vector dimension, which in this paper
is the 24 time periods that divide each day in source–load

matching; and d is the set of element-ranking differences in
the two vectors.

δi2 =
τ i

N∑
n=1

τn

(14)

To make a uniform distance and a correlation–variation re-
lationship, Eq. (14) normalizes Spearman coefficients to [0,
1], ensuring compatibility with Euclidean distance, where τ i

and τn are the correlation coefficients between the source-
side output and the ith and nth load groups, respectively, for
that day, and N is the number of load groups.

According to the above load-tracking evaluation criteria,
the matching degree between the wind–solar system’s low-
frequency output and each load’s power is compared, and
the most matching load is selected as the target of the power
leveling on that day. The wind–solar excess energy is used
to charge the energy storage corresponding to the matched
load. When the load is not matched with the energy output
on a given day and the load has too much fluctuation, the
energy storage – according to its own SOC state and the set
fluctuation threshold – smooths the load to a certain extent.
If the wind–solar output has excess energy in a specific pe-
riod, that energy is used to charge the energy storage. This
ensures that on days when the load and output do not match,
the energy storage can operate within a specific scheduling
interval, using renewable resources, reducing pressure on the
grid, and calming down load fluctuation, while avoiding the
waste of energy when the wind–solar power is connected to
the grid (Luo et al., 2021).

3 Load–edge energy storage suppressing strategy

In order to better achieve the overall grid-connected power
fluctuation smoothing of regional loads, the charging and dis-
charging strategies of small-capacity energy storage on each
load group side are optimized using the gray wolf algorithm
based on Tent chaotic mapping to minimize the overall fluc-
tuation rate of regional loads. The method proposed in this
paper, compared with the traditional energy storage methods,
can optimize the single-period load reduction to a more de-
tailed multi-time-period reduction. This helps avoid dispatch
pressure on the grid after a substantial load smoothing, which
can occur after the load rises again during peak and valley pe-
riods, to achieve the reduction of the overall fluctuation rate.

3.1 Gray-wolf-optimization algorithm based on Tent
chaotic mapping

Compared with the traditional particle swarm algorithm and
genetic algorithm, the gray wolf algorithm has a good per-
formance in terms of the accuracy of solving problems and
calculating convergence speeds due to its strong conver-
gence performance, simple structure, few parameters to be
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adjusted, and the ability to achieve a balance between local
optimization and global search (Wei et al., 2023). This pa-
per uses the improved gray-wolf-optimization algorithm with
Tent chaotic mapping to flatten the marginal energy storage
on different load sides.

The core idea of the gray wolf algorithm is to mathemati-
cally model the social hierarchy of gray wolves using GWO
by defining the first-, second- and third-best wolves (optimal
solutions) as α, β and δ, respectively, and using those wolves
to guide the other wolves in their search toward the goal. The
remaining wolves (candidate solutions) are defined as ω, and
they update their position around α, β and δ.

Chaos uses randomness, traversal and initial value sensi-
tivity to speed up the convergence of the algorithm, generat-
ing chaotic sequences based on Tent mapping to initialize the
population:

ZkI+1 =

{
ZkI
u
, 0≤ ZkI ≤ u

1−ZkI
1−u , u < ZkI ≤ 1

, (15)

where k is the number of populations, I is the number of
current iterations and u (to maintain the randomness of the
initialization information of the algorithm) takes the value
of u⊂ rand(0,1). Combined with the chaotic sequence ZkI ,
the further process of generating the sequence XkI of initial
locations of individual gray wolves in the search area is as
follows:

XkI =X
k
I,min+Z

k
I

(
XkI,max−X

k
I,min

)
, (16)

where XkI,max and XkI,min are the maximum and minimum
value of XkI , respectively.

A dynamic weight factor b, which changes in a linearly
decreasing manner, is introduced to update the gray-wolf-
individual step size dynamically:

b (I )= bf−
I

maxiter
(bf− bs) , (17)

where maxiter denotes maximum iterations and bs and bf de-
note the initial and final values of the weighting factors, re-
spectively.

A fitness scaling factor was introduced to dynamically
weight the averages and differentiate the contributions of
the head wolves, thus effectively differentiating the differ-
ent guiding roles of head wolves α, β and δ in subsequent
position updates of each gray wolf:
f =

∣∣fα + fβ + fδ∣∣
v1 =

fα
f
, v2 =

fβ
f
, v3 =

fδ
f
, f > 0

v1 = v2 = v3 =
1
3 , f = 0

, (18)

where v1, v2 and v3 are the adaptation scale factors, and fα ,
fβ and fδ are the adaptation values of α, β and δ, respec-
tively.

The fused improved position update formula is as follows:

X (I + 1)= b (I ) · r4 · (v1 ·X1+ v2 ·X2+ v3 ·X3) , (19)

where r4 is a random vector between [0, 1].

3.2 Edge energy storage optimization model

The gray-wolf-optimization algorithm based on Tent chaotic
mapping is used to optimize the charging and discharging
power of the edge energy storage of the remaining load
groups with the objective of minimizing the fluctuation of
the regional required grid-leveling load to achieve the reduc-
tion of the regionally grid-connected load fluctuation. The
optimization objective function is as follows:

minFi =

(
T∑
t=1

Mi(t + 1)−Mi(t)
Mmax
i

)
/24, (20)

where Fi is the overall regional load fluctuation rate on day i,
Mi is the overall regional load power on day i after source–
load matching, Mmax

i is the maximum load value on that day
and T is the number of moments on that day (T = 24).

The constraints are as follows:

1. wind farm operation

0≤ Pwind,s,t ≤ P
max
wind,s,t; (21)

2. photovoltaic plant operation

0≤ PPV,s,t ≤ P
max
PV,s,t; (22)

3. load

Pmin
LD,s,t ≤ PLD,s,t ≤ P

max
LD,s,t; (23)

4. energy storage (which includes the following energy-
storage-specific constraints)

charging and discharging power

Pmin
ess,s,t ≤ Pess,s,t ≤ P

max
ess,s,t; (24)

charge state

SOCmin
≤ SOCs,t ≤ SOCmax

; (25)

discharge balance

T∑
t=1

Pess (t)= 0. (26)
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3.3 Energy-storage SOC control

The basic idea of energy storage leveling is as follows. On
the day when the load matches the energy source, if the load
is larger than the output and fluctuates widely, energy stor-
age discharges to level the load. On the same day, if the load
is smaller than the output, energy storage charges to avoid
the waste of renewable energy. At the same time, on the day
when the load does not match the energy output, if the load
has a significant fluctuation, energy storage – according to
its own SOC and the set fluctuation threshold – will level the
load to a certain extent, in order to better protect the energy
storage and prolong its lifespan.

In order to better protect the energy storage and prolong
the life of the energy storage, it is necessary to limit the en-
ergy storage ground charge and discharge; i.e., the energy
storage SOC is limited to [0.1, 0.9]. The SOC is calculated
as follows:

discharging

Ssoc(t)= (1− ρ)Ssoc(t − 1)−
Pe(t)1t
Eηd

(27)

charging

Ssoc(t)= (1− ρ)Ssoc(t − 1)−
Pe(t)1tηc

E
, (28)

where Ssoc(t) and Ssoc(t−1) denote the SOC values of energy
storage in period t and t − 1, respectively; Pe(t) denotes the
required leveling target of energy storage in period t ; 1t is
the length of the period; ρ is the self-discharge rate; ηd and ηc
denote the energy storage discharge efficiency and charging
efficiency, respectively; and E is the energy storage capacity.

4 Experiments and results

This paper analyzes the actual power output of a 100 MW
wind farm and a 50 MW PV cogeneration farm and the actual
loads of four typical load groups in the region in the summer
of 2018 in a northwestern area.

From the scenario generation method described in the
previous section, typical scenarios of wind and solar low-
frequency output power are obtained, as shown in Fig. 3.

They are adopting the load-tracking evaluation criteria
proposed in Sect. 2.3. Furthermore, combined with the local
weather, the daily corresponding wind power and different
load groups are matched and evaluated, and the load group
with the highest degree of matching is selected as the main
suppression target of the wind power on that day.

Table 1 shows the matching degree between source-side
output and different load clusters and the original load for a
particular day, where load cluster 5 is the original load before
the clustering of loads. The table shows the matching degree
between source-side output and original load to be less than
0.3, while the highest-matching degree of the clustered load
groups can reach 0.52. Therefore, this paper can effectively

Table 1. Comparison of matching degrees on a certain day.

Load group Matching degree

Load group 1 0.39
Load group 2 0.31
Load group 3 0.52
Load group 4 0.24
Initial load 0.28

Table 2. Energy storage parameters.

Parameter type Storage
battery

Maximum continuous discharging power [MW] 10
Maximum continuous charging power [MW] 10
Rated capacity [MW h] 5
Permissible depth of discharge [%] 10–90
The initial state of charge [%] 60
Self-discharge rate [% h−1] 0.6
Charge and discharge efficiency [%] 95

explore the matching degree between source-side output and
typical load groups after dividing the load clusters.

According to the method described in this paper, the
matching results are shown in Fig. 4, and the wind–solar out-
put is based on the principle that the highest-matching degree
will meet different loads daily. As shown in the figure, the
load-tracking evaluation criteria established in this paper can
select the load with the most closely matched output among
different loads for matching, reducing the grid-side pressure
on both sides of the independent dispatch. At the same time,
the load side is split into different load groups. The wind–
solar output has excess energy at a specific period, which is
used to charge the energy storage so that the energy storage
has a specific dispatch interval on the days when the load is
not matched. The suppressing time of the energy storage can
be further extended.

As shown in Fig. 5, the SOC of each load-side edge energy
storage is optimized using the overall load fluctuation in the
region and using the gray-wolf-optimization algorithm. The
figure shows that source–load matching can provide enough
energy for the energy storage to meet its required smoothing
objective, and the SOC of each energy storage is maintained
in the ideal interval to avoid damage to the energy storage
lifetime. In this paper, the selected energy storage parameters
are shown in Table 2.

As shown in Fig. 6, the overall load power of the re-
gion is compared with the original regional load power after
adopting the method proposed in this paper; the source–load
matching strategy proposed in this paper can significantly re-
duce the power target of the grid-side load to be leveled and
the pressure on the grid-side to meet the original load. At the
same time, the method in this paper makes reasonable use of
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Figure 3. (a) Generation results of a wind power scenario. (b) Generation results of a PV scenario.

Figure 4. Source–load matching results.

the regional wind–solar power and load adjacent to the char-
acteristics of easy scheduling, the use of source–load match-
ing strategy to achieve the power of local consumption, and
the use of fluctuation suppression in the load to avoid pos-
sible waste of wind–solar power in a grid-connected energy
waste situation that may exist.

As shown in Fig. 7, the overall regional load fluctuation
rate is compared with the original regional load fluctuation
rate after adopting the proposed method in this paper. As
shown in the figure, the proposed method can significantly
reduce the fluctuation in the original regional load. The fluc-
tuation of the original load can reach about 0.4, which is
a tremendous pressure on the grid dispatch. However, after
adopting the proposed method, the fluctuation rate of the re-

Figure 5. Energy-storage SOC.

gional load is reduced to less than 0.2, which reduces the
difficulty of grid-side dispatch.

To further verify the effect of the proposed method on re-
gional load fluctuation, three scenarios are set up in this pa-
per for comparison: Scenario 1 is the traditional regional load
suppression, i.e., the load power is completely satisfied by the
grid side; Scenario 2 is the wind–solar system low-frequency
output power used to satisfy the load power, while the en-
ergy storage suppresses a certain amount of excess wind–
solar output and load fluctuation; and Scenario 3 is the pro-
posed method.

In Fig. 8, the comparison between Scenario 2 and Sce-
nario 3 is shown. As shown in the figure, compared with the
direct use of wind–solar power to meet the load, the method
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Figure 6. Load-power changes before and after the suppression.

Figure 7. Changes in load volatility before and after smoothing.

proposed in this paper is more effective in suppressing the
peak fluctuation of the load and reducing the load fluctua-
tion rate. As Scenario 2 is the direct suppression of the low-
frequency output of wind–solar power, the degree of load
reduction in Scenario 2 is higher than that in Scenario 3 at
the peak of wind–solar power output, which to some extent
aggravates the pressure on the grid when the load rises at
the next moment. The method proposed in this paper opti-
mizes the charging and discharging of each energy storage
unit to minimize the overall fluctuation of the regional load. It
achieves this by reducing the load power during peak hours,
charging the energy storage appropriately during load val-
leys and avoiding the fluctuation caused by over-satisfying
the low valley load.

A comparison of the overall load power in the region for
three scenarios on a randomly selected day is shown in Fig. 9.
As shown in the figure, Scenario 3’s overall fluctuation rate

Figure 8. Comparison of Scenario 2 and Scenario 3.

Figure 9. Power comparison of different scenarios in a day.

is smaller than Scenario 2’s rate. The method proposed in
this paper can provide overall smoothing of the split load
while the remaining energy from the source–load matching is
stored in the energy storage so that the load can be smoothed
to some extent even when it is not matched. Compared with
Scenario 2, Scenario 3 has a higher load power part of the
time, which is because the objective of the proposed method
is to reduce the overall volatility of the load, so part of the
wind–solar power is used to charge the energy storage in
that time. Compared with the traditional wind–solar power
directly used to meet the load, the method proposed in this
paper can divide the load reduction of a single period into
the reduction of multiple periods and realize the lowest fluc-
tuation of the regional load as a whole.

In order to verify the effectiveness of this paper’s method
for intraday scheduling, this paper forecasts the load with a
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Figure 10. Load prediction results based on LSTM.

Figure 11. Predictive flattening results of the regional power grid
on a certain day.

time scale of 1 h. It uses this paper’s method for smoothing
verification.

As shown in Fig. 10, the results of using long short-term
memory (LSTM) to forecast each load based on historical
data show that LSTM can forecast the load effectively. In
operation scheduling, the next day’s load can be predicted

based on historical data. At the same time, the source-side
output scenario is selected based on the weather, and the
source–load matching strategy proposed in this paper is used
to match the suppression. In the following sections, the fore-
cast result of a particular day is selected to analyze the level-
ing.

As shown in Fig. 11, after forecasting the load on a particu-
lar day, the wind–solar power is selected to carry out source–
load matching suppression, the results of the grid-connected
load power in the region are compared to the wind–solar
power and the marginal energy storage is suppressed for each
load. After using the method in this paper, the overall grid-
connected power of the regional load is significantly reduced.
At the same time, the peak-load fluctuations are signifi-
cantly reduced – such as, between 12:00–14:00 and 16:00–
20:00 LT – where the original grid-connected load shows sig-
nificant peaks. These peaks place considerable pressure on
grid scheduling. After the suppression of the fluctuation strat-
egy is applied, the resulting smoother load profile reduces the
negative impact on grid-connected exchanges.

Figure 12 shows the change in the SOC of each edge
energy-storage unit after the leveling-off point on the fore-
cast day. As shown in the figure, the wind–solar power out-
put on that day is matched with the fourth load group. After
the wind–solar power output meets the load demand, the ex-
cess energy is used to charge the corresponding energy stor-
age units, so the edge energy storage of the matched load
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Figure 12. Day SOC status of edge energy storage.

Figure 13. Comparison forecast of daily volatility before and after
flattening.

can be kept in a good state for the duration of the day. At
the same time, it can be seen from the change in the SOC
of other marginal energy storage units that on an unmatched
day, the marginal energy storage corresponding to each load
group is appropriately discharged during peak load fluctu-
ations to help reduce overall load fluctuation. At the same
time, to make sure that the load group matches with wind–
solar power for many consecutive days, the energy storage
does not release all of the stored energy at one time so that
the leveling-off time of the storage is prolonged as much as
possible. The utilization of the storage is improved. To ex-
tend the leveling time and improve the utilization of energy
storage as much as possible, the energy storage will not re-
lease all of its stored energy at once.

Figure 13 compares grid-connected volatility before and
after load suppressing of the regional grid on the forecast
day; as demonstrated in the figure, the volatility of the grid-
connected load after using the method of this paper is sig-
nificantly reduced, avoiding peak values of fluctuations. The
grid-connected volatility of the original load has reached
0.2 many times. In contrast, the volatility after suppressing
is maintained at 0.1 or below, which verifies the effective-
ness of the method of this paper for the suppression of grid-
connected load.

5 Conclusion

This paper addresses the shortcomings of wind–solar power
output for load suppressing in the region. We also consider
the smoother wind–solar power low-frequency output and
source–load matching strategy for regional load smoothing.
The proposed method has several significant features and
contributions:

1. Framework development. A regional grid framework
of “one source with multiple loads” is proposed. This
framework effectively utilizes the low-frequency output
of wind–solar power, which is more stable, to match and
smooth the load fluctuations. By dividing the load into
multiple groups and matching them with the source-side
output, the method reduces the overall load fluctuation
and the pressure on the grid-side dispatch.

2. Optimization algorithm. The gray-wolf-optimization al-
gorithm based on Tent chaotic mapping is introduced.
This algorithm enhances the global and local optimiza-
tion capabilities, ensuring that the edge energy storage
at each load side is optimized to minimize the overall
load fluctuation. The algorithm’s chaotic mapping fea-
ture helps to avoid local optima and achieves a more
robust solution.

3. Local consumption and grid pressure reduction. The
method effectively promotes the local consumption of
wind–solar power and reduces the pressure on grid-
side dispatch. By matching the source and load, the
method ensures that renewable energy is utilized more
efficiently, reducing the need for grid support and im-
proving the overall stability of the regional power sys-
tem.

4. High-complementarity utilization. The method fully uti-
lizes the high complementarity of wind and solar power
in the low-frequency band. This complementarity helps
in reducing the uncertainty and volatility of renewable
energy sources, making the power output more pre-
dictable and manageable.

5. Volatility reduction. The method significantly reduces
the volatility of the regional power grid. By optimizing
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the charging and discharging strategies of edge energy
storage, the method ensures that the load fluctuations
are minimized, reducing the difficulty of grid-side dis-
patch and improving the reliability of the power system.

In summary, the proposed method provides a comprehensive
solution to the challenges of integrating renewable energy
into the grid. It not only improves the efficiency of renewable
energy utilization but also enhances the stability and reliabil-
ity of the power system. The method’s ability to match the
source and load effectively and optimize energy storage oper-
ations makes it a valuable tool for regional grid management.
Future work will focus on further refining the model and ex-
ploring its application in different regional and operational
contexts to maximize its potential in promoting sustainable
energy use and grid stability.
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