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Abstract. Accurate wind speed determination at the height of the rotor swept area is critical for resource as-
sessments. ERA5 data combined with short-term measurements through the “measure, correlate, predict” (MCP)
method are commonly used for offshore applications in this context. However, ERA5 poses limitations in cap-
turing site-specific wind speed variability due to its low resolution. To address this, we developed random forest
models extending near-surface wind speed up to 200 m, focusing on the Dutch part of the North Sea. Based
on public 2-year floating lidar data collected at four locations, the 15 % testing subset shows that the random
forest model trained on the remaining 85 % of site-specific wind profiles outperforms the MCP-corrected ERA5
wind profiles in accuracy, bias, and correlation. In the absence of rotor height measurements, a model trained
within a 200 km region handles vertical extension effectively, albeit with increased bias. Our regionally trained
random forest model exhibits superior accuracy in capturing wind speed variations and local effects, with an av-
erage deviation below 5 % compared to corrected ERA5 with a 20 % deviation from measurements. The 10 min
random-forest-predicted wind speeds capture the mesoscale section of the power spectrum where ERA5 shows
degradation. For stable conditions the root mean squared error and bias are 12 % and 29 % larger, respectively,
compared to unstable conditions, which can be attributed to the decoupling effect at higher heights from the
surface during stable stratification. Our study highlights the potential enhancement in wind resource assessment
by means of machine learning methods, specifically random forest. Future research may explore extending the
random forest methodology for higher heights, benefiting a new generation of offshore wind turbines, and in-
vestigating cluster wakes in the North Sea through a multinational network of floating lidars, contingent on data
availability.

1 Introduction

Accurate wind speed knowledge across the entire turbine
swept area is paramount for the wind energy industry, specif-
ically for site assessment and energy yield calculations
(Rohrig et al., 2019). Direct wind profile measurements re-
main the gold standard, with remote sensing devices like li-
dars, especially floating lidars, gaining popularity offshore
for their ability to reach heights beyond traditional meteoro-
logical masts and reduce costs (Gottschall et al., 2017). How-
ever, like meteorological masts, they provide wind profiles as
point measurements, corresponding to specific locations in
space without comprehensive spatial coverage.

In contrast, mesoscale models and global reanalysis
datasets offer extensive horizontal coverage but are hindered
by spatial and temporal resolutions and the associated errors.
Especially in offshore locations, where measurements are of-
ten proprietary and scarce, these models remain insufficiently
validated (Hahmann et al., 2015). Moreover, due to their
large spatial and temporal resolutions, these models tend to
smooth out wind speed fluctuations similar to a low-pass fil-
ter, thereby inaccurately predicting wind speed variability –
an essential input for turbine design (Dörenkämper et al.,
2020; IEC, 2019). As a result, wind farm developers com-
monly adopt a hybrid approach, combining the strengths of
both direct measurements and modeling (Carta et al., 2013).
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This involves conducting measurement campaigns spanning
months to a year (Strack et al., 2010), utilizing these data to
refine and correct modeled information and extend it over the
planned wind turbines’ life span. The “measure, correlate,
predict” (MCP) method is often employed in this context to
localize modeled data at the desired site (Strack et al., 2010).
Given that the North Sea exhibits one of the highest levels of
wind speed fluctuations in Europe (Bett et al., 2013), there
is a need for novel methods, more accurate than the conven-
tional MCP method, to provide more localized wind speed
estimates and lower investment risks (Lee and Fields, 2021).

Recent studies have indicated the potential of machine
learning (ML) methods, particularly random forests, in ex-
trapolating wind speed to the height of the rotor swept area.
Mohandes and Rehman (2018) employed deep neural net-
works (DNNs) to extrapolate lidar measurements in flat ter-
rain. Taking this methodology a step further, Vassallo et al.
(2020) analyzed the sensitivity of DNNs to input features in
complex terrains, achieving up to 65 % and 53 % accuracy
improvement compared to log-law and power-law predic-
tions, respectively. Yu and Vautard (2022) found the random
forest model to outperform the Least Absolute Shrinkage Se-
lector Operator and extreme Gradient Boost in predicting 3-
hourly 100 m wind speed based on the ERA5 inputs with a
root mean squared error (RMSE) of 0.525 m s−1 when vali-
dated against ERA5 wind speeds at 100 m. Liu et al. (2023)
compared the random forest predictions against the power-
law method, validated using onshore profiles measured by a
radiosonde, and showed the superiority of random forest in
RMSE and correlation coefficient. They extended this study
by combining the power-law and random forest methods,
achieving higher performance than each stand-alone method
(Liu et al., 2024).

Notably, these studies trained and tested machine learn-
ing models at the same location. Bodini and Optis (2020b)
argued that this approach is neither fair nor practical. It is
unfair because conventional models, e.g., log-law, power-
law, or mesoscale models, do not see the wind speeds at the
heights of prediction, and it is impractical because there is
no need to predict wind speed where the wind profiles are
already known, i.e., at the training location. Hence, they in-
troduced the round-robin validation method to the literature,
defined as testing the ML model at a location distant from the
training. They implemented this validation method on data
collected at four onshore locations in a 100 km wide region
in the USA. They showed that the random-forest-predicted
wind profiles fed with near-surface measurements and wind
speed at 65 m can improve the predictions of the log and
power law by 25 %, which is reduced to 17 % when the round
robin is accounted for. Random forest has also been used to
vertically extrapolate wind speed offshore. Optis et al. (2021)
utilized two 83 km apart floating lidars in the North Atlantic
of the US offshore area to develop random forests, extend-
ing near-surface speed up to 200 m and evaluating the re-
sults on a climatological level. The round-robin approach

increased the unbiased RMSE by 6 %–9 % but still outper-
formed the Weather Research and Forecasting (WRF) model
in all stability conditions, seasons, and times of day. In a
similar vein, Rouholahnejad et al. (2023) adopted the round-
robin approach to validate random forest models, extending
wind speed up to 300 m. They utilized fixed lidars on three
offshore platforms in a 300 km wide region in the North Sea.
Their round-robin approach resulted in a 14 % improvement
in the mean absolute error for the region-optimized WRF
model. Hatfield et al. (2023) also considered the round-robin
approach to extrapolate satellite wind speed retrievals from
10 to 100 m using random forest models in the North and
Baltic Sea, achieving a 35 % improvement in RMSE com-
pared to NEWA (New European Wind Atlas), albeit facing
the challenge of low data availability from satellites (defined
by two to four overpasses per day only). The evaluation of the
performance of the random forest algorithm is not only lim-
ited to the accuracy of the predicted time series. Bodini and
Optis (2020a) and Hallgren et al. (2024) showed that random
forest is also able to capture low-level jets, an important phe-
nomenon for wind energy applications. These studies have
showcased the potential of random forests in accurately ex-
tending the wind profile in space; however, they do not ad-
dress its ability to capture wind speed variability. To bridge
this knowledge gap, this work will address the following re-
search questions: firstly, how accurately can random forest
predict wind speed variability and structures of different fre-
quencies? And secondly, how does random forest compare
with the currently used MCP method in the resource assess-
ment context?

To address these questions, we developed a random-forest-
based methodology using measured wind profiles in the
North Sea, aiming to overcome the issues associated with
the low temporal and spatial resolution of ERA5 and pro-
vide more localized wind speed predictions. In Sect. 2, we
introduce the floating lidar settings near the Netherlands
coast, proposing two random-forest-based methodologies us-
ing near-surface measurements to predict the wind profile
up to 200 m. Our validation process involves comparing the
ML model with MCP-corrected ERA5 profiles, elaborated
upon in this section. Section 3 presents the validation re-
sults and explores horizontal extrapolation via a round robin
to test the ML model’s robustness and generality in the re-
gion. These two validation approaches contribute to our un-
derstanding of random forest’s potential in improving con-
ventional correction methods for site resource assessment.
The results are discussed in Sect. 4. Finally, Sect. 5 summa-
rizes and concludes this study, followed by insights into the
future of this research field.

2 Material and methods

In this section, we describe the collected observations and
present a methodology to develop a model for extending
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Figure 1. Map showing the locations of the sites. HKW, HKN,
HKZ, and TNW are acronyms for Holland Kuste west, noord, zuid,
and Ten noorden van de Waddeneilanden.

wind profiles at four offshore sites located in the Dutch part
of the North Sea. The model’s predictions are benchmarked
against wind profiles obtained from ERA5 pressure levels,
and both are validated against lidar measurements at the site.

2.1 Observational data

A reliable dataset is key to train and validate a data-driven
model. In this study, we utilize measurements obtained by the
SEAWATCH Wind Lidar Buoys (SWLBs) deployed by Fu-
gro Norway AS within the wind farm zones of Dutch waters
(Netherland Enterprise Agency, 2023). The SWLB, also re-
ferred to as a floating lidar system (FLS), collected wind and
wave data at four specific locations: Hollandse Kust (west,
noord, zuid) and Ten noorden van de Waddeneilanden, in this
study referred to as HKW, HKN, HKZ, and TNW, respec-
tively (see Fig. 1). These systems undertook verification tests
and passed the acceptance criteria provided by the roadmap
for commercial acceptance of floating lidar (DNVGL, 2023;
Carbon Trust, 2024).

Each SWLB is equipped with a sonic anemometer, which
measures wind speed and direction at 4 m a.m.s.l. (above
mean sea level). Additionally, a ZX lidar system (previously
ZephIR) is mounted on the buoy. This continuous wave (CW)
lidar system measures wind speed and direction at 10 ranges
between 30 and 250 m a.m.s.l. For the HKW and TNW sites,
wind speed is measured up to 250 m, while for HKN and
HKZ, measurements extend up to 200 m. To maintain unifor-
mity in our analysis, we have opted to standardize the highest
wind speed height to 200 m across all sites, ensuring consis-
tency in our study.

In addition to wind speed and direction, the Vaisala air
pressure, temperature, and humidity sensors, installed on the
FLS, measure the atmospheric conditions. The water temper-
ature is measured at 1 m below the surface, which we take as
the sea surface temperature (SST). All variables are available
at a 10 min resolution and are time-stamped at the end of each

averaging period. The measured variables used in this study,
along with their associated heights, are summarized in Ta-
ble 1. We used the lidar wind direction at 100 m to exclude
the wind sectors where wind farms were operating nearby
in order to remove their wakes. Detailed information regard-
ing the location, duration, and data availability is listed in
Table 2. The data availability corresponds to the concurrent
lidar profiles and the met station measurements after apply-
ing the wind sector filter. It is important to note that between
the two (at HKN, HKZ, TNW) or three (at HKW) deployed
FLSs, the one with the highest data availability is chosen for
this study and no data gap filling incorporating neighboring
buoys or other data sources is implemented. However, the
data gap of sea surface temperature on buoy A at HKN start-
ing from 12 January 2019 for 1.5 months is filled with the
one measured by buoy B. We assumed that the sea surface
temperature is fairly constant over a distance of 2 km.

2.2 Reanalysis data

The proposed methodology is benchmarked against ERA5,
the state-of-the-art fifth-generation reanalysis dataset devel-
oped by ECMWF. ERA5 combines historical measured data
with numerical models using the IFS Cycle 41r2 data assim-
ilation model in 12 h windows to provide hourly atmospheric
variables since 1940 (Hersbach et al., 2023). It offers a spatial
resolution of 0.25°× 0.25°, covering the entire globe, hence
making it a powerful tool to be used for wind resource as-
sessment, energy yield calculations, or climate change stud-
ies. In the specific region of this study, the spatial resolution
corresponds to 28× 17 km (latitude and longitude).

We extracted ERA5 pressure-level data available at the
grid point closest to the buoy. These profiles are then inter-
polated to obtain the horizontal wind speed at the desired
heights by means of fitting a monotone cubic function to the
wind profile. The ERA5 wind profiles are corrected based on
the method elaborated in Sect. 2.4.

2.3 Random-forest-based models

In this study, we introduce two models based on the ran-
dom forest algorithm: the random forest regressor (Breiman,
2001) and quantile regression forest (Meinshausen, 2006).
These models are employed to extend wind speed measure-
ments collected by the sonic anemometers. Our methodology
involves randomly selecting a continuous 15 % of the data
each month for testing, while utilizing the remaining data
for training the models. It is important to note that fully ran-
dom splitting assumes that the dataset is representative, with
observations being independent and identically distributed –
conditions that do not hold in our case. Therefore, our ap-
proach prevents the introduction of artificial correlations be-
tween the testing and training datasets, ensuring the preser-
vation of the underlying seasonality, while still allowing for
accurate model evaluation. To tune the hyperparameters, we
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Table 1. Variables measured by the floating lidar systems (FLSs) in this study, along with their associated heights. This information applies
uniformly to all FLS units used, given their consistent and similar structure. The notation “a.m.s.l.” signifies above mean sea level.

Variable Device Height [m a.m.s.l.]

Pressure Vaisala PTB330A 0.5
Wind speed and direction ZephIR 300S/ZX 300 30, 40, 60, 80, 100, 120, 140, 160, 180, 200
Wind speed and direction Gill Windsonic M acoustic wind sensor 4
Temperature and humidity Vaisala HMP155 4
SST Nortek Aquadopp 600 kHz current profiler −1

Table 2. Summary of campaign details: location, duration, and data availability for each FLS. The data availability corresponds to the
concurrent profiles.

Site Buoy Campaign period Lat, long Coastal Direction Data Number
direction, filter availability of
distance (not valid) samples

HKW A 5 Feb 2019–11 Feb 2021 52.57, 3.72° East, 53 km – 83 % 88 113
HKN A 10 Apr 2017–10 Apr 2019 52.69, 4.08° East, 18.5 km 100–200° 60 % 62 835
HKZ B 5 Jun 2016–5 Jun 2018 52.31, 4.01° East, 18 km 20–70° 80 % 84 510
TNW A 19 Jun 2019–20 Jun 2021 54.02, 5.56° South, 56 km 60–120° 64 % 67 590

Table 3. Hyperparameters used in the random forest and quantile
regression forest models.

Site Hyperparameter RF QRF

HKW
n_estimator 100 100
max_feature 7 8
min_sample_leaf 40 40

HKN
n_estimator 300 100
max_feature 7 7
min_sample_leaf 50 60

HKZ
n_estimator 300 100
max_feature 8 8
min_sample_leaf 40 50

TNW
n_estimator 300 100
max_feature 7 7
min_sample_leaf 20 30

chose a 15 % continuous subset within the training period
and optimized for the RMSE of this subset. Table 3 pro-
vides the hyperparameters for both random forest regressor
and quantile regression forest models at all sites.

We conducted both same-site and round-robin validations
for each model. In “round-robin validation”, the model is ap-
plied to locations where it was not initially trained. This ap-
proach extends wind profiles spatially. Meanwhile, “same-
site validation” extends the near-surface wind speed verti-
cally (Bodini and Optis, 2020b).

The random forest models’ outputs and the measured data
are downsampled to 1 h to match the temporal resolution of
ERA5 and stamped in the middle of the period.

2.3.1 Random forest regressor – RF

The random forest algorithm consists of multiple regression
decision trees, each trained on bootstrapped data. This en-
semble approach enhances the robustness of the model. De-
cision trees, which are a type of supervised learning model,
make decisions by recursively splitting the data at each node
based on the best feature. The best feature is determined by
its ability to minimize the mean squared error when used to
split the data into subsets. The splitting process continues un-
til a specific criterion is met, at which point a node becomes
a leaf. Each leaf in the tree can contain multiple observations
(see Fig. 2).

In a random forest model, the prediction of a regres-
sion tree is the conditional mean of the observations within
the corresponding leaf that the test sample falls into when
traversing down the tree. By averaging the predictions of
multiple trees, we obtain the prediction of the random for-
est model. We used the RandomForestRegressor class from
sklearn (Pedregosa et al., 2011).

2.3.2 Quantile regression forest – QRF

In contrast to random forest, where only the mean of the ob-
servations in the leaf nodes is retained, a quantile regressor
forest preserves the entire data distribution. As a result, the
prediction of each tree in a quantile regressor forest corre-
sponds to the desired conditional quantile of the observations
at each node. This is particularly useful, as it provides in-
formation regarding the confidence interval and allows for
the use of the median of the observations to predict the pro-
file, rather than relying on the mean as in the case of ran-
dom forest. We used the RandomForestQuantileRegressor
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Figure 2. Overview of the random forest regressor (RF) and quantile regression forest (QRF). Panel (a) depicts the structure of an example
tree, with the red path indicating the route taken by a testing sample. Panel (b) illustrates the sample distribution of the leaf node where the
testing sample landed, highlighting distinctions between RF and QRF predictions. Panel (c) presents the actual predictions of RF and QRF
models trained at HKW, along with the confidence interval derived from the QRF model.

class from the sklearn_quantile package (Roebroek, 2022),
which is programmed based on an algorithm proposed by
Meinshausen (2006). The hyperparameters used to create the
quantile regression forests are listed in Table 3. We used the
minimum sample leaf to ensure that the median is represen-
tative by having a sufficient number of samples at each leaf.

2.4 Measure, correlate, predict

The “measure, correlate, predict” (MCP) method is an es-
tablished technique used in wind resource assessment to es-
timate long-term wind characteristics at a specific location
(Carta et al., 2013; Rogers et al., 2005). Due to the high cost
of measurement campaigns, especially offshore, wind data
are typically collected for a shorter period (typically 1 year)
and then correlated with reference data from nearby locations
or reanalysis/mesoscale data. This correlation helps correct
the reference data in the absence of in situ measurements,

providing a more accurate representation of long-term wind
characteristics at the specific location.

In this study, we used the correlation between the ERA5
and measured wind speeds during training to correct the
ERA5 testing subset for the same-site approach. For each
height individually, we employed a two-parameter linear re-
gression model (slope and intercept) by minimizing the least
squared error with respect to the training subset. Subse-
quently, we utilized the derived slope and intercept values to
adjust the testing subset accordingly. This approach ensures
a fairer comparison between ERA5 and the random forest
model since both models have and use knowledge about the
training subset. In this study, the corrected ERA5 wind pro-
files are referred to as ERA5-corrected.

2.5 Statistical parameters

To assess the accuracy of wind speed predictions, we em-
ployed standard error metrics. Additionally, we computed
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ramp rates to gauge wind speed variability and analyzed the
power spectrum to gain insights into the underlying struc-
tures present in the wind data.

2.5.1 Error metrics

We used the root mean squared error (RMSE), mean abso-
lute error (MAE), bias, and coefficient of correlation R2 as
defined below to estimate the overall performance of the pre-
dicted time series.

RMSE=

√
1
N
6
(
U tmodel−U

t
obs
)2
, (1)

MAE=
1
N
6|U tmodel−U

t
obs|, (2)

Bias=
1
N
6
(
U tmodel−U

t
obs
)
, (3)

R2
= 1−

6
(
U tmodel−U

t
obs
)2

6
(
U tmodel−Uobs

)2 , (4)

where U tmodel and U tobs are the predicted and measured wind
speed at time stamp t , and Uobs is the mean observed wind
speed over time.

2.5.2 Wind speed ramp rate

To evaluate the ability of the models to capture the variability
of the site, we calculated the ramp rate as the change in the
wind speed in a 1 h period (Milan et al., 2014):

Ramp rate= U ti −U ti−1 . (5)

The temporal resolution of the concurrent dataset is 1 h, and
hence we present the hourly ramp rates. But to gain a general
understanding of the hourly fluctuations, we calculated the
mean absolute hourly ramp rate as

µramp rate =
1
N
6|U ti −U ti−1 |. (6)

2.5.3 Power spectral density

The power spectral density (S) was computed using the
Fourier transform (F) of the detrended horizontal wind speed
as follows:

S =
2
N
· lim
T→∞

6|F
(
U t −U

)
|
2, (7)

where T is the period, and N is the number of samples. The
defined S in Eq. (7) is for positive frequencies, representing
the one-sided spectrum. To smooth the spectrum, Hamming
windows of 30 d without overlap were applied.

In this study, we present the measured and modeled S for
the entire data period, approximately 2 years for each site.
This approach allows for a more continuous time series and
helps avoid filling gaps. It is important to note that we did not
apply the RF model if it had seen the 15 % training subset to
ensure unbiased spectral comparisons.

2.6 Bulk Richardson number

Atmospheric stability refers to the condition of the atmo-
sphere in terms of its tendency to resist vertical motion or
mixing of air masses. The bulk Richardson number (RB) re-
lates the buoyancy force to the shear force and can therefore
give insights on the stability condition. We calculated RB de-
scribed by Eq. (8), where θv and g are the virtual potential
temperature and the acceleration due to gravity, respectively.
z is the height (here 4 m) and Uz represents the horizontal
velocity at this height (Stull, 1988). Here we took the param-
eters at sea surface and at height z and assumed a no-slip
condition at the sea surface (zero velocity). For a more de-
tailed derivation, we refer to Appendix A.

RB =
g1θv1z

θvU2
z

(8)

Having the bulk Richardson number, the stability parame-
ter (ζ ) can be estimated as follows (Grachev and Fairall,
1997):

ζ =

{
C1RB

1−C2RB
for RB > 0

C1RB for RB ≤ 0,
(9)

where C1 and C2 are 10 and 5, respectively. Finally, the
Monin–Obukhov length (L) can be calculated as

L=

1
2z

ζ
. (10)

L was utilized in the post-processing phase to exam-
ine the impact of stability on the predictions. The samples
are categorized as stable if 0< L< 1000 and unstable if
−1000< L< 0. The choice was based on literature conven-
tions, where ranges such as 0< L< 200 (−200< L< 0)
and 200< L< 1000 (−1000< L<−200) are common for
very stable (very unstable) and stable (unstable) conditions
(Argyle and Watson, 2014; Motta et al., 2005). In this study,
we do not distinguish between stable (unstable) and very sta-
ble (very unstable) conditions, as we use this classification
primarily for error characterization.

3 Results

In our investigation, we implemented the proposed method-
ology by training four distinct random forest models across
four geographically diverse sites. This section starts with a
detailed discussion of the crucial features embedded in these
models. Subsequently, we present and compare the predicted
wind profiles with the corresponding ERA5 profiles. To eval-
uate model performance, lidar profiles serve as ground truth,
and an array of performance metrics is computed. Further-
more, a meticulous analysis of error characteristics provides
profound insights into the potential of the applied machine
learning algorithms in terms of wind speed variability and
power spectrum.
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Figure 3. Importance of each input considered by the random forest regressor (a) and correlation of input variables with lidar-measured
wind speed at 100 m (b). The data captured at HKW were used for these plots, and similar behavior was observed across different locations.

3.1 Features

The normalized importance of each input for the random for-
est algorithm, as depicted in Fig. 3a, is determined by its
role in reducing squared error. Consistent with established
literature (Optis et al., 2021; Bodini and Optis, 2020b), our
study reaffirms that near-surface wind speed stands out as the
most crucial input. Our analysis further underscores the sig-
nificance of the air–sea temperature difference as a proxy for
stability, aligning with prior research emphasizing its impor-
tance (Optis et al., 2021; Hatfield et al., 2023).

The alignment of feature importance with the correlation
table, as illustrated in Fig. 3b, provides a compelling indica-
tion of the random forest algorithm’s effectiveness in identi-
fying relevant variables and partitioning the data accordingly.

3.2 Wind speed reconstruction

The two random-forest-based models, RF and QRF, were
supplied with the aforementioned variables to predict wind
speeds at elevations considerably exceeding the input heights
(ranging from 30 to 200 m). Two distinct validation ap-
proaches were employed: same site and round robin.

In the same-site validation, the machine learning models
were tested at the locations where they underwent training.
The resulting wind speed profiles were benchmarked against
corrected ERA5 profiles. This validation methodology en-
sures that the models are assessed in regions where they pos-
sess knowledge of the wind speed during the training time
stamps.

Conversely, the round-robin validation involved a compar-
ison against ERA5 outputs directly. In this case, the machine
learning models were tested at locations spanning distances

of 27 to 215 km from their training sites. The efficacy of the
models in predicting wind speeds at locations significantly
distant from the training sites is thus rigorously evaluated.

3.2.1 Same-site validation

The wind profiles obtained through the same-site validation
at the HKW site are illustrated in Fig. 4. In Fig. 4a, the
average profile predicted by the RF model exhibits a no-
table alignment with the lidar average profile. Conversely,
the QRF model and corrected ERA5 profiles slightly under-
estimate the wind speed. To quantify this bias more con-
cretely at 100 m, Fig. 4c presents a Gaussian distribution fit-
ted on the error density histogram. The mean of this distri-
bution, representing the bias at 100 m, is−0.01 m s−1 for RF
and −0.05 m s−1 for corrected ERA5. Notably, the random-
forest-based models demonstrate a narrower error distribu-
tion with a standard deviation of 0.64 m s−1, indicating a
75 % reduction compared to corrected ERA5. This narrower
distribution contributes to a lower RMSE, as depicted in
Fig. 4b.

The RMSE of machine learning (ML)-predicted wind
speeds remains comparable for both RF and QRF, exhibit-
ing an increase with height (50 % from 100 to 200 m) where
the conditions can become decoupled from surface-measured
variables. This was also observed in prior studies (Bodini and
Optis, 2020b; Hallgren et al., 2024). In contrast, corrected
ERA5 shows a weaker dependency of RMSE on height, indi-
cating consistent modeling of processes across all elevations.
However, the RMSE of ERA5 wind speeds surpasses that of
random-forest-based models at all heights, averaging a 40 %
higher value. This underscores the potential of the random
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Figure 4. Same-site validation at the HKW location: average wind profiles (a), RMSE profile (b), and the error probability density func-
tion (PDF) at 100 m (c) for the testing subset, comprising 2388 1 h averages. Wind profiles are shaded with the standard error of the mean,
and error histograms are binned into 0.2 m s−1 intervals.

forest algorithm for filling the lidar gaps during a floating li-
dar campaign, given that the met station collects data during
the lidar gap.

3.2.2 Round-robin validation

In the round-robin validation conducted at HKW, the
ML models trained at TNW, HKN, and HKZ were sup-
plied with input variables at HKW, and their predicted wind
speeds were compared with ERA5 outputs. The outcomes
are depicted in Fig. 5. Notably, the QRF-predicted average
wind speeds are consistently slower than those predicted by
the RF model across all training locations. Models trained
at TNW exhibit a positive bias, growing with height, while
those trained at HKN and HKZ display a negative bias. This
discrepancy may be attributed to the higher average wind
speeds at TNW, which are 0.32 and 0.74 m s−1 greater than
those at HKN and HKZ, respectively (as per data presented
in Table 2). The uncorrected ERA5 average profile exhibits
a relatively constant negative bias for all heights, surpassing
the bias of ML models in absolute value, except for ML mod-
els trained at HKN and at higher elevations (Fig. 5a).

Examining the ML models trained at TNW and the ERA5
error distributions at 100 m (Fig. 5c), it is evident that the
spread of the ML error distribution is akin to the same-
site approach (0.68 m s−1), albeit with a slightly larger mean
(12 %). This marginal overestimation is noteworthy, consid-
ering the geographical distance between training and testing
locations (202 km). The mean of the ERA5 error distribution
at 100 m is −0.33 m s−1, which is 3 times larger in absolute
value than that of the RF model trained 202 km away.

The RMSE of all round-robin ML models applied at the
HKW site is very similar, on average 7 % larger than the

same-site approach. However, it is crucial to highlight that
all round-robin ML models consistently outperform ERA5
in RMSE, indicating a significant improvement (37 %). This
underscores the robustness and potential of the proposed
ML methodology in horizontally extrapolating wind profiles.

It is noteworthy that the MCP correction of ERA5 wind
speeds reduced the bias to 0.07 m s−1 (by 61 %) across all
heights. However, its impact on RMSE was limited (0.8 %).
Hence, we recommend considering the random forest mod-
els for site assessment calculations if offshore near-surface
measurements are available in the region, even at a distance
of 200 km.

3.3 Error analysis

To evaluate the overall performance of the random forest
model, three key performance metrics are presented in Fig. 6.
The depicted metrics include bias, RMSE, and the coefficient
of determination (R2). These metrics collectively indicate a
degradation in model performance as the application distance
from the training locations increases. In the case of same-site
validation (distance= 0), the bias of the machine-learning-
based models ranges between −0.09 and 0.04 m s−1. How-
ever, it expands to −0.37 to 0.34 m s−1 when the models are
trained 200 km away. ERA5 systematically underestimates
the wind speed in the North Sea (also noted by Dörenkäm-
per et al., 2020), even to the extent of −0.58 m s−1. But with
correction, the bias lies between −0.07 and 0.07 m s−1. It is
advisable to maintain a minimum distance to training when
applying the random forest model to ensure a performance
comparable to ERA5 in terms of bias.

Additionally, RMSE is also observed to correlate with the
distance to training, as it grows from 0.73 to 0.81 m s−1 when
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Figure 5. Round-robin validation at the HKW location: average wind profiles (a), RMSE profile (b), and the error probability density
function (PDF) at 100 m (c) for the testing subset, comprising 2388 1 h averages. Wind profiles are shaded with the standard error of the
mean, and error histograms are binned into 0.2 m s−1 intervals.

Figure 6. Dependence of errors on the distance between training and testing sites, with horizontal lines indicating ERA5 error metrics pre-
and post-correction at the four sites for comparison.

the model is trained 170–215 km away (Fig. 6b). However,
the random forest models trained at all distances consistently
outperform ERA5 outputs, both before and after MCP cor-
rection.

Furthermore, the random forest models have an R2 of
0.97 for same-site implementation, which drops slightly
(0.2 %) with a training distance of 200 km (Fig. 6c). Nev-
ertheless, even the ML models trained the furthest (up to
215 km away) outperform ERA5 by 4.4 % in terms of R2.

It is pertinent to note that MCP correction does not alter the
R2 values due to its linear characteristics.

Figures 7 and 8 show that both the same-site (blue) and
round-robin (green) implementations of the RF model ex-
hibit the highest precision and accuracy for wind speeds
ranging from 4 to 20 m s−1, a range frequently encountered
in practice. The results were similar for the QRF model (not
shown). The bias of ERA5 appears to increase with wind
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Figure 7. MAE dependency on wind speed (a) and direction (b) at 100 m at the HKW location. Error metrics are binned into 1 m s−1 and
10° intervals for the left and right panels, respectively. The background shading illustrates the distributions of measured wind speed and
direction in gray.

Figure 8. Bias dependency on wind speed (a) and direction (b) at 100 m at the HKW location. Error metrics are binned into 1 m s−1 and 10°
intervals for the left and right panels, respectively. The legends are the same as in Fig. 7.

speed. However, it can be effectively corrected even for wind
speeds up to 19 m s−1 (Fig. 8a).

Figure 7b shows that both models demonstrate a higher
MAE for winds coming from the southeast, corresponding to
the coastal region. ERA5 has previously shown limitations in
resolving coastal effects due to its spatial resolution (Rubio
et al., 2022). The MAE in this wind sector also appears to
be higher for the random forest models. This is the case for
the TNW site with a different coastal direction as well (not
shown). Nevertheless, the MAE in this section is 0.5 m s−1

lower than that of ERA5, indicating an improvement in per-
formance.

3.4 Wind speed variability

The ramp rate serves as a metric capturing the variability
of wind speed over time. Hourly ramp rates were calcu-
lated to quantify the extent of wind speed changes within 1 h.
Datasets with higher temporal resolution, such as those mea-
sured and modeled by random forest, were down-sampled to
match the resolution of ERA5. Figure 9 illustrates a normal
fit to the ramp rate distribution at the HKW site at 100 m for
the testing samples.

Both the same-site and round-robin predictions of the ran-
dom forest model exhibit good alignment with the mea-
surements in terms of hourly variability. In contrast, ERA5
displays a narrower distribution compared to the lidar, in-

Figure 9. Gaussian fit to the hourly ramp rate distribution at the
HKW site, here for 100 m.

dicating a deficiency in properly modeling hourly variabil-
ity. Notably, after MCP correction, the distribution becomes
marginally wider, bringing it closer to the measurements.

The ramp rate results are quantified in Table 4, where µ is
the mean of the absolute ramp rates and σ the standard devia-
tion of the Gaussian distribution, also shown in Fig. 9. ERA5
hourly wind speed variability shows an underestimation of
27 % and 28 % in the mean and standard deviation, which is
reduced to 22 % when MCP correction is incorporated, indi-
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cating an improvement in ERA5’s ability to capture hourly
wind speed changes.

Contrastingly, the random forest algorithm appears to ac-
curately model wind speed variability with only a 4 % to
5 % overestimation for both the same-site and round-robin
approach. The low spatial and temporal resolution of ERA5
may contribute to the observed larger deviation in the mean
and standard deviation of ramp rates. This emphasizes the
impact of spatial grid characteristics on the variability rep-
resentation within ERA5. The lower deviation in RF might
be influenced by the fact that RF models are trained on point
measurements, leading to a more localized understanding of
wind variability.

3.5 Spectral analysis

Although it deviates from reality, scientists often approxi-
mate the wind speed signal as the superposition of waves
with different frequencies to gain a physical understanding
of eddy sizes. We conducted a comparison between the mea-
sured power spectral density and the modeled ones at the
TNW site at 100 m, as depicted in Fig. 10. The plot repre-
sents 2 years of data at TNW (not a testing subset). Conse-
quently, only predictions of the random forest model devel-
oped at HKW are shown and cross-compared with the non-
corrected ERA5 predictions.

As previously mentioned in Sect. 3.4, ERA5 faces chal-
lenges in capturing wind speed variability due to its resolu-
tion. In fact, we do not expect ERA5 to resolve the mesoscale
range of the spectrum thoroughly, given its resolution. Fig-
ure 10 confirms this, illustrating a degradation of energy for
higher frequencies but good alignment for low frequencies,
also shown by Meyer and Gottschall (2022). On the other
hand, the random forest model trained 202 km away from
TNW was able to capture eddies as small as the lidar could.

3.6 Atmospheric stability

In the final phase of our investigation, we focused on eval-
uating the performance of machine learning models under
various stability regimes. We estimated the Monin–Obukhov
length based on the bulk Richardson number as explained
in Sect. 2.6. Figure 11 shows the 1/L distribution for all
sites. We used the criteria elaborated in Sect. 2.6 to classify
the predictions shown in Figs. 12 and 13. Figure 12 shows
that machine learning models demonstrate increased accu-
racy in predicting wind speeds during unstable conditions,
consistent with findings from Optis et al. (2021) and Bod-
ini and Optis (2020b). Comparing stable and unstable condi-
tions, we observe that the RMSE and bias are 12 % and 29 %
larger, respectively, for stable conditions. This discrepancy is
attributed to the decoupling effect at higher heights from the
surface, influenced by lower turbulent fluxes in the vertical
direction, during stable stratification.

Table 4. Ramp rate statistics at 100 m: µ corresponds to the average
of the absolute change in the wind speed in a 1 h period. σ is the
standard deviation of the normal fit to the ramp rate distribution.

Deviation (%)

Same site Round robin

Site Ramp Observation RF ERA5_corr RF ERA5
rate
stats
[m s−1]

HKW
µ 0.69 3.3 −20.0 2.1 −25.1
σ 0.97 4.7 −19.8 3.3 −24.8

HKN
µ 0.74 6.3 −27.0 9.3 −30.1
σ 0.98 7.8 −26.6 10.7 −30.3

HKZ
µ 0.77 4.5 −23.2 4.8 −29.7
σ 1.08 4.4 −24.2 4.6 −31.3

TNW
µ 0.76 4.5 −16.8 1.4 −22.2
σ 1.06 6.1 −19.5 2.3 −24.7

Figure 13 demonstrates the dependency of the random for-
est performance considering the two validation approaches
under distinct stability regimes. As detailed in Sect. 3.3, the
round-robin approach consistently yields less accurate re-
sults than the same-site validation, irrespective of the sta-
bility regime (Fig. 13a). Interestingly, the decline in accu-
racy when applied away from the training location cannot be
solely attributed to atmospheric stratification, as the propor-
tionate decrease in accuracy remains consistent for both sta-
ble and unstable conditions. The transition to the round-robin
approach introduces an increase in bias in absolute value,
with a slightly more pronounced effect observed for stable
conditions (Fig. 13b).

4 Discussion

In this study, we investigated the performance of the ran-
dom forest algorithm on vertical extension of buoy wind
profiles. We focused on how accurate the random forest
can predict the wind speed variability and capture differ-
ent structures, where ERA5, commonly used for site assess-
ment, shows inefficacy (Dörenkämper et al., 2020; Meyer
and Gottschall, 2022). We proposed a methodology to as-
similate near-surface measurements into a model based on
two machine learning algorithms: the random forest regres-
sor (RF) and quantile regression forest (QRF). While RF is
a well-researched method, QRF is introduced to the wind
energy literature for the first time. QRF predictions gener-
ally trend slightly lower than those of RF, exhibiting a simi-
lar performance when validated against lidar measurements.
The advantage of QRF lies in reporting the desired uncer-
tainty as a by-product, albeit at the cost of a longer model-
ing time. For benchmarking, we chose the ERA5 dataset and
corrected it using the “measure, correlate, predict” (MCP)
method, a common method for long-term extrapolations in
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Figure 10. Power spectral density at 100 m at TNW, calculated as described in Sect. 2.5.3. δT represents the temporal resolution of the
dataset.

Figure 11. Distribution of atmospheric stability for the testing subset. The error categorization in Figs. 12 and 13 corresponds to these
distributions.

site assessment calculations. The MCP method is known to
have low computational effort, which can offer advantages
over more computationally intensive ML methods. The com-
putation time for the random forest model is highly depen-
dent on hyperparameters, particularly the number of trees. In
our study, the training time per location ranged from 21 to
77 s, demonstrating the model’s computational efficiency.

The hyperparameters of the random forest algorithm deter-
mine the structure and quantity of trees in the model. These
parameters set the convergence criteria for terminating data
splits and subsequently using the mean value of the pop-
ulation within a leaf node as the predictive output. When

the input features effectively capture the underlying system
dynamics, a shallow tree structure can yield accurate pre-
dictions. Upon visualizing a specific decision tree, we ob-
served a clear stratification where time stamps associated
with higher wind speeds predominantly occupied one side of
the tree, while lower wind speeds were clustered on the other
side. This outcome is likely influenced by the frequent uti-
lization of the 4 m wind speed feature within the algorithm.
In regions characterized by unstable stratification, it is plau-
sible that the decision trees are inherently shorter, given that
surface wind speed may serve as a robust indicator of the
wind profile. Despite the absence of explicit physical mod-
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Figure 12. Box plot depicting the RMSE (a) and bias (b) for RF and QRF predictions in stable and unstable conditions across all heights,
with variations attributed to different locations.

Figure 13. Box plot depicting the RMSE (a) and bias (b) of RF for same-site and round-robin validations in stable and unstable conditions
across all heights, with variations attributed to different locations.

eling within the machine learning framework, the algorithm
demonstrated an ability to organize the data in a manner con-
sistent with established physical principles.

The top environmental variables that the wind speed aloft
correlates with are near-surface wind speed, air–sea temper-
ature difference, and pressure. This is well captured by the
random forest, as these have the highest impact on mini-
mizing the least squared error (see Fig. 3). The cosine of
month and the air temperature also correlate well with the
wind speed at 100 m but are not considered important by
random forest. This can be due to the fact that they are not
independent of the ones considered important. For instance,
the dependency of temperature on pressure can be described
by the ideal gas law. Pressure is considered more helpful,
most probably because it changes more drastically than tem-
perature. The air–sea temperature difference, used as proxy
for atmospheric stratification, contributes to 34 % RMSE im-
provement. This aligns with previous findings by Hatfield
et al. (2023) and Optis et al. (2021), both of whom demon-
strated that excluding this variable can result in up to a 20 %
increase in RMSE. The inclusion of near-surface wind di-
rection as an input variable has demonstrated efficacy in en-
hancing model performance during testing at the same site
as training (not shown). However, a nuanced consideration is
imperative, as its applicability becomes potentially mislead-
ing when extrapolated to locations characterized by a coastal
direction differing from that of the training site. Since the
model is trained without explicit information about changes
in coastal direction, it may not effectively account for such
variations in different geographical contexts. In order to safe-

guard the universality and robustness of our model within the
designated domain, a deliberate decision has been made to
exclude wind direction as an input variable.

Our analysis demonstrated that, in cases where wind pro-
files exist at a specific location (for training), machine learn-
ing models fed with the near-surface measurements outper-
form corrected ERA5 profiles, with a 39 % improvement in
RMSE and a 35 % improvement in bias. This is a fair com-
parison, where both models have knowledge of wind speeds
up to 200 m at the site. This improvement aligns with a study
by Schwegmann et al. (2023), where the top five machine
learning models, including random forest, demonstrated su-
perior performance, outpacing MCP-corrected ERA5 wind
speeds by up to 28 % in RMSE. These findings under-
score the potential value of a random forest model in fill-
ing measurement gaps during offshore campaigns in the pre-
deployment phase. Such gaps, arising from system failures
(e.g., of the sensors, electronic cabinet, or power supply) or
low backscatter, are more common in offshore locations with
challenging weather conditions.

The round-robin validation, initially proposed by Bod-
ini and Optis (2020b) to avoid an overestimation of ma-
chine learning performance, revealed that horizontal extrap-
olation of ML models has an adverse effect, particularly on
bias. Bias increases to 0.28 m s−1 (300 %) in absolute value
with a 200 km distance from the trained location, shown in
Fig. 6. Hence, we recommend maintaining a minimum dis-
tance to the training location to ensure biases comparable
with corrected ERA5. However, all round-robin validations
yield lower RMSE and higher R2 than ERA5, both pre- and
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post-correction. A dataset with a larger bias but higher ac-
curacy may be preferred, as the systematic bias can be re-
moved using post-processing methods. Notably, the perfor-
mance improvement of random forest compared to ERA5
declines with height, as also found by Hallgren et al. (2024).

In conditions where the wind aloft is decoupled from the
surface, as observed during stable stratification, the predic-
tion of wind speed poses increased challenges for the ran-
dom forest model, primarily due to its reliance on informa-
tion from the near-surface level (see Fig. 12b). A similar ob-
servation was made by Optis et al. (2021).

One notable finding of this study was that ERA5 en-
counters challenges in modeling winds from coastal areas.
Our analysis reveals that the random forest model also ex-
hibits the highest MAE in the coastal wind sector but is still
0.5 m s−1 more accurate than ERA5 (see Fig. 7b). As a next
step, a more in-depth investigation could explore the feasibil-
ity of incorporating coastal characteristics as additional input
variables into the model. This inquiry may lead to further re-
finements in the random forest model’s performance, particu-
larly in regions influenced by proximity to the coast. We also
observed the largest negative bias of ERA5 at higher wind
speeds, effectively removed using MCP. Nevertheless, the
random forest model trained 200 km away showed a lower
bias and MAE than both ERA5 and corrected ERA5 for al-
most all wind speed ranges at the HKW site.

Our main objective was to assess the potential of em-
ploying random forest to address the underestimation of
wind speed variability in ERA5, linked to its coarse spa-
tial grid (Meyer and Gottschall, 2022). Our findings con-
firm that ERA5 consistently underestimates wind speed vari-
ability, exhibiting a deviation of 22–30% from observed ab-
solute wind speed hourly changes (refer to Table 4). After
correction, this deviation is reduced to 16 %–27 % across all
sites. In contrast, the machine learning method proves to be
more accurate, demonstrating a deviation of 2 %–9 %. The
limited resolution of ERA5 also impedes its ability to cap-
ture the mesoscale range of the power spectrum. Remark-
ably, the random forest model, even when trained 200 km
away, successfully models eddies as small as those observed
in the measurements. This capability stems from its training
on 10 min point measurements, rendering it more localized
and adept at capturing fine-scale wind patterns. Our analysis
demonstrated that the MCP correction applied to the ERA5
predictions does not mitigate the degradation at higher fre-
quencies (data not shown) but primarily alters the energy at
lower frequencies, thereby correcting the bias.

Our analysis deliberately excluded wake effects by filter-
ing out the influence of neighboring wind farms to main-
tain the model’s simplicity, allowing a focused analysis to
attribute errors accurately. However, as wind parks become
more concentrated in the North Sea area and long-lasting
cluster wakes become prevalent, the prospect of incorporat-
ing wake effects into the modeling process and validation
presents itself as an intriguing avenue for future exploration.

This potential advantage gains significance, particularly as
current state-of-the-art reanalysis data lack comprehensive
coverage of the wind farms. The inclusion of wake effects
in future research could significantly enhance our under-
standing of wind behavior in regions with dense wind park
concentrations. Realizing this potential would greatly benefit
from a multinational network of floating lidars in the North
Sea, provided that the collected data are made publicly avail-
able. To achieve this, international collaboration is essential.

The results of this study demonstrate that utilizing a ran-
dom forest model trained at the North Sea, coupled with a
network of buoys equipped with redundant met stations, has
the potential to significantly enhance the existing estimations
of wind profiles. This improvement can greatly benefit site
assessments, leading to substantial cost savings, as uncer-
tainties in wind speed estimations directly propagate into fi-
nancial uncertainties. It is essential to underscore that, even
with the implementation of the machine learning model, the
need to measure the wind profile will not be entirely elim-
inated. The machine learning model, being fundamentally
data-driven, must undergo thorough validation against mea-
surements to ensure its reliability.

5 Conclusion

The accurate determination of wind speed at the height
of the rotor swept area is crucial for effective site assess-
ment and precise yield calculations in the wind energy in-
dustry. While the industry commonly relies on integrating
ERA5 data with short-term measurements through the MCP
method, our study brings attention to ERA5’s limitations in
capturing site-specific wind speed variability due to its inher-
ent low resolution.

To address this challenge, we developed random forest
models capable of extending near-surface wind speed up to
200 m. Our study focused on the Dutch part of the North Sea,
where we meticulously trained, cross-compared, and verified
these models using floating lidars from four sites.

Our findings underscore the superiority of the random for-
est model when provided with wind profiles at the site. In
such cases, it outperforms MCP-corrected ERA5 wind pro-
files in terms of accuracy, bias, and coefficient of correla-
tion. However, when wind measurements at the rotor height
are unavailable, a model trained on wind profiles within
a 200 km region can effectively handle the vertical exten-
sion. Our analysis reveals that the horizontal extension of
the model primarily impacts bias, with a significant increase
when the training location is 200 km away, reaching up to
0.37 m s−1 in absolute value (300 %), accompanied by a rel-
atively minor drop in accuracy.

Notably, a random forest model trained on local wind
profiles demonstrates superior accuracy in capturing wind
speed variations and local effects. Compared to the corrected
ERA5, which exhibits a 22% deviation in absolute hourly
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wind speed variability at a site, a random forest model trained
at a distance shows an average deviation of up to 5%. Ad-
ditionally, the machine learning model adeptly captures the
mesoscale range of the power spectrum, where ERA5 expe-
riences degradation.

Our results highlight the potential of machine learning
methods and offer a feasibility analysis for their use in re-
source assessment. Future research could explore extending
the random forest methodology to extrapolate the wind pro-
file above 200 m, potentially benefiting the next generation of
offshore wind turbines. Additionally, as the North Sea pro-
gresses toward becoming one of the world’s most concen-
trated offshore wind energy regions, there is a compelling
need to investigate cluster wakes. This future area of study
suggests the incorporation of wakes into these models, with
a multinational network of floating lidars in the North Sea
playing a crucial role, provided that the data are made pub-
licly available (Cañadillas et al., 2022).

Appendix A

A1 Bulk Richardson number derivation

Equation (8), adopted from Stull (1988), was used to de-
rive the bulk Richardson number using parameters detailed
in Sect. 2.6. The set of equations in Eqs. (A1)–(A7) shows
how the bulk Richardson number is obtained form the mea-
sured variables.

We assumed the humidity stays constant within the first
4 m above sea level. To extrapolate pressure to the sea sur-
face (SS), the barometric formula is used, which allows for
temperature changes in the extrapolated height (Lente and
Ősz, 2020):

PSS = P4 m

(
TSS

T4 m

)Mg
γR

, (A1)

where M = 0.0289 kg mol−1 is the molar mass of air, R =
8.314 J mo−1 K−1 is the universal gas constant, and g =

9.81 m s−2 is the gravitational acceleration. γ is the temper-
ature gradient between the sea surface and 4 m:

γ =−
T4 m− TSS

4
. (A2)

One of the main parameters in calculating theRi is the vir-
tual potential temperature. The virtual temperature accounts
for the water vapor in the air parcel and the changes it brings
due to its lower density. Hence it allows using the equation
of state, which is valid for dry air. It is described by

θv = θ (1+ 0.61r). (A3)

The potential temperature accounts for the variations due
to the pressure difference. It is defined as the temperature

that air would have if brought to a reference pressure (P0 =

100 kPa) through an isentropic process (Stull, 1988):

θ = T

(
P0

P

)κ
, (A4)

where κ is the Poisson constant and can be approximated by
κ ≈ 0.2854(1− r) for moist air. Here r is the water vapor
mixing ratio and can be obtained by

r =
Rd

Rv

(
e

P − e

)
, (A5)

where Rd = 287.05 J kg−1 K−1 and Rv = 461.52 J kg−1 K−1

are the specific gas constants of dry air and water vapor, re-
spectively. e is the vapor partial pressure and can be derived
from the relative humidity:

e =
RH
100

es, (A6)

where es is the vapor pressure at saturation and is approxi-
mated by the Clausius–Clapeyron equation as a function of
temperature (Iribarne and Godson, 1973; Bolton, 1980):

es = 611.2exp
(

17.67(T − 273.15)
T − 29.64

)
. (A7)
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