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Abstract. Distributed wind projects, which are connected at the distribution level of an electricity system or
in off-grid applications to serve specific or local energy needs, often rely solely on wind resource models to
establish wind speed and energy generation expectations. Historically, anemometer loan programs have provided
an affordable avenue for more accurate onsite wind resource assessment, and the lowering cost of lidar systems
has shown similar advantages for more recent assessments. While a full 12 months of onsite wind measurement
is the standard for correcting model-based long-term wind speed estimates for utility-scale wind farms, the time
and capital investment involved in gathering onsite measurements must be reconciled with the energy needs and
funding opportunities that drive expedient deployment of distributed wind projects. Much literature exists to
quantify the performance of correcting long-term wind speed estimates with 1 or more years of observational
data, but few studies explore the impacts of correcting with months-long observational periods. This study aims
to answer the question of how short you can go in terms of the observational time period needed to make
impactful improvements to model-based long-term wind speed estimates.

Three algorithms, multivariable linear regression, adaptive regression splines, and regression trees, are evalu-
ated for their skill at correcting long-term wind resource estimates from the European Centre for Medium-Range
Weather Forecasts Reanalysis version 5 (ERA5) using months-long periods of observational data from 66 loca-
tions across the US. On average, correction with even 1 month of observations provides significant improvement
over the baseline ERA5 wind speed estimates and produces median bias magnitudes and relative errors within
0.22 m s−1 and 4 percentage points of the median bias magnitudes and relative errors achieved using the standard
12 months of data for correction. However, in cases when the shortest observational periods (1 to 2 months) used
for correction are not well correlated with the overlapping ERA5 reference, the resultant long-term wind speed
errors are worse than those produced using ERA5 without correction. Summer months, which are characterized
by weaker relative wind speeds and standard deviations for most of the evaluation sites, tend to produce the worst
results for long-term correction using months-long observations. The three tested algorithms perform similarly
for long-term wind speed bias; however, regression trees perform notably worse than multivariable linear regres-
sion and adaptive regression splines in terms of correlation when using 6 months or less of observational data
for correction.

Translating the analysis to wind energy, median relative errors in the capacity factor are on average within 10 %
using 1 month of training. If the observation period used for correction is not well correlated with the reference
data, however, misrepresentation of the observed capacity factor can be substantial. The risk associated with poor
correlation between the observed and reference datasets decreases with increasing training period length. In the
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worst-correlation scenarios, the median capacity factor relative errors from using 1, 3, and 6 months are within
47 %, 26 %, and 16 %, respectively.
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lisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of
this work, or allow others to do so, for U.S. Government purposes.

1 Introduction

In the utility-scale wind energy industry, short-term (less than
5 years) wind measurements are temporally extended using
long-term (decades-long) wind resource simulations to pro-
duce a long-term wind energy generation estimate at a site
of development interest in an expedient manner. Wind farm
project planners install onsite wind measurement instruments
(e.g., meteorological towers, lidars, sodars) to gather data
but cannot wait decades to establish long-term wind resource
characterization based on such measurements alone (Lackner
et al., 2008). Instead, wind analysts commonly simulate the
long-term wind resource by correlating the short-term onsite
wind measurements with long-term reference data, such as
atmospheric reanalyses, high-resolution mesoscale models,
or other nearby measurements using a measure–correlate–
predict (MCP) approach.

Distributed wind projects, particularly those involving
small wind turbines, are more subject to challenging fi-
nancial, spatial, and time constraints than utility-scale wind
farms. Onsite wind measurements are often not feasible or
economically viable investments, leading to many distributed
wind projects that rely solely on wind resource models to es-
tablish generation estimates, which are helpful but not en-
tirely accurate. Between 2000 and 2011, the US Department
of Energy (DOE) Wind Powering America initiative spon-
sored an anemometer loan program to provide a more af-
fordable avenue for onsite wind resource assessment, which
resulted in the installation of 128 anemometers across the US
and a template for around 20 state-administered anemometer
loan programs (Jimenez, 2013). More recently, researchers
from Aurora College have begun deploying mobile lidar sys-
tems in northern Canada to study the viability of wind energy
in communities that are reliant on diesel, which is expensive
and difficult to transport to remote locations (Seto, 2022). In
the US, communities that receive DOE technical assistance
to transform their energy systems, such as through the En-
ergy Technology Initiative Partnership Project (DOE, 2025),
continue to weigh the costs and benefits of onsite wind mea-
surement. In addition to concerns regarding capital invest-
ment, communities must often reconcile the time investment
involved in gathering onsite measurements with the energy

needs and funding opportunities driving expedient deploy-
ment of wind turbines.

The vast majority of wind resource assessment literature
supports collecting at least 1 year of onsite measurements to
represent a full seasonal wind cycle, including the analyses
of Dinler (2013), Liléo et al. (2013), Mifsud et al. (2018), Za-
karia et al. (2018), Tang et al. (2019), and Chen et al. (2022).
Miguel et al. (2019) found that uncertainty in long-term wind
resource estimates reduced by 18 %, 29 %, 35 %, and 40 %
when 1, 2, 3, and 4 years of wind measurements, respectively,
were added to the monitoring campaign. Additionally, pri-
vate companies that specialize in providing resource assess-
ment for wind projects also tend to require at least 1 year of
onsite measurements to characterize the wind. For example,
ArcVera uses at least 1 full year of observational data to bias
correct their high-resolution model output (ArcVera, 2023).
In their discussion of wind resource assessment, the wind
measurement company NRG Systems (2023) states that mea-
surements of meteorological parameters are typically taken
over the course of several years at a potential wind farm site
using a combination of meteorological towers and lidars.

A small number of studies, however, explore adjusting
long-term predictions using observational data with less than
1 year of temporal coverage. Taylor et al. (2004) (as reported
via Carta et al., 2013), Weekes and Tomlin (2014), and Basse
et al. (2021) reported that wind speed errors were within
4 %, 4.8 %, and 4 %, respectively, using 3 months of onsite
measurements. Using data from the United Kingdom, Der-
rick (1992) (as reported via Rogers et al., 2005) found that 8
months of onsite data was needed to minimize uncertainties.
The performance of long-term predictions using less than 1
year of on-site measurements varied according to the sea-
son(s) during which the onsite measurements were taken. For
their experiment in the United Kingdom, Weekes and Tom-
lin (2014) found that the smallest errors occurred when using
measurements taken in early spring or fall. Basse et al. (2021)
performed MCP tests in Germany using linear regression and
variance ratio algorithms and found that using variance ratio
produced overestimates when using summer measurements
and underestimations when using winter measurements, with
the opposite trend noted for linear regression.

The present study expands previous analyses of long-term
wind resource performance based on months-long observa-
tions to diverse locations across the US, with a focus on
measurement heights relevant to distributed wind installa-
tions (20–100 m). We explore multiple MCP algorithm op-
tions and highlight the best performers for generating accu-
rate long-term wind speed estimates for a variety of error
metrics relevant to the wind energy industry. Section 2 de-
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scribes the wind measurements employed as (1) the months-
long training input for MCP-based long-term wind estimates
and (2) the long-term datasets to validate the MCP results.
The reference dataset, the European Centre for Medium-
Range Weather Forecasts Reanalysis version 5 (ERA5), is
also discussed in Sect. 2, along with three MCP algorithms
selected for evaluation and the error metrics employed to
test their performance. Section 3 provides the performance
analysis of MCP-based long-term wind resource estimation
with less than 1 year of onsite measurements, with a focus
on establishing the minimum number of months needed for
certain levels of accuracy. Additionally, Sect. 3 relates the
performance results to a variety of influences, including ge-
ographical location and the time of year that measurements
were gathered. Section 4 summarizes the performance anal-
ysis and relates the wind speed error metrics to impacts on
wind energy generation expectations.

2 Data discussion and methodology

The MCP model for long-term wind resource assessment be-
gins with establishing a short-term relationship between ob-
servational wind data measured at a target site and concurrent
data at a nearby reference site. The reference data can be ob-
servations or model data and typically include wind variables
(speed and direction) and potentially additional relevant me-
teorological (temperature, pressure) or temporal (hour of day,
month of year) variables. The resultant short-term relation-
ship is subsequently applied to long-term data from the refer-
ence site to predict the long-term wind resource at the target
site (Rogers et al., 2005).

2.1 Wind observations

The 66 wind speed observational datasets in this analysis
are sourced from US Department of Energy national lab-
oratories, facilities, and projects; the National Data Buoy
Center; the Bonneville Power Administration; and the For-
est Ecosystem Monitoring Cooperative. One observational
dataset was collected using a lidar, and the remaining mea-
surements were gathered from anemometers on meteorolog-
ical towers. Most of the observational collection is publicly
available (57 sites), while a small number of datasets are sub-
ject to non-disclosure agreements (9 sites), as outlined in the
“Data availability” statement.

The measurement sites utilized in this work span 28 states
and are diverse in terrain complexity and land cover (Fig. 1).
The measurement heights are similarly diverse, from 20 to
100 m (Fig. 2a), representing a wide range of the distributed
wind hub heights that are reported in the US (PNNL, 2024).
Many of the lowest observations, which align with small dis-
tributed wind turbine hub heights (between 20 and 40 m), are
sourced from the National Data Buoy Center and are located
along coastlines. The highest observations, which align with
large distributed wind turbine hub heights (between 80 and

Figure 1. Locations of wind measurements assessed for establish-
ing long-term performance based on months-long observations used
in this study. The number of observational sites per region is in-
cluded in parentheses.

100 m), are in Long Island, New York (85 m), and the San
Francisco Bay Area, California (100 m).

To establish reliable datasets for MCP training and valida-
tion, the wind speed observations were quality controlled by
removing instances or periods of atypical or unphysical re-
ported wind speeds (less than 0 m s−1, greater than 50 m s−1,
or nonvarying periods of time greater than 4 hours) that
might indicate instrument error due to an outage or weather
impacts such as icing. The temporal coverage of the wind
speed observations at the measurement sites ranged from
3.5–23 years, with an average of 11 years (Fig. 2b). The long-
term measurement wind speeds ranged from 2.0 to 9.1 m s−1

with an average across all measurement sites of 5.6 m s−1.

2.2 Reanalysis model for long-term correction

ERA5 is a popular global reanalysis model (Hersbach et al.,
2020) utilized for wind energy resource assessments in a va-
riety of ways, including as a standalone product, as input
boundary conditions to higher-resolution model runs, and as
a reference dataset for MCP with local observations (Olau-
son, 2018; Soares et al., 2020; Hayes et al., 2021; de As-
sis Tavares et al., 2022). ERA5 was developed by the Euro-
pean Centre for Medium-Range Weather Forecasts and pro-
vides meteorological data from 1950–present at 1 h tempo-
ral resolution with a horizontal grid spacing of 0.25° (Hers-
bach et al., 2020). At many locations where validation has
been performed, ERA5 tends to produce high Pearson cor-
relation coefficients (Eq. 1) and negative biases (indicating
underestimation) (Eq. 2) between the simulated (usim) and
observed (uobs) wind speeds. Ramon et al. (2019) utilized 77
meteorological towers around the globe with measurement
heights ranging from 10 to 122 m and found median ERA5
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Figure 2. (a) Measurement heights, (b) long-term measurement availability, and (c) long-term measurement wind speeds for the sites
evaluated for long-term performance based on months-long observations.

seasonal wind speed biases between 0 and −1 m s−1, though
ERA5 had the best correlation with observations among five
reanalyses. Across 62 sites in the continental US, Sheridan
et al. (2022) found that ERA5 underestimated the observed
wind speeds by an average of 0.5 m s−1 but had higher cor-
relations (average of 0.77) than two alternate reanalyses and
wind models. Using measurements from more than 100 on-
shore and offshore lidars, sodars, and meteorological towers
across the US, Wilczak et al. (2024) determined that ERA5-
derived wind power estimates were biased low by 20 %. At
locations across Europe, Murcia et al. (2022) determined that
ERA5 slightly underestimated the observed wind speeds (av-
erage bias of −0.06 m s−1) and provided a high degree of
correlation (average of 0.92).

2.3 Metrics for performance evaluation

This study aims to reduce the ERA5-based wind speed bias
using months-long onsite observations while not degrading
other metrics of error, such as correlation. The Pearson corre-
lation coefficient explains the degree to which the simulated
and observed wind speeds are linearly related, with values
close to 1 indicating a high degree of correlation (Eq. 1). The
wind speed bias, i.e., the average difference between the sim-
ulated (Usim) and observed (Uobs) wind speeds over a time
series of length N , indicates whether a simulation tends to
overestimate (positive bias), underestimate (negative bias), or
accurately represent (zero bias) the observed wind resource
(Eq. 2). This work also considers the bias magnitude (the ab-
solute value of bias (Eq. 2)) when comparing multiple sites,
as combinations of positive and negative biases can obscure
the degree of error. The relative error in the long-term wind
speed simulation is the absolute difference between the sim-
ulated and observed wind speeds normalized by the observed
wind speed, providing insight into the magnitude of error in

a simulation (Eq. 3).

correlation=

∑N
i=1

(
Usim,i −Usim

)(
Uobs,i −Uobs

)√∑N
i=1
(
Usim,i −Usim

)2√∑N
i=1
(
Uobs,i −Uobs

)2 (1)

bias=
1
N

N∑
i=1

(
Usim,i − Uobs,i

)
(2)

relative error= 100%×

⌈
Usim− Uobs

⌉
Uobs

(3)

To set a baseline of ERA5 performance for the suite of ob-
servations utilized in this work, we adjust the ERA5 wind
speeds to each measurement height z (Fig. 2a) using the
power law (Eq. 4) with the shear exponent α calculated at
each timestamp using ERA5 wind speeds at 10 and 100 m
(Eq. 5). Horizontally, we adjust the ERA5 wind speeds to the
observational location using inverse distance-weighted inter-
polation.

Uera5_z = Uera5_100m

( z

100m

)α
(4)

α =
ln
(
Uera5_100m/Uera5_10m

)
ln (100m/10m)

(5)

In all regions except for the southeast, the ERA5 wind speeds
tend to be lower than the observed wind speeds (Fig. 3a). The
underestimation is most pronounced in Alaska (median bias
of −1.61 m s−1), the Pacific Northwest (−1.18 m s−1), and
the Southern Plains (−1.74 m s−1). The same three regions
have the highest relative errors (medians of 28 %, 25 %, and
20 %, respectively) (Fig. 3b). The median correlations ex-
ceed 0.75 for all regions except Alaska (0.69) and the west
(0.67), where the coarse ERA5 is challenged by mountain-
ous and coastal terrain (Fig. 3c). No consistent trends in
ERA5’s performance are noted according to height above
ground (Fig. 3d, e, f). The wind speed relative errors are the
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greatest for measurement heights between 30 and 40 m (me-
dian of 31 %), while the median relative errors for measure-
ment heights between (1) 20 and 30 m and (2) 40 and 50 m
are 11 % and 10 %, respectively. Across all sites, the median
statistics are as follows: a bias of −0.50 m s−1, bias magni-
tude of 0.67 m s−1, relative error of 13 %, and correlation of
0.78. The tendency of ERA5 to underestimate the observed
wind speeds in this analysis while exhibiting a relatively
high degree of correlation with them aligns with the find-
ings of Ramon et al. (2019), Murcia et al. (2022), Sheridan
et al. (2022), and Wilczak et al. (2024) discussed in Sect. 2.2.
The bias trends according to region (Fig. 3a) also align with
the findings of Wilczak et al. (2024) in that ERA5 underesti-
mation is noted in the Pacific Northwest and Southern Plains,
while a mix of overestimation and underestimation is noted
for the Midwest.

2.4 MCP methodologies

One of the advantages of utilizing MCP for long-term wind
resource estimation is the variety of algorithm choices, which
range from simplistic linear regression to machine learn-
ing techniques that can be applied to link short-term and
long-term wind speeds. Early MCP methodologies focused
on linear (as reported via Rogers et al., 2005: Derrick,
1992; Landberg and Mortenson, 1994; Woods and Watson,
1997; Vermeulen et al., 2001) and quadratic fits (as reported
via Rogers et al., 2005: Joenson et al., 1999; Riedel and
Strack, 2001). From there, distribution-based probabilistic
techniques emerged (García-Rojo, 2004; Sheppard, 2009;
Carta and Velázquez, 2011). With the onset of machine learn-
ing techniques came applications to MCP-based wind re-
source analysis, such as using artificial neural networks, sup-
port vector machines, and random forest to estimate long-
term wind speeds (Díaz et al., 2018).

This analysis evaluates three algorithms for their skill at
creating long-term wind resource estimates based on varying
temporal lengths of observational data: (1) multiple linear
regression (MLR), (2) adaptive regression splines (ARSs),
and (3) regression trees (RTs). These algorithms were se-
lected because they are broadly available and represent di-
versity in complexity and approach. Multiple linear regres-
sion estimates the linear relationship between a target vari-
able (onsite wind measurements in this analysis) and more
than one reference variable (sourced from ERA5 in this anal-
ysis). Adaptive regression splines involve the construction of
piecewise-cubic regression models based on the short-term
target and reference datasets (Jekabsons, 2016). In this anal-
ysis, we utilize the default parameter configurations of Jek-
absons (2016). The maximum number of basis functions fol-
lows the formula of Milborrow (2016): min(200, max(20,
2× the number of input variables))+ 1. The maximum de-
gree of interactions between input variables is set to 1 for
additive modeling; therefore the generalized cross-validation
penalty per knot is set to 2 following the recommendation of

Friedman (1991). Regression trees recursively evaluate the
concurrent short-term target and reference datasets and parti-
tion them into unique segments, which are subsequently used
to predict long-term target behavior. In this analysis, the en-
semble aggregation method used is least-squares boosting
with 100 learning cycles, as per the MATLAB algorithm
fitrensemble (MathWorks, 2024). Numerous additional al-
gorithms have been developed and tested for their ability
to improve simulation accuracy, and it is important to note
that each features different approaches, computational in-
vestments, complexities, skills, and limitations. For example,
Rogers et al. (2005) note that linear regression techniques are
easily implemented and well suited for performing bias cor-
rection but have a tendency to create a bias in the variance
that variance-conserving MCP techniques are better suited to
resolve.

To narrow down an effective training approach, different
combinations of reference variables are explored for their im-
pact on long-term wind resource assessment error metrics.
The analysis of Phillips et al. (2022) identified reanalysis
wind speed, reanalysis wind direction, and time of day as
the most important variables for wind speed bias correction
using a variety of techniques, including multivariable linear
regressions and regression trees. Therefore, we explore pro-
gressively increasing variable combinations of ERA5 wind
speeds at the provided output heights of 10 and 100 m
(Uera5_10m and Uera5_100m), power-law-based wind speed es-
timates at the measurement height z (Uera5_z) (Eq. 4) using
the shear exponent α based on ERA5 wind speeds at 10 and
100 m (Eq. 5), ERA5 u and v wind components at 10 and
100 m (uera5_10m, vera5_10m, uera5_100m, and vera5_100m), and
the hour of the day.

As an initial test of the performance of the algorithms and
reference variable combinations, we develop ensembles of
MCP-based long-term wind speed estimates at each mea-
surement site using consecutive 12-month training periods,
according to the following steps:

1. We establish that 75 % of the observations in each
month in the training period are available after apply-
ing the quality-control checks discussed in Sect. 2.1 (all
66 observations utilized in this work have average and
median monthly data recovery and quality rates exceed-
ing the 75 % threshold).

2. A model is trained on temporally aligned observation
data and reference data during the training period.

3. The model is used to predict the full observation period
(Fig. 2b).

4. Performance statistics are computed with respect to the
observations (Table 1). Timestamps with missing obser-
vations are excluded from the statistics.

All MCP combinations of algorithms and training vari-
ables provide substantially improved long-term bias mag-
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Figure 3. Long-term ERA5 wind speed bias (a, d), relative error (b, e), and correlation (c, f) across 66 measurement sites in the US, grouped
by region (a–c) and measurement height (d–f). AK – Alaska, PNW – Pacific Northwest, W – west, MW – Midwest, SP – Southern Plains,
NE – northeast, and SE – southeast.

Table 1. Long-term MCP-based wind speed error metrics averaged (median) across 66 sites using different combinations of algorithms and
training variables. Values in bold indicate the optimal combination of training variables for each error metric and algorithm.

Error metric Algorithm Training variables

Uera5_10m, Uera5_10m, Uera5_10m, Uera5_10m,
Uera5_100m Uera5_100m, Uera5_100m, Uera5_100m,

Uera5_z Uera5_z, Uera5_z,
uera5_10m, uera5_10m,
vera5_10m, vera5_10m,
uera5_100m, uera5_100m,
vera5_100m vera5_100m,

hour of day

Bias magnitude (m s−1) MLR 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.07)
ARS 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.07)
RT 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.06)

Correlation MLR 0.78 (0.80) 0.78 (0.80) 0.80 (0.81) 0.81 (0.82)
ARS 0.78 (0.80) 0.78 (0.80) 0.82 (0.83) 0.82 (0.84)
RT 0.74 (0.76) 0.74 (0.76) 0.78 (0.80) 0.79 (0.80)

nitudes compared to the ERA5 (i.e., Uera5_z) average (me-
dian) bias magnitude of 1.01 m s−1 (0.67 m s−1) (Table 1).
With 12 months of training time, the MCP average and me-
dian bias magnitudes vary by at most 0.02 m s−1 accord-
ing to algorithm and training variables. More variability is
seen according to the various combinations of MCP algo-
rithms and training variables for correlation (Table 1). Us-

ing just Uera5_10m and Uera5_100m as training variables, MLR
and ARS improve on the ERA5 average (median) correla-
tion of 0.76 (0.77), while RT produces a lower correlation.
Utilizing all training variables generates the highest over-
all correlations (Table 1). Given the optimal correlation re-
sults found when training for 12 months with MCP using the
complete variable set of ERA5 wind speeds, ERA5 u and v
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components, and hour of the day, these variables are selected
for evaluating long-term MCP wind speed estimates using
months-long training periods. Using 12 months of observa-
tions, the three algorithms perform similarly for bias, and
ARS is the best-performing algorithm for correlation. The
following sections explore whether that status holds when
using months-long training periods.

The months-long analysis follows the same ensemble for-
mula as the 12-month exercise, just with shorter consecu-
tive training periods. Across the measurement sites, calendar
months in the spring and fall had the most single instances of
≥ 75 % data recovery and quality, followed by summer and,
lastly, winter (Fig. 4). Median measurement data recovery
and quality percentages according to calendar month ranged
from 99.2 % (December) to 99.7 % (May) (Fig. 4).

3 Results and discussion

3.1 Long-term wind estimation performance according
to length of training period

On average, even 1 month of observations combined with any
of the three assessed MCP algorithms provides substantial
improvement over using ERA5 wind speeds alone for long-
term wind speed estimation. Figure 5a displays the ensemble
average bias magnitude at each site using increasing num-
bers of training months. The median bias magnitudes across
all sites using 1 month of training are 0.28 m s−1 (MLR) and
0.29 m s−1 (ARS, RT), as compared with 0.67 m s−1 using
ERA5 (Table 2, Fig. 5a). The median bias magnitudes drop to
0.18 m s−1 using 3 months of training and 0.12 m s−1 using
6 months of training. For all training durations, the MCP al-
gorithms perform within 0.01 m s−1 of each other for median
bias magnitude. Similarly, the relative errors in the long-term
wind speed estimates decrease substantially from those using
ERA5 (median 13 %) (Fig. 5b). A total of 1 month of train-
ing produces median relative errors of 6 % across the algo-
rithms, which decreases to 4 % with 3 months of training and
2 %–3 % with 6 months of training (Table 2). The standard
deviations of bias magnitude provide an indication of the un-
certainty in the MCP-based long-term wind speed estimates,
ranging from 0.24 m s−1 (MLR, RT) to 0.28 m s−1 (ARS)
using 1 month of training, 0.14 m s−1 (RT) to 0.15 m s−1

(MLR, ARS) using 3 months of training, and 0.08 m s−1

(ARS, RT) to 0.09 m s−1 (MLR) using 6 months of training
(Fig. 5c, Table 2).

Considering the sign of the bias, we recall that ERA5 tends
to underestimate the observed wind speeds with a median
bias of −0.50 m s−1 across the sites. On average, incorpo-
rating months-long observations into the long-term estima-
tions moves the bias substantially closer to zero. Applying
just 1 month of observations results in median biases between
−0.08 m s−1 (RT) and −0.03 m s−1 (MLR). For all training
period lengths of 4 months or greater, the median MCP-based

biases are within ±0.01 m s−1, regardless of algorithm (Ta-
ble 2).

The MCP algorithms diverge in their performance for
long-term wind speed correlation, especially when using 4
or fewer training months. Using RT with a limited number
of training months does not improve correlation relative to
ERA5 and the other MCP algorithms. Using 1 month of
training, MLR and ARS produce similar correlations (me-
dians of 0.79 and 0.77, respectively) to ERA5 (median of
0.78), while the RT correlations are markedly worse (median
of 0.67) (Table 2, Fig. 5d). Only when the training period is at
least 7 months do the median RT correlations match ERA5.
An interesting correlation comparison is noted for the Na-
tional Renewable Energy Laboratory’s National Wind Tech-
nology Center, located in an extremely windy corridor of the
complex terrain along Colorado’s Front Range. All of the
lowest correlation outliers in Fig. 5d are from this site, and,
while MLR and ARS match or improve upon the ERA5 cor-
relation for the National Wind Technology Center (0.47) us-
ing any training period length of at least 2 months, RT never
achieves the ERA5 correlation, even with a full 12 months
of training. For all training durations of at least 4 months,
ARS is on average the best-performing MCP algorithm for
correlation.

Given that a 12-month training period is most commonly
employed for long-term wind speed estimation using MCP, it
is beneficial to consider MCP performance using less than 1
year of observations relative to the 12-month standard. Using
a 1-month training period, the median long-term bias mag-
nitudes (relative errors) for 66 sites are within 0.22 m s−1

(4 percentage points) of the median long-term bias magni-
tudes (relative errors) determined using 12 months, regard-
less of the MCP algorithm (Fig. 6a, b). However, at one
coastal Alaskan site, the difference in bias magnitude (rela-
tive error) when using 1 versus 12 months of observations
can reach 1 m s−1 (18 %). Training with 3 months of ob-
servations places the median bias magnitudes (relative er-
rors) within 0.12 m s−1 (3 percentage points) of the median
bias magnitudes (relative errors) established when using 12
months, with outlier differences within 0.7 m s−1 (13 %). Us-
ing 6-month training periods results in median bias magni-
tudes (relative errors) within 0.05 m s−1 (1 percentage point)
of the 12-month median bias magnitudes (relative errors),
with outlier differences within 0.4 m s−1 (6 %).

A great disparity is noted among the MCP algo-
rithms when comparing their correlation performance using
months-long training periods versus training periods of a 1-
year duration (Fig. 6c). Using 1 month of training versus 12
months produces median correlation differences of 0.03 for
MLR, 0.07 for ARS, and 0.13 for RT. With 6-month training
periods, MLR and ARS produce a median correlation that
differs by less than 0.01 from that using 12 months, while
the 6-month median RT correlation differs by 0.04 compared
to that using 12 months.
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Figure 4. Monthly measurement data recovery and quality (boxplot) and number of months with ≥ 75 % data recovery.

Table 2. Median biases, bias magnitudes, standard deviations of bias magnitudes, relative errors, and correlations according to algorithm and
number of training months.

Number of training months

Error metric Algorithm 1 2 3 4 5 6 7 8 9 10 11 12

Bias (m s−1) MLR −0.03 −0.02 −0.02 −0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
ARS −0.04 −0.02 −0.02 −0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
RT −0.08 −0.04 −0.03 −0.01 −0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Bias magnitude (m s−1) MLR 0.28 0.21 0.18 0.16 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.07
ARS 0.29 0.22 0.18 0.15 0.13 0.12 0.10 0.09 0.08 0.08 0.07 0.07
RT 0.29 0.22 0.18 0.16 0.13 0.12 0.10 0.09 0.08 0.07 0.07 0.07

Standard deviation of bias magnitude (m s−1) MLR 0.24 0.18 0.15 0.13 0.11 0.09 0.08 0.07 0.06 0.06 0.05 0.05
ARS 0.28 0.19 0.15 0.12 0.10 0.08 0.07 0.07 0.06 0.05 0.05 0.05
RT 0.24 0.18 0.14 0.12 0.10 0.08 0.07 0.06 0.06 0.05 0.05 0.05

Relative error (%) MLR 5.7 4.5 3.8 3.2 2.8 2.6 2.4 2.1 1.8 1.6 1.4 1.3
ARS 5.7 4.4 3.6 3.1 2.9 2.6 2.2 1.9 1.7 1.5 1.3 1.3
RT 5.6 4.3 3.7 3.1 2.8 2.4 2.1 1.8 1.6 1.4 1.3 1.2

Correlation MLR 0.79 0.80 0.81 0.81 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.82
ARS 0.77 0.80 0.81 0.82 0.83 0.83 0.83 0.83 0.83 0.84 0.84 0.84
RT 0.67 0.70 0.72 0.74 0.76 0.77 0.78 0.78 0.79 0.80 0.80 0.80

The results in Figs. 5 and 6 explain the degree of er-
ror expected on average when using MCP with observa-
tions less than 1 year in duration, highlighting similar perfor-
mance across the MCP algorithms for long-term wind speed
bias magnitude but less successful performance when using
RT with months-long observations for correlation. However,
since wind measurement timelines tend to be more dependent
on funding availability, project deadlines, and fair-weather
deployment windows than on identifying the most repre-
sentative period for long-term wind representation, it is im-
perative to consider the worst-case-scenario errors (Fig. 7).
In this scenario, we identify the worst-performing ensemble
member for each error metric (largest bias magnitude, largest
MAE, smallest correlation) and each algorithm (MLR, ARS,

RT) according to the length of the training period for each of
the 66 sites. It is important to keep in mind that the worst-
case-scenario error analysis is a conservative approach that
is not analogous to assessing algorithm uncertainty. Addi-
tionally, more robust algorithms than those studied in this
work could reduce the sensitivity to the outliers in the short-
est training time series that drive errors in the long-term esti-
mates.

In the worst-case scenario, using a single month for MCP
training will produce long-term errors that are significantly
worse than those simply using ERA5 to produce long-term
wind speed estimates (Fig. 7). Despite its performance suc-
cess on average (Fig. 5), ARS produces the largest bias mag-
nitudes (median of 1.36 m s−1), the largest relative errors
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Figure 5. Average long-term (a) bias magnitude, (b) relative error, (c) standard deviation of bias magnitude, and (d) correlation for 66 sites
comparing observations with ERA5 and MCP techniques using varying training period lengths, along with (e) the number of training samples
per site and per number of training months.

(median of 27 %), and the smallest correlations (median of
0.20) in the worst-case scenario. MLR and RT perform simi-
larly for bias using a 1-month training period in the worst-
case scenario (median bias magnitudes of 1.23 m s−1 and
1.18 m s−1, respectively; median relative errors of 22 % for
both algorithms), while MLR performs best in terms of cor-
relation (median of 0.63).

A training period of 4 months provides improvement in
bias magnitude and relative error over simply using ERA5
(medians of 0.67 m s−1 and 13 %, respectively) for long-
term wind resource estimation, even in the worst-case sce-
nario, regardless of MCP algorithm choice (medians of 0.53–
0.59 m s−1 and 13 %, respectively) (Fig. 7). For correlation,
MLR exceeds ERA5 (median of 0.78) at 5 months, ARS
at 6 months, and RT at 12 months (medians of 0.79). Al-
though all three algorithms provide similar improvement in
relative errors and MLR and ARS provide the most benefi-
cial correlations on average when using MCP with months-
long observations (Fig. 5, Table 2), MLR is the least risky

approach given the possibility of measurement during unfa-
vorable wind conditions for MCP.

To help us understand what the unfavorable conditions
are that might lead to a worst-case scenario, we investigate
the characteristics of the wind speed observations during the
worst-case-scenario periods relative to the average character-
istics of the wind speed observations across all training peri-
ods with the same duration (Fig. 8). It is interesting to note
that the dates of the training time periods with the worst-
case scenarios are variable according to the MCP algorithm
and error metric, particularly for the shortest-duration train-
ing periods. We find that both the mean and the standard de-
viation of the observed wind speeds during the worst-case-
scenario month or consecutive months tend to be lower than
the mean and standard deviation of the observed wind speeds
across all periods with the same durations, particularly when
using ARS and RT (Fig. 8). In other words, low-wind-speed
time periods with correspondingly low variations in wind
speeds tend to provide the biggest challenges for long-term
MCP accuracy. For example, the median observed wind

https://doi.org/10.5194/wes-10-1451-2025 Wind Energ. Sci., 10, 1451–1470, 2025



1460 L. M. Sheridan et al.: Distributed wind short-term deployment

Figure 6. Difference in average long-term (a) bias magnitude, (b) relative error, and (c) correlation for 66 sites between MCP training
periods of 1 to 11 months and MCP training periods of 12 months.

speed mean (standard deviation) across the 66 sites for all
1-month-duration periods is 5.80 m s−1 (3.12 m s−1), while
the 1-month worst-case scenario for ARS based on relative
error corresponds to an observed wind speed mean (standard
deviation) of 4.61 m s−1 (2.30 m s−1) (Fig. 8a, b). Increasing
numbers of training months correspond with higher mean
wind speeds and standard deviations during the worst-case
periods, along with convergence of the worst-case-scenario
mean wind speeds and standard deviations to mean wind
speeds and standard deviations across all training periods of
the same durations.

3.2 Regional long-term wind estimation performance

On average, using 1 month of observations produces regional
median relative errors within 8 % using any of the three MCP
algorithms, except for the two Alaskan sites (Fig. 9a–g). The
Alaskan median relative errors are substantially higher (16 %
using MLR, 14 % using ARS, and 15 % using RT) but still
significantly lower than the ERA5 median relative error for
these two sites (28 %) (Fig. 3a). The most impressive reduc-
tion in bias magnitude occurs for the Southern Plains, where
ERA5 produces a median relative error of 20 % (Fig. 3a)
that decreases to 3 % (MLR) or 4 % (ARS, RT) with the

addition of just 1 month of observations (Fig. 9e). Using
3 and 6 months of observations, all median regional rela-
tive errors are within 5 % and 4 %, respectively, except for
Alaska, where the median relative errors range from 11 %
(ARS, RT) to 12 % (MLR) using 3 months of observations
and 6 % (ARS, RT) to 7 % (MLR) using 6 months of obser-
vations. Using 12 months of observations, all regional bias
magnitudes are within 3 %, including Alaska (Fig. 9a–g). A
potential factor impacting the results for Alaska is the qual-
ity of the observations. While the automated quality-control
techniques discussed in Sect. 2.1 remove periods of nonvary-
ing wind speeds due to outages or icing, they may not capture
more subtle impacts on the observations, such as partial icing
of the anemometers.

On average, using RT with 1 month of observations de-
grades the ERA5 median correlations in all regions. Consid-
ering all sites, MLR tends to improve on the ERA5 corre-
lations using 1 month of observations, while ARS performs
similarly to ERA5 (Fig. 5d). However, when exploring corre-
lation on a regional scale, MLR performs similarly to ERA5
using 1 month of observations in all regions except the west,
while ARS performs similarly to ERA5 in the Pacific North-
west, Midwest, and northeast and worsens relative to ERA5
in all other regions (Fig. 9h–n).
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Figure 7. Worst-case long-term (a) bias magnitude, (b) relative error, and (c) correlation for 66 sites comparing observations with ERA5
and MCP techniques using varying training period lengths.

Figure 8. (a, c) Mean wind speed and (b, d) wind speed standard deviation across 66 sites for MLR, ARS, and RT worst-case scenarios for
(a, b) relative error and (c, d) correlation and across all training periods for each site of the same durations. Only the results using 1, 3, 6,
and 12 months of training are presented for the sake of brevity. Increasing numbers of training months correspond with convergence of the
worst-case-scenario mean wind speeds and standard deviations to mean wind speeds and standard deviations across all training periods of
the same duration.
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Figure 9. Long-term wind speed relative error (left) and correlation (right) according to region for varying training period lengths.

3.3 Seasonal relationships between observations and
long-term wind estimation performance

When considering using less than 1 year of wind speed mea-
surements to correct long-term wind speed estimates, it is
important to select the most optimal time of year to gather
such measurements (and to understand what times of year to
avoid). For each of the 66 sites, Figs. 10 and 11 share the
best and worst single months, on average, for optimizing er-
ror metrics when applying MCP to ERA5. The best months
for optimizing relative error using all three MCP algorithms
are quite variable across non-summer (June, July, August)
months, with winter (December, January, February), spring
(March, April, May), and fall (September, October, Novem-
ber) producing the most optimal relative errors at 21 %–
23 %, 35 %–41 %, and 30 %–33 % of the 66 sites, respec-
tively (Fig. 10). For correlation, spring months produce the
best results when using MLR and ARS for 55 % and 48 % of

the sites, respectively. When using RT, fall months produce
the best correlations at 41 % of the sites. Summer months,
particularly July and August, tend to produce the worst rel-
ative errors and correlations (Fig. 11) and should be avoided
if opting to create MCP-based wind speed estimates using a
single season of observations. July and August produce the
highest relative errors at 52 %–56 % of the 66 sites, depend-
ing on the selected algorithm, and the lowest correlations at
61 %–73 % of the sites.

3.4 Implications for energy production estimates

On average, utilizing months-long observations to correct
reanalysis-based long-term wind speed estimates provides
significant improvement in accuracy of predicted winds
(Fig. 5). However, substantial risks to accuracy occur when
the months-long observational period misrepresents longer-
term wind speed trends (Fig. 7). To evaluate the impacts of
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Figure 10. Best average single months for optimizing (a, b, c) relative error and (d, e, f) correlation when creating MCP-based long-term
wind speed estimates using (a, d) MLR, (b, e) ARS, and (c, f) RT according to each US region. Larger circles indicate the best month for
more sites in a given region.

long-term correction using months-long observations on dis-
tributed wind energy production, we convert the long-term
observed and simulated wind speeds to energy estimates us-
ing the National Renewable Energy Laboratory’s 100 kW
distributed wind reference power curve (NREL, 2019). Since
variable lengths of long-term periods are utilized in this
study, we opt to consider energy production in terms of the
capacity factor, i.e., the energy estimate divided by the prod-
uct of the total number of hours in the long-term period and
the turbine rated capacity (100 kW in this example). The ob-
served wind speeds in this analysis produce gross (i.e., no
loss considered) capacity factors ranging from 3 % (inland
Louisiana) to 66 % (Texas panhandle), with an average (me-
dian) of 34 % (36 %). The low wind speeds at some of these
sites are not suitable for wind energy deployment. Addition-
ally, the power production at the low-wind-speed sites will
be dominated by the tail end of the wind speed distribu-
tion, leading to potentially significant differences between
the skill of the MCP algorithms in reproducing the high-
est percentiles of wind speeds versus estimating mean wind
speeds, as discussed in Sect. 3.1–3.3. Therefore, sites with
capacity factors based on observed wind speeds of at least

10 % (58 sites in total) are considered for the following anal-
ysis.

Across the 58 observational sites, simply using ERA5 to
produce long-term energy estimates results in capacity factor
relative errors (| capacity factor based on simulations – ca-
pacity factor based on observed wind speeds |/capacity factor
based on observed wind speeds) up to 89 %, with a median
of 24 %. On average, just 1 month of observations reduces
the capacity factor error range to within 51 % and the median
capacity factor relative error to within 10 % (Fig. 12a, Ta-
ble 3). The largest ERA5-based outlier (89 %) is for a com-
plex terrain site in Oregon near the Columbia River with an
observation-based capacity factor of 48 %, and MCP correc-
tion using 1 month of onsite observations reduces the capac-
ity factor relative error at this site to 8 %–11 % on average,
depending on the algorithm. As for the wind speed relative
errors (Fig. 5b, Table 2), RT is the best algorithm on average
for reducing capacity factor errors when using the 100 kW
reference power curve.

Like the wind speed evaluation, the potential for reduction
in wind energy estimate error using months-long onsite ob-
servations comes with risk. With a 1-month training period in
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Figure 11. Worst average single months for optimizing (a, b, c) relative error and (d, e, f) correlation when creating MCP-based long-term
wind speed estimates using (a, d) MLR, (b, e) ARS, and (c, f) RT according to each US region. Larger circles indicate the best month for
more sites in a given region.

the worst-case scenario, the ERA5 capacity factor error range
(within 89 %) increases to within 94 %, and the median ca-
pacity factor errors across the 58 sites increase from 24 % to
40 %–47 % (Fig. 12b). Using 3, 6, and 12 months of training
reduces the worst-case capacity factor errors to within 91 %
(median ≤ 26 %), 82 % (median ≤ 16 %), and 37 % (median
≤ 9 %), respectively.

3.5 Performance comparison with higher-resolution
wind datasets

ERA5 has shown to be a valuable reference dataset for devel-
oping long-term wind speed estimates via MCP with short-
term observations thanks to its extensive temporal coverage
and relative success at representing fluctuations in observed
wind speeds. However, ERA5 has the limitations of coarse
horizontal resolution and a tendency to exhibit a slow-wind-
speed bias (Ramon et al., 2019; Gualtieri, 2021; Sheridan
et al., 2022; Wilczak et al., 2024), which urges compari-
son of the long-term MCP results with long-term estimates
from higher-resolution wind datasets. We explore the per-
formance of the MCP-based long-term wind speed estimates

relative to Global Wind Atlas version 3 (GWA3) and the cli-
matology component of the WIND Toolkit Long-term En-
semble Dataset (WTK-LED Climate), for which long-term
wind speed estimates are freely and easily accessible through
user-friendly web applications.

GWA3 was produced by the Technical University of
Denmark (DTU) and the World Bank Group. The devel-
opers used the Weather Research and Forecasting (WRF)
mesoscale model (Skamarock et al., 2008) in conjunction
with the Rapid Radiative Transfer Model (RRTM) for the
longwave and shortwave radiation schemes (Mlawer et al.,
1997; Iacono et al., 2008), the Mellor–Yamada–Janjić plane-
tary boundary layer (PBL) scheme (Janjić, 1994), and ERA5
as the input and boundary conditions to produce simu-
lated wind data at a horizontal resolution of 3 km (Davis et
al., 2023). Next, microscale modeling was performed using
the Wind Atlas Analysis and Application Program (WAsP)
model (Troen and Petersen, 1989) with an output grid spac-
ing of 250 m for GWA3. GWA3 provides global coverage
for land-based wind estimates and offshore wind estimates
within 200 km of shorelines. Long-term wind data are out-
put at five heights between 10 and 200 m based on the 10-
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Table 3. Median site-average capacity factor relative errors according to algorithm and number of training months.

Number of training months

Error metric Algorithm 1 2 3 4 5 6 7 8 9 10 11 12

CF relative error (%) MLR 9.7 8.5 7.6 6.8 6.2 5.6 4.9 4.3 4.1 3.7 3.5 3.5
ARS 9.9 8.0 7.3 6.7 6.2 5.6 5.0 4.6 4.4 4.2 3.9 3.8
RT 8.6 6.8 5.9 5.0 4.3 4.0 3.7 3.4 3.2 3.0 3.0 3.1

Figure 12. (a) Average and (b) worst-case-scenario capacity factor relative error (| ERA5/MCP capacity factor – capacity factor based on
observed wind speeds| /capacity factor based on observed wind speeds) according to number of training months for 58 sites with observation-
simulated capacity factors of at least 10 %.

year period of 2008–2017, and wind speed indices illustrate
trends at annual, monthly, and diurnal temporal resolutions.
Users can access GWA3 through its web application (DTU,
2024).

WTK-LED Climate was released in 2024 as the wind cli-
matology component, developed by Argonne National Lab-
oratory, of the WIND Toolkit Long-term Ensemble Dataset,
a wind resource dataset led by the National Renewable En-
ergy Laboratory. The climatology dataset uses an accelerated
version of RRTM for general circulation models (RRTMG)
for the radiation schemes, ERA5 for the initial and bound-
ary conditions, and YSU for the PBL scheme (Draxl et al.,
2024). WTK-LED Climate covers North America at a 4 km
horizontal spatial resolution and 1 h temporal resolution for
the 20-year period of 2000–2020. Through the WindWatts
web application (NREL, 2024), users can access WTK-LED
Climate long-term average and monthly wind speeds at seven
output heights between 30 and 140 m.

Across the 66 observation sites, we extract the long-term
average wind speed estimates from GWA3 and WTK-LED
Climate at the surrounding output heights to the measure-
ment heights and adjust them to the measurement height with

the power law (Eqs. 4 and 5). We determine the bias and
relative error as in Eqs. (2) and (3), keeping in mind that
this comparison involves the different definitions of “long-
term” that a user of the GWA3 and WindWatts web applica-
tions would experience (10 years for GWA3, 20 years for
WTK-LED Climate, and varying lengths for the observa-
tions, as shown in Fig. 2b). For our observation sites, the me-
dian bias magnitudes for the WTK-LED Climate and GWA3
long-term estimates are 0.71 and 0.36 m s−1, respectively,
and the median relative errors are 12.8 % and 6.1 %. On av-
erage, using even 1 month of wind speed observations to
create long-term MCP-based wind speed estimates provides
an improvement in accuracy over the long-term estimates
provided by the higher-resolution WTK-LED Climate and
GWA3 (Fig. 13, Table 2).

3.6 Recommendations and future work

It is important to consider the performance of wind esti-
mation methodologies from a variety of statistical stand-
points, since behind-the-meter customers may care most
about whether their long-term production meets their ini-
tial expectations (bias) and front-of-the-meter customers may
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Figure 13. Average long-term wind speed (a) bias magnitude and (b) relative error across 66 sites based on the long-term estimates of
GWA3 and WTK-LED Climate and the MCP-based estimates from ERA5 and short-term observations.

also be concerned with distribution network integration with
other energy technologies (bias, correlation). While the three
MCP algorithms assessed in this study perform similarly in
terms of bias magnitude (Fig. 5a), for the shortest training pe-
riod lengths (1 to 3 months), RT performs significantly worse
on average for correlation than MLR and ARS (Fig. 5d).

Given ERA5’s popularity in the wind energy community,
along with its known challenges in wind speed bias and rel-
ative success in terms of wind speed correlation, this study
provides a useful framework for evaluating the performance
of MCP-based corrections to long-term wind speed estimates
using months-long observations. Additionally, the MCP es-
timates based on short-term observations are found to im-
prove upon the long-term averages of recent wind datasets,
including GWA3 and WTK-LED Climate. In the future, the
exercise would benefit from expansion to include additional
long-term models that provide wind resource information at
different horizontal and vertical spatial resolutions. Addition-
ally, the lessons learned in this work are being explored to
quantify the geographic extent of their potential application,
with aims to support broader wind speed bias correction in
distributed wind tools and to reduce the number of onsite
measurement sites needed to correct sites with similar wind
profile characteristics.

Based on this analysis, we identify the following key rec-
ommendations for wind energy developers creating long-
term wind resource estimates under the constraint of less
than 1 year of onsite measurements which may occur for any
number of reasons, including instrument outages or timing of
funding opportunities:

– While even 1 month of onsite wind speed measurements
improves long-term wind speed estimates on average,
incorporating at least 4 months of onsite measurements
is a better option to mitigate the errors that could oc-
cur if some of the measured and reference wind speeds
during the measurement period are poorly correlated.

– Summer months, particularly July and August, should
be avoided if opting to create MCP-based wind speed
estimates using a single season of measurements in the
US, as these months tend to be the least representative
of long-term wind speed means and standard deviations.

– Since potential wind customers may care about long-
term wind resource accuracy from multiple viewpoints,
it is important to note that of the three MCP algorithms
explored, RT produces the lowest wind speed and ca-
pacity factor relative errors, and ARS yields the low-
est wind speed correlations. However, MLR is the least
risky algorithm given the possibility of poor correlations
between the measurements and the reference data.

The results of this work highlight the potential for anemome-
ter or lidar loan programs to affordably assist future dis-
tributed wind energy customers with more accurate long-
term wind resource estimates while maximizing the number
of customers that can be served by reducing the measurement
time needed.

Code and data availability. Many of the wind speed mea-
surement datasets that support this study are publicly available.
Measurements from US DOE-sponsored laboratories, studies, and
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programs can be found at https://www.atmos.anl.gov/ANLMET/
(ANL, 2022), https://www.arm.gov/capabilities/instruments?
location[0]=SouthernGreatPlains (ARM, 2021), https:
//b2share.eudat.eu/records/159158152f4d4be79559e2f3f6b1a410
(B2SHARE, 2020), https://wx1.bnl.gov/ (BNL, 2020),
https://ameriflux.lbl.gov/sites/site-search/#filter-type=
all&has-data=All&site_id= (LBNL, 2020), and https:
//midcdmz.nrel.gov//apps/sitehome.pl?site=NWTC (NREL,
2022). Measurements in the Pacific Northwest from the Bon-
neville Power Administration can be found at https://transmission.
bpa.gov/Business/Operations/Wind/MetData/default.aspx (BPA,
2022). Coastal measurements from the National Data Buoy
Center are sourced from https://www.ndbc.noaa.gov/ (NDBC,
2024). Measurements from the University of Vermont’s
Forest Ecosystem Monitoring Cooperative were formerly
available at https://www.uvm.edu/femc/data/archive/project/
proctor-maple-research-center-meteorological-monitoring/dataset/
proctor-maple-research-center-air-quality-1/overview (FEMC,
2020). The remaining measurements are proprietary, subject
to non-disclosure agreements, and have restricted access at
https://a2e.energy.gov (DOE, 2024).

The ERA5 reanalysis data are obtained from https://doi.org/10.
24381/cds.adbb2d47 (Hersbach et al., 2023). The GWA3 wind data
are available from https://globalwindatlas.info/en/ (DTU, 2024).
The WTK-LED Climate wind speed estimates were accessed
through the WindWatts web application (https://windwatts.nrel.
gov/, NREL, 2024). The 100 kW reference distributed wind power
curve utilized in this work is provided at https://nrel.github.
io/turbine-models/2019COE_DW100_100kW_27.6.html (NREL,
2019). Data processing scripts are written in MATLAB and are
available from the corresponding author upon request.

Author contributions. Data management, software development,
analysis, and paper preparation were performed by LMS. Team
management was performed by HT and CP. All authors contributed
to the research conceptualization, paper edits, and technical review.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. The views expressed in the article do not necessarily
represent the views of the DOE or the U.S. Government.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This work was authored by the Pacific
Northwest National Laboratory, operated for the US Department
of Energy (DOE) by Battelle (contract no. DE-AC05-76RL01830).
This work was authored in part by the National Renewable Energy
Laboratory, operated by the Alliance for Sustainable Energy, LLC,

for the US DOE under contract no. DE-AC36-08GO28308. Fund-
ing was provided by the US DOE Office of Energy Efficiency and
Renewable Energy Wind Energy Technologies Office. The authors
would like to thank Patrick Gilman and Bret Barker at the US DOE
Wind Energy Technologies Office for funding this research. The au-
thors also wish to thank Alyssa Matthews and the three anonymous
reviewers for their thoughtful suggestions for improvement of this
work.

Financial support. This research has been supported by the US
Department of Energy (grant nos. DE-AC05-76RL01830 and DE-
AC36-08GO28308).

Review statement. This paper was edited by Atsushi Yamaguchi
and reviewed by three anonymous referees.

References

Argonne National Laboratory (ANL): Argonne 60 m Meteorologi-
cal Tower, Argonne National Laboratory [data set], https://www.
atmos.anl.gov/ANLMET/, last access: 14 February 2022.

ArcVera: Mesoscale and Microscale Modeling for Wind Energy
Applications: Next-Generation Numerical Weather Prediction
for Wind Flow Modeling, https://arcvera.com/mesoscale-
and-microscale-modeling-for-wind-energy-applications-
next-generation-numerical-weather-prediction-for-wind-flow-
modeling/, last access: 24 August 2023.

Atmospheric Radiation Measurement (ARM): Atmospheric Radi-
ation Measurement User Facility, Southern Great Plains Site,
ARM [data set], https://www.arm.gov/capabilities/instruments?
location[0]=SouthernGreatPlains, last access: 7 June 2021.

B2SHARE: The Tall Tower Dataset, B2SHARE
[data set], https://b2share.eudat.eu/records/
159158152f4d4be79559e2f3f6b1a410, last access:
9 March 2020.

Basse, A., Callies, D., Grötzner, A., and Pauscher, L.: Seasonal ef-
fects in the long-term correction of short-term wind measure-
ments using reanalysis data, Wind Energ. Sci., 6, 1473–1490,
https://doi.org/10.5194/wes-6-1473-2021, 2021.

Brookhaven National Laboratory (BNL): Current Observations,
Brookhaven National Laboratory [data set], https://wx1.bnl.gov/,
last access: 14 April 2020.

BPA: BPA Meteorological Information, Bonneville Power
Administration [data set], https://transmission.bpa.gov/
Business/Operations/Wind/MetData/default.aspx, last access:
17 March 2022.

Carta, J. A. and Velázquez, S.: A new probabilistic method to
estimate the long-term wind speed characteristics at a po-
tential wind energy conversion site, Energy, 36, 2671–2685,
https://doi.org/10.1016/j.energy.2011.02.008, 2011.

Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-
correlate-predict (MCP) methods used to estimate long-term
wind characteristics at a target site, Renew. Sust. Energ. Rev.,
27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013.

Chen, D., Zhou, Z., and Yang, X.: A measure-correlate-predict
model based on neural networks and frozen flow hypothe-

https://doi.org/10.5194/wes-10-1451-2025 Wind Energ. Sci., 10, 1451–1470, 2025

https://www.atmos.anl.gov/ANLMET/
https://www.arm.gov/capabilities/instruments?location[0]=Southern Great Plains
https://www.arm.gov/capabilities/instruments?location[0]=Southern Great Plains
https://b2share.eudat.eu/records/159158152f4d4be79559e2f3f6b1a410
https://b2share.eudat.eu/records/159158152f4d4be79559e2f3f6b1a410
https://wx1.bnl.gov/
https://ameriflux.lbl.gov/sites/site-search/#filter-type=all&has-data=All&site_id=
https://ameriflux.lbl.gov/sites/site-search/#filter-type=all&has-data=All&site_id=
https://midcdmz.nrel.gov//apps/sitehome.pl?site=NWTC
https://midcdmz.nrel.gov//apps/sitehome.pl?site=NWTC
https://transmission.bpa.gov/Business/Operations/Wind/MetData/default.aspx
https://transmission.bpa.gov/Business/Operations/Wind/MetData/default.aspx
https://www.ndbc.noaa.gov/
https://www.uvm.edu/femc/data/archive/project/proctor-maple-research-center-meteorological-monitoring/dataset/proctor-maple-research-center-air-quality-1/overview
https://www.uvm.edu/femc/data/archive/project/proctor-maple-research-center-meteorological-monitoring/dataset/proctor-maple-research-center-air-quality-1/overview
https://www.uvm.edu/femc/data/archive/project/proctor-maple-research-center-meteorological-monitoring/dataset/proctor-maple-research-center-air-quality-1/overview
https://a2e.energy.gov
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://globalwindatlas.info/en/
https://windwatts.nrel.gov/
https://windwatts.nrel.gov/
https://nrel.github.io/turbine-models/2019COE_DW100_100kW_27.6.html
https://nrel.github.io/turbine-models/2019COE_DW100_100kW_27.6.html
https://www.atmos.anl.gov/ANLMET/
https://www.atmos.anl.gov/ANLMET/
https://arcvera.com/mesoscale-and-microscale-modeling-for-wind-energy-applications-next-generation-numerical-weather-prediction-for-wind-flow-modeling/
https://arcvera.com/mesoscale-and-microscale-modeling-for-wind-energy-applications-next-generation-numerical-weather-prediction-for-wind-flow-modeling/
https://arcvera.com/mesoscale-and-microscale-modeling-for-wind-energy-applications-next-generation-numerical-weather-prediction-for-wind-flow-modeling/
https://arcvera.com/mesoscale-and-microscale-modeling-for-wind-energy-applications-next-generation-numerical-weather-prediction-for-wind-flow-modeling/
https://www.arm.gov/capabilities/instruments?location[0]=Southern Great Plains
https://www.arm.gov/capabilities/instruments?location[0]=Southern Great Plains
https://b2share.eudat.eu/records/159158152f4d4be79559e2f3f6b1a410
https://b2share.eudat.eu/records/159158152f4d4be79559e2f3f6b1a410
https://doi.org/10.5194/wes-6-1473-2021
https://wx1.bnl.gov/
https://transmission.bpa.gov/Business/Operations/Wind/MetData/default.aspx
https://transmission.bpa.gov/Business/Operations/Wind/MetData/default.aspx
https://doi.org/10.1016/j.energy.2011.02.008
https://doi.org/10.1016/j.rser.2013.07.004


1468 L. M. Sheridan et al.: Distributed wind short-term deployment

sis for wind resource assessment, Phys. Fluids, 34, 045107,
https://doi.org/10.1063/5.0086354, 2022.

Davis, N. N., Badger, J., Hahmann, A. N., Hansen, B. O.,
Mortensen, N. G., Kelly, M., Larsén, X. G., Olsen, B. T., Floors,
R., Lizcano, G., Casso, P., Lacave, O., Bosch, A., Bauwens, I.,
Knight, O. J., Potter van Loon, A., Fox, R., Parvanyan, T., Krohn
Hansen, S. B., Heathfield, D., Onninen, M., and Drummond, R.:
The Global Wind Atlas: A High-Resolution Dataset of Clima-
tologies and Associated Web-Based Application, B. Am. Mete-
orol. Soc., 104.8, E1507–E1525, https://doi.org/10.1175/BAMS-
D-21-0075.1, 2023.

de Assis Tavares, L. F., Shadman, M., de Freitas Assad, L. P., and
Estefen, S. F.: Influence of the WRF model and atmospheric re-
analysis on the offshore wind resource potential and cost estima-
tion: A case study for Rio de Janeiro State, Energy, 240, 122767,
https://doi.org/10.1016/j.energy.2021.122767, 2022.

Derrick, A.: Development of the measure-correlate-predict strategy
for site assessment, in: Proceedings of the 14th British Wind En-
ergy Association, Nottingham, UK, 25–27 March 1992, 1992.

Díaz, S. Carta, J. A., and Matías, J. M.: Performance assess-
ment of five MCP models proposed for the estimation of
long-term wind turbine power outputs at a target site using
three machine learning techniques, Appl. Energ., 209, 455–477,
https://doi.org/10.1016/j.apenergy.2017.11.007, 2018.

Dinler, A.: A new low-correlation MCP (measure-correlate-predict)
method for wind energy forecasting, Energy, 63, 152–160,
https://doi.org/10.1016/j.energy.2013.10.007, 2013.

Draxl, C., Wang, J., Sheridan, L., Jung, C., Bodini, N., Buck-
hold, S., Aghili, C. T., Peco, K., Kotamarthi, R., Kumler,
A., Phillips, C., Purkayastha, A., Young, E., Rosenlieb, E.,
and Tinnesand, H.: WTK-LED: The WIND Toolkit Long-
term Ensemble Dataset, National Renewable Energy Labo-
ratory, Golden, CO (United States), NREL/TP-5000-88457,
https://doi.org/10.2172/2473210, 2024.

FEMC: University of Vermont, Forest Ecosystem
Monitoring Cooperative, Raw Proctor Maple Re-
search Center Meteorological Data, FEMC [data
set], https://www.uvm.edu/femc/data/archive/project/
proctor-maple-research-center-meteorological-monitoring/
dataset/proctor-maple-research-center-air-quality-1/overview,
last access: 15 April 2020.

Friedman, J. H.: Multivariate Adaptive Regression
Splines (with discussion), Ann. Stat., 19, 1–67,
https://doi.org/10.1214/aos/1176347963, 1991.

García-Rojo, R.: Algorithm for the estimation of the long-
term wind climate at a meteorological mast using a joint
probabilistic approach, Wind Engineering, 28, 213–224,
https://doi.org/10.1260/0309524041211378, 2004.

Gualtieri, G.: Reliability of ERA5 Reanalysis Data for Wind Re-
source Assessment: A Comparison against Tall Towers, Ener-
gies, 14, 4169, https://doi.org/10.3390/en14144169, 2021.

Hayes, L., Stocks, M., and Blakers, A.: Accurate long-
term power generation model for offshore wind farms
in Europe using ERA5 reanalysis, Energy, 229, 120603,
https://doi.org/10.1016/j.energy.2021.120603, 2021.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G.,

Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy,
S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloy-
aux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut,
J.-N.: ERA5 hourly data on single levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M.
W., Clough, S. A., and Collins, W. D.: Radiative forcing
by long-lived greenhouse gases: Calculations with the AER
radiative transfer models, J. Geophys. Res., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008.
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