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Abstract. Models used in wind resource assessment (WRA) range from engineering wake models and com-
putational fluid dynamics models to mesoscale weather models with wind farm parameterizations and, more
recently, large-eddy simulation (LES). The latter two produce time series of wind farm power of a certain pe-
riod. This simulation period is, in the case of LES, mostly limited to <1 year due to the computational costs.
However, estimates of long-term (O(10 years)) power production are of high value to many parties involved in
WRA. To address the need to calculate long-term annual energy production from < 1-year model runs, there-
fore, this paper presents methods to estimate the long-term (O(10 years)) power production of a wind farm using
a < l-year simulation. To validate the methods, a 10-year LES of a hypothetical large offshore wind farm is
performed.

The methods work by estimating the conditional probability densities between wind farm power from the
LES and wind speed from reanalysis data (ERAS5) from a short (< 1 year) LES run. The conditional probability
densities are then integrated over 10 years of ERAS wind speed, yielding an estimate of the long-term mean
power production.

This “long-term correction” method is validated on varying simulation periods, selected with four different
day-selection techniques. When applied to a simulation period of 365 consecutive days, the methods can estimate
the 10-year mean power production with a mean absolute error of around 0.35 % of the long-term mean. When
choosing the simulation period with day-selection techniques that represent the long-term climate, only roughly
200 simulation days are needed to achieve the same accuracy.

Finally, a method to also include wind observations in the long-term correction is presented and tested. This
requires an additional “free stream” LES run without active turbines and gives estimates of long-term power
and wind that are corrected for a potential LES bias. Although validation of this final approach is difficult in the
employed modeling strategy, it gives valuable insights and fits within the common WRA practice of combining
models and observations.

The presented techniques are based on physical arguments, computationally cheap, and simple to implement.
Furthermore, they are not limited to LES but can be applied to other time-series-based models. As such, they
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could be a useful extension for the diverse set of modeling, observational, and statistical techniques used in

WRA.

1 Introduction

One of the main aims of wind resource assessment (WRA)
is to model the power production of a wind farm given the
broader environmental conditions. Such models vary greatly
in their basic formulation, complexity, and computational
costs; as a consequence of those factors, they also vary in
their application. Engineering wake models (Go¢men et al.,
2016) or computational fluid dynamics models are typically
used to produce power estimates given a certain “flow case”
(LoCascio et al., 2022; Laan et al., 2022), after which the
mean power is a weighted average of those flow cases. By
contrast, there are models that produce power production
as time series, given the changing environmental conditions
over some predefined period. Examples of these are weather
models that include wind farm parameterizations, for exam-
ple, the one by Fitch et al. (2012) in the WRF mesoscale
weather model. A more recent development is the use of at-
mospheric large-eddy simulation (LES) for these purposes.
LES is a class of fine-scale computational fluid dynamics
models whose resolution of about 10 to 100 m allows ex-
plicit simulation of the most energetic part of the turbulence
in the atmospheric boundary layer. Although its traditional
application is to research fundamental meteorological pro-
cesses (Stoll et al., 2020), LES can now be coupled to realis-
tic weather data (Schalkwijk et al., 2015a; van Stratum et al.,
2023) and can furthermore be used in WRA to understand
and quantify the interactions between wind farms and the at-
mosphere in a “real weather” setting (Baas et al., 2023).

The current state of the art of using LES in WRA is to
simulate 1 year, which comprises 365 consecutive days (e.g.,
the year of 2023), in order to provide an overlap with ob-
servation data, which are often only available during roughly
1 year. The simulation then includes the most important ef-
fects of weather conditions on wind park power production at
the turbulent, to the synoptic, to the seasonal timescale. This
approach, however, means that any interannual variability is
not taken into account. This is a major shortcoming because
the multi-year (O(10 years)) projected power production is of
high interest to many parties involved in wind energy devel-
opment, and interannual variability is significant (about 4 %
of the long-term mean (Pryor et al., 2018)). Methods to accu-
rately estimate long-term average power production without
resorting to either a computationally cheaper model of lower
physical fidelity or a longer but too expensive LES run would
therefore be very useful in the WRA field.

To address this need, this work presents several methods
to correct the power production and other (meteorological)
variables as estimated by a short (<1 year) LES run of a
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large offshore wind farm for interannual variability and/or
bias with respect to observations, thus giving an estimate
of the long-term (climatological) value of those variables.
These “long-term corrections” estimate the long-term prob-
ability density of an LES variable, given (i) the short-term
joint probability density between the said LES variable and a
reference variable in the reanalysis data and (ii) the long-term
probability density of the reference variable in the reanalysis
data. The motivation of using the presented methods is the
prohibitive computational cost of doing a O(10 years) LES
run. Notwithstanding their suitability to LES in its current
role in WRA, the methods can also be applied to any time-
series-based model, such as mesoscale models. In this study,
LES results serve as an example application and validation
of the presented long-term correction methods.

The presence or absence of observation data suggests the
following three scenarios in which long-term correction can
typically be applied:

1. LES wind farm power output of a predetermined set of
365 consecutive days is available and needs to be cor-
rected for interannual variability but not for a bias with
respect to observations.

2. The LES run period can be freely chosen because there
are no observations that need to be concurrent. The run
period can therefore be a smartly chosen (representa-
tive) selection of days, which, after applying the long-
term correction method, yields the best estimate of the
long-term mean wind farm power.

3. LES wind farm power output of a predetermined set
of 365 consecutive days is available. The power output
needs to be long-term corrected for interannual variabil-
ity and simultaneously be corrected for the bias with re-
spect to observations.

Correcting or downscaling weather or climate model data
to better match observed reality is a widespread practice in
environmental science. In this field, two main types can be
distinguished (e.g.: Ekstrom et al., 2015; Holthuijzen et al.,
2021): dynamical downscaling, in which a more accurate
model is used to refine results from an often coarser model,
and statistical downscaling, in which statistical relationships
between the modeled and observed variable are used to cor-
rect the modeled variable. These methods generally produce
corrected time series but can include spatial dimensions as
well (Holthuijzen et al., 2021). The current study uses aspects
of both the dynamical and statistical type. Firstly, the data
to be corrected come from an LES downscaling of ERAS.
Secondly — and this is the core message of the study — the
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probability distributions are then corrected for the difference
in weather conditions between the simulation period and the
long-term climate. This is done by estimating the condi-
tional probability density between the variable of interest and
ERAS wind from the short simulation and then using this re-
lationship to modify the probability density of the variable
of interest to represent the long term. In this sense, the long-
term correction method is most related to statistical down-
scaling, but instead of correcting for a model deficiency, the
long-term correction method corrects for non-representative
simulation periods.

In this study, 10 years of weather conditions and atmo-
spheric flow through a large (960 MW) hypothetical wind
farm on the North Sea are simulated with an LES in order to
validate the long-term correction methods in the three typical
situations listed above. There is a long record of undisturbed
observations in the location of the hypothetical wind farm,
allowing validation of the LES and testing the method of
bias correction. The employed LES code is the Atmospheric
Simulation Platform for Innovation, Research, and Educa-
tion (ASPIRE), a modeling suite formerly often referred to
with the name of its LES core: GRASP (GPU-Resident At-
mospheric Simulation Platform). ASPIRE has its origins in
the Dutch Atmospheric Large-Eddy Simulation (DALES)
model (Heus et al., 2010) but has since been ported to graph-
ics processing units (Schalkwijk et al., 2012, 2015b) and is
currently used for research as well as commercial purposes,
mainly in the wind energy sector. Previous work with AS-
PIRE includes the following: Williams et al. (2024), Old-
baum (2019), Baas et al. (2023), and Verzijlbergh (2021)
(wind farm modeling); Schepers et al. (2021) and Taschner
et al. (2023) (turbine physics and loads); Gilbert et al. (2020)
and Alonzo et al. (2022) (wind forecasting); Kantharaju et al.
(2023) and Storey and Rauffus (2024) (wind climate model-
ing); and Bieringer et al. (2021) (dispersion).

The present work focuses on the performance of the long-
term correction methods given the employed model setup;
validation of the wind farm modeling itself is not part of
the scope. The paper is structured as follows: Sect. 2 gives
the theory behind the long-term correction methods. Sect. 3
describes the LES setup, methods of wind farm modeling,
observation data, and day-selection techniques. Then, results
and discussion are presented in Sect. 4 following the three
scenarios above, and finally conclusions on the application
of the long-term correction methods are drawn in Sect. 5.

2 Theory of long-term correction of wind farm
power production and wind

The goal of this work is to estimate long-term (O(10 years))
mean values of wind farm power production and wind from
a much shorter (O(1 year)) LES run. The mean values of that
shorter run can deviate from their true long-term counterparts
for two reasons: (i) the short LES run has different mean me-
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teorological conditions than the long-term mean (this is nor-
mal climatological variability) and (ii) the LES may display
a consistent mean bias with respect to reality (this can be
caused by a multitude of model flaws). The first can be cor-
rected with purely atmospheric reanalysis data, such as the
ERAS reanalysis dataset, which is a global historical record
of atmospheric conditions (Hersbach et al., 2020) and, in this
study, also provides boundary conditions for the LES. The
second also needs on-site observations that are concurrent
with the LES run to quantify the bias. The following two
sections explain the long-term correction methods designed
to correct these deviations and to arrive at an estimate of the
long-term mean power production and wind.

2.1 Long-term correction without observations

An LES run, which can be either a set of consecutive days or
a smartly chosen sample (scenarios 1 and 2 in the introduc-
tion), provides time series of power production of the entire
wind farm (P) and, for instance, wind speed at a location in
or close to the wind farm (M). These two variables are pos-
itive, random, and continuous and have probability densities
JL(P) and g (M), where the subscript L refers to the LES.

Also, from an external atmospheric reanalysis dataset (in
this case, ERAS), the wind record during the simulation time
can be taken, which has its own wind distribution ggra (M).
Furthermore, the joint probability densities between LES
power and ERAS wind (hy gra(P, M)) can be calculated.
Total probability being unity requires that:

/fL(P)dP =/gERA(M)dM=1 )]
0 0

and (dropping the integration limits from now on):

//hL’ERA(P,M)deM =1. 2)

Also, integrating the joint probability density over one
variable retrieves the marginal probability density of the
other; for example:

/hL,ERA(Ps M)dM = fi.(P). 3)
Then, the conditional probability density is defined as:
hi,Era(P, M)
hyEra(P, M) = ————— “)
| 8ERA(M)

which describes the distribution of the first variable between
the brackets given a value of the second. From this definition,
the classical result of Bayes’ rule follows. Rewriting Eq. (4)
and making use of the integration Eq. (3) gives an expression
for fL(P):

/hL|ERA(PaM)gERA(M)dM:/hL,ERA(Ps M)ydm

= fL(P). ®)
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Denoting long-term, climatological (O(10 years)) counter-
parts of the distributions with hats, Eq. (5) takes on the anal-
ogous form for the long term:

fL(P)= / hL gra(P, M)dM
=fflL\ERA(P,M)§ERA(M)dM. (6)

If the LES run period is long enough and includes a suf-
ficiently diverse range of weather conditions, it can be as-
sumed that the conditional probability between power and
wind approximates its long-term counterpart:

hLErA(P, M) ~ l;LlERA(Pa M). @)

Physically, this means assuming that the short simulation
accurately captures the range of wind farm power production
values that belong to a given wind speed. As will be shown
in Sect. 4.1, this range can be significant.

Then, substituting this assumption into Eq. (6) gives an
estimate of the long-term distribution of power production:

fuP)~ / e era(P. M)gera(M)AM. ®)

Thus, Eq. (8) provides an estimate of the long-term proba-
bility distribution of LES power production (or wind, analo-
gously) given (i) the short-term conditional probability den-
sity of LES power (or wind) and reanalysis wind and (ii) the
long-term probability distribution of the reanalysis wind. The
long-term mean power production can then be calculated by
taking the first moment of the distribution:

P= /fL(P)PdP, )

and this mean power value (typically in MW) can be trans-
lated to the annual energy production (AEP, typically in
GWh) by multiplying by 1 year.

2.2 Integrating observation data to correct for a model
bias

In the practice of LES modeling, it is often found that the
wind speed displays a mean bias of O(0.1 ms~!) with respect
to observations (Kantharaju et al., 2023; Storey and Rauffus,
2024) (scenario 3). Because observations for WRA are usu-
ally done in an undisturbed environment (before construction
of the wind farm), a second “free stream” validation LES run
is needed to determine this bias. Such a free stream run has
no turbines included, or it has turbines that exert no force on
the flow and therefore leave it undisturbed. Apart from this,
the two run setups are identical, allowing for a direct quan-
tification of wake and blockage losses.

The potential wind bias identified in a free stream run will
also be similarly present in the wind farm power production
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with active turbines and its long-term corrected counterpart,
when applying the methodology of the previous section. To
estimate long-term mean power production while also cor-
recting for a bias, therefore, a different approach needs to be
taken, which cannot rely on the absolute wind or power val-
ues produced by the LES (because they are biased). Rather,
this new approach needs to rely on the statistical relation-
ship between power production of the LES run with ac-
tive turbines and the LES wind of a free stream run, i.e.,
hyrsL(P, M), where the subscript FSL denotes free stream
LES and the subscript L still refers to the run with active tur-
bines. Despite its hypothetical nature (it cannot be measured
in any way in reality), this conditional probability is assumed
to be accurate because of the explicit representation of many
important fluid dynamical and meteorological processes that
affect it, such as wakes, blockage, and stability effects (see,
e.g., Mehta et al. (2014); Breton et al. (2017)).

An estimate of the long-term power distribution can then
be obtained by integrating the product of ApgsL(P, M)
and the probability distribution of unbiased long-term wind
speed. The latter can be obtained from observations com-
bined with reanalysis data. This is done in the form of
a measure—correlate—predict (MCP) procedure (a common
technique used for WRA; see, e.g., Carta et al. (2013)), which
(per wind direction bin) fits the reanalysis wind to obser-
vation data and then applies this fit to the long-term re-
analysis record, thereby creating a semi-artificial long-term
wind record that has no bias with respect to the observation
data from which it was constructed. This long-term MCP-
corrected wind can therefore be seen as a bias-corrected ver-
sion of the reanalysis wind. Using the long-term distribu-
tion of the MCP-corrected wind (gmcp(M)) together with
the conditional probability iy rsL(P, M) gives the estimate
of the long-term power distribution in the following form:

fp)~ f hypsL(P, M)gmcp(M)dM, (10)

where the subscript L on the left-hand side has been dropped
because the equation aims to estimate the real long-term
power production, not its (possibly biased) long-term LES
value. Thus, Eq. (10) (see the similarity to Eq. 8) provides a
way to integrate observations into the long-term correction of
power. An analogous form of Eq. 10 also works for non-free
stream wind (wind disturbed by the wind farm, in the run
with active turbines) but not for the free stream wind itself
because the integral then reduces to gycp(M).

The integral quantities presented until now are computed
as discrete sums when applying long-term correction. This
means the quantities of interest need to be binned in such
a way that the assumption hpgra(P, M)~ EL‘ERA(P,M)
holds as well as possible. The implied assumption is that
all quantities that influence (either directly or indirectly) the
power production (stability, wind direction, air density) also
obey this approximation. For wind, bins of 0.75ms™! are
chosen, and sensitivity to this value will be shown. If one is
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(a) (b)
dx, dy = 120m, 120 m
Nx, Ny = 256, 256

dx, dy = 1500 m, 1500 m
Nx, Ny = 96, 96

30.72.km

Figure 1. The simulation setup. (a) The LES (small orange square)
is nested in a coarser simulation (large orange square) on the North
Sea. (b) The LES domain with the wind farm layout (dots).

interested in the long-term mean of the variable that is being
long-term corrected (power production in the previous ex-
amples), bins of that variable can be arbitrarily small. This
is because in the final calculation of the long-term mean (for
power: P = [ fL(P)PdP), the bins are all aggregated. Fur-
thermore, any point masses in the distribution (for wind farm
power, zero and rated power are point masses) need to be
at bin center values. This is to ensure that their (often high)
occurrences are assigned their correct point mass values.

3 Methods and data

3.1 LES setup

The employed LES code, named the Atmospheric Simula-
tion Platform for Innovation, Research, and Education (AS-
PIRE), has gradually evolved from its root, the Dutch At-
mospheric Large-Eddy Simulation (Heus et al., 2010). Key
developments were its porting to graphics processing units
(GPUs) (Schalkwijk et al., 2012, 2015b), coupling to re-
analysis or large-scale forecast weather data, and, most re-
cently, the transition from periodic boundary conditions to
open boundary conditions. In the current setup, the core LES
domain is nested in a coarser mesoscale-type simulation with
a resolution of 1.5km, which is directly coupled to ERAS
with open boundary conditions. This coarser simulation has
the same model formulation as the LES except for turbu-
lence, which is completely parameterized. In this way, the
model setup includes the basic elements of mesoscale dy-
namics and gradients, such as fronts or land—sea transitions,
which is problematic in a periodic simulation.

For this study, an LES domain (Fig. 1) of 30.72km by
30.72 km and a horizontal resolution of 120 m is chosen. The
choice for this relatively coarse resolution (in the context of
LES) is a pragmatic one. For the current purposes of pre-
senting a 10-year simulation, it is considered to be a good
trade-off between accuracy and computational cost. This was
shown by Baas et al. (2023): refining their LES resolution to
60 m has a relatively small effect on total aerodynamic losses
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of a 770 MW wind farm. Also, in the present study, Supple-
ment is provided with a resolution study of the Horns Rev
wind farm using the same modeling approach. Here, it is also
shown that coarsening the resolution from 20 to 120 m has a
small effect on the essential physics of boundary layer mete-
orology and wind farm dynamics as represented in the LES.
Turbulence in the LES is generated by adding fluctuations
to the inflow conditions from the mesoscale simulations.
These fluctuations are themselves produced by a smaller pe-
riodic precursor LES that is driven by the mesoscale field
at the LES boundaries. Hence, these added fluctuations are
consistent with atmospheric conditions (Storey and Rauffus,
2024). Sea surface roughness is parameterized according to
Charnock (1955), and subgrid-scale turbulence is described
by an anisotropic minimum dissipation turbulence parame-
terization (Verstappen, 2011; Rozema et al., 2015). In the
current study, no microphysical parameterizations are used,
and radiative tendencies are added from the ERAS. The ver-
tical spacing of the 64 model levels starts at 30 m at the sur-
face and stretches exponentially to the top of the domain at
3km. The coarser simulation around the LES has a domain
of 144 km and a horizontal resolution of 1.5 km. Its 64 verti-
cal levels start with a spacing of 40 m and stretch exponen-
tially to the top at 8 km. The domains are on the southern
North Sea, centered at 53.22° N, 3.22°E, and basic meteoro-
logical quantities are written at 10 min intervals at that lo-
cation. For the long-term correction, hourly averaged values
will be used. The simulation period is 2010-2019, each day
of which is simulated separately with a spin-up time of 2 h.

3.2  Wind farm modeling

A hypothetical wind farm with a regularly spaced square
layout of 8 by 8 turbines is included in the LES. The tur-
bine type is the 15 MW offshore reference wind turbine of
the International Energy Agency, described in Gaertner et al.
(2020), and the turbines are spaced 6 times their rotor diam-
eter (6 - 240m = 1440m) (Fig. 1).

Turbines are implemented in the LES according an actu-
ator disk model (Meyers and Meneveau, 2010; Calaf et al.,
2010). In this approach, grid-specific power and thrust coeffi-
cients of the turbine are first calculated offline from the man-
ufacturer’s information. During the simulation, the power
production of each individual turbine as well as its force on
the flow can be determined. In this way, turbines produce in-
dividual wakes and interact.

Two separate LES runs are performed for this study: one
with active wind turbines, named the realistic run, and one
where the wind turbines do not exert any force on the flow,
named the free stream run. In the following, we will refer
to wind and power production from those runs as realistic
power or wind and free stream power or wind, respectively.
The turbines in this free stream run have their thrust coeffi-
cient set to 0, meaning that they produce power but no wakes
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and therefore do not interact. A more elaborate description of
the wind farm modeling can be found in Baas et al. (2023).

3.3 Observation data

We obtained 10 min wind anemometer data during 2010—
2019 from the K13 offshore platform (53.22°N, 3.22°E,
75.3 m height) via the application programming interface of
the Royal Netherlands Meteorological Institute (KNMI) at
https://dataplatform.knmi.nl/dataset/windgegevens-1-0 (last
access: 2 May 2024). The original data were unvalidated
and contained periods when the wind speed erroneously de-
creases to 0. These were removed, together with all days
that did not have complete data. These two cleaning steps
removed 25 % of the data points.

3.4 Day-selection techniques

A simple set of day-selection techniques is applied to inves-
tigate the accuracy of the long-term correction methods as a
function of LES run time (scenario 2). More involved tech-
niques exist to find a sample of days that is representative
of the wind climate (see, e.g., Rife et al. (2013)), but their
application is not the object of this study.

Day-selection techniques may have an inherent source of
randomness (such as simply selecting random days), and
applying them many times gives an indication of the error
statistics of the long-term correction method. Other meth-
ods are deterministic, and some form of spread or random-
ness needs to be introduced in order to gauge the error statis-
tics of the long-term correction method. The following day-
selection techniques and their associated introduced source
of spread are tested in this research:

— consecutive: a number of consecutive days are selected.
Spread is introduced by starting on a random day, en-
suring the sample falls within the time span of the LES.

— random: a number of random days are selected. Spread
is introduced by using different random realizations.

— ordered: all days are ordered (sorted) based on their
mean ERA5 100 m wind speed. Days are then equidis-
tantly chosen from this series in order to end up with the
desired sample size. Spread among different samples is
introduced by first excluding 365 random days from the
10 years and then taking the equidistant sample.

— k-means: a standard k-means clustering method is ap-
plied on daily mean ERAS values of zonal and merid-
ional 100 m wind. Spread is introduced by first exclud-
ing 365 random days from the 10 years and then apply-
ing the k-means algorithm.
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4 Results and discussion

The following sections first describe the general performance
of the realistic and free stream 10-year LES runs in terms
of wind statistics and comparison to observations. Then, as
an illustration of the long-term correction method, Sect. 4.2
gives an illustration of using 2010 to estimate the mean
power production of 2010-2019 as estimated by the LES.
This leads the way to using many consecutive years to esti-
mate the long-term mean LES power production (scenario 1),
from which error metrics that describe the performance of the
method can be calculated. Similar error metrics will be pre-
sented in Sect. 4.3, in which the long-term correction method
will be applied to the different day-selection techniques (sce-
nario 2). Finally, Sect. 4.4 shows how observations can be
integrated, which will give estimates of the (bias-free) real
long-term mean power production (scenario 3).

4.1 Characterization and validation of the 10-year LES

Figure 2 shows basic validation statistics of the free stream
LES run with observations and ERA5 wind. In general, the
LES captures the wind conditions satisfactorily, despite its
bias of —0.36ms™!.

To illustrate the approach of the free stream and realistic
run, Fig. 3 shows the joint (for the realistic run) and marginal
(for both runs) probability density functions (PDFs) of power
production of the wind farm and wind in the center of the do-
main at 75.3 m height. The joint PDF can be read as a prob-
abilistic wind farm power curve, i.e., it shows the mapping
from wind conditions to power production. This mapping is
not unique: for a given wind speed in the center of the park,
there is a considerable range of power production values that
are plausible. This reflects the combined effects of other fac-
tors than wind, such as stability and wind direction, that indi-
rectly influence the power production through their effects on
the turbine wakes. The relative difference in mean power pro-
duction between the free stream and realistic run represents
all internal aerodynamic losses and has a value of 17.5 %.
This is mainly due to lower occurrence of the rated power
conditions in the realistic run. Wind conditions are similarly
affected by including realistic turbines in the LES: the mean
wind decreases by 19 %, and the wind PDF loses its charac-
teristic Weibull shape.

4.2 Long-term correction of 365 consecutive days for
climatological variability

In this section, the performance of the long-term correction
method of 365d to 10 years will be described. This entails
evaluating the integrals in Eqs. (8) and (9) and is an appli-
cation of scenario 1, as described in the introduction. Be-
fore statistically evaluating the performance of the long-term
correction method of many sets of 365 consecutive days,
it is insightful to consider a graphical representation of the
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Figure 3. Illustration of the simulation approach. (b) Joint PDF of
LES power production and wind speed in the center of the domain
at 75.3 m in the realistic run. This can also be interpreted as a prob-
abilistic wind farm power curve. (a) Marginal PDFs of that wind
speed for the realistic and free stream runs. (¢) Marginal PDFs of
power production for the realistic and free stream run. The top and
right panels are the integral of the joint PDF along the vertical and
horizontal axes. Dots in the center panel indicate the mean values,
and percentages indicate the decrease in those values due to the re-
alistic inclusion of turbines in the simulation.

method and to validate the method’s assumptions. To those
ends, Fig. 4a—b show the PDFs of wind and power produc-
tion during an arbitrary year (2010) and the full run period
(2010-2019), together with the estimated long-term PDF of
power by applying Eq. (8). The year 2010 had below-average
wind speeds, which is reflected in a lower than average oc-
currence of rated power. The long-term correction method
produces a power production PDF (black line in Fig. 4b) that
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visually matches the real long-term power production PDF,
giving a basic first confirmation of the method’s validity.

Figure 4c shows, for the years 2010-2019, the sensitiv-
ity of the long-term power estimate to the binning of wind
in Eq. (5). In the range of about 0.5 to 1 ms™!, there is a
low sensitivity to the wind bin width. Outside of this range,
the assumptions behind the long-term correction method
break down. From now on, therefore, a wind bin width of
0.75ms~! will be chosen. A simple visualization of the cen-
tral assumption in Eq. (7) is shown in Fig. 4d: within each
wind bin starting between 3 and 12ms~!, this shows the
PDFs of power production, i.e., iy gra(P, M), for each in-
dividual year in 2010-2019. Also, the same PDFs but for
the entire period 2010-2019 are shown (fzuERA(P, M)). If
Eq. (7) was fulfilled perfectly, the PDFs within each wind bin
would coincide. Although this perfect match is not observed,
their general shapes largely agree, qualitatively justifying the
use of the assumption.

To make a more quantitative assessment of the validity of

the assumption, the Perkins skill score (S(M)) (Perkins et al.,
2007) between hyp gra(P, M) and fzuERA(P, M) can be cal-
culated in each wind bin:
S(M) = [min(hLlERA(P» M), hygra(P, M))dP, (11)
which measures the shared area between the long- and short-
term PDFs (a “perfect match” hence means that S(M) = 1).
Also, the error contribution to the long-term corrected value
of the power production can be calculated within each wind
bin:

E(M) = f ((rysra(P, M)

— hygrA(P, M))gErA(M) PAP.

This is a useful quantity because it reduces to the total er-
ror in the long-term corrected value when integrated over all

12)
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wind bins. The last two panels of Fig. 4 show these two er-
ror metrics for 2010-2019. Three regimes are distinguish-
able. First, below roughly 13ms~!, the Perkins skill score
is > 0.9; then, in the rated power regime, it is 1; and above
the cut-out speed, it takes on a large range of values. This
reflects the shape of the wind farm power curve (Fig. 4): the
more spread in power at certain wind speed, the lower the
agreement is between short- and long-term. Also, the very
few occurrences of above cut-out wind speeds cause a low
correspondence between short and long term there. The error
contribution per wind speed bin (Fig. 4f) corrects for this low
occurrence. Note that positive and negative values of E(M)
can compensate. Therefore, its absolute value averaged over
the different years is also shown, | E(M)|. This shows that the
largest absolute errors in the long-term correction value are
made in the sub-rated power regime, where the wind farm
power curve shows the largest spread. It can be expected,
therefore, that the long-term correction method will be less
accurate for wind farms with a larger spread in power values
at a certain wind speed. This can be the case for wind farms

Wind Energ. Sci., 10, 1471-1484, 2025

where the wake losses depend heavily on wind direction, for
example, due to their specific (irregular or elongated) layout.

To gain more statistical insight into the performance of
the current method, it was applied on 329 series of 365
consecutive days within the 10-year LES run (each starting
10d after the previous one) for realistic power production,
free stream power production, realistic wind, and free stream
wind in the center of the LES domain at 75.3m height.
This allows calculation of the mean absolute error (MAE)
of the long-term correction method. Figure 5 shows time se-
ries and their histograms of the set of consecutive days, to-
gether with their long-term corrected counterpart, and sev-
eral statistical metrics. Typically, the interannual variability
of uncorrected variables is about 4 % of the mean, which, for
power, corresponds to previously found values (Pryor et al.,
2018) in a study about wind farms in the US. Applying the
long-term correction removes much of that variability and
produces a time series centered around the long-term mean
value (horizontal black lines). For free stream power, realistic
power, and realistic wind, the method gives MAEs of 0.36 %,
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0.35 %, and 0.69 % of their long-term means, respectively.
The 95th percentiles of the absolute errors are around 0.8 %
(realistic and free stream power) and 1.57 % (realistic wind)
of the long-term means.

4.3 Day-selection techniques and their effect on
long-term correction

When there is no need to run consecutive days in the LES
(scenario 2 in the introduction), the LES run period can be
chosen in order to optimize the estimation of the long-term
mean power production or wind. In this section, simple meth-
ods of “smart day selection” will be combined with the long-
term correction method to get to such estimates. It should be
noted that this approach of day selection is also viable with-
out a long-term correction method. In that case, the aim is to
choose days that are representative of the long-term climate
(e.g., Rife et al., 2013), and no statistical correction is applied
on the simulation results.

The attention will now be limited to realistic power pro-
duction and wind speed in the middle of the LES domain.
From the 10 years of LES output, and for a range of days
between 10 and 365, the day-selection techniques described
in Sect. 3 were applied 500 times, after which the long-
term correction method was applied on the resulting sam-
ples. Resulting MAEs and 95th percentiles of the absolute
errors are shown as a function of sample size in the right pan-
els of Fig. 6. The left panels show the uncorrected versions,
which reveal the qualitative difference between the four day-
selection techniques. For a sample larger than roughly 40d,
the MAE of the uncorrected power and wind decreases in the
following order: “consecutive”, “k-means”, “random”, and
“ordered”. This reflects each method’s representativeness of
the long-term climate. By construction, <365 consecutive
days are all within the same seasonal cycle and therefore
are not representative of the long-term climate. Also, a k-
means algorithm applied to the two components of the hori-
zontal wind does not represent the underlying distribution be-
cause it homogeneously samples all possible wind conditions
without taking into account their probability density. Only
the “ordered” method is specifically constructed to sample
the wind condition weighted by their occurrence frequency,
thereby making a sample that has a mean wind close to the
climatological value (i.e., a low MAE in the left panels of
Fig. 6).

However, after applying the long-term correction method,
the difference between all techniques, except for “consecu-
tive”, has almost vanished. For the “ordered” method, there
is only a marginal improvement in the MAE compared to
its uncorrected counterpart, but for the other techniques, it
is substantial. For example, long-term correction of 100 ran-
dom days of LES can, on average, decrease the error in esti-
mating the long-term mean wind from 4 % to 1 %. For con-
secutive days, it can be decreased from 11 % to 5 %. More-
over, the previous section showed that running 365 consecu-
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tive days gives an MAE of approximately 0.35 % of the long-
term mean (for power). With the “random”, “ordered”, or “k-
means” method, this value can already be attained at approx-
imately 200 days. Simulating more days only marginally im-
proves the MAE, which is qualitatively consistent with the
typical 1/+/N behavior of convergence of the standard error.
Furthermore, if an MAE of 1 % is tolerable, fewer than 50
simulation days are required.

Even after long-term correction, the “consecutive” method
remains distinctly different from the other three, yielding
considerably higher MAEs. Because it is the only method
that does not select days from different years (or from dif-
ferent seasons, if the sample size is well below 1 year), this
strongly suggests that choosing days from different years and
seasons is the most important element in designing a day-
selection technique for long-term correction.

To quantify the source of the errors made in the long-term
correction, Fig. 7 shows the absolute value of E(M) (Eq. 12),
averaged over the 500 samples, for the four day-selection
techniques. As observed before, the largest absolute errors
are made in the sub-rated power regime (< 13ms~!), and
there is a second maximum around the cut-out wind speed.
This reflects the regimes where the power curve is most vari-
able with wind speed, showing how errors in the approx-
imation in Eq. (7) propagate into the final long-term cor-
rected value. Like in Fig. 6, the clear decrease with sample
size is visible. Also, the “consecutive” method decreases less
rapidly than the three. However, the general characteristics
of the error sources are similar for all methods.

4.4 Including observations: correction of LES bias and
climatological variability

As a final step, this section explores integration of wind ob-
servations in the long-term correction method (scenario 3).
This involves performing an MCP procedure with observa-
tion data and reanalysis data and then evaluating the inte-
gral in Eq. (10). The key difference with scenarios 1 and 2 is
the use of the conditional probability Ay rs.(P, M), i.e., the
wind farm power of the realistic run, given the wind in the
free stream run. In contrast to scenarios 1 and 2, therefore,
integrating observations in the long-term correction proce-
dure strictly requires the free stream LES run. The resulting
long-term corrected values are harder to validate because the
simulation setup with a hypothetical wind farm precludes the
use of observed wind farm power or observed disturbed wind
speed.

As an illustration, a standard MCP procedure was per-
formed on observations from 2010 (resampled to 1 h), where
the observed wind is linearly fitted to the reanalysis wind, in
16 wind direction sectors. Figure 8 shows scatter plots of the
observed wind, the ERAS wind, the free stream LES wind,
and the MCP-corrected wind. By construction, the MCP-
corrected wind has a zero bias with respect to the observa-
tions. The bias between the free stream LES and the MCP is
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very similar to the bias between the free stream LES and the
observations, confirming that the MCP procedure constructs
a “quasi-observation” time series.

Long-term correction according to Eq. (10) was then ap-
plied for power and realistic wind (using the conditional
probability between realistic LES wind and free stream LES
wind in the latter case) for 329 series of 365 consecutive
days with the previously constructed MCP-corrected wind
(based on 2010). This gives values for power and wind that
are corrected for both interannual variability and bias with
respect to the observations. It is impossible to present error
metrics of the long-term corrected values of realistic wind
and power because the simulated wind farm is hypothetical.
However, some useful insights can be derived from time se-
ries of the long-term corrected values (Fig. 9). The difference
between the long-term mean free stream LES wind and the
long-term mean MCP-corrected wind reflects the LES bias
of about —0.36 ms~!. Also, the difference between the long-
term mean realistic LES wind and the long-term corrected
wind takes on this approximate value. In other words, the
long-term correction method corrects a similar bias in the
free stream as in the realistic case. For power, a similar pat-
tern is observed: the long-term correction adjusts the real-
istic and free stream power by roughly the same amounts
(~30MW).

Wind Energ. Sci., 10, 1471-1484, 2025

5 Conclusions

This work presented methods to estimate long-term mean
wind and wind farm power production from shorter wind
farm simulations, applied to three increasingly complex sce-
narios that are typical in the practice of WRA. Being appli-
cations of the definition of the conditional probability, the
methods are simple, they are based on physical arguments,
and the underlying assumptions can be verified. Furthermore,
although this study uses LES as an example to verify and val-
idate the methods, they can also be applied to other (wake)
models, numerical weather prediction models, or observation
data.

Data from a 10-year LES run showed that long-term cor-
rection of 365 d of pure LES wind farm power can estimate
its 10-year counterpart with an MAE of around 0.35 % of
the long-term mean, approximately 1/10 of the interannual
variability. When the run period can be freely chosen, simi-
larly accurate estimates can be attained at periods of around
200 d. Moreover, fewer than 50 simulation days are needed to
reach an MAE of 1 %. The best estimates of long-term means
are achieved by choosing a sample across different years and
seasons, for example, with the “ordered” method, which pro-
duces a sample that is representative of the long-term cli-
mate. Nevertheless, even randomly chosen days are diverse
enough to provide a good sample for long-term correction.
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Figure 7. Absolute value of E(M) (Eq. 12), averaged over the 500
samples, for each day-selection technique.

Only for consecutive days, which are, by construction, dur-
ing the same year, are the errors considerably larger. The
performance of the methods depends on the validity of the
main assumption behind them: that the short-term power dis-
tribution within each wind bin can approximate its long-term
counterpart or, equivalently, that all meteorological factors
that control power production of a large wind farm (wind,
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wind direction, stability, air density, ...) are similarly dis-
tributed in the short term and long term. The accuracy of this
assumption might be different in other wind farms, for ex-
ample, ones that show a strong directionality because of their
shape. The errors reported in this study are therefore indica-
tive and cannot be readily translated to all other situations.

Finally, it was shown that introducing observations can
add value in estimating long-term means of power and wind
by correcting a possible bias in the model. This approach is
more expensive, however, because an additional free stream
run is needed. However, such a free stream run provides ad-
ditional benefit because it allows quantification of the total
wake losses of the wind farm. Furthermore, because WRA
commonly is a combination of modeling and on-site obser-
vations, this method fits well within its current practices. Al-
though validating this method against actual wind farm data
was outside the scope of this research, quantifying real oper-
ational wind farm variability remains a challenge and an on-
going effort. Combining real wind farm data with the meth-
ods presented in this work would therefore be a promising
route for further research.

Code and data availability. The 10-year LES output data at 1h
frequency, ERAS5 wind at the same location, and Python code

Wind Energ. Sci., 10, 1471-1484, 2025
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to do long-term correction according to scenario 1 are avail-
able in a Git repository, archived at Zenodo (Postema, 2024,
https://doi.org/10.5281/zenodo.11097255).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/wes-10-1471-2025-supplement.
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