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Abstract. The atmospheric dynamics that occur near the intersection of land and water offer exciting and chal-
lenging opportunities for wind energy deployment in coastal locations. New models and tools are continually
being developed in support of wind resource assessment, and three recent products are explored in this work for
their performance in representing characteristics of the wind resource at coastal locations: the Global Wind At-
las 3 (GWA3), the 2023 National Offshore Wind dataset (NOW-23), and the wind climate simulations that are a
component of the Wind Integration National Dataset (WIND) Toolkit Long-Term Ensemble Dataset (WTK-LED
Climate). These relatively new products are freely available and user-friendly so that anyone – from a utility-
scale developer to a resident or business owner – can evaluate the potential for wind energy generation at their
location of interest.

The validations in this work provide guidance on the accuracy of wind resource assessments for coastal cus-
tomers interested in installing small or midsize wind turbines (≤ 1 MW in capacity) to support energy needs at
the residential, business, or community scale, such as the island and remotely located participants of the U.S. De-
partment of Energy’s Energy Transitions Initiative Partnership Project. At 23 coastal locations across the United
States, dataset performance varies according to different evaluation metrics. All three recent datasets tend to
overestimate the observed coastal wind resource. GWA3 produces the smallest annual average wind speed rela-
tive errors, whereas WTK-LED Climate is in best agreement in terms of representing diurnal wind speed cycles.
NOW-23 is the highest performing of the datasets for representing seasonal and interannual trends in the coastal
wind resource. While GWA3 and WTK-LED Climate are relatively insensitive to the dataset output heights
selected for wind resource assessment at small and midsize wind turbine hub heights (20–60 m), significant vari-
ation in the NOW-23 representation of wind shear across the wind profile in the lowest 100 m of the atmosphere
leads to notable differences in wind speed estimates according to the dataset output heights selected for evalua-
tion. GWA3 exhibits challenges in the representation of observed wind speed diurnal cycles at small and midsize
turbine hub heights, likely due to the dataset’s consistent treatment of hourly wind speed trends regardless of
altitude.
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1 Introduction

Coastal communities, particularly those on islands or in re-
mote locations, have unique characteristics that impact the
energy technologies available to support them, including ex-
posure to extreme weather, proximity to sea spray, and trans-
portation availability for fuels or components. While much
of the current wind energy focus in the United States is on
the developing offshore wind market in support of large-
scale generation and distribution, residents and community
planners in coastal areas have opportunities to explore the
potential of wind energy at a local level to power homes,
businesses, farms, and facilities. The U.S. Department of
Energy’s (DOE’s) Energy Transitions Initiative Partnership
Project (DOE, 2024a) collaborates with island and remote
communities to advance their energy portfolios and increase
their energy resilience, and distributed wind energy is fre-
quently considered for its potential to address both goals.

The unique atmospheric dynamics that exist near the in-
tersection of land and water provide exciting and challeng-
ing opportunities for wind energy deployment in coastal lo-
cations. Sea breeze circulations and low-level jets are fre-
quently observed along US coastlines (Parish, 2000; Bao
et al., 2023; McCabe and Freedman, 2023). Such atmo-
spheric phenomena impact the magnitude, timing, and fore-
cast success in representing wind resource availability for
wind energy generation (Storm et al., 2008; Carrasco-Díaz
et al., 2011). As an example of the opportunities and chal-
lenges for coastal wind energy deployment, three small wind
turbines at Jennette’s Pier in North Carolina were generating
about 20 % of the pier’s needs until Hurricane Dorian dam-
aged the blades in 2019. For the pier, the opportunities out-
weighed the challenges, and new wind turbine systems are
planned for installation (Brindley Beach, 2022).

The sparsity of publicly available observation data to sup-
port comprehensive wind resource assessment has driven the
development of a variety of models, datasets, and tools over
the last decade. Three datasets that were specifically devel-
oped to support the wind energy industry are evaluated in this
work. The Global Wind Atlas 3 (GWA3) is a high-resolution
wind database developed by the Technical University of Den-
mark (DTU) and the World Bank Group to support policy-
makers, planners, and investors in identifying areas of high
wind resource for wind energy generation at locations across
the world (Davis et al., 2023). The 2023 National Offshore
Wind dataset (NOW-23), developed by the National Renew-
able Energy Laboratory (NREL), the University of Colorado,
and Veer Renewables, offers the latest wind resource infor-
mation for offshore regions in the United States but provides
wind information for large land-based areas as well (Fig. 1)
(Bodini et al., 2024). The Wind Integration National Dataset
(WIND) Toolkit Long-Term Ensemble Dataset (WTK-LED)
Climate is a climate-scale simulation created by Argonne
National Laboratory as part of the broader wind resource
simulation package WTK-LED (Draxl et al., 2024) that is

made available through NREL’s web application WindWatts
as annual, monthly, and diurnal wind speed averages (NREL,
2024a). All three wind datasets are freely accessible in user-
friendly web applications and provide varying degrees of
spatial and temporal resolution.

As the three wind assessment datasets in this analysis are
recent at the time of this paper, validations are limited, par-
ticularly in coastal regions in the United States. The devel-
opers of GWA3 validated their product at 35 sites at unde-
fined heights in six countries (Bangladesh, Maldives, Pak-
istan, Papua New Guinea, Vietnam, and Zambia) and found
mean and mean absolute relative wind speed biases of −1 %
and 14 %, respectively (DTU, 2024). At various offshore lo-
cations, Bodini et al. (2024) determined NOW-23 wind speed
biases ranging from −0.42 to +0.11 ms−1 for heights be-
tween 90 and 140 m. At five land-based observational loca-
tions (one coastal and four inland) with measurement heights
between 30 and 90 m, Draxl et al. (2024) found that the ratios
of WTK-LED Climate to observed wind speed probability
density functions ranged from 0.86 to 0.96.

The following analysis evaluates the performance of three
recent wind assessment datasets in previously unvalidated
locations along US coastlines. The validation heights (20–
60 m) in this work support coastal communities interested
in adopting small or midsize wind energy, with turbine ca-
pacities within 1 MW (Sheridan et al., 2024). Section 2
describes the features and limitations of the three recent
wind assessment datasets, along with the European Centre
for Medium Range Weather Forecasts Reanalysis version 5
(ERA5) (Hersbach et al., 2020), a popular global reanaly-
sis model widely utilized for wind energy resource assess-
ments as a standalone product, as initial and boundary condi-
tions for higher-resolution regional model runs, and as a ref-
erence dataset for measure–correlate–predict estimates with
local observations (Olauson, 2018; Soares et al., 2020; Hayes
et al., 2021; de Assis Tavares et al., 2022). ERA5 will serve
as a well-validated reference model for comparing the three
more recently developed wind datasets, GWA3, NOW-23,
and WTK-LED Climate, all of which utilize ERA5 as the
reanalysis forcing. The coastal observations are also charac-
terized in Sect. 2, along with a discussion on the measure of
validation used in the work. Section 3 provides the validation
results of the recent wind datasets on multiple timescales,
including annual average, interannual, seasonal, and diur-
nal. Section 4 summarizes the successes and challenges of
each wind dataset along with recommendations for employ-
ing each in a wind resource assessment.

2 Data and methodology

Three recent wind datasets (GWA3, NOW-23, and WTK-
LED Climate) and one reference reanalysis model (ERA5)
are validated using multiple years of observations from me-
teorological towers along US coastlines. The simulated wind
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Figure 1. Map of observational locations and regional designations used in this analysis, along with NOW-23 domain definitions.

data are horizontally adjusted to the observational loca-
tions using inverse distance weighting with the surrounding
dataset grid points. From there, the simulated data are verti-
cally adjusted to the observation heights using (1) the wind
data output heights and temporal resolutions common to all
datasets and (2) the surrounding output heights and high-
est temporal resolutions available per dataset. These two ap-
proaches allow us to compare the datasets both analogously
and to their highest potential. The characteristics of the wind
datasets and observations follow, along with a more detailed
discussion of the validation process.

2.1 Wind assessment products

Of the three recent wind assessment products, GWA3 was de-
veloped the earliest, with its initial version released in 2015
and the third version, GWA3, in 2019 (Davis et al., 2023).
The Weather Research and Forecasting (WRF) mesoscale
model (Skamarock et al., 2008) was utilized with the Rapid
Radiative Transfer Model (RRTM) for the longwave and
shortwave radiation schemes (Mlawer et al., 1997; Iacono
et al., 2008), the Mellor–Yamada–Janjić planetary boundary
layer (PBL) scheme (Janjić 1994), and ERA5 as the input
and boundary conditions to produce simulated wind data at
a horizontal resolution of 3 km (Davis et al., 2023). Each
WRF simulation was 24 h long with a spin-up period of 6
hours (Davis et al., 2023). The microscale modeling was per-

formed using the Wind Atlas Analysis and Application Pro-
gram (WAsP) model (Troen and Petersen, 1989) with an out-
put grid spacing of 250 m, the highest horizontal spatial reso-
lution of the recent datasets. GWA3 provides global coverage
for land-based wind estimates along with offshore wind es-
timates within 200 km of shorelines. Wind data are output at
five heights between 10 and 200 m at annual, monthly, and
diurnal temporal resolutions (Table 1). Additionally, GWA3
provides Generalized Wind Climate files that include the
wind speed and wind direction distributions for a number
of roughness classes that a user can incorporate into WAsP.
Users can access GWA3 through its web application (DTU,
2024).

NOW-23 was published in 2023 to support offshore wind
energy researchers. The dataset consists of eight regional
WRF numerical simulations (three Atlantic, two Pacific, one
Great Lakes, one Gulf of Mexico, and one Hawaii) (Fig. 1)
for which the model parameters were customized to account
for geographically unique wind resource phenomena (Bod-
ini et al., 2024). Like GWA3, NOW-23 employs RRTM for
the radiation schemes and ERA5 for the reanalysis forcing.
The simulations were run in 1-month segments with a spin-
up period of 2 days (Bodini et al., 2024). The PBL scheme
varies according to region between the Mellor–Yamada–
Nakanishi–Niino (MYNN) (Nakanishi and Niino, 2009) and
Yonsei University (YSU) (Hong et al., 2006) schemes. For
the NOW-23 simulations considered in this work, MYNN is
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Table 1. Characteristics of the wind assessment datasets analyzed along US coastlines.

Dataset GWA3 NOW-23 WTK-LED Climateb ERA5

Developers DTU, World Bank Group NREL, University of Colorado,
Veer Renewables

Argonne National
Laboratory

ECMWF

Temporal coverage 2008–2017 2000–2019a 2001–2020 1940–present
Temporal resolution Annual average wind speeds

and normalized wind speed
indices for establishing wind
speed trends according to hour
of day, month of year, and
specific year in the 10-year
coverage period

5 min Average wind speed by
month and hour of day
(12× 24) for each year
in the 20-year coverage
period

1 h

Spatial coverage Global US marine regions North America Global
Spatial resolution 0.25 km 2 km 4 km 0.25°c

Wind output heights (m) 10, 50, 100, 150, 200 10, 20, 40, 60, 80, 100, 120,
140, 160, 180, 200, 220, 240,
260, 280, 300, 400, 500

30, 40, 60, 80, 100, 120,
140

10, 100 for the
single level
product

a Depending on the region, the temporal extent varies between 2019 and 2022. For all regions analyzed in this work, the temporal extent of NOW-23 is 2019. b WTK-LED Climate
characteristics in this work reflect the data available from WindWatts (NREL, 2024a) at the time of paper submission, with the addition of the WTK-LED Climate data at the 10 m output
height, which was provided to researchers to support this analysis. c The ERA5 data have been converted from the native reduced Gaussian grid to a regular latitude-longitude grid
at 0.25° (Hersbach et al., 2020).

utilized for the North Pacific, Great Lakes, North Atlantic,
and Mid-Atlantic, while YSU is utilized for the South Pa-
cific, Gulf of Mexico, and South Atlantic (Bodini et al.,
2024). NOW-23 outputs wind data at a 5 min temporal res-
olution and a 2 km horizontal spatial resolution at 18 heights
between 10 and 500 m (Table 1). Wind speeds output at the
height of 10 m are diagnostic, derived using Monin–Obukhov
similarity theory. For this analysis, NOW-23 is sampled at the
top of the hour. Wind analysts can access NOW-23 and other
wind datasets through the Wind Resource Database (NREL,
2024b).

WTK-LED Climate was released in 2024 as the wind cli-
matology component of the WIND Toolkit Long-Term En-
semble Dataset. The dataset uses an accelerated version of
RRTM for general circulation models (RRTMG) for the radi-
ation schemes, ERA5 for the initial and boundary conditions,
and YSU for the PBL scheme (Draxl et al., 2024). WTK-
LED Climate covers North America at a 4 km horizontal spa-
tial resolution and 1 h temporal resolution. The 20-year-long
WTK-LED Climate simulations were reinitialized each year
and run for a total of 14 months continuously without nudg-
ing, with the last two months from previous years (Novem-
ber and December) as the spin-up time (Draxl et al., 2024).
Through WindWatts (NREL, 2024a), users can access WTK-
LED Climate annual, monthly, and diurnal wind speed data
at seven output heights between 30 and 140 m (Table 1). The
WTK-LED Climate wind data at 10 m were provided by the
dataset developers to support this analysis.

ERA5 is a widely used global reanalysis model (Hers-
bach et al., 2020) in the wind energy community that began
initial production in 2016. The single level ERA5 product
outputs wind data at 10 and 100 m above ground level (Ta-
ble 1). The winds at the 10 m level are obtained via interpola-

tion between the lowest model level and the surface and are
corrected to align with open terrain observations. To adjust
to the observations, the correction procedure for the ERA5
10 m winds involves an aerodynamic roughness length that
is typical for open terrain with grassland (ECMWF, 2016).

2.2 Wind observations

To evaluate the recent wind assessment datasets, 23 wind
speed observational datasets from meteorological towers
with measurements at heights relevant to small and mid-
size distributed wind turbine hub heights are used. The ob-
servations are sourced from the National Data Buoy Center
(19 sites), the Bonneville Power Administration (3 sites), and
a collaborative project between the U.S. Department of En-
ergy and a wind energy industry partner (1 site) (Fig. 1), and
all but the last observational dataset are publicly available
as outlined in the data availability section. A comprehensive
guide to the observational sites is provided in Appendix A.

For analysis according to region, the observations are
grouped as follows: West (five sites), Great Lakes (nine
sites), Gulf of Mexico (four sites), and Atlantic (five sites)
(Fig. 1). While additional observations are available in
these regions, they are not included in this study due to
(1) data quality concerns (criteria in following paragraph),
(2) minimal or non-existent overlap between observation
and dataset temporal coverage periods, or (3) measurement
heights falling outside the bounds of this analysis. In this
work, measurement heights span the hub heights of small
and midsize distributed wind turbines, from 20 to 60 m above
ground level, with the majority occurring between 20 and
30 m (77 %) (Fig. 2a). Annual average wind speeds at the
observational sites range from 2.5 to 7.0 ms−1 (Fig. 2b). The
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Figure 2. (a) Measurement height, (b) annual average wind speed across the measurements, (c) distance between the observational location
and the nearest water body, (d) length of the measurement data available, and (e) distribution of wind originating from land and water within
100 km of the observational location across 23 coastal sites.

observational sites span 16 states and are located within 4 km
of a body of water, including the Atlantic and Pacific Oceans,
the Gulf of Mexico, the Columbia River, and four of the five
Great Lakes (Erie, Huron, Michigan, and Superior) (Figs. 1
and 2c). When considering the distribution of flow direction
within a 100 km radius to represent the extent of onshore and
offshore breezes (Gille et al., 2005; Viner et al., 2021), the
winds at 14 sites predominantly originate over land, while
the winds at nine sites predominantly originate over water
(Fig. 2e, Appendix A), as determined by the Global Land
Cover and Land Use Change 2000–2020 (Potapov et al.,
2022) and the wind roses for each site.

To establish robust validation reference datasets, the wind
speed observations are subject to quality control by remov-
ing instances or periods of atypical or unphysical reported
wind speeds (less than 0 ms−1, greater than 50 ms−1, or non-
varying periods of time greater than 4 h) that could be in-
dicative of instrument error due to an outage or weather im-
pacts like icing. In order to temporally align with the wind

assessment datasets (Sect. 2.1), only observations between
the years 2008 and 2017 are utilized in this study. Because
GWA3 outputs wind speed information on an annual res-
olution, the wind observations need to be representative of
full calendar years. Therefore, only calendar years with 95 %
or greater of observational data recovery and quality are re-
tained for the comparison (Fig. 2d).

2.3 Validation methodology

Prior to validating the recent and reference datasets at the
coastal locations in this work, they must be adjusted to the
observational characteristics. Horizontally, each dataset is
adjusted to the location of the coastal meteorological tower
by using inverse distance weighting. Inverse distance weight-
ing is selected because the frequently dense wind speed
contours along coastlines (Sheridan et al., 2022a) reduce
the possibility of using the nearest-neighbor grid point as
a representative baseline for comparing simulated and ob-
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Table 2. Scenarios for determining the shear exponent for adjusting simulated wind speeds at dataset output heights to observational heights.

Scenario Description GWA3 NOW-23 WTK-LED Climate ERA5

1 Analogous calculation using
annual average wind speeds at
output heights shared by all
datasets (10 and 100 m)

For each year,
α =

ln(u100 m/u10 m)
ln(100/10)

For each year,
α =

ln(u100 m/u10 m)
ln(100/10)

For each year,
α =

ln(u100 m/u10 m)
ln(100/10)

For each year,
α =

ln(u100 m/u10 m)
ln(100/10)

2 Calculation using annual
average wind speeds at the
nearest surrounding heights
to each observation

For each year,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo = 10 or 50 m
zhi = 50 or 100 m
according to zobs

For each year,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo = 10, 20, or 40 m
zhi = 20, 40, or 60 m
according to zobs

For each year,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo = 10, 30, or 40 m
zhi = 30, 40, or 60 m
according to zobs

For each year,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo= 10 m,
zhi = 100m for all
observations

3 Calculation at each dataset’s
highest temporal resolution
using the nearest surrounding
heights to each observation

For each year,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo = 10 or 50 m
zhi = 50 or 100 m
according to zobs

At each hour,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo = 10, 20, or 40 m
zhi = 20, 40, or 60 m
according to zobs

At each month/
hour combination,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo = 10, 30, or 40 m
zhi = 30, 40, or 60 m
according to zobs

At each hour,
α =

ln(uhi/ulo)
ln(zhi/zlo)

zlo= 10 m,
zhi= 100 m for all
observations

served wind speeds, particularly for coarser datasets. Verti-
cally, each dataset is adjusted to the observational heights via
the power law using the dataset wind speeds (ulo, uhi) at sur-
rounding output heights (zlo, zhi) to the observation height
(zobs). This method is selected based on the study of Du-
plyakin et al. (2021), who found that the power law mini-
mized errors due to vertical adjustment of wind dataset out-
put heights to observation heights. Throughout the study, the
surrounding output heights and temporal frequency of calcu-
lation of the shear exponent α (Eq. 1) and the adjusted dataset
wind speed umod (Eq. 2) will be considered according to both
the common dataset characteristics (i.e., annual average wind
speeds at the 10 and 100 m output heights) and each dataset’s
highest resolution potential to implicitly account for how α

varies with atmospheric stability.

α =
ln(uhiulo)
ln(zhizlo)

(1)

umod = uhi(zobs/zhi)α (2)

Temporally, the datasets and observations are aligned ac-
cording to the time period and averaging period. For exam-
ple, because GWA3 and WTK-LED Climate output annual,
monthly, and hourly average wind data (Table 1), the obser-
vations and higher-resolution datasets (NOW-23 and ERA5)
are similarly adjusted to annual, monthly, and hourly aver-
ages prior to comparison with GWA3 and WTK-LED Cli-
mate (Table 1).

Three key error metrics are utilized in this study to assess
the performance of the recent wind datasets in a manner that
is useful for a coastal community or resident wishing to as-
sess their wind energy potential. First, the wind speed bias
informs on whether each dataset tends to overestimate (posi-
tive bias) or underestimate (negative bias) the observed wind
resource over a period of timeN (Eq. 3). The relative error is

the absolute difference between the simulated and observed
wind speeds normalized by the observed wind speed, provid-
ing detail on the magnitude of error in each dataset (Eq. 4).
Finally, to characterize the accuracy of the datasets accord-
ing to temporal trends such as interannual, seasonal, and di-
urnal, the Pearson correlation coefficient explains the degree
to which the simulated and observed wind speeds are linearly
related (Eq. 5).

bias=
1
N

N∑
i=1

(umod,i − uobs,i) (3)

relative error= 100%×
|umod− uobs|

uobs
(4)

correlation=

∑N
i=1

(
umod,i − umod

)
×
(
uobs,i − uobs

)√∑N
i=1
(
umod,i − umod

)2
×

√∑N
i=1
(
uobs,i − uobs

)2
(5)

3 Results

The following sections compare recent wind assessment
dataset performance at coastal sites versus the more estab-
lished ERA5 in order to provide dataset users with the level
of accuracy they can expect in the representation of important
preconstruction wind metrics, such as annual average wind
speed and temporal trends in the wind resource. To start, the
datasets are validated analogously by adjusting the annual
average dataset output wind speeds at the common heights
(10 and 100 m) to the observational heights (Table 2). This
initial analysis is intended to ensure consistency across the
datasets in the temporal and vertical spaces to evaluate the
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Figure 3. Annual average wind speed (a) biases and (b) relative errors across 23 coastal observational locations, with adjustment to obser-
vational height performed (1) annually using the common dataset output heights of 10 and 100 m, (2) annually using the nearest surrounding
output heights to the observation height, and (3) at each dataset’s highest temporal resolution using the nearest surrounding output heights to
the observation height.

performance of the datasets, with their differences in hori-
zontal spatial resolution, in geographically complex coastal
environments. The study progresses to assess the impacts of
increasing temporal and vertical spatial output resolution on
dataset performance (Table 2). Later, each dataset’s perfor-
mance is evaluated at the regional, seasonal, diurnal, and in-
terannual levels.

3.1 Annual average wind speed

Using the common model output heights of 10 and 100 m
to establish the simulated wind profiles for alignment to
the coastal observational heights, ERA5 (lowest horizon-
tal spatial resolution) and GWA3 (highest horizontal spatial
resolution) have the lowest annual average wind speed bi-
ases, with medians of −0.23 and +0.54 ms−1, respectively,
while NOW-23 and WTK-LED Climate have similar me-
dians of 0.85 and 0.84 ms−1 (Fig. 3a). GWA3, NOW-23,
and WTK-LED Climate predominantly overestimate the ob-
served annual average wind speeds (overestimating at 78 %,
78 %, and 96 % of the coastal sites, respectively), whereas
ERA5 follows a well-documented trend of underestimating

the wind resource (Ramon et al., 2019; Murcia et al., 2022;
Sheridan et al., 2022b; Wilczak et al., 2024) at 61 % of the
sites in this analysis. In terms of relative error, GWA3 is the
best performing dataset, with a median of 9.9 %, followed by
ERA5 (10.0 %), NOW-23 (14.1 %), and WTK-LED Climate
(18.5 %) (Fig. 3b).

While the above study is interesting from a scientifically
comparative standpoint, it is anticipated that a wind assess-
ment dataset user will desire to take advantage of the high-
est vertical spatial and temporal resolutions available in the
datasets. Beginning with the vertical, Fig. 3 also presents the
annual average wind speed biases and relative errors result-
ing from adjusting the dataset output to the observational
heights using the nearest surrounding dataset output heights
(Table 1). While the GWA3 and WTK-LED Climate rela-
tive errors improve on using the surrounding dataset out-
put heights versus 10 and 100 m, with median relative er-
rors of 8.8 % versus 9.9 % for GWA3 and 17.8 % versus
18.5 % for WTK-LED Climate, the NOW-23 relative errors
noticeably degrade when using the surrounding dataset out-
put heights (median relative error of 16.2 % versus 14.1 % us-
ing 10 and 100 m). Narrowing the dataset adjustment height
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Figure 4. Shear exponents based on the lowest dataset output heights (x axis) and 10 and 100 m (y axis) across 23 coastal sites from
(a) GWA3, (b) NOW-23, and (c) WTK-LED Climate.

range from 10 and 100 m to the surrounding levels increases
the number of sites where NOW-23 overestimates the annual
average wind speed from 78 % to 96 %.

Our first inclination to try and understand the notable dif-
ferences in NOW-23 performance according to the output
heights for adjustment to observational height was to exam-
ine the wind shear between the surrounding dataset output
heights. Following the trend of consistent performance noted
for GWA3 and WTK-LED Climate, the shear exponents for
these datasets using the surrounding heights differ little from
their counterparts using 10 and 100 m (median differences of
0.01 and 0.02, respectively). The NOW-23 wind shear expo-
nents differ more substantially using the nearest surrounding
heights to the observation heights versus 10 and 100 m (me-
dian difference of 0.05), though not in the anticipated direc-
tion. Given the increase in wind speed overestimation noted
when using the surrounding heights for adjustment, it was
initially suspected that NOW-23 was potentially overestimat-
ing the wind shear between the surrounding heights; how-
ever, the opposite result of reduction in the wind shear ex-
ponents was determined between the surrounding NOW-23
heights as compared to 10 and 100 m. This result prompted a
more expansive look at the NOW-23 wind profiles.

The relatively large NOW-23 wind shear is not found
between the output heights surrounding the observational
heights (20, 40, and 60 m for the observational collection uti-
lized in this study) but rather between the two lowest NOW-
23 output heights (10 and 20 m) for many of the observa-
tional locations. Figure 4 shows that the shear exponents cal-
culated between the lowest output heights and between 10
and 100 m are quite similar for GWA3 and WTK-LED Cli-
mate (median differences within 0.02), whereas shear ex-
ponents using the lowest NOW-23 output heights tend to
be larger than their counterparts calculated between 10 and
100 m by a median of 0.10. The relatively large wind shear
between the two lowest NOW-23 output heights (10 and
20 m) corresponds with larger NOW-23 wind speeds at 20 m,

which is the lower surrounding output height for 87 % of
the observations in this analysis. Annual average wind speed
profiles based on all available dataset output heights and just
on 10 and 100 m from GWA3, NOW-23, and WTK-LED Cli-
mate are provided in Fig. 5 for three distinct geographic ob-
servational locations (Washington, Indiana, and Connecticut)
to illustrate the impacts of the large wind shear between the
lowest NOW-23 output heights.

When each dataset is adjusted to the observation height us-
ing its full temporal and vertical spatial capabilities, i.e., the
shear exponent is calculated at the highest available tempo-
ral frequency using the nearest surrounding output heights,
the relative errors change minimally from those calculated
using the lowest temporal frequency, with medians of 8.8 %
(GWA3), 10.0 % (ERA5), 16.1 % (NOW-23), and 17.7 %
(WTK-LED Climate). The recent datasets tend to overesti-
mate the wind resource (GWA3 at 78 % of the observation
sites and NOW-23 and WTK-LED Climate at 96 % of the ob-
servation sites). Disagreement between actual and predicted
wind energy generation can lead to customer dissatisfaction
and damage the reputation of distributed wind as a viable en-
ergy resource, particularly in circumstances of overestima-
tion. The findings of this work encourage users of GWA3,
NOW-23, and WTK-LED Climate for coastal analyses to ad-
just their annual average wind speed and wind energy pro-
duction expectations. Additionally, the findings encourage
the use of bias correction where possible, which can provide
significant improvement to wind resource estimates (Wilczak
et al., 2024). The analyses throughout the remainder of the
paper evaluate the datasets according to region and temporal
trends in the wind resource at the coastal observation sites
using the height adjustment with full temporal and spatial
capabilities.

The dataset with the greatest horizontal spatial resolution,
GWA3 at 250 m (Table 1), provided the smallest relative an-
nual average wind speed errors (Fig. 3). Therefore, it is of in-
terest to investigate, to the degree possible, whether GWA3’s
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Figure 5. Simulated wind speed profiles at observational locations in (a) Washington, (b) Indiana, and (c) Connecticut.

performance can be attributed to improved representation of
the land and water boundaries at the complex coastal ob-
servation heights or simply reduced bias compared with the
other recent wind datasets. As a simple exercise, the annual
average wind speed relative errors using GWA3 were estab-
lished using horizontal sampling resolutions of 250 m, 2 km
(the horizontal resolution of NOW-23), 4 km (the horizon-
tal resolution of WTK-LED Climate), and 30 km (approxi-
mately the horizontal resolution of ERA5 in the continental
United States). The wind speed relative errors from GWA3
at the coastal locations vary little for horizontal resolutions
within 4 km and do not follow the expected trend of lower er-
rors with higher resolution (medians= 8.8 % at 250 m, 8.2 %
at 2 km, and 5.8 % at 4 km). Even at a horizontal resolution of
30 km, GWA3 produces a median wind speed relative error
of 8.3 %. This result is likely due to the GWA3 flow being
more accurately modeled using a high-resolution grid such
that, even with the removal of some grid points, the solution
is still good.

While no trends emerged for GWA3 performance accord-
ing to the horizontal sampling resolution, the recent wind
datasets show distinct differences in representing the annual
average wind speed relative errors according to whether the
coastal sites are dominated by land or water. Of the 23 coastal
sites in this analysis, 14 have wind flow distributions where
most of the wind is arriving from land, while nine have wind
flow distributions where most of the wind is arriving from
water (Fig. 2e). Each region (Fig. 1) is represented in both the
water-dominant and land-dominant lists of sites according
to flow. GWA3, NOW-23, WTK-LED Climate, and ERA5

perform notably better for the sites with water-dominant
wind distributions, with median wind speed relative errors
of 3.1 %, 9.3 %, 15.0 %, and 8.6 %, respectively, than for the
sites with land-dominant wind distributions, where the me-
dian relative errors are 15.8 %, 25.5 %, 18.3 %, and 12.0 %
(Fig. 6b). The significant decrease in dataset accuracy for
land-dominant sites is likely due to a combination of chal-
lenges, including dataset representation of complex terrain
(particularly for the western sites) and characterization of
surface roughness length. Concerning the latter, the land-
dominant sites tend to have wind flow distributions that favor
cropland, forests, and built environments (Table A1), which
have greater roughness lengths than, for example, the open
terrain grassland roughness length utilized for postprocess-
ing ERA5’s 10 m single level output (ECMWF, 2016). All
datasets follow the same trend of increasingly positive wind
speed biases for land-dominant sites relative to the water-
dominant sites. For GWA3, NOW-23, and WTK-LED Cli-
mate, the sites with land-dominant wind distributions experi-
ence a greater degree of dataset overestimation, with median
wind speed biases of 0.81, 1.33, and 0.98 ms−1, respectively,
while the median wind speed biases for the water-dominant
sites are 0.05, 0.36, and 0.71 ms−1 (Fig. 6a). For ERA5, the
degree of model underestimation is reduced for the land-
dominant sites relative to the water-dominant sites, with me-
dian wind speed biases of −0.19 and −0.54 ms−1.
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Figure 6. Annual average wind speed (a) biases and (b) relative errors across the 14 coastal sites with land-dominant wind flow and the nine
coastal sites with water-dominant wind flow.

3.2 Regional performance

Across the regions, ERA5 consistently produces the small-
est biases, with trends of underestimating the observed wind
resource in the West and Atlantic regions, overestimating
at sites along the Great Lakes, and exhibiting little bias
in the Gulf of Mexico (medians=−0.55, −0.38, 0.28, and
0.01 ms−1, respectively) (Fig. 7). With the exception of the
Gulf of Mexico, where GWA3 performs similarly to ERA5
(median bias= 0.01 ms−1), the three recent wind datasets
overestimate the observed annual average wind speeds in
all regions, with significant overestimation noted in most
regions (using a criteria of 0.5 ms−1). The strongest re-
cent dataset overestimation is found for sites along the
Great Lakes, where the median biases range from 0.82 ms−1

(GWA3) to 1.55 m s−1 (NOW-23) (Fig. 7). Interestingly, Bo-
dini et al. (2024) determined that NOW-23 underestimated
the observed wind speed by 0.42 ms−1 at 105 m altitude at
an offshore location in Lake Michigan.

In terms of relative error, which focuses on the magni-
tude of error relative to the observed wind speed, dataset
performance is less consistent than for the trends in bias
(Fig. 7). ERA5 provides the smallest relative errors in the
West, followed closely by NOW-23 and GWA3, with me-

dian relative errors of 10 %, 11 %, and 13 %, respectively.
For sites along the Great Lakes, ERA5 again produces the
lowest relative errors (median= 10 %), whereas the recent
datasets provide median relative errors ranging from 15 %
(GWA3) up to 29 % (NOW-23). Across the four sites in the
Gulf of Mexico region, GWA3 exhibits the lowest relative
errors, with a median of 3 %, and NOW-23 and ERA5 sim-
ilarly produce median relative errors under 10 % (5 % and
7 %, respectively). WTK-LED Climate provides the lowest
relative errors (median= 7 %) for sites along the Atlantic
Ocean, followed closely by GWA3, ERA5, and NOW-23
(medians= 9 %, 11 %, and 12 %).

3.3 Seasonal and diurnal performance

Two approaches to assessing wind dataset performance in
representing the seasonal wind cycles at the coastal obser-
vational locations are presented in Fig. 8. First, the observed
normalized monthly wind speeds (using whichever years be-
tween 2008 and 2017 meet the data recovery and quality re-
quirements in Sect. 2.2) are compared with the simulated
normalized monthly wind speeds during the full decade of
2008–2017. This initial comparison allows for the analysis
of GWA3’s performance in seasonal wind cycle representa-
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Figure 7. Annual average wind speed (a) biases and (b) relative errors according to geographic region.

tion, as GWA3 does not provide monthly trends in the wind
speed for individual years. For the second analysis, the sim-
ulated monthly wind speeds from NOW-23, WTK-LED Cli-
mate, and ERA5 are temporally aligned with those from the
observations using only the years between 2008 and 2017
where the observations meet the data recovery and quality
requirements.

Across the recent datasets and ERA5, NOW-23 best rep-
resents the seasonal wind cycles at the 23 coastal sites,
with correlations with observations of 0.92 using the full
decade of dataset data and 0.94 using the years temporally
aligned with the observations (Fig. 8). ERA5 is the next
most successful dataset at seasonal representation (correla-
tions= 0.90, 0.92), followed by WTK-LED Climate (corre-
lations= 0.89, 0.88), and GWA3 (correlation= 0.84).

The site with the most pronounced seasonal cycle (nor-
malized monthly wind speeds ranging from 0.68 to 1.61,
1=umonthly= 0.93) is located in Oregon along the Columbia
River (Fig. 9a). Both GWA3 and NOW-23 correctly iden-
tify this site as having the most pronounced seasonal wind
speed cycle of the 23 sites, regardless of whether a full
decade of simulated data is considered or just the overlapping
years with the observations. Both WTK-LED Climate and
ERA5 incorrectly assign the site with the most pronounced
seasonal wind speed cycle, regardless of temporal period.

When considering a full decade of simulated data, WTK-
LED Climate and ERA5 determine the site with the most
pronounced seasonal cycle to be located in the Great Lakes
(observed1=umonthly= 0.67) and Gulf of Mexico (observed
1=umonthly= 0.50) regions, respectively. When considering
the overlapping observational years, WTK-LED Climate and
ERA5 identify the site with the most pronounced seasonal
cycle to exist in the West, though at a site along the Pacific
Ocean (observed 1=umonthly= 0.43).

The site with the least pronounced seasonal cycle (nor-
malized monthly wind speeds ranging from 0.88 to 1.14,
1=umonthly= 0.26) is located along a Florida inlet (Fig. 9b).
NOW-23 correctly identifies this site as having the least
pronounced seasonal wind speed cycle of the analyzed
sites, regardless of whether a full decade of simulated data
is considered or just the overlapping years with the ob-
servations. WTK-LED Climate correctly identifies the site
when considering the overlapping observational period and
determines a site in Texas (observed 1=umonthly= 0.36)
when considering the full decade. GWA3 chooses a site in
the Atlantic region (observed 1=umonthly= 0.30) as having
the least pronounced seasonal cycle, and ERA5 identifies
sites in California and Rhode Island when considering the
full decade and overlapping observational period (observed
1=umonthly= 0.37, 0.31), respectively.
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Figure 8. Observed and simulated normalized monthly average wind speeds (monthly average wind speed/annual average wind speed) across
23 coastal sites. Panels (a–d) depict the observed monthly average wind speeds versus the simulated monthly average wind speeds based on
a decade (2008–2017) of dataset data from GWA3, NOW-23, WTK-LED Climate, and ERA5, respectively. This analysis is included to allow
for comparison with GWA3, which does not provide monthly trends in the wind speed for individual years. Panels (e–g) share the observed
monthly average wind speeds versus the simulated monthly average wind speeds calculated during the temporal period of the observations
from NOW-23, WTK-LED Climate, and ERA5.

Figure 9. Observed and simulated normalized monthly wind speeds at the sites with (a) the most pronounced seasonal cycle (Oregon) and
(b) the least pronounced seasonal cycle (Florida).

The same decade-long and observation-aligned ap-
proaches are utilized for studying the recent dataset repre-
sentation of observed wind speed diurnal cycles (Fig. 10).
Understanding how the available wind resource changes
throughout the day and night is important for distributed
wind energy customers looking to reduce energy costs, par-

ticularly when time-of-use electricity pricing schedules are
applied by local utilities. From a supply-and-demand stand-
point, because diurnal peaks and troughs in electricity de-
mand vary according to customer location and application
(e.g., residential versus industrial facility demand), a poten-
tial wind energy adopter will want to assess whether the
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Figure 10. Observed and simulated normalized hourly average wind speeds across 23 coastal sites. Panels (a–d) depict the observed hourly
average wind speeds versus the simulated hourly average wind speeds based on a decade (2008–2017) of data from GWA3, NOW-23, WTK-
LED Climate, and ERA5, respectively. Correlations between NOW-23, WTK-LED Climate, and ERA5 with the wind speed observations
during the temporal periods of the observations are identical to the decadal correlations.

times and degrees of wind generation will align with their
energy needs. Finally, McCabe et al. (2022) highlight the
importance of understanding diurnal (and seasonal) wind re-
source trends in the context of distributed wind complemen-
tarity with other energy technologies, such as solar energy.
Distributed wind turbines and other energy technologies can
be connected at the lower-voltage distribution level of an
electricity grid to serve specific or local loads. In some in-
stances, wind and other energy technologies may compete
with each other to provide electricity for a distributed load. In
other instances, wind and other energy technologies may pro-
vide complementary solutions for the supply of clean elec-
tricity for distributed applications if they are generating on
differing temporal schedules (McCabe et al., 2022).

WTK-LED Climate produces the highest correlations with
observations when considering the hourly trends in the wind
speed (correlations= 0.87 using the full decade and the over-
lapping observational years). NOW-23 shows the next-best
performance for representing diurnal trends in the wind
resource (correlation= 0.86), followed by ERA5 (correla-
tion= 0.78), and GWA3 (correlation= 0.62). Comparing the
differences between the simulated and observed normalized
hourly wind speeds for the best (WTK-LED Climate) and
worst (GWA3) performing datasets in terms of diurnal repre-
sentation reveals that GWA3 noticeably exaggerates the di-
urnal wind speed patterns for coastal sites along the Great
Lakes, Gulf of Mexico, and Atlantic Ocean (Fig. 11). In these
three regions, GWA3 overestimates the observed normalized

hourly wind speeds at night and underestimates the observed
normalized hourly wind speeds during the day at the major-
ity of the observational sites. One suspected reason for the
challenges of GWA3 in the representation of wind speed di-
urnal cycles is that the GWA3 diurnal (and seasonal and inter-
annual) patterns are kept consistent across all dataset output
heights from 10 to 200 m, a scheme that is in contrast to stud-
ies that show observed differences (sometimes quite signif-
icant) between land-based diurnal wind speed patterns near
the surface and those higher in the atmosphere near utility-
scale wind turbine hub heights (Wieringa, 1989; Barthelmie
et al., 1996).

3.4 Interannual variability performance

Of the 23 coastal sites, 11 provide 6 or more years of obser-
vations, allowing for evaluation of the datasets for their rep-
resentation of interannual fluctuations in the wind resource
(Fig. 2). According to the region, six of the sites are along the
Great Lakes, two sites are located in the West, two sites are
on the Atlantic coast, and one site is along the Gulf of Mex-
ico. Across the datasets, NOW-23 displays the best perfor-
mance in representing the interannual variability in the wind
resource, with a correlation between the observed and simu-
lated annual wind speeds of 0.81 (Fig. 12). Following NOW-
23 in interannual variability performance are ERA5 (0.77),
GWA3 (0.74), and WTK-LED Climate (0.59).

The observations explain that a site in complex terrain near
the Columbia River (approximately 15 km east of where the
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Figure 11. Difference between simulated and observed normalized hourly average wind speeds according to time of day. Panels (a–d) depict
the differences in the hourly wind speeds between GWA3 and the observations. Panels (e–h) show the differences in the hourly wind speeds
between WTK-LED Climate and the observations.

Figure 12. Observed and simulated normalized annual wind speeds across 12 coastal sites with 6 or more years of observations.

river empties into the Pacific Ocean) exhibits the highest in-
terannual variability in the wind resource, with normalized
annual wind speeds ranging from 0.89 to 1.08. An island off
mainland Rhode Island has the lowest interannual variabil-
ity, with normalized annual wind speeds ranging from 0.98
to 1.02. While three of the four datasets (GWA3, NOW-
23, and ERA5) correctly identify the Columbia River site as
having the most pronounced interannual wind speed pattern,
only NOW-23 identifies the Rhode Island site as having the
least pronounced pattern. GWA3, WTK-LED Climate, and
ERA5 instead identify a site off the coast of Lake Huron as
having the least pronounced interannual wind speed pattern.

3.5 NOW-23 performance by regional dataset

Among the coastal sites, three are located within two unique
NOW-23 domains, allowing for an additional (though lim-
ited in sample size) level of wind performance evaluation for

this dataset. One site each in Connecticut and Rhode Island
is located in both the North Atlantic (used in the analyses
presented in Sects. 3.1–3.4) and Mid-Atlantic NOW-23 do-
mains, while another site in Florida is located in both the
South Atlantic (used in the analyses presented in Sects. 3.1–
3.4) and Gulf of Mexico NOW-23 domains (Fig. 1). The
North and Mid-Atlantic domains employ the same WRF
setup with MYNN selected as the PBL scheme. The South
Atlantic and Gulf of Mexico domains employ the same WRF
setup with YSU chosen for the PBL scheme (Bodini et al.,
2024).

In terms of annual average wind speed bias, the North
Atlantic NOW-23 domain exhibits better performance for
the coastal observations than the Mid-Atlantic NOW-23
domain. Specifically, the wind speed biases at the Con-
necticut and Rhode Island observational locations are ap-
proximately 0.2 ms−1 lower using the North Atlantic do-
main (biases= 0.68 and 0.32 ms−1, respectively) than the
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Figure 13. Observed and NOW-23 (a–c) monthly and (d–f) hourly wind speeds at observational locations in (a, d) Connecticut, (b, e) Rhode
Island, and (c, f) Florida.

Mid-Atlantic domain (biases= 0.91 and 0.49 ms−1). At the
Florida observational location, the South Atlantic and Gulf of
Mexico domains perform similarly to each other, with annual
average wind speed biases within 0.02 ms−1 (biases= 1.36
and 1.34 ms−1). At all three locations, the hourly correla-
tions when using different dataset domains are within 0.01
of each other (0.61 versus 0.62 for Connecticut, 0.75 ver-
sus 0.76 for Rhode Island, and 0.54 versus 0.53 for Florida).
The seasonal and diurnal trends in the NOW-23 wind speeds
for the three sites are nearly identical, regardless of domain
(Fig. 13).

4 Discussion

Given that the significant time and economic investments in-
volved with collecting pre-installation on-site wind resource
measurements are often at odds with the timelines and avail-
able funds of communities, business owners, and residents
interested in small or midsize wind turbine deployment, the
free and user-friendly datasets evaluated in this paper provide
crucial value in the wind speed estimates they provide. Ad-
ditionally, the wind speed estimates for coastal communities
can be adjusted using the validation results of this study. For
example, because NOW-23 and WTK-LED Climate overes-
timate the observed annual average wind speeds at 96 % of
the study sites in this work, coastal users of these products
might consider lowering their wind speed and energy pro-
duction expectations.

Each of the recent wind datasets has strengths and lim-
itations for coastal wind resource assessment. GWA3 pro-

Table 3. Summary of median wind speed performance metrics for
GWA3, NOW-23, and WTK-LED Climate. The highest performing
dataset for each evaluation metric is noted in bold.

Evaluation metric GWA3 NOW-23 WTK-LED
Climate

Annual average bias (ms−1) 0.51 0.98 0.88
Annual average relative error 8.8 % 16.1 % 17.7 %
Seasonal correlation 0.84 0.92 0.89
Diurnal correlation 0.62 0.86 0.87
Interannual correlation (11 sites) 0.74 0.81 0.59

vides the lowest wind speed biases and relative errors for
annual average wind speeds at the coastal observational
sites (medians= 0.51 ms−1 and 8.8 %) (Table 3). NOW-23
is the optimal dataset for representing seasonal and interan-
nual patterns in the coastal wind resource (median correla-
tions= 0.92 and 0.81, respectively). WTK-LED Climate is
the best performing dataset for diurnal cycle representation
at the 23 coastal sites (median= 0.87).

In terms of limitations, GWA3 exhibits the greatest dif-
ficulty in representing diurnal patterns (median correla-
tion= 0.62), which could lead to challenges for a customer
planning for energy coverage or offset around the clock using
multiple distributed energy technologies. GWA3 also pro-
duces the lowest seasonal correlations compared to the other
recent datasets, though it still provides a relatively high level
of accuracy (median= 0.83). WTK-LED Climate produces
the highest annual average relative errors (median= 17.4 %)
and the lowest interannual correlations (median= 0.58). Pro-
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viding accurate representations of the year-to-year variability
in the wind resource is important for setting customer expec-
tations regarding the wind energy in high, average, and low
wind resource years that will be produced at their site.

The evaluations in this work are limited by the spatial reso-
lutions of the observations and by the temporal resolutions of
some of the recent wind datasets. Future improvements to the
evaluations of these and other wind datasets include valida-
tion across the wind profile using observations with multiple
measurement heights. Additionally, for tools lacking hourly
temporal resolution in their wind speed output or internal cal-
culations, the implications of converting to energy estimates
from low-temporal-resolution wind speed estimates must be
evaluated. For higher-temporal-resolution products, such as
NOW-23, performance at coastal locations in representing
unique weather phenomena, such as low-level jets and sea
breezes, can also be assessed. Finally, it is hoped that the vali-
dations provided in this work identify areas of future research
for dataset developers, such as accuracy improvements for lo-
cations dominated by land-based flow and understanding of
the NOW-23 discrepancies between 10 m and the rest of the
wind profile.
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Appendix A

Siting characteristics for the 23 coastal observations used
for wind dataset validation are shared in Table A1, in-
cluding coordinates and measurement heights, wind roses,
satellite imagery, general discussions of the land cover and
nearby infrastructure, and citations indicating the original
data sources. For each observational site, the 12 wind direc-
tion sectors used in this study are characterized as predomi-
nantly covered by land or water using the Global Land Cover
and Land Use Change 2000–2020 (Potapov et al., 2022). For
this analysis, an extent of 100 km from the observation loca-
tion is utilized to capture both onshore and offshore breezes
(Gille et al., 2005; Viner et al., 2021). Each 100 km long di-
rectional sector, with its designation of predominantly open
water, wetland, short vegetation, cropland, trees, or built-
up coverage, is then weighted by the frequency of observed
winds occurring for that directional sector.

Table A1. Site characteristics of observations utilized in this study.

Observation Coordinates/
measurement height

Site characteristics and
land cover

Station ID
(Source)

Terrain/wind rose % of winds according
to land cover

AL 1
30.228, −88.024
36 m

Long, low, narrow
peninsula; few trees,
large fort

FMOA1
(NDBC, 2024)

Open water 61 %
Wetlands 4 %
Short vegetation
Cropland
Forest 26 %
Built-up 9 %

CA 1
33.733, −118.186
31 m

Shipping pier with
high-density
infrastructure
to the north and ocean
to the south

PRJC1
(NDBC, 2024)

Open water 73 %
Wetlands
Short vegetation
Cropland
Forest
Built-up 27 %

CT 1
41.306, −72.077
20 m

Lighthouse site with
trees and infrastructure
on mainland to the
north and Long Island
to the southwest;
∼ 1 km to mainland

LDLC3
(NDBC, 2024)

Open water 42 %
Wetlands
Short vegetation
Cropland
Forest 19 %
Built-up 39 %
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Table A1. Continued.

Observation Coordinates/
measurement height

Site characteristics and
land cover

Station ID
(Source)

Terrain/wind rose % of winds according
to land cover

FL 1
27.933, −82.433
23 m

Surrounded by Tampa
Bay and high-density
infrastructure

TPAF1
(NDBC, 2024)

Open water 33 %
Wetlands 23 %
Short vegetation 11 %
Cropland
Forest
Built-up 33 %

IN 1
41.729, −86.912
21 m

Lighthouse at edge of
pier; Lake Michigan to
the north, small city to
the south

MCYI3
(NDBC, 2024)

Open water 31 %
Wetlands
Short vegetation
Cropland 63 %
Forest
Built-up 6 %

LA 1
28.932, −89.407
20 m

Narrow peninsula into
Gulf of Mexico;
low-lying Mississippi
delta basin; no
infrastructure

PSTL1
(NDBC, 2024)

Open water 100 %
Wetlands
Short vegetation
Cropland
Forest
Built-up

MI 1
43.007, −82.422
27 m

Beach site south of
Lake Huron; adjacent
to river and suburban
development

FTGM4
(NDBC, 2024)

Open water 20 %
Wetlands
Short vegetation
Cropland 43 %
Forest 10 %
Built-up 27 %

MI 2
43.228, −86.339
24 m

Between Lake
Michigan and Lake
Muskegon; residential
development and forest

MKGM4
(NDBC, 2024)

Open water 56 %
Wetlands
Short vegetation
Cropland 16 %
Forest 20 %
Built-up 8 %
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Table A1. Continued.

Observation Coordinates/
measurement height

Site characteristics and
land cover

Station ID
(Source)

Terrain/wind rose % of winds according
to land cover

NJ 1
40.657, −74.065
21 m

Lighthouse site in New
York Harbor;
surrounded by high-
density infrastructure
in most directions

ROBN4
(NDBC, 2024)

Open water 28 %
Wetlands
Short vegetation
Cropland
Forest 13 %
Built-up 59 %

NY 1
42.494, −79.354
20 m

Point extending into
Lake Erie; nearby
beach, forest, light
residential, and
industrial land cover

DBLN6
(NDBC, 2024)

Open water 49 %
Wetlands
Short vegetation
Cropland 4 %
Forest 47 %
Built-up

NY 2
40.641, −74.162
46 m

On Newark Bay;
surrounded by high-
density infrastructure
in most directions

MHRN6
(NDBC, 2024)

Open water 17 %
Wetlands
Short vegetation
Cropland
Forest 19 %
Built-up 64 %

OH 1
41.764, −81.281
21 m

Lake Erie to the north;
mixed beach,
residential, and
industrial land cover to
the south

FAIO1
(NDBC, 2024)

Open water 60 %
Wetlands
Short vegetation
Cropland
Forest 15 %
Built-up 25 %

OH 2
41.629, −82.841
21 ma

Island in Lake Erie;
nearby forests,
residential
development, and
industrial operations

SBIO1
(NDBC, 2024)

Open water 29 %
Wetlands
Short vegetation
Cropland 59 %
Forest
Built-up 12 %
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Table A1. Continued.

Observation Coordinates/
measurement height

Site characteristics and
land cover

Station ID
(Source)

Terrain/wind rose % of winds according
to land cover

OH 3
41.694, −83.473
26 m

On Maumee Bay of
Lake Erie; mix of
residential, forest,
farm, and industrial

THRO1
(NDBC, 2024)

Open water 19 %
Wetlands
Short vegetation
Cropland 73 %
Forest
Built-up 8 %

OR 1
45.558, −122.402
30 m

Low-lying industrial
location along
Columbia River

Troutdale
(BPA, 2024)

Open water
Wetlands
Short vegetation
Cropland 9 %
Forest 91 %
Built-up

RI 1
41.717, −71.345
21 m

Lighthouse site; mouth
of Providence River;
high-density residential
on land

CPTR1
(NDBC, 2024)

Open water 44 %
Wetlands
Short vegetation
Cropland
Forest 40 %
Built-up 16 %

TX 1
Proprietary
60 m

Low; near bay and Gulf
of Mexico; shrubland

(DOE, 2024b) Open water 66 %b

Wetlands
Short vegetation 25 %
Cropland 9 %
Forest
Built-up

VA 1
36.926, −76.007
28 m

Point separating
Atlantic Ocean and
Chesapeake Bay;
nearby forested state
park and commercial
development

CHYV2
(NDBC, 2024)

Open water 71 %
Wetlands 15 %
Short vegetation
Cropland 14 %
Forest
Built-up
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Table A1. Continued.

Observation Coordinates/
measurement height

Site characteristics and
land cover

Station ID
(Source)

Terrain/wind rose % of winds according
to land cover

WA 1
46.266, −123.877
53 m

Ridgeline above
Columbia River near
Pacific Ocean outlet;
trees and complex
terrain

Megler RS
(BPA, 2024)

Open water 47 %
Wetlands
Short vegetation
Cropland
Forest 53 %
Built-up

WA 2
46.422, −123.797
30 m

Ridgeline above
Columbia River and
Willapa Bay; trees and
complex terrain

Naselle RS
(BPA, 2024)

Open water 39 %
Wetlands
Short vegetation
Cropland
Forest 61 %
Built-up

WA 3
46.904, −124.105
27 m

Bay side; near marina,
forested state park, and
small town

WPTW1
(NDBC, 2024)

Open water 59 %
Wetlands
Short vegetation
Cropland
Forest 41 %
Built-up

WI 1
47.079, −90.728
25 m

Forested island in Lake
Superior
96 % open water

DISW3
(NDBC, 2024)

Open water 60 %
Wetlands
Short vegetation
Cropland
Forest 40 %
Built-up

WI 2
42.589, −87.809
20 m

Lake Michigan to the
east, densely built city
to the west
56 % open water,
41 % built-up

KNSW3
(NDBC, 2024)

Open water 36 %
Wetlands
Short vegetation
Cropland 35 %
Forest
Built-up 29 %

a The SBIO1 anemometer height changed from 21 to 24.3 m in September 2021 (NDBC, 2024). This change does not impact the results of this work, which covers 2008–2017, but is noted to
avoid discrepancy concerns with station SBIO1’s landing page. b Wind direction observations are unavailable for the proprietary Texas location. Wind direction distributions for this site are
taken from GWA3 and NOW-23 (the average of their distributions). The correlation of the wind direction distributions between GWA3 and NOW-23 at this site is 0.97.
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Code and data availability. All but one of the wind speed mea-
surement datasets that support this study are publicly available.
Measurements in the Pacific Northwest from the Bonneville Power
Administration can be obtained at BPA (2024). Measurements from
the National Data Buoy Center are sourced from NDBC (2024). The
remaining measurement is proprietary, subject to a non-disclosure
agreement, and has restricted access at DOE (2024b).

As for the simulated data, GWA3 is freely available from DTU
(2024), NOW-23 is freely available from NREL (2024b), WTK-
LED Climate is freely available from NREL (2024a), and ERA5 is
freely available from ECMWF (2024). Data processing scripts are
written in MATLAB and are available from the contact author upon
request.
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