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Abstract. Wind farm layout optimization involves placing wind turbines in a defined domain to minimize the
expected production losses due to wake effects within the wind farm. Due to navigational regulations and risks,
tenders for offshore wind farms often impose so-called alignment constraints; i.e., wind turbines must be located
at the intersections of a grid formed by parallelograms. The shape and orientation of these parallelograms are
to be determined to minimize wake losses. Mathematically, this problem belongs to the class of non-convex,
nonlinear mixed-integer programming problems, known to be highly complex. The literature has not yet inves-
tigated the wind farm layout optimization problem under alignment constraints. This paper makes two contri-
butions. First, we propose a modelization of the annual energy production (AEP) maximization with alignment
constraints as a mixed-integer nonlinear problem, where the continuous parameters are the parallelogram-based
tiling parameters and the discrete variables are the turbines’ positions at the tiling’s intersections. Second, we
provide a heuristic derived from the DEBO algorithm developed by the same team and presented in Thomas
et al. (2023). The proposed method is the subject of international patent application number WO 2024/061627.

1 Introduction

Selecting the proper layout is a crucial task when building
a wind farm. A layout far from optimal is prone to signifi-
cant loss of expected annual energy production (AEP) due to
wake effects within the farm. Having an optimized method
of turbine placement in a given area helps maximize energy
production over the wind farm’s lifespan. In its full general-
ity, the problem of optimizing a wind farm layout is a com-
plex one for several reasons. The first is that computing a
given farm’s mean annual energy production is numerically
complex; i.e., evaluating the optimization problem’s objec-
tive function is computationally time-consuming (LoCascio
et al., 2024; Porté-Agel et al., 2020). The second difficulty
is that the problem is not convex; i.e., neither the objective
function nor the minimization set are convex. As a result, the

problem of wind farm layout optimization necessitates the
development of dedicated optimization tools. Wind farm op-
timization has been the subject of much scientific research;
see, for example, Herbert-Acero et al. (2014), Fischetti and
Pisinger (2019), and Hou et al. (2019) for a list of reviews
of such methods. Let us now focus on recent contributions
to the field. In Quick et al. (2023), the authors develop a
stochastic gradient-based method for optimizing wind farm
layouts. The presented algorithm is developed for circular or
square domains and could be easily extended to convex do-
mains but not to non-convex or non-connected ones. In Ku-
mar and Sharma (2023), the authors use a teaching–learning-
based algorithm to solve the wind farm layout optimization
problem for a circular domain. In Liang and Liu (2023), the
authors use genetics and particle swarm algorithms to solve
the problem on a square domain. In Fischetti and Fischetti
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(2022), the authors propose a mixed-integer linear program-
ming model to solve turbine placement and cable routing op-
timization problems. In Kunakote et al. (2022), the authors
compare 12 meta-heuristic methods for wind farm layout
optimization. The presented methods do not rely on any as-
sumption on the shape of the admissible domain. However,
the method relies on a very coarse discretization of the do-
main and can be numerically intractable using a finer one. In
Thomas et al. (2023), the authors compare eight wind farm
optimization methods and provide a benchmark case study
for comparing algorithm performances. The proposed bench-
mark is highly complex since the admissible domain is nei-
ther convex nor connected. However, this contribution does
not account for any alignment constraints. Finally, in Stan-
ley and Ning (2019), the authors propose a so-called inner-
grid wind farm layout parameterization that satisfies strong
alignment constraints. However, the authors assume a one-
to-one correspondence between this parameterization and the
layout configuration, which dramatically reduces the degree
of freedom and potentially leads to far-from-optimal solu-
tions. In fact, despite the extensive literature on wind farm
optimization, to the best of our knowledge, no other method
can handle turbine alignment constraints. By alignment con-
straint, we mean that we place the turbines at the intersec-
tions of a regular grid composed of parallelograms, whose
shape and orientation are to be determined, while consider-
ing the possibility of not occupying all the grid’s intersec-
tions. This possibility is a key feature of the proposed algo-
rithm, and its interest is illustrated in the numerical exam-
ples presented in the paper. Far from being just an academic
question, turbine alignment constraints are often imposed by
maritime authorities on developers in practice to ensure the
safe navigation of boats within the wind farm (see, for ex-
ample, the following technical reports: Ministry of Transport
of the French Republic, 2017, and Maritime and Coastguard
Agency, 2012). The contribution of this paper is to provide
an optimization algorithm for wind farm layout optimiza-
tion that can handle alignment constraints. Mathematically,
these alignment constraints render the wind farm layout op-
timization problem a mixed-integer nonlinear programming
(MINLP) problem. The integer variables represent the po-
sitions of the turbines, which are restricted to the finite set
of grid intersections within the admissible domain. The con-
tinuous variables are the grid parameters, that is to say the
size and orientation of the grid’s unit parallelogram. The
nonlinearity mainly stems from the wind farm’s annual en-
ergy production (AEP) as a function of the optimization pa-
rameters. These problems are generally extremely difficult
to solve. As detailed in Burer and Letchford (2012), solv-
ing algorithms for non-convex MINLPs fall into two dif-
ferent categories: exact methods and heuristic-based meth-
ods. Exact methods often rely on branch-and-bound methods
(Papadimitriou and Steiglitz, 1998) or separation properties
of the objective function. Heuristic methods include tabu re-
search (Exler et al., 2008), particle swarm algorithms (Yiqing

et al., 2007; Young et al., 2007), genetic algorithms (Schlüter
et al., 2009), or local-search methods (Liberti et al., 2011).
The strategy adopted in this paper is to adapt the DEBO
method developed by the authors in Thomas et al. (2023)
to the problem at hand. This method is a local-search-based
approach coupled with an exploration heuristic for optimiz-
ing parameters. The paper is organized as follows. In Sect. 2,
we introduce useful notations and definitions. In Sect. 3, we
describe the aligned-layout optimization problem; that is to
say, we present the objective function, the constraints, and
the optimization variables. We fully describe the optimiza-
tion algorithm in Sect. 4. In Sect. 5, we take up the bench-
mark presented in Thomas et al. (2023) and add the align-
ment constraints, and we conduct a thorough study on the
setting of the optimization algorithm hyper-parameters. In
Sect. 6, we illustrate the impact of the alignment-grid pa-
rameters exploration method on the AEP and prove that an
efficient exploration method yields a strong improvement in
the AEP. Finally, in Sect. 7, we give the conclusions of this
work and draw up research perspectives on the subject.

2 Notations and definitions

Throughout the paper we will use recurrently the following
notations:

– R,R+ denote respectively the set of real numbers and
the set of non negative real numbers.

– Z,Z∗ denote respectively the set of integers and the set
of non-zero integers.

– � ∈ R2 denotes two-dimensional domain where tur-
bines can be planted.

– Nmax denotes maximal number of turbines to be placed
within the admissible domain E.

– Dturb denotes turbine diameter.

– Dmin denotes minimal distance between turbines.

– Dmax denotes maximal distance between turbines.

– ws denotes wind speed.

– wd denotes wind direction.

– > denotes logical true.

– ⊥ denotes logical false.

– ¬ denotes logical negation.

– ∧ denotes logical and operator.

– ∨ denotes logical or operator.
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Definition 1. (Wind farm). A capital bold character associ-
ated with a subscript such as Fn denotes a n-turbine wind
farm. Mathematically Fn is a function satisfying

Fn : {1, . . .,n} 3 k 7−→ (xk yk)> ∈ R2, (1)

where (xk yk)> is the position of the kth turbine. Let Fn and
let (x y)> ∈ R2; we denote Hn+1 := Fn⊕ (x y) the wind
farm defined as follows.

Hn+1(k) :=

{
Fn(k) if k ≤ n

(x y)> if k = n+ 1
(2)

Definition 2. (Wind farm power production). We denote P :
(Fn,ws,wd) 7−→ R+ the power production of the wind farm
Fn for a wind speed ws and a wind direction wd.
Definition 3. (Expected power production and annual en-
ergy production). We denote W := (ws,wd) ∈ R+×[0,2π )
the wind random variable, and we denote PW the probability
measure on R+×[0,2π ) associated with the random variable
W. Finally, we denote EW the expectation with respect to the
probability PW, and the expected power production of a wind
farm Fn is

EW(P(Fn,ws,wd)) :=
∫

R+×[0,2π )

P(Fn,ws,wd)dPW(ws,wd), (3)

and the annual energy production of a wind farm Fn denoted
AEP(Fn) is

AEP(Fn) := 8760 .EW(P(Fn,ws,wd)). (4)

Finally, when the probability is discrete, i.e., PW :=∑NW
n=1p(wns ,w

n
d )δ(wns ,w

n
d ), where p(wns ,w

n
d ) is the probabil-

ity of wind W = (wns ,w
n
d ) and δ(wns ,w

n
d ) is the Dirac delta

function at (wns ,w
n
d ), the AEP computation is

AEP(Fn) := 8760
NW∑
n=1

p(wns ,w
n
d )P(Fn,wns ,w

n
d ). (5)

3 Optimization model for layout optimization with
alignment constraints

The optimization problem we are interested in consists of
optimizing the grid configuration and the turbine placement
on the intersections of this grid. This optimization problem is
a nonlinear mixed-integer programming problem, a class of
problems known to be challenging to solve. In this section,
we describe the parameterization of our problem.

3.1 Grid parameterization

To write the optimization problem, we parameterize the grid
using 6 parameters (r1, r2,θ1,θ2,vx,vy) as represented in
Fig. 1. The grid is a parallelogram-based tiling of the plane,

Figure 1. Grid parameterization for aligned layout.

the parameters r1, r2 are the two sides’ length of the paral-
lelogram, the parameter θ1 (θ2) is the angle formed between
the side of the parallelogram of length r1 (r2) and the x axis.
Finally the parameters vx,vy are the offset between the ori-
gin of the Cartesian and the parallelogram-based grids. Using
this parameterization we define the change-of-basis matrix
from the canonical basis denoted B0 to the grid basis denoted
B(θ1,θ2, r1, r2) as follows.

P
B(θ1,θ2,r1,r2)
B0

=

(
r1 cos(θ1) r2 cos(θ2)
r1 sin(θ1) r2 sin(θ2)

)
(6)

In the grid-basis coordinates, any intersection point p is as
follows.

p :=

(
k1
k2

)
+

(
P
B(θ1,θ2,r1,r2)
B0

)−1
(
vx
vy

)
k1,k2 ∈ Z

This parameterization in grid basis is, in turn, equivalent to

p =

(
k1
k2

)
+

(
11
12

)
k1,k2 ∈ Z and 11,12 ∈ [0,1).

(7)

3.2 Layout parameterization

Using the grid parameterization described in Sect. 3.1, an
aligned layout has its turbines located on the intersections
of the grid which is

F[B]n(i) : {1, . . .,n} 3 i 7−→
(
ki1 ki2

)>
+
(
11 12

)>
,

ki1,k
i
2 ∈ Z; 11,12 ∈ [0,1).

(8)

The corresponding wind farm in canonical coordinates Fn
thus is

Fn(i)= PB(θ1,θ2,r1,r2)
B0

F[B]n(i), i = 1, . . .,n. (9)
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Thanks to the parameterization from Eq. (8), the alignment
constraint translates into an integer constraint on the opti-
mization variables (ki1,k

i
2).

3.3 Optimization problem

We are now ready to write the general wind farm layout opti-
mization problem with alignment constraints. This optimiza-
tion problem consists of maximizing the wind farm’s annual
energy production as defined in Eq. (4). This is

max
(ki1,k

i
2)i=1,...,Nmax ,11,12,r1,r2,θ1,θ2

AEP(F[B]Nmax ) (10)

under the following constraints.

ki1,k
i
2 ∈ Z; i = 1, . . .,Nmax (11)∣∣∣ki1− kj1 ∣∣∣+ ∣∣∣ki2− kj2 ∣∣∣≥ 1; ∀i 6= j (12)

11,12 ∈ [0,1) (13)
FNmax (i) ∈�; i = 1, . . .,Nmax (14)

θ1 ∈
(
−
π

2
,
π

2

]
(15)

θ2 ∈
[
−
π

2
,θ1

)
(16)

Dmin ≤ min
z∈Z2

∗

∥∥∥PB(θ1,θ2,r1,r2)
B0

z

∥∥∥ (17)

Equations (11), (12), and (13) ensure that the turbines are
located at the intersections of the grid defined by the pa-
rameters (r1, r2,θ1,θ2,vx,vy) and thus that the turbines are
aligned along the directions θ1 and θ2. The constraint from
Eq. (14) guarantees that the turbines are located in the ad-
missible domain. Constraints defined in Eqs. (15) and (16) al-
low us to generate all possible parallelogram-based grids. We
only consider θ1 ∈ (−π/2,π/2] since θ1 > π/2 (θ1 <−π/2)
yields the same tiling as θ1−π/2 (θ1+π/2). Finally, the con-
straint from Eq. (17) ensures that no grid’s intersections are
closer to each other than Dmin. Since the turbines are neces-
sarily located on these intersections, this constraint ensures
that turbines are at least Dmin distant from each other.

4 Solving algorithm

4.1 General description of the proposed solving
algorithm

The method presented in this paper belongs to the category of
heuristic-based methods and consists of the following steps.

– STEP 1. The first step consists of computing the set
R1,2 of parameters (r1, r2) by discretization of the space
[Dmin,Dmax]2 using a grid size of 1r . There is no up-
per limit to the Dmax value. However, it is useless to
set this parameter at a large value. Indeed, beyond a cer-
tain value d > Dmin, any shape-parameter configuration
such that r1, r2 > d will produce coarse grids with fewer
than Nmax admissible intersections.

– STEP 2. The second step consists of reducing the
size of the angle search space. To do so, for each
couple (r1, r2) ∈ R1,2, we discretize the search space(
−
π
2 ,

π
2

]
×
[
−
π
2 ,θ1

)
using a discretization size of 1θ .

Then, for each grid configuration (r1, r2,θk1 ,θ
k
2 )k satis-

fying Eq. (17) we compute the AEP of an elementary
4-turbine wind farm. Then, we store the Nθ best angle
configurations (θ1,θ2) in an angle set 2. This latter set
2 is the reduced angle search space.

– STEP 3. Then, we compute a set of grid configura-
tions (r1, r2,θ1,θ2) defined as grids := {(r1, r2,θ1,θ2) :
(r1, r2) ∈ R1,2, (θ1,θ2) ∈2, Eq. (17) holds}.

– STEP 4. For each explored shape configuration
(r1, r2,θ1,θ2), we compute an optimal layout using a
greedy algorithm for placing the Nmax turbines on the
intersections of the grid and using a local-search opti-
mization method to move the turbines on the intersec-
tions. The sequence of greedy initialization followed by
a local-search method has already been proved efficient
for wind farm layout optimization without alignment
constraints; see the DEBO algorithm from Thomas et al.
(2023).

– STEP 5. Return the best overall wind farm layout.

Finally, the corresponding pseudo-code is displayed in Al-
gorithm 1. As one can see on line 13, step 4, which is the
most computationally demanding, can be run in parallel.

4.2 Angle search space reduction and grid configuration
selection

In this section, we describe the first part of the algo-
rithm which consists of finding a set of grid configurations
(r1, r2,θ1,θ2) of reasonable size and performing a complete
wind farm layout optimization for each element of this set.
To do so, we first compute the set R1,2 of parameters (r1, r2)
by discretizing the space [Dmin,Dmax]2 using a discretiza-
tion of size 1r . Then, for each (r1, r2) ∈ R1,2, discretize the
following search space

S :=

{
(θ1,θ2) ∈

[
−
π

2
,
π

2

]2
: θ1 ≥−

π

2
+1θ, θ2 ≤ θ1−1θ

}
(18)

with an angle discretization parameter1θ . We denote SD this
discrete search space. Then, for each (r1, r2) ∈ R1,2, we de-
fine the corresponding angle search space 2r1,r2 as follows.

2r1,r2 := {(θ1,θ2) ∈ SD : Eq. (17)holds} (19)

Then, for each configuration (r1, r2,θk1 ,θ
k
2 )k with (θk1 ,θ

k
2 ) ∈

2r1,r2 we compute the AEP of the elementary farms
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Algorithm 1 Aligned_Optimization(�,Nmax,Nθ ,Dmin,
Dmax,1r,1θ ).

1: {STEP 1 : Compute R1,2}
2: R1,2← GenerateR1R2(1r,Dmin,Dmax)
3:
4: {STEP 2 : Compute Reduced Angles Search Space 2}
5: 2← ReduceSearchSpace(R1,2,1θ,Dmin,Dmax,Dturb,Nθ )
6:
7: {STEP 3 : Generate compute admissible intersections for each

grid configurations}
8: grids← GenerateConfigs(R1,2,2,Dmin,Dmax,Dturb)
9: intersections_sets← ComputeAllIntersections(grids,Dmin,�)

10:
11: {STEP 4 : Compute optimal layout for each set of intersec-

tions}
12: layouts←∅
13: for (intersections, (r1, r2,θ1,θ2)) ∈ intersections_sets {Run in

parallel} do
14:

(
FNmax ,aep

)
← PlaceTurbines(intersections)

15: layouts← layouts
⋃
{(FNmax ,aep, intersections,

(r1, r2,θ1,θ2))}
16: end for
17: layouts← sort(layouts) by aep in descending order
18:
19: {STEP 5 : Get best overall layout}
20: return layouts(0)

(F[B(r1, r2,θk1 ,θ
k
2 )]4)k defined as follows,

F[B(r1, r2,θk1 ,θ
k
2 )]4(i) :=


(0 0)> if i = 1,

(1 0)> if i = 2,
(0 1)> if i = 3,
(1 1)> if i = 4,

(20)

and sort the couples (θk1 ,θ
k
2 )i by decreasing order of AEP.

Finally, for each (r1, r2) ∈ R1,2, we store in the set 2 the
best Nθ angles configuration (θk1 ,θ

k
2 ) ∈2r1,r2 . Then, the

continuous-variable search space denoted grids consists of
all the combinations of the (r1, r2) ∈ R1,2 explored with all
the angles’ configuration from 2, i.e.,

grids := {(r1, r2,θ1,θ2) : (r1, r2) ∈ R1,2, (θ1,θ2)

∈2 : Eq. (17) holds}. (21)

The corresponding algorithm in pseudo-code is described in
Algorithms A1, A2, A3, and A4.

4.3 Compute intersections for each grid configuration

This part of the algorithm consists of traversing grids(k) and,
for each configuration (rk1 , r

k
2 ,θ

k
1 ,θ

k
2 ), calculating the maxi-

mum number of intersections located in the admissible do-
main � and their positions. If this set of intersections has
more than Nmax elements and if all intersections are Dmin

apart from each other, this set of intersections is stored in
a set of intersections that we denote intersections_sets. The
corresponding algorithm is written in pseudo-code in Algo-
rithm A5.

4.4 Optimize turbines placement

4.4.1 Greedy initialization

Given a grid configuration (r1, r2,θ1,θ2,11,12), a greedy
algorithm is used to sequentially place Nmax turbines on the
admissible intersections. This algorithm consists of sequen-
tially placing the turbines on the best possible empty inter-
section, in the sense of AEP maximization, until Nmax tur-
bines are placed. The corresponding algorithm in pseudo-
code is given in Algorithm A6.

4.4.2 Local search

This part of the algorithm sequentially moves each turbine in
random order from its current intersection to a free one if it
provides a strict increase in AEP. The algorithm stops when
a complete course of all the turbines has been made without
a single one being moved. When the number of intersections
in the admissible domain is much bigger than Nmax, one can
explore a subset of the free intersections. For example, one
can explore the p closest intersections from the turbine to be
moved or select p random free intersections. In this case, the
size of the subset to explore and its definition, p, are user-
defined parameters. The algorithm in pseudo-code is given
in Algorithm A7.

4.4.3 Turbine placement optimization

Finally, given a set of intersections, the optimization algo-
rithm for optimal turbine placement consists of using sequen-
tially the greedy initialization and the local-search algorithm
as described in pseudo-code in Algorithm A9.

5 Numerical examples

5.1 Problem presentation

For this numerical example, we use the same case study as
in Thomas et al. (2023), whose data are available in Baker
et al. (2021). The windrose corresponding to this case study
is displayed in Fig. 2. This case study was created within the
International Energy Association (IEA) Wind Task 37, and it
is based on the Borssele III and IV wind farms. Of particular
interest in this case study is the presence of five disconnected
boundary regions and concave boundary features. The tur-
bines are 10 MW machines with 198 m rotor diameters based
on the IEA 10 MW reference wind turbine (Bortolotti et al.,
2019). For the AEP computation, we also use the same al-
gorithm as in Thomas et al. (2023). This method is based
on a simple Gaussian wake model based on Bastankhah’s
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1616 P. Malisani et al.: Offshore wind farm layout optimization with alignment constraints

Figure 2. This figure, reproduced from Thomas et al. (2023), dis-
plays the full wind resource used for evaluating the final wind farm
layouts. (a) The wind direction probability (360 bins). (b) A repre-
sentative wind speed probability distribution (20 bins).

Gaussian wake model (Bastankhah and Porté-Agel, 2016)
and presented in the IEA case study 3 and 4 announcement
documents (Baker et al., 2021) to calculate wind speeds at
each turbine in the wind farm. However, any other AEP com-
putation software, such as FLORIS (2023), can be used with
the presented algorithm as long as the computation time of
the AEP is fast enough. Indeed, our optimization algorithm
requires a large number of AEP evaluations. Finally, the AEP
is computed using a windrose discretized as follows.

wind direction bins= {0,1, . . .,359}
wind speed bins= {0.90,1.98,3.18,4.40,5.64,6.87,8.11,
9.35,10.59,11.83,13.07,14.31,15.56,16.80,18.04,
19.28,20.52,21.77,23.01,24.25}

5.2 Influence of the hyper-parameters on the AEP and
the computation time

The optimization procedure described in Sect. 4 requires set-
ting 5 hyper-parameters: Dmin, Dmax, 1θ , Nθ , and 1r . The
turbine’s manufacturer usually sets Dmin at a fixed value. In
this example, we set Dmin = 2Dturb. The parameter Dmax
must be chosen large enough to allow a good exploration
range for the grid parameters (r1, r2). However, setting Dmax
with a significant value generates grids with a number of
admissible intersections smaller than the number of tur-
bines to be placed, i.e., in generating non-admissible layouts.
Therefore, we have set Dmax = 6Dturb. The parameter 1θ
should be chosen to the minimal value such that the wake
model used to compute the AEP is valid. For this example,
we set 1θ = 1°. The remaining hyper-parameters, Nθ and
1r , dramatically affect the optimization procedure regard-
ing AEP value and computation time. Indeed, as explained
in Sect. 4.2, the larger Nθ , the larger the reduced angle set
denoted 2, and the smaller 1r , the larger the set R1,2. The
number of configurations to optimize being the product of

Table 1. Value set of each hyper-parameter.

Dmin Dmax 1θ Nθ 1r

{2Dturb} {6Dturb} {1°} {1,5,10}
{
Dturb

2 ,Dturb,2Dturb

}

the cardinal of the sets 2 and R1,2, the larger these sets, the
longer the computation time. However, the more configura-
tion to optimize, the greater the AEP. Therefore, any layout
optimization needs to make a trade-off between computation
time and size of the set of configuration to optimize. In this
section, we will show the effect of the parameters Nθ and
1r on the optimal AEP and the computation time and give
the user some guidelines to set these parameters. To do so,
we run Algorithm 1 for all possible configurations of the
hyper-parameters valued in their respective value set given
in Table 1 for wind farm sizes of 81, 100, 150, and 250 tur-
bines respectively. The numerical results of these optimiza-
tions are gathered in Table 2 and illustrated in Figs. 3 and 4.
In Fig. 3, one can see that the expected power per turbine1

is growing with respect to Nθ and decreasing with respect
to 1r . Also, when Nθ ≥ 5 and 1r ≤ 1Dturb, the expected
powers per turbine are similar whatever the value of these
hyper-parameters. However, as illustrated in Fig. 4, the ex-
ecution time is strongly increasing with respect to Nθ and
strongly decreasing with respect to 1r . Therefore, if Algo-
rithm 1 is run using an AEP computation method more pre-
cise and computationally more expensive than the one we
used (see Baker et al., 2021; Thomas et al., 2023), keeping
Nθ reasonably small (≈ 5) and 1r reasonably large (≈ 1)
should enable the solving algorithm to find a well-performing
layout in a reasonable execution time. In addition, as illus-
trated in Table 1, the solving algorithm often sets the optimal
shape parameters (r1, r2) to their minimal authorized values.
This behavior indicates that the method generates grids with
many intersections and, thus, a large degree of freedom for
the local-search part of the algorithm. The larger the degree
of freedom for the local-search algorithm, the better the so-
lution. The best layout for each wind farm size is displayed
in Fig. 5, and the optimal parameters (r1, r2,θ1,θ2), the op-
timal AEP, the optimal expected power per turbine, and the
execution time are displayed in Table 3. The execution time
corresponds to the total execution time. However, steps 1 to 3
from Algorithm 1 are always computed in less than 1.5 min
(for 1r = 0.5 and Nθ = 10); the majority of the execution
time is spent on step 4 of Algorithm 1.

1For a Nt -turbine wind farm, the expected power per turbine
is given by the formula AEP(MWh)/(8760×Nt ) and allows for
comparing wind farms of different sizes.
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Figure 3. Expected power per turbine for 81-, 100-, 150-, and 250-turbine wind farms, displayed in panels (a), (b), (c), and (d) respectively,
as a function of the hyper-parameters Nθ and 1r .

Figure 4. Execution time of Algorithm 1 for 81-, 100-, 150-, and 250-turbine wind farms, displayed in panels (a), (b), (c), and (d) respec-
tively, as a function of the hyper-parameters Nθ and 1r . All optimizations were run on a 12th Gen Intel(R) i7-12700H 2.30 GHz core.
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Table 2. Influence of the hyper-parameters Nθ and 1r on the AEP and Algorithm 1 execution time. All optimizations were run on a 12th
Gen Intel(R) i7-12700H 2.30 GHz core.

Wind farm
1r Nθ

Optimal shape parameters AEP Expected power Exec. time
size (r1, r2,θ1,θ2) (GWh) per turbine (MW) (s)

81 0.5 1 (5.5Dturb, 2Dturb, 73°, −87°) 2860.00 4.031 4083
81 0.5 5 (2Dturb, 3Dturb, 18°, −80°) 2862.37 4.034 9611
81 0.5 10 (2Dturb, 3Dturb, 18°, −80°) 2862.76 4.035 15 981
81 1 1 (2Dturb, 6Dturb, 90°, 70°) 2855.62 4.024 690
81 1 5 (2Dturb, 3Dturb, 18°, −80°) 2862.29 4.034 2343
81 1 10 (2Dturb, 3Dturb, 18°, −80°) 2862.29 4.034 3944
81 2 1 (2Dturb, 6Dturb, 90°, 70°) 2856.23 4.025 161
81 2 5 (2Dturb, 2Dturb, 18°, −78°) 2857.65 4.027 399
81 2 10 (2Dturb, 2Dturb, 18°, −76°) 2860.44 4.031 1211
100 0.5 1 (2Dturb, 2Dturb, 18°, −78°) 3354.24 3.829 3486
100 0.5 5 (2Dturb, 2Dturb, 18°, −76°) 3356.53 3.832 9693
100 0.5 10 (2Dturb, 2Dturb, 18°, −76°) 3356.55 3.832 14 105
100 1 1 (2Dturb, 2Dturb, 19°, −78°) 3348.50 3.822 884
100 1 5 (2Dturb, 2Dturb, 18°, −82°) 3356.21 3.831 2027
100 1 10 (2Dturb, 2Dturb, 18°, −76°) 3356.55 3.832 5324
100 2 1 (2Dturb, 2Dturb, 19°, −78°) 3348.57 3.823 158
100 2 5 (2Dturb, 2Dturb, 18°, −78°) 3354.45 3.829 746
100 2 10 (2Dturb, 2Dturb, 18°, −76°) 3356.54 3.832 920
150 0.5 1 (2Dturb, 2Dturb, 18°, −78°) 4372.17 3.327 3729
150 0.5 5 (2Dturb, 2Dturb, 18°, −78°) 4372.71 3.328 12 013
150 0.5 10 (2Dturb, 2Dturb, 18°, −78°) 4372.71 3.328 19 188
150 1 1 (2Dturb, 2Dturb, 19°, −78°) 4357.54 3.316 966
150 1 5 (2Dturb, 2Dturb, 18°, −78°) 4372.71 3.328 4151
150 1 10 (2Dturb, 2Dturb, 18°, −78°) 4372.71 3.328 4902
150 2 1 (2Dturb, 2Dturb, 19°, −78°) 4357.48 3.316 339
150 2 5 (2Dturb, 2Dturb, 18°, −78°) 4372.71 3.328 858
150 2 10 (2Dturb, 2Dturb, 18°, −78°) 4372.71 3.328 2084
250 0.5 1 (2Dturb, 2Dturb, 90°, 14°) 5241.50 2.393 462
250 0.5 5 (2Dturb, 2Dturb, 90°, 14°) 5241.50 2.393 1203
250 0.5 10 (2Dturb, 2Dturb, 90°, 14°) 5241.50 2.393 1789
250 1 1 (2Dturb, 2Dturb, 90°, 27°) 5202.29 2.375 262
250 1 5 (2Dturb, 2Dturb, 90°, 14°) 5241.50 2.393 555
250 1 10 (2Dturb, 2Dturb, 90°, 14°) 5241.50 2.393 925
250 2 1 (2Dturb, 2Dturb, 90°, 19°) 5150.62 2.352 100
250 2 5 (2Dturb, 2Dturb, 90°, 18°) 5223.08 2.385 205
250 2 10 (2Dturb, 2Dturb, 90°, 18°) 5223.08 2.385 293

Table 3. Optimal AEP, shape configuration, and mean power per turbine for an increasing number of turbines.

Number of turbines AEP (GWh) Optimal shape parameters (r1, r2,θ1,θ2) Expected power per turbine % wake losses

1 42.55 − 4.86 MW 0
81 2862.76 (2Dturb, 3Dturb, 18°, −80°) 4.03 MW 17.1%
100 3356.55 (2Dturb, 2Dturb, 18°, −76°) 3.83 MW 21.2%
150 4372.71 (2Dturb, 2Dturb, 18°, −78°) 3.33 MW 31.5 %
250 5241.50 (2Dturb, 2Dturb, 90°, 14°) 2.39 MW 50.8 %

6 Exploration method’s impact on the AEP

The optimization layout algorithm presented in this paper
relies on the discrete exploration of the space of shape pa-
rameters (r1, r2,θ1,θ2) ∈ [Dmin,Dmax]

2
×[−π/2,π/2]2. De-

spite the angles’ search space reduction technique presented
in Sect. 4.2 and Algorithm A2, exploring this space using
fine discretization is numerically too demanding since it re-
quires running step 4 of Algorithm 1 for a number of shape
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Figure 5. Best layouts for wind farm sizes of 81, 100, 150, and 250
turbines, displayed in panels (a), (b), (c), and (d) respectively, using
Algorithm 1.

parameters too large for a reasonable running time. Unfor-
tunately, the performance of the optimization depends on
the capacity to tune the shape parameters finely. Achieving
such a fine-tuning with Algorithm 1 requires using a small
shape-parameter space discretization step. Therefore, there is
a strong incentive to develop heuristic methods to explore the
shape parameters’ space other than by using the angle search
space reduction associated with a brute-force-like explo-
ration method. Indeed, using more efficient shape-parameter-
space exploration methods allows for a good trade-off be-
tween a fine-tuning of these parameters and a reasonable
computation time. In this section, we present optimization
results using such a heuristic to provide a benchmark for
an aligned optimization algorithm. Unfortunately, for indus-
trial confidentiality reasons, we do not describe its principle
and only focus on the improvement in terms of AEP. Again,
we have run the optimization procedure for wind farms of
81, 100, 150, and 250 turbines. The results in terms of opti-
mal shape parameters, AEP, expected power per turbine, and
wake losses are summarized in Table 4, and the optimal lay-
outs are displayed in Fig. 6. The optimal layout obtained us-
ing this heuristic exhibits the same behavior as those found
in the previous section regarding r1 and r2. Indeed, these pa-
rameters are systemically found to be equal to the lowest pos-
sible value. In contrast, the optimal angles are not the same.
One of the alignment directions is conserved (≈ 18°), but the
other one is quite different even when taking into account the

Figure 6. Best layouts for wind farm sizes of 81, 100, 150, and
250 turbines, displayed in panels (a), (b), (c), and (d) respectively,
using an efficient shape parameter exploration method and the same
local-search algorithm.

180° periodicity of the angles. Concerning the AEP, using a
heuristic to explore the space of shape parameters more ef-
ficiently allows for improvement. Interestingly, as illustrated
in Fig. 7 and in the last column of Table 4, the percentage
of AEP increase grows almost linearly concerning the wind
farm size and reaches 1 % for the larger one. This behavior
stems from the decreasing degrees of freedom in the turbine’s
optimal placing problem as the wind farm size grows. There-
fore, for larger farms, the efficiency of the shape parame-
ters’ optimization algorithm is of greater importance than for
smaller farms; thus, there is a more substantial improvement
in AEP for large farms when using a better exploration algo-
rithm for the space of shape parameters. These results prove
to be a strong incentive to develop efficient heuristics to ex-
plore the space of shape parameters.

7 Conclusions

This work tackles the wind farm layout optimization prob-
lem with alignment constraints. We introduced a model of the
corresponding optimization problem and adapted the DEBO
algorithm from Thomas et al. (2023) to this new problem.
The proposed method is based on an exploration heuristic for
computing the grid parameters and a local-search method to
place the turbines on the grid’s intersections optimally. We
have shown that this method performs well on the bench-
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Table 4. Optimal AEP, shape configuration, and mean power per turbine for an increasing number of turbines using a fast heuristic for the
optimization of the shape’s parameters.

Number of AEP Optimal shape parameters Expected power % wake % AEP increase
turbines (GWh) (r1, r2,θ1,θ2) per turbine losses w.r.t. Table 2

1 42.550 − 4.86 MW 0 0
81 2866.697 (2Dturb, 2Dturb, 88.6°, 17.9°) 4.04 MW 16.8% 0.14 %
100 3369.709 (2Dturb, 2Dturb, 88.5°, 17.9°) 3.85 MW 20.8% 0.39 %
150 4399.174 (2Dturb, 2Dturb, 88.8°, 17.78°) 3.35 MW 31.1% 0.61 %
250 5308.184 (2Dturb, 2Dturb, 87.0°, 17.4°) 2.42 MW 50.1% 1.27 %

Figure 7. Percentage of AEP increase when using an efficient
shape-parameter-space exploration method compared to the brute
force discretization from Algorithm 1.

mark of IEA Wind Task 37 (Thomas, 2022) since it pro-
duced an AEP increase of 0.41 % compared to the baseline
layout, even though the latter does not satisfy any align-
ment constraints and is potentially less prone to significant
wake losses. Using this numerical example, we have also
demonstrated the benefits of developing efficient heuristics
for exploring the grid parameters. Indeed, using efficient
heuristics allows for a better trade-off between wake-loss
reduction and computation time. Therefore, these heuris-
tics can be used to find layouts with higher AEP or to use
more precise and computationally demanding AEP mod-
els. A more efficient algorithm can enable the introduction
of other optimization parameters or constraints, such as ca-
ble routing or shared mooring for floating farms. Otherwise,
to quantify the effect of alignment constraints on the wake
losses, one could perform a sensitivity analysis by allow-
ing small displacements of each turbine, resulting in an al-
most aligned layout. Finally, future works can also investi-
gate the robustness of the optimal layout with respect to the
wind probability measure PW :=

∑NW
n=1p(wns ,w

n
d )δ(wns ,w

n
d ).

The sensitivity of the AEP with respect to the wind prob-
ability is easy to estimate if the support of the proba-
bility is unchanged, i.e., if the modified probability P̂W
is P̂W :=

∑NW
n=1

[
p(wns ,w

n
d )+1p(wns ,w

n
d )
]
δ(wns ,w

n
d ), with

∑
1p(wns ,w

n
d )= 0. In this case we have

1AEP(Fn) := 8760
NW∑
n=1

P(Fn,wns ,w
n
d )1p(wns ,w

n
d )).

However, when the probability’s support is also varying,
computations are much more involved, and future works
could focus on using distributionally robust optimization
methods (see Rahimian and Mehrotra, 2022, for a review
on the subject) to produce robust layouts with respect to the
wind probability measure.

Appendix A: Algorithms in pseudo-code

Algorithm A1 GenerateR1R2(1r,Dmin,Dmax).

1: R1,2←∅
2: r1←Dmin.Dturb
3: angles←∅
4: while r1 ≤Dmax.Dturb do
5: r2←Dmin.Dturb
6: while r2 ≤Dmax.Dturb do
7: R1,2← R1,2 ∪ {r1, r2)}
8: r2← r2+1r
9: end while

10: r1← r1+1r
11: end while
12: return R1,2

Algorithm A2 ReduceSearchSpace(R1,2,1θ,Dmin,Dmax,
Dturb,Nθ ).

1: 2←∅
2: for (r1, r2) ∈ R1,2 do
3: 2r1,r2 ←GetBestAngles(r1, r2,1θ,Dmin,Dmax,Dturb,Nθ )

4: 2←2∪2r1,r2
5: end for
6: return 2
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Algorithm A3 GetBestAngles(r1, r2,1θ,Dmin,Dmax,Dturb,
Nθ ).

1: farms←∅
2: 2r1,r2 ←∅
3: θ1←−

π
2 +1θ

4: while θ1 ≤
π
2 do

5: θ2←−
π
2

6: while θ2 ≤ θ1−1θ do
7: Dgrid←minz∈Z2

∗

∥∥∥PB(θ1,θ2,r1,r2)
B0

z

∥∥∥
8: if

(
Dgrid ≥Dmin.Dturb

)
∧ (θ1− θ2 ≤ π −1θ ) then

9: n← 1
10: for i = 0 to i = 1 do
11: for j = 0 to j = 1 do

12: F4(n)← P
B(θ1,θ2,r1,r2)
B0

(
i

j

)
13: n← n+ 1
14: end for
15: end for
16: aep← EW

[
P(F4,ws,wd)

]
17: farms← farms∪ {(θ1, θ2, aep)}
18: end if
19: θ2← θ2+1θ
20: end while
21: θ1← θ1+1θ
22: end while
23: sort(farms) {by decreasing order of aep}
24: for i = 1 to i =Nθ do
25: 2r1,r2 ←2r1,r2 ∪ {(farms(i).θ1, farms(i).θ2)}
26: end for
27: return 2r1,r2

Algorithm A4 GenerateConfigs(R1,2,2,Dmin,Dmax,Dturb).

1: grids←∅
2: for (r1, r2) ∈ R1,2 do
3: for (θ1, θ2) ∈2 do
4: Dgrid←minz∈Z2

∗

∥∥∥PB(θ1,θ2,r1,r2)
B0

z

∥∥∥
5: if minz∈Z2

∗

∥∥∥PB(θ1,θ2,r1,r2)
B0

z

∥∥∥≥Dmin.Dturb then
6: grids← grids∪ {(r1, r2,θ1,θ2)}
7: end if
8: end for
9: end for

10: return grids

Algorithm A5 ComputeAllIntersections(grids, Dmin, �).

1: intersections_sets← {∅}
2: n← 1
3: while n≤ card(grids) do
4: {Compute basic shape vector}
5: r1, r2,θ1,θ2← grids(n)
6: v1← (r1 cos(θ1), r1 sin(θ1))
7: v2← (r2 cos(θ2), r2 sin(θ2))
8: {Function of the intersections}
9: Iv1,v2 (11,12) := {k1v1+ k2v2 ∈

Z2s.t.
[
k1v1+ k2v2+ (11,12)

]
∈� ; (k1,k2) ∈ Z2

}

10: {Compute offset maximising the number of admissible in-
tersections}

11: (1∗1,1
∗
2)← argmax11,12∈[0,1)2 card(Iv1,v2 (11,12))

12: {Add intersections to the set of intersections}
13: if card(Iv1,v2 (1∗1,1

∗
2))≥Nmax then

14: intersections_sets←
{(
Iv1,v2 (1∗1,1

∗
2), (r1, r2,θ1,θ2)

)}⋃
intersections_sets

15: end if
16: n← n+ 1
17: end while
18: return intersections_sets

Algorithm A6 GreedyInitialization(intersections).

1: (x0,y0)← argmaxx,y{x− ys.t.(x,y) ∈ intersections}
2: F1(1)← (x0 y0)
3: nt ← 1
4: intersections← intersectionsr{(x0 y0)}
5: while nt <Nmax do
6: (x∗ y∗)>← argmax(x,y)∈intersectionsEW{

P
(
Fnt ⊕ (x y),ws,wd

)}
7: Fnt+1← Fnt ⊕ (x∗ y∗)
8: nt ← nt + 1
9: intersections← intersections r{(x∗ y∗)}

10: end while
11: return FNmax
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Algorithm A7 LocalSearch(FNmax , intersections).

1: convergence←⊥
2: aep← EW

{
P(FNmax ,ws,wd)

}
3: while ¬ convergence do
4: HNmax ← FNmax
5: random_indices← shuffle([[0, . . .,Nmax[[)
6: for indice ∈ random_indices do
7: {compute all possible layouts by moving ith turbine}
8: children_layout ← generate_children(FNmax , indice, in-

tersections)
9: for (GNmax , intersectionsG) ∈children_layout do

10: if EW
{
P(GNmax ,ws,wd)

}
> aep then

11: FNmax ←GNmax
12: aep← EW

{
P(FNmax ,ws,wd)

}
13: intersections← intersectionsG
14: end if
15: end for
16: end for
17: convergence← FNmax =HNmax
18: end while
19: return

(
FNmax ,aep

)

Algorithm A8 generate_children(FNmax , indice, intersections).

1: children_layout←∅
2: for (x y) ∈ intersections do
3: GNmax ← FNmax
4: intersectionG← intersections
5: (xnew ynew)←GNmax (indice)
6: GNmax (indice)← (x y)
7: intersectionsG← intersectionsGr {(x y)}∪{(xnew,ynew)}
8: children_layout ← children_layout

∪{(GNmax , intersectionsG)}
9: end for

10: return children_layout

Algorithm A9 PlaceTurbines(intersections).

1: FNmax ← GreedyInitialization(intersections)
2:
(
FNmax ,aep

)
← LocalSearch(FNmax , intersections)

3: return
(
FNmax ,aep

)
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