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Abstract. Wind farm layout optimization usually aims at maximizing annual energy production by placing
wind turbines in a strategic way to avoid wake losses. However, this might not lead to optimal profits because
of the volatility of electricity prices. Moreover, with the growing unpredictability and variability of future power
systems due to the increase in renewable electricity production, wind farm operators will have a more important
role in balancing the system through participation in reserve markets. This study presents a new formulation for
wind farm layout optimization where the objective function aims at maximizing revenues from both day-ahead
and reserve markets. It uses stochastic gradient descent for the optimization and probabilistic forecasts for wind
power and electricity prices. The new formulation is applied to a test case based on a real-life offshore wind farm
in Belgium. An important conclusion is that annual revenues are expected to increase in a significant way when
accounting for participation in reserve markets, while exhibiting a lower supplied energy production. Moreover,
layouts optimized for revenue maximization with reserve participation tend to show better yearly revenues than
when considering the day-ahead market only in the objective function. Expected revenues are also higher by
0.18 % on average for the new methodology than when using the maximization of annual energy production,
widely used in the literature, as the objective function.

1 Introduction

With the sharp increase in renewable energy sources in mod-
ern power systems, balancing electrical load and generation
throughout the day is becoming a challenge. In the case of a
real-time imbalance in the system, the transport system op-
erator (TSO) needs to activate reserves in order to restore
the balance and avoid frequency deviations. In the near fu-
ture, with a high penetration of weather-dependent electric-
ity generation, the intra-hour variability and randomness will
become more significant, increasing the need for fast regula-
tion and the value of reserve. Reserve markets, which allow
power plant operators to act as a balancing service provider
(BSP), will be critical for the reliable integration of renew-

able electricity. Because offshore wind generation capacity
is expected to grow steadily in the future, wind farm op-
erators will have an important role in reserve markets and
system balancing. Allowing offshore wind farms to partici-
pate in the reserve market will be of mutual interest to TSOs
and wind producers. Moreover, it has been proven that mod-
ern wind turbines with variable rotation speed have intrinsic
fast ramping-down and ramping-up capabilities, which can
be effectively used to provide ancillary services (Kayedpour
et al., 2024, 2022). Ramping down is virtually done at no
cost (if prices for down reserve are favourable), and ramp-
ing up is subject to the availability of wind power. To alle-
viate frequency deviations, the TSO has several reserve ca-
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pacities, with different requirements for maximum ramping
and activation time. The focus of this work will be on auto-
matic frequency reserve restoration (aFRR), also called sec-
ondary reserve or R2. Indeed, volume needs of secondary
reserves are usually higher and are expected to reach even
larger values than those for primary reserve in the future
(Elia, 2023). Moreover, primary reserve requires an activa-
tion and ramping to full capacity within seconds (Perroy
et al., 2020), which might be prohibitive within wind farms,
where wind and wake effects take time to propagate. Tertiary
reserve is manually activated and is only used to comple-
ment and release secondary reserve (e.g. for very extensive
imbalances). It must be able to stay active for a long period
of time (hours), which could be a challenge for wind farm
operators because of the variability of wind. Therefore, sec-
ondary reserves seem to be suitable for increasing revenues
of wind farms participating in reserve markets (Sumetha-
Aksorn et al., 2022; Windvision et al., 2015). Secondary re-
serves have a fast response time, are used in both directions
to restore a frequency of 50 Hz, and remain active as long as
necessary. The TSO activates aFRR automatically by send-
ing a set point every 4 s, and the requested energy is to be
activated within 7.5 to 15 min in the case of selection of the
full volume of the aFRR energy bid. In Belgium, the volume
need for upward aFRR determined by the TSO was 117 MW
in 2023 (Elia, 2023). Regarding other European countries, in
France, the TSO has prescribed a daily average of 709 MW
of aFRR to French stakeholders (ENTSO-E, 2024). In the
Netherlands, the determined dimensioning minimum of up-
ward aFRR was 324 MW in 2023. The Nordic upward aFRR
capacity market (which covers eastern Denmark, Sweden,
Finland, and Norway) has a volume need of 300 MW. How-
ever, those needs are expected to increase in the future. For
example, in Denmark, for the west bidding zone DK1, the
current upward aFRR need is 100 MW, but it is expected
to reach up to 194 MW in 2035 and 298 MW by 2040 (En-
erginet, 2023).

Regarding the participation of wind farms in a joint day-
ahead energy and reserve market (JERM), optimal offering
and allocation policies have been investigated, but with the
assumption of constant electricity prices (Soares et al., 2017).
This does not capture the variation of day-ahead and reserve
prices with wind speed and wind direction. A combined en-
ergy and regulation reserve market model has been devel-
oped to encourage wind producers to regulate their short-
term outputs (Liang et al., 2011), but it assumes that marginal
revenues of providing day-ahead energy are always higher
than the marginal revenues for upward reserve as well as per-
fect forecasts of market prices. Provision of reserve by wind
power units has been considered for generation capacity ex-
pansion (Cañas-Carretón and Carrión, 2020) and simulations
were only carried out over 9 representative days of load and
generation.

While current wind farms have usually been designed to
maximize their power output, future wind farms should be

planned and built taking into account the participation in re-
serve markets, especially if the size of the latter becomes
more significant. Wind farm layout optimization (WFLO)
generally aims at maximizing annual energy production
(AEP). It attempts to choose the best placement for tur-
bines, which is equivalent to minimizing wake losses. In-
deed, when wind turbines extract mechanical energy from
the wind to produce electricity, they cause a reduction of
wind speed behind them. Downstream turbines in the wake
therefore produce less energy. On a site with specific wind
conditions, WFLO will avoid aligning a turbine in the direc-
tions of dominant wind. Layout optimization for maximizing
AEP has been widely studied in the literature, using gradient-
based optimization techniques (Quick et al., 2023; Valotta
Rodrigues et al., 2024; Park and Law, 2015), gradient-free
techniques (Hou et al., 2015; Feng and Shen, 2015; Long
et al., 2020), or comparing both (Thomas et al., 2023). The
idea behind maximizing AEP is that it will maximize prof-
its for wind farm operators selling energy on the day-ahead
energy market (DAEM). However, both objectives might not
lead to the same results because of the high volatility of elec-
tricity prices. Producing too much energy in periods of low
prices will lead to reduced profits. When considering only
the day-ahead market, if patterns of low and high prices do
not match wind direction patterns, optimizing AEP is not the
same as maximizing profit. Indeed, maximizing profit might
lead to higher profits while decreasing supplied energy (and
thus turbine loads). WFLO for yearly profit has been stud-
ied in previous works (Stanley et al., 2021; González et al.,
2010; Gonzalez et al., 2012), but wind power was sold only
on the day-ahead market. Adding participation in the reserve
market will also impact results if day-ahead (DA) and reserve
prices do not show the same variations with regard to wind
direction.

To the best of the authors’ knowledge, this is the first paper
that presents a wind farm layout optimization that accounts
for participation in reserve markets in the revenue objective
function. Therefore, the main contribution of this paper is
the formulation of a new objective function for the wind farm
layout optimization problem. The latter allows taking into ac-
count the participation in reserve markets during the design
process. The new objective function aims at maximizing ex-
pected yearly revenues of a wind farm participating in both
day-ahead and secondary upward reserve markets. It allows
computing the optimal offering in both markets, the reserve
allocation strategy, and subsequent expected revenues. The
new objective function considers the uncertainty in forecasts
of wind power, electricity prices, and activated reserve vol-
umes. The estimated penalties and balancing costs for failing
to provide energy and reserve are also taken into account.
The study is conducted for the Belgian system using existing
market rules. However, although this system has some pe-
culiarities, the main methodology could be applied in other
systems with minor modifications.
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Because computing yearly revenues at each iteration step
of the optimization is too costly, stochastic gradient descent
(SGD) is used. This prompts the need to make the revenue
function differentiable. The gradient of the total revenue is
estimated for a limited number of time steps: this approach
enables accurate results with reasonable computation time.
The new formulations are applied on a real wind farm us-
ing historical data for wind and electricity prices. When con-
sidering the current built layout, it is shown that operating
the wind farm with provision of reserve leads to signifi-
cantly higher yearly revenues than when participating only in
DAEM. Then, the new WFLO methodology is applied to op-
timize the layout while accounting for reserve participation.
Yearly revenues, supplied energy, and AEP of the best opti-
mized layout are compared with regard to the current built
configuration of the test wind farm. The optimized layout is
also compared with those obtained using the traditional AEP
maximization formulation. A revenue function only account-
ing for participation in the day-ahead market is also used
for the optimization. The three approaches are compared in
terms of expected yearly revenues and supplied energy. Fi-
nally, generalization to unseen data is studied.

The remainder of the paper is structured as follows. In
Sect. 2, the general formulation for the computation for rev-
enues from both day-ahead and reserve markets is presented,
as well as its integration in the wind farm layout optimiza-
tion problem. Section 3 details the wind farm optimization
test case and briefly explores historical data from Belgium.
Section 4 analyses results and comparisons are made with
more traditional wind farm layout optimization formulations.
Finally, conclusions and future work are gathered in the last
section.

2 Methods

A total of 1 d before real-time delivery (market closure is at
noon), for each time step t of the 24 h of the next day k, a
wind farm operator does the following:

– forecasts available wind power P̂wind, avail
k,t

– decides the total amount of power sold to both day-
ahead and reserve markets P c

k,t

– decides the amount of reserve capacity to procure to the
reserve market Rk,t = αk,t ·P c

k,t

– computes the power to be sold in the day-ahead energy
market PDA

k,t = P
c
k,t − R̂k,t

The wind farm reserve capacity represents the amount of
power that the wind farm holds back from electricity pro-
duction to sell in the reserve market instead of the day-ahead
energy market. Based on weather forecasts (and thus wind
power forecasts), a wind farm operator bids its electricity
production in the day-ahead market and the reserve capac-
ity in the secondary reserve market. On the day of delivery,

the wind farm must be able to supply both the day-ahead and
activated reserve quantities. In this work, it is assumed that
wind farms always prioritize providing reserve (as the wind
farm is contractually bound to reserve this capacity).

The accuracy of weather and thus wind power forecasts is
crucial in order to make relevant bids in both markets: un-
derestimation leads to lower bids and decreased revenues,
while overestimating production results in inability to supply
contracted bids, thus incurring financial penalties. Moreover,
electricity prices can be highly volatile, and the actual acti-
vation of reserve depends on the system imbalance, which is
also fluctuating. Forecast errors in electricity prices and ac-
tivation volume can lead to a wrong estimation of expected
revenue. In this work, we assume that forecast errors follow
a Gaussian distribution with a given mean and standard de-
viation. For each considered time step, S forecast errors are
randomly sampled using a Monte Carlo approach.

2.1 Wind power forecasts

The forecast of available wind power P̂wind, avail
k,t depends on

(previously) forecasted free-flow wind speed û∞k,t and wind
direction θ̂k,t .

P̂
wind, avail
k,t,s = f

(
û∞k,t,s, θ̂k,t,s

)
The operator f (·) denotes the conversion of wind data to
wind power: it is based on the wind turbine power curve and
should account for wake effects arising within the wind farm.
The index s denotes the Monte Carlo sample number related
to forecast error sampling.

The forecasted wind speed û∞k,t is derived from the actual
realization of wind speed and a forecast error sampled from
a normal distribution.

û∞k,t,s = u
∞

k,t + ε
u
k,t,s

εuk,t,s ∼N (0,σ u) (1)

The same process is used to forecast wind direction

θ̂∞k,t,s = θ
∞

k,t + ε
θ
k,t,s

εθk,t,s ∼N (0,σ θ ) (2)

Therefore, forecasts of available wind power can be writ-
ten as

P̂ avail
k,t,s = fP

(
u∞k,t + ε

u
k,t,s,θ

∞

k,t + ε
θ
k,t,s

)
+ ε

fP
k,t,s . (3)

ε
fP
k,t,s is the modelling error associated with the wind farm

model. For wind speed forecasting, literature shows that fore-
cast errors follow a Gaussian distribution with mean 0 and
standard deviation approximately equal to 15 % (ECMWF,
2024). For wind direction, day-ahead forecasts show a root
mean squared error of 4.2° (Chitsazan et al., 2019). In real
life, the operator should first forecast wind speed (the day-
ahead prediction of wind speed is widely studied in the lit-
erature) and wind direction, then obtain the corresponding
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wind power forecast by converting this wind information to
power using a wind power model.

2.2 Day-ahead energy market

The day-ahead energy market is a financial market where
participants purchase and sell electrical energy at financially
binding day-ahead prices for the following day. Electricity is
traded at 12:00 LT for the 24 h of the next day and the mar-
ket is cleared based on an auction mechanism, where market
price and volume represent the intersection point between the
demand and supply curves. After the auctions on day-ahead
markets are closed, existing shortfalls or surpluses can still be
evened out through intra-day trading. However, the intra-day
market is not considered in this work, as prices are extremely
volatile and tend to have similar patterns as imbalance fees.
Indeed, market participants are charged with imbalance fees
every time they deviate from their nominations. These fees,
set on a quarter-hourly basis, aim at ensuring that participants
contribute efficiently to balancing the electrical system and
reflect the cost related to the activation of additional energy
(reserve) by the TSO.

Revenues from the day-ahead market for time step t of day
k can be written as (assuming perfect forecasts)

RevenueDA
k,t = P

DA
k,t ·1t · λ

DA
k,t −1P

DA
k,t ·1t · λ

imb
k,t , (4)

where 1t is the duration of the time step (e.g. quarter of an
hour), λDA

k,t is the day-ahead price [EURMWh−1], 1PDA
k,t is

the contracted power not supplied, and λimb
k,t is the imbalance

fee [EURMWh−1].
Day-ahead prices and imbalance penalties need to be fore-

casted by the wind farm operator before it makes its bid
on the market. For the Gaussian distribution parameters of
forecast errors for day-ahead electricity prices, µ is approxi-
mately 0 and σ is around 7 % (Lago et al., 2021).

2.3 Reserve market for aFRR

Upward regulation is activated in the case of negative imbal-
ance in the system (consumption exceeds production), and
downward regulation is used for positive imbalance. In this
work, we only consider the provision of upward reserve reg-
ulation since wind farms are not able to benefit from fuel-
saving returns in downward regulation (Toubeau et al., 2020).
Indeed, activation of downward reserves can yield both pos-
itive (the TSO pays the BSP) and negative prices (the BSP
pays the TSO) (Brijs et al., 2015). Negative prices result from
producers (e.g. gas-fired power plants) willing to lower their
output since their energy is already sold in long-term markets
and they can save operating costs: they are usually willing to
pay the TSO a small amount. However, when facing scarcity
of downward flexibility, BSPs may bid positive activation
prices, i.e. being paid for the service, which is the only case
where providing downward reserve would be profitable for

wind farm operators. We assume that prices for downward
reserve are usually negative, and positive prices only occur
in specific conditions. It should be noted that this assumption
strongly depends on market conditions, but it is suitable for
the Belgian case study considered in this work. Therefore,
we will only focus on upward reserve.

Revenues from the aFRR upward market are twofold.
BSPs earn revenues from the procurement of reserve capac-
ity (through capacity bids) and balancing revenues from the
real-time activation of procured reserves. The reserve capac-
ity price λR,c is determined through a pay-as-bid process.
We assume that because of the lower production costs for
wind generation than conventional power plants, capacity
bids from wind farms will be well placed in the merit or-
der and will be chosen first by the TSO. The reserve activa-
tion price λR,a is pay-as-cleared and contracted aFRR energy
bids for possible activation on day k have to be submitted
by the BSP to the TSO at the latest for the day-ahead mar-
ket (day k− 1). The TSO may activate aFRR energy bids
partially or entirely, depending on the negative system im-
balance. This process is presented in Fig. 1. The uncertainty
in the balancing actions (i.e. the total amount of activated
upward reserve) is modelled through scenarios of reserve ac-
tivation κa

∈ [0,1]. Moreover, in the case of several market
players bidding in the balancing market, we assume an equal
distribution of reserve among all market participants.

Failing to provide the activated reserve requested by the
TSO leads to activation penalties that are calculated as fol-
lows (Elia, 2022):

PenaltiesR,a
k,t = γ

a
·

Reserve discrepancy
Reserve requested

· (Capacity remuneration+Activation remuneration), (5)

where γ a is a penalty multiplier for failing to provide acti-
vated reserve. It is set by the TSO, and in Belgium, Elia has
chosen a value of 1.3 for γ a. The reserve discrepancy during
activation (contracted reserve not supplied when requested)
1Ra

k,t is defined as

1Ra
k,t = Rrequested−Rsupplied

1Ra
k,t = Rk,t · κk,t −min

(
Rk,t · κk,t , P̂

wind, avail
k,t

)
. (6)

In our problem, this translates to this equation:

PenaltiesR,a
k,t =γ

a
·
1Ra

k,t

Rk,t · κ
a
k,t

·

(
Rk,t ·1t · λ

R,c
k,t +Rk,t ·1t · λ

R,a
k,t · κ

a
k,t

)
PenaltiesR,a

k,t =γ
a
·
1Ra

k,t

κa
k,t

·

(
λ

R,c
k,t + λ

R,a
k,t · κ

a
k,t

)
·1t . (7)

Moreover, Elia controls the availability of the aFRR ca-
pacity by performing availability tests. Elia has the right to
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Figure 1. Bidding process of an offshore wind farm operator participating in both day-ahead and reserve markets.

perform at maximum 12 availability tests on a rolling win-
dow of 12 months and each test lasts for three-quarters of an
hour. In the case of a failed availability test, the BSP must
pay financial penalties.

PenaltiesR,c
k,t = γ

c
·1Rc

k,t ·1t · λ
R,c
k,t (8)

1Rc
k,t is the missing reserve capacity during the availabil-

ity test and γ c is the penalty factor, equal to 0.75 by default.
However, in the case that the penalty concerns a second con-
secutive failed availability test, γ c is equal to 1.5.

But more importantly, Elia hinders the possibility of par-
ticipating in reserve markets by adapting the upper limit of
aFRR capacity bids in the case of two or more failed con-
secutive availability tests of the same aFRR capacity prod-
uct. To account for this technical penalty, we should set a
very high penalty price when available power for activation
in real time is lower than reserve capacity bids. This allows
accounting for this technical constraint in the revenue formu-
lation. Therefore, we set γ c to 10.

For a time step k, t where a wind farm decides to partic-
ipate in the reserve market, revenues from reserve are com-
puted as follows:

Revenuereserve
k,t =

[(
Rk,t · λ

R,c
k,t +Rk,t · λ

R,a
k,t · κ

a
k,t

)
−

(
γ a
·
1Ra

k,t

κa
k,t

·

(
λ

R,c
k,t + λ

R,a
k,t · κ

a
k,t

)
+ γ c
·1Rc

k,t · λ
R,c
k,t

)]
·1t . (9)

Reserve and imbalance prices are characterized by higher
volatility, a lower mean, more frequent price spikes, and a
more skewed distribution compared to electric energy prices.
As a result, forecasting their behaviour is potentially more
challenging (Wang et al., 2013). However, no clear value
for forecasting errors can be found in the current literature.
Therefore, we still set a zero mean value for the distribu-
tion of those errors. For the standard deviation, we assume
that the forecast inaccuracy is expected to be more signifi-

cant than for day-ahead prices, so we set a higher value of
10 %.

2.4 Revenue computation

To summarize, expected revenues from participation in both
day-ahead and reserve markets over T time steps of K days
can be written as

Revenue=
K∑
k

T∑
t

Es
[(
PDA
k,t · λ̂

DA
k,t,s +Rk,t · λ̂

R,c
k,t,s

+Rk,t · λ̂
R,a
k,t,s · κ̂

a
k,t,s

)
·1t

−

(
1PDA

k,t,s · λ̂
imb
k,t,s + γ

a
·
1Ra

k,t,s

κ̂a
k,t,s

·

(
λ̂

R,c
k,t,s + λ̂

R,a
k,t,s · κ̂

a
k,t

)
+ γ c
·1Rc

k,t · λ̂
R,c
k,t,s

)
·1t

]
. (10)

It should be noted that we compute the expected net revenue,
since costs for the wind farm are not accounted for in our
formulation.

For each time step t of day k, an inner optimization prob-
lem gives the optimized total power contracted to the market
(day-ahead and reserve) and the percentage of power allo-
cated for the reserve.

Max
αk,t ,βk,t

Es
[(
PDA
k,t · λ̂

DA
k,t,s +Rk,t · λ̂

R,c
k,t,s

+Rk,t · λ̂
R,a
k,t,s · κ̂

a
k,t,s

)
·1t

−

(
1PDA

k,t,s · λ̂
imb
k,t,s + γ

a
·
1Ra

k,t,s

κ̂a
k,t,s

·

(
λ̂

R,c
k,t,s + λ̂

R,a
k,t,s · κ̂

a
k,t,s

)
+ γ c
·1Rc

k,t,s · λ̂
R,c
k,t,s

)
·1t

]
(11)
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with

PDA
k,t = (1−αk,t ) ·βk,t ·P farm,rated

Rk,t = αk,t ·βk,t ·P
farm,rated

0≤ αk,t ≤ 1 ∀k, t
0≤ βk,t ≤ 1 ∀k, t (12)

Rk,t ∈ [0,Rmax] (13)

The agreed-upon power schedules, PDA
k,t , and Rk,t are the

true design variables in this problem. The total contracted
power in reserve and day-ahead markets cannot exceed the
wind farm installed capacity, which is translated with con-
straints (Eq. 12). Moreover, reserve bids are limited to a max-
imum value Rmax, ensured by constraint (Eq. 13). Indeed,
according to Elia’s rules for BSP participating in aFRR mar-
kets, each bid should not exceed 50 MW per delivery point.
Furthermore, the aFRR requirement for the Belgian power
system was 117 MW in 2023 (total power contracted by Elia
with BSPs), which sets an absolute value as well. For each
time step, the wind farm operator chooses to contract P c

k,t ,
the total contracted power, to the JERM. This quantity is
optimized through the βk,t variable. The allocation of this
contracted power to the day-ahead and reserve markets is
then given with αk,t . As a reminder, in the case of missing
power (available power lower than power contracted in the
JERM, i.e. 1PDA

k,t,s and/or 1Ra
k,t,s ≥ 0), the supply of acti-

vated reserve will always be prioritized, regardless of imbal-
ance prices.

This optimal allocation of day-ahead and reserve power is
similar to the flexible stochastic formulation available in the
literature (Soares et al., 2017). This approach is characterized
by its total freedom to choose the energy and reserve share
in each stage of the problem (the proportional split of energy
and reserve does not have to be the same for the day-ahead
bidding stage and the actual delivery of electricity). The wind
farm can thus take advantage of the intermediate information
about wind power production, thereby reducing the penalties
at the balancing stage. This means that the operator can ad-
just the share of energy and reserve in the balancing stage in
line with the expected power production in each scenario s.
Optimal values of αk,t and βk,t can be found with a combina-
torial exploration (since their range is limited and granularity
does not have to be very high, as power bids are submitted
by steps of 1 MW).

The expected revenue in Eq. (11) corresponds to the “ex
ante evaluation” of the bidding strategy. While realized data
(wind, prices, etc.) are available in hindsight, we do not re-
compute an ex post profit. Therefore, in the training and eval-
uation of the bidding strategy, we rely on the expected rev-
enue, not the deterministic ex post value. This assumption is
reasonable and enables simplifying the training framework.
Indeed, the computation of realized revenues is not the goal
here, as one would need a very detailed operational model to
do that.

2.4.1 Summary of assumptions

This work is focused on a long-term investment decision
(which is informed by the short-term operation of wind farms
in energy and reserve markets): developing a detailed op-
erational formulation for reserve participation of offshore
wind farms was not the goal of this paper. In a long-term
investment optimization relying on short-term operation, it
is very hard to fully include all the complexity and uncer-
tainty. Therefore, several hypotheses regarding the participa-
tion of wind farms in reserve markets (and their subsequent
expected revenues) are scattered throughout the text. For the
sake of clarity, we summarize the main ones here.

– Forecasts of wind speed, wind direction, day-ahead
prices, reserve capacity and activation prices, and acti-
vated reserve volumes are all modelled, based on histor-
ical data to which we add a forecast error that we model
using a normal distribution.

– We model forecast errors in an independent way so that
we dot no explicitly account for potential correlations.

– We replace penalty regulations for failing reserve avail-
ability tests by a penalty price.

– We aggregate power variations during the bid period to
a single value when providing reserve. This is accept-
able since the TSO allows small deviations from the sent
aFRR signal.

– Considering the high complexities involved in the mod-
elling of the distribution of reserve activation amongst
multiple bidders, we made some simplifications: histor-
ical data regarding the total activated reserve are used
and are divided by the required volume of aFRR re-
serves in Belgium. This provides scenarios of reserve
activation, denoted by κa

k,t . We then apply this pro rata
value to determine the reserve bids awarded to the wind
farm. Therefore, in our formulation, we do not assume
that any bid is always won in full: the quantity allocated
by the TSO depends on the system needs.

– We assumed that the reserve availability tests will be
performed in each time step with 100 % certainty, since
the technical penalty (reduction of the bid upper limit in
reserve markets) incurred by the wind farm for failing
consecutive tests is not directly modelled.
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2.5 Layout optimization

Taking into account uncertainty in wind (thus wind power)
and price forecasts, we can write the optimization problem:

Max
x,y

K∑
k

T∑
t

Es
[(
PDA
k,t · λ̂

DA
k,t,s +Rk,t · λ̂

R,c
k,t,s

+Rk,t · λ̂
R,a
k,t,s · κ̂

a
k,t,s

)
·1t

−

(
1PDA

k,t,s · λ̂
imb
k,t,s + γ

a
·
1Ra

k,t,s

κ̂a
k,t,s

·

(
λ̂

R,c
k,t,s + λ̂

R,a
k,t,s · κ̂

a
k,t,s

)
+ γ ·1Rc

k,t,s · λ̂
R,c
k,t,s

)
·1t

]
(14)

subject to√
(xi − xj )2+ (yi − yj )2 ≥ dmin ∀ i,j > i (15)

x,y ⊂ B (16)

The design variables are x and y, the vectors of x and
y coordinates of wind turbines. The constraint in Eq. (15)
ensures a minimum spacing dmin between adjacent turbines,
while Eq. (16) keeps turbines from being outside the farm
boundaries (B ⊂<2 is a closed region in which to place tur-
bines). The objective function aims at maximizing the ex-
pected total revenue over T time steps of K days. The total
power contracted in the JERM, the allocation of reserve, and
the distribution of potential missing power are determined
from Eq. (11). The complete methodology is summarized in
Fig. 2.

The optimization is carried out using stochastic gradient
descent, which is an iterative method for optimizing a dif-
ferentiable objective function. It replaces the actual gradient
(calculated from the entire data set) by an estimate (calcu-
lated from a randomly selected subset of the data). There-
fore, the algorithm follows the mean gradient by a spec-
ified distance, which is equivalent to optimizing the ex-
pected value of the objective function (Quick et al., 2023).
This reduces the very high computational burden in high-
dimensional optimization problems, achieving faster itera-
tions but at the cost of a lower convergence rate. The inner
optimization for the optimal bidding strategy in the JERM,
defined by Eq. (11), is solved through a combinatorial ex-
ploration, which makes it differentiable and thus compatible
with the SGD algorithm. Because computing the total rev-
enue for a year (365 d · 96 quarters of an hour, i.e. 35 040
time steps) at each iteration would be too costly, SGD is par-
ticularly relevant for our proposed WFLO formulation.

3 Test case

We use data from Northwind, a Belgian offshore wind farm
situated 38 km from the coast, in the North Sea, within the

first Belgian offshore cluster. Northwind consists of 72 Ves-
tas turbines, for a total installed capacity of 216 MW. Each
turbine has a rotor diameter of 112 m, a hub height of 71 m,
and rated power of 3.075 MW. The layout of this wind farm
can be seen in Fig. 3.

Before optimizing the layout, expected yearly revenues
and supplied energy are computed for the current built lay-
out (further referred to as the base layout) for different modes
of operation (with and without reserve). Then the maximum
amount of power that can be allocated to reserve Rmax is set
to different values. First, Elia set a limit of 50 MW per de-
livery point in its current BSP agreement. Then, the required
volume of aFRR reserves that Elia should ensure through-
out the year was 117 MW for 2023 (total reserve capacity
contracted by Elia at all times). This value is updated every
year and is computed using a probabilistic method based on a
time series of 2 years of expected variations between quarter-
hours of system imbalances (ENTSO-E, 2024). However,
with the growing penetration of renewable energies foreseen
in the future, one can expect that this requirement will in-
crease as well. Indeed, power systems will become highly
weather-dependent and thus more prone to variability and
unpredictability. We therefore set two more values for the
maximum allocated reserve: Elia’s total aFRR needs (ap-
proximately equal to half of the wind farm rated capacity
if the operator wants to keep some available wind power for
other markets) and the full farm capacity.

First, to compare with state-of-the-art WFLO formula-
tions, the layout will be optimized with the objective of max-
imizing AEP. To assess the influence of accounting for elec-
tricity prices in the WFLO process, optimization with the
day-ahead market only is also simulated. Finally, WFLO is
carried out with the new formulation for the objective func-
tion that maximizes revenue from both day-ahead and re-
serve markets. Results will be compared with the two previ-
ous optimizations in terms of expected yearly revenues and
yearly production. Historical data from 2023 in Belgium (see
Sect. 3.1) are used during the optimization process. More-
over, it is important that the optimal layouts are relevant not
only for the data used in the optimization process. Therefore,
yearly revenues are also computed for unseen data, i.e. his-
torical data from another year (2024). Those data were not
seen during the layout optimization process but are neverthe-
less used to optimize bidding for that year.

The new objective function for WFLO has been integrated
into the TOPFARM framework (Riva et al., 2024), compris-
ing the SGD optimizer. Revenue and AEP gradients are com-
puted using automatic differentiation. Turbine powers are ob-
tained from Pywake simulations (Pedersen et al., 2023) using
the Bastankhah Gaussian wake model for velocity deficits,
the Crespo–Hernandez turbulence model for added turbu-
lence, and linear superposition. The wind power modelling
error for the forecast of power prediction is based on com-
parisons of PyWake with SCADA found in the literature
(Van Binsbergen et al., 2024). The mean forecast error is set
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Figure 2. Methodology for layout optimization accounting for reserve participation.

Figure 3. Layout of Northwind offshore wind farm.

to 0 and the standard deviation to 3 %. The minimum turbine
spacing dmin (constraint of Eq. 15) is set to 2 rotor diameters.
The SGD optimizations are carried out using the following
parameters: the initial learning rate is 1 rotor diameter, the
maximum number of iterations is 2000, and the initial value
for constraint aggregation multiplier is 0.1. We use several
values ofK ·T (numbers of samples for every SGD iteration)
when optimizing for revenues and AEP (K · T ranging from
20 to 150). To avoid unlucky sampling pitfalls, each case of
SGD optimization is run using five different initial random
starting conditions.

3.1 Analysis of historical data in Belgium

To help better understand the motivations of this work, we
analyse historical data on wind, electricity prices, and acti-
vated reserve volume for the year 2023 in Belgium. Data on
wind speed and wind direction at the location of the offshore
wind farms in the Belgian North Sea have been gathered from
the ERA5 database. Electricity prices for the day-ahead mar-
ket were available on the European Network of Transmis-
sion System Operators (ENTSO-E) transparency platform
(ENTSO-E, 2025). Prices for reserve capacity and reserve
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activation, as well as activated upward aFRR reserve vol-
umes, were provided by Elia, the Belgian TSO (Elia, 2025).
From Fig. 4, we can study the variations in price with re-
gard to wind direction and wind speed and the mean acti-
vated reserve per wind sector. It can be seen in Fig. 4a that
mean day-ahead prices do not follow the same pattern as
mean reserve capacity and activation prices with regard to
wind direction. Indeed, mean day-ahead prices show a lower
mean value for the wind sector centred around 230°. This
wind sector corresponds to the direction of dominant wind
in this area of the North Sea (direction with most occur-
rences), as can be seen in Fig. 5. This leads to a discrep-
ancy between maximizing revenues and energy production.
Indeed, when prices are not considered, WFLO will try to
avoid aligning turbines in the dominant wind direction. How-
ever, since prices tend to be lower in that wind section, it
might be more profitable to avoid wake losses in other direc-
tions, where prices are higher. Mean reserve capacity prices,
on the other hand, tend to be higher in that wind direction
sector, while reserve activation prices do not show a signif-
icant increase or decrease. This means that accounting for
participation in reserve will affect the optimization results, as
day-ahead and reserve prices have different patterns with re-
gard to wind direction. Figure 4c shows the volumes of acti-
vated reserve normalized by the maximum activated volume
for aFRR upward reserve (117 MW in 2023). We can see that
mean activated volumes tend to be lower in the direction of
dominant wind. Another interesting analysis can be made in
Fig. 4b, which displays the mean electricity prices with re-
gard to wind speed. One can see that day-ahead prices tend
to decrease with higher wind speeds, while it is the opposite
for reserve capacity prices. One factor that explains this re-
duction of day-ahead price with increasing wind speed is the
high penetration of offshore wind generation in the Belgian
power system (10 % of yearly consumption produced by off-
shore wind farms). Because wind energy has lower produc-
tion costs than conventional thermal power plants, a high pro-
duction of electricity through wind turbines can lead to lower
prices in the day-ahead market. Reserve activation prices re-
main constant until approximately 20 ms−1 but show a sharp
increase around 25 ms−1, which is the cut-off wind speed
of most Belgian offshore wind turbines. This is the limit at
which turbines are shut down to prevent mechanical damage,
and the farm output goes from the rated power to 0. There-
fore, a small prediction error in wind speed can lead to a
tremendous need for reserve.

4 Results and discussion

4.1 Operating the current built layout with reserve
participation

Before optimizing the layout of the Northwind wind farm,
yearly revenues are computed for the base layout (currently

built) using historical data from 2023. Three modes of oper-
ation are considered:

– Produce as much wind power as possible (referred to as
prod. max. operation in result tables). Energy bids are
not risk-based as they only rely on forecasts of avail-
able power, regardless of market conditions. This is the
most simple operation as the operator does not need to
derate the turbines in the case of unfavourable market
conjuncture.

– Wind power is only sold on the day-ahead market but
energy bids are made based on forecasts of available
wind power, day-ahead prices, and imbalance penalties
(referred to as DAEM-optimized operation in result ta-
bles).

– Wind power is sold on JERM (provision of reserve).

The optimal allocation of day-ahead and reserve power on
JERM is solved with Eq. (11) for every quarter of an hour of
the year, and the expected revenues are summed over 35 040
time steps. The maximum value allowed for reserve bids is
first set to 50 MW. The optimized operation on DAEM only
uses the same formulation but with Rk,t = 0 ∀k,∀t . This al-
lows assessing the impact of participating in the upward sec-
ondary reserve market.

The expected supplied energy is the yearly production of
the farm actually injected to the grid. For the JERM case, it
encompasses both the energy sold on the day-ahead energy
market and the activated reserve. It should be noted that elec-
trical losses and downtime due to maintenance and failures
are not taken into account. AEPtheory is the theoretical yearly
production of the farm, computed solely by converting data
on wind speed and wind direction to potential wind power. It
does not include any forecasting errors. Expected yearly rev-
enues and supplied energy are reported as µ± σ

√
S

, where the
standard deviation relates to forecast uncertainty (sampling
of S forecast errors).

It can be seen in Table 1 that operating Northwind for
maximizing production leads to the lowest revenues. Indeed,
making energy bids on DAEM only for revenue maximiza-
tion increases expected yearly revenues by 6.51 %. This can
be explained by two factors. First, producing too much wind
power when day-ahead prices are negative is detrimental, but
time steps with such prices only occur 2.52 % of the time
in data from 2023. Then, forecasting prices allows adopt-
ing a risk-aware approach, i.e. bidding more when imbal-
ance penalty prices are expected to be close to day-ahead
prices (the risk is acceptable) and bidding less than the fore-
casted available power in the case of very high imbalance
prices. This is confirmed in Table 2, which shows the rev-
enue breakdown between positive revenues and imbalance
penalties. Total imbalance penalties are higher when operat-
ing for revenue maximization, but the significant increase in
positive revenues allows compensating for the penalties. Re-
garding supplied energy, maximizing production obviously
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Figure 4. Mean electricity prices with regard to (a) wind direction and (b) wind speed in 2023. (c) Mean normalized activated volumes of
reserve with regard to wind direction.

Figure 5. Wind rose at the location of Belgian offshore wind farms
for 2023 from ERA5 data (latitude: 51.5° N, longitude: 2.75° E).

leads to more wind power injected to the grid. The reduction
of supplied energy of 4.47 % when maximizing DAEM rev-
enues is very interesting because it could lead to lower load
constraints on wind turbines, thus extending their lifetime.
However, this aspect needs to be further investigated.

Supplying secondary upward reserve (operate the wind
farm on JERM) increases expected yearly revenues by
7.81 %, while the supplied energy is decreased by 7.66 %.
Indeed, bidding a given amount of power in the reserve ca-
pacity and energy markets does not mean that this power will
be entirely supplied. If the system negative imbalance is not
too severe, only a fraction of contracted reserves is actually
activated by the TSO. However, the wind farm operator still

earns revenues by making this power available to restore bal-
ance in the system. This is particularly profitable when day-
ahead prices are very low. It can be seen in Table 2 that while
positive revenues on DAEM are quite low when providing
reserve (earnings are “transferred” to the reserve markets),
imbalance penalties do not decrease significantly. This is in-
herent to our formulation because in the case of imbalance
(the available wind power is lower than the total power bid
on both DAEM and reserve markets), priority is given to the
reserve provision.

Sensitivity to the reserve limit Rmax

Currently, the maximum value per delivery point of re-
serve capacity bids established by Elia is 50 MW. More-
over, the static volume need of aFRR reserves for the Bel-
gian power system in 2023 was set at 117 MW. However, as
stated before, in future weather-dominated power systems,
the need for frequency regulation, including aFRR, will in-
crease. Therefore, the wind farm is operated considering for
two other values of Rmax: 117 MW (approximately 1/2 of
rated capacity in the case that the operator always wants
to keep some available wind power for other markets) and
221.4 MW (full farm capacity).

With Rmax = 117 MW, it can be observed in Table 1 that
for the base layout, expected yearly revenues increase by
15.15 % when the wind farm offers aFRR services, while
supplied energy drops by 14.6 %. Compared to the previous
case (Rmax = 50 MW), doubling the allowed maximum value
for reserve capacity bids leads to a revenue improvement
also multiplied by 2 (15.15 % against 7.81 % previously).
Regarding yearly supplied energy (on DAEM and activated
reserve), it decreases when Rmax is increased (≈ 664 GWh
against ≈ 718 GWh with Rmax = 50 MW). Indeed, allowing
for higher reserve bids enables wind farms to participate
more in frequency reserve services. But if reserve energy bids
are not entirely activated by the TSO, less energy is supplied,
while revenues are increased.
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Table 1. Expected yearly revenues and supplied energy in 2023 for the initial base layout of Northwind, operated for maximizing production
on DAEM (a, f), maximizing revenues on DAEM only (b, g), and maximizing revenues on JERM (c–e, h–j, with different values for maximum
reserve bids Rmax). Results are reported as µ± σ√

S
, where µ and σ relate to forecast uncertainty.

Base layout

Expected yearly revenues

(a) On DAEM only (operation for prod. max.) EUR 60.6808± 0.0079 million
(b) On DAEM only (operated for optimized revenues) EUR 64.6285± 0.0079 million +6.51 % w.r.t. (a)
(c) On JERM (operated with reserve, Rmax = 50 MW) EUR 69.6735± 0.0084 million +7.81 % w.r.t. (b), +14.82 % w.r.t. (a)

(d) On JERM (operated with reserve, Rmax = 117 MW) EUR 74.4216± 0.0093 million +15.15 % w.r.t. (b)
(e) On JERM (operated with reserve, Rmax = 221.4 MW) EUR 77.9445± 0.0106 million +20.60 % w.r.t. (b)

Expected energy supplied

(f) On DAEM only (operation for prod. max.) 813.48± 0.04 GWh
(g) On DAEM only (operated for optimized revenues) 777.14± 0.05 GWh −4.47 % w.r.t. (f)
(h) On JERM (operated with reserve, Rmax = 50 MW) 717.64± 0.05 GWh −7.66 % w.r.t. (g), −11.78 % w.r.t. (f)

(i) On JERM (operated with reserve, Rmax = 117 MW) 663.61± 0.05 GWh −14.61 % w.r.t. (g)
(j) On JERM (operated with reserve, Rmax = 221.4 MW) 626.44± 0.04 GWh −19.39 % w.r.t. (g)

AEPtheory 919.78 GWh

Table 2. Breakdown of expected yearly revenues in 2023 for the initial base layout of Northwind, operated for maximizing production on
DAEM (a), maximizing revenues on DAEM only (b), and maximizing revenues on JERM (c, with maximum reserve bids Rmax = 50 MW).

Positive revenues Imbalance penalties Reserve revenues Reserve penalties
on DAEM on DAEM

(a) On DAEM only (operation for
prod. max.)

EUR 75.7382 million EUR 15.0574 million / /

(b) On DAEM only (operated for
optimized revenues)

EUR 87.2550 million EUR 22.6264 million / /

(c) On JERM (operated with
reserve)

EUR 82.5963 million EUR 22.5231 million EUR 9.9439 million EUR 0.3435 million

With the full wind farm capacity (221.4 MW) as Rmax, ex-
pected yearly revenues on JERM in 2023 for the base layout
are even higher. However, even though Rmax is doubled com-
pared to the previous case, revenue increments are not mul-
tiplied by 2 this time. Indeed, the improvement is at 20.60 %
against 15.15 % when Rmax was set at 117 MW. This shows
a flattening of revenue augmentation, and wind farm opera-
tors might want to avoid allocating all available power to the
reserve market. Indeed, because of potential forecast errors,
there is a significant risk of bidding in only one market, and
operators could want to keep some available wind power for
other markets (or even a security margin to avoid penalties
when the contracted power cannot be entirely supplied).

4.2 Optimized layout for AEP maximization

We first optimize the layout with the objective function
widely used in the current literature, i.e. AEP maximization.
For the latter, wind speeds and wind directions from the 2023

historical data are used during the optimization process. SGD
optimizations are performed for different values of Monte
Carlo samples (K ·T ) and several initial conditions. Reported
results are those obtained with the best optimized layout out
of all simulations, i.e. the one leading to the highest AEP.
Again, expected revenues and energy supplied are computed
for the three modes of operation (maximizing production,
maximizing expected revenues on DAEM only, and maxi-
mizing expected revenues on JERM). Moreover, it is worth
reminding the reader that while the total energy supplied in-
dicates the actual electricity sold (or activated in the case of
reserve provision) and injected to the grid, AEP gives the the-
oretical energy that could be supplied by the wind farm given
the wind conditions, regardless of prices and errors in wind
power forecasts.

As can be seen in Table 3, the best optimized layout for
AEP leads to an increase in yearly revenues on JERM by
3.20 %, as well as 3.02 % more supplied energy. Indeed, a
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Table 3. Expected yearly revenues and supplied energy in 2023 for the base layout and the best layout optimized for AEP, operated for
maximizing production on DAEM (a, d), maximizing revenues on DAEM only (b, e), and maximizing revenues on JERM (c, f, with maximum
reserve bids Rmax = 50 MW). Results are reported as µ± σ√

S
, where µ and σ relate to forecast uncertainty.

Base Layout optimized for AEP

Expected yearly revenues

(a) On DAEM only (operation for prod. max.) [EUR . . . million] 60.6808± 0.0079 62.7210± 0.0076 (+3.36 % w.r.t. base)
(b) On DAEM only (operated for optimized revenues) [EUR . . . million] 64.6285± 0.0079 66.8217± 0.0078 (+3.39 % w.r.t. base)
(c) On JERM (operated with reserve) [EUR . . . million] 69.6735± 0.0084 71.9001± 0.0080 (+3.20 % w.r.t. base)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 813.48± 0.04 834.92± 0.04 (+2.64 % w.r.t. base)
(e) On DAEM only (operated for optimized revenues) [GWh] 777.14± 0.05 799.28± 0.05 (+2.85 % w.r.t. base)
(f) On JERM (operated with reserve) [GWh] 717.64± 0.04 739.30± 0.04 (+3.02 % w.r.t. base)

AEPtheory [GWh] 919.78 942.00 (+2.42 % w.r.t. base)

better placement of wind turbines avoids wake losses and
leads to improved electricity production in general. Consid-
ering that the average lifespan of an offshore wind farm is ap-
proximately 20 years (Topham and McMillan, 2017), a rev-
enue increased by EUR 2.23 million yr−1 leads to a signifi-
cant improvement in the wind farm profitability: more than
EUR 44 million over the farm lifetime. Therefore, an im-
provement in expected revenues on both DAEM and JERM
is firstly obtained through an improvement in AEP.

4.3 Optimized layout for revenue maximization on
day-ahead market only

To assess the impact of including market conditions (e.g.
electricity prices) in the layout optimization process, the ob-
jective function has been modified to maximize expected rev-
enues from the day-ahead market only (i.e. setting Rmax =

0 MW in Eq. 13). This is later referred to as the DAEM-
optimized case. Like before, SGD optimizations are per-
formed for different values of Monte Carlo samples (K · T )
and several initial conditions. Reported results are those ob-
tained with the best optimized layout out of all simulations,
i.e. the one leading to the highest expected revenues on
DAEM.

As can be seen in Table 4, the best layout optimized to
maximize expected revenues on DAEM leads to an increase
in yearly revenues on JERM by 0.13 % compared to the best
optimized layout for AEP, and the theoretical AEP moder-
ately decreases. The explanation for this slight increase in
expected revenues is that the objective function for AEP aims
at maximizing the power output of a wind farm regardless of
electricity prices. It usually avoids wake losses for the di-
rections of dominant wind. However, if low or even negative
prices are associated with those directions, then revenues will
not increase. Moreover, besides revenues, it is not beneficial
for the grid that wind farms produce a lot of electricity when
prices are quite low. Indeed, for power systems with a high

penetration of renewable energies, especially wind, low or
even negative prices may correspond to periods of overpro-
duction; i.e. generation exceeds consumption. In that case,
wind turbines might have to be shut down to curtail wind
energy and restore balance in the system. This spillage of
renewable energy is of course not desirable, and it is much
more relevant to optimize wind farm layouts so that they
produce more energy during times of low generation in the
system (usually associated with higher prices). This also ex-
plains why expected revenues increase despite a slight reduc-
tion in AEP. Therefore, an improvement in expected revenues
on both DAEM and JERM is secondly obtained through in-
clusion of electricity prices in the optimization process.

4.4 Optimized layout accounting for reserve
participation

WFLO is carried out with the objective of maximizing rev-
enues on JERM, i.e. accounting for participation in reserve
markets. SGD optimizations are performed for different val-
ues of Monte Carlo samples (K · T ) and several initial con-
ditions. Reported results are those obtained with the best op-
timized layout out of all simulations, i.e. the one leading to
the highest expected yearly revenues on JERM. To assess the
impact of including reserve provision in the layout optimiza-
tion process, the results are compared with the best layout
optimized on DAEM, obtained in the previous section.

As can be seen in Table 5, the best layout optimized to
maximize expected revenues on JERM leads to an increase
in yearly revenues on JERM by 0.13 % compared to the best
optimized layout on DAEM. We also observe a moderate in-
crease in expected energy supplied and AEP. The slight aug-
mentation in expected revenues could be explained by two
factors. On the one hand, better placement of wind turbines
to avoid wake losses leads to an improved AEP and electric-
ity production in general. On the other hand, the inclusion
of reserves in the objective function better reflects real-world
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Table 4. Expected yearly revenues and supplied energy in 2023 for the best layout optimized on DAEM, operated for maximizing production
on DAEM (a, d), maximizing revenues on DAEM only (b, e), and maximizing revenues on JERM (c, f, with maximum reserve bids Rmax =
50 MW). Results are reported as µ± σ√

S
, where µ and σ relate to forecast uncertainty.

Layout optimized Layout optimized
for AEP on DAEM

Expected yearly revenues

(a) On DAEM only (operation for prod. max.) [EUR . . . million] 62.7210± 0.0076 62.8081± 0.0079 (+0.14 % w.r.t. AEP-opt.)
(b) On DAEM only (operated for optimized revenues) [EUR . . . million] 66.8217± 0.0078 66.9163± 0.0081 (+0.14 % w.r.t. AEP-opt.)
(c) On JERM (operated with reserve) [EUR . . . million] 71.9001± 0.0080 71.9945± 0.0083 (+0.13 % w.r.t. AEP-opt.)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 834.92± 0.04 835.11± 0.04 (+0.02 % w.r.t. AEP-opt.)
(e) On DAEM only (operated for optimized revenues) [GWh] 799.28± 0.05 799.74± 0.05 (+0.06 % w.r.t. AEP-opt.)
(f) On JERM (operated with reserve) [GWh] 739.30± 0.04 739.74± 0.05 (+0.06 % w.r.t. AEP-opt.)

AEPtheory [GWh] 942.00 941.24 (−0.08 % w.r.t. AEP-opt.)

market conditions and ensures that layouts are evaluated un-
der more comprehensive profitability criteria (and not just
energy yield). Even though revenue differences could be con-
sidered small (∼ 0.1 %–0.2 %), they are economically mean-
ingful at scale. It should be noted that these numbers cannot
be directly generalized for other electricity pools, but since
most European electricity markets have a similar structure,
applying this methodology is also expected to result in higher
yearly revenues for layouts optimized for revenue maximiza-
tion with reserve participation. Therefore, a slight improve-
ment in expected revenues on both DAEM and JERM is
thirdly obtained through inclusion of more comprehensive
market conditions, i.e. provision of reserve, in the optimiza-
tion process.

Surprisingly, the best total yearly revenues on DAEM only
are obtained for the best layout optimized with reserve. One
reason for this is that during the optimization without re-
serve, the wind farm can only participate in one market (the
DAEM). If day-ahead prices are very low or negative, the
wind farm will not bid on the DAEM, resulting in no rev-
enue, thus leading to a zero gradient and the solution space
being less explored. This means that even if reserve market
rules change dramatically, causing the wind farm to be un-
able to participate in the reserve market, operating the op-
timized layout with reserve on DAEM only would still be
profitable.

For every obtained layout optimized on DAEM (no re-
serve) and on JERM (reserve participation in the objective
function), expected revenues on DAEM only (i.e. wind farm
operated without reserve) and on JERM are computed.

Figure 6 shows the expected yearly revenues on JERM as a
function of expected yearly revenues on DAEM only for the
layouts optimized for revenue maximization with and with-
out reserve participation. The scatter points show that, over
several runs of the training algorithm, the maximum profits
can be gained by the JERM-optimized layout, and the out-

Figure 6. Expected yearly revenues on JERM plotted versus ex-
pected yearly revenues on DAEM only (wind farm operated without
reserve). Each point corresponds to one optimized layout, with the
black circles representing layouts optimized with reserve, and the
grey squares are for layouts optimized without reserve.

comes also reveal that these optimized layouts for JERM are
better on average. The whole distribution of profits (over ex-
periments) is improved, not only extreme points. While the
stochastic nature of the layout optimization introduces vari-
ability in the results, JERM-optimized layouts are at least as
effective as DAEM-optimized layouts and even offer slight
improvements.

The best optimized layout on JERM is plotted in Fig. 7
and compared to the current layout of Northwind. Turbines
that were on the farm boundaries in the base layout kept their
position on the outer limits (even though turbines had ran-
dom positions in the starting initial conditions of the opti-
mization). However, inner turbine positions have been signif-
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Table 5. Expected yearly revenues and supplied energy in 2023 for the best layout optimized on JERM, operated for maximizing production
on DAEM (a, d), maximizing revenues on DAEM only (b, e), and maximizing revenues on JERM (c, f, with maximum reserve bids Rmax =
50 MW). Results are reported as µ± σ√

S
, where µ and σ relate to forecast uncertainty.

Layout optimized Layout optimized
on DAEM on JERM

Expected yearly revenues

(a) On DAEM only (operation for prod. max.) [EUR . . . million] 62.8081± 0.0079 62.9255± 0.0075 (+0.19 % w.r.t. DAEM-opt.)
(b) On DAEM only (operated for optimized revenues) [EUR . . . million] 66.9163± 0.0081 67.0101± 0.0076 (+0.14 % w.r.t. DAEM-opt.)
(c) On JERM (operated with reserve) [EUR . . . million] 71.9945± 0.0083 72.0909± 0.0077 (+0.13 % w.r.t. DAEM-opt.)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 835.11± 0.04 836.40± 0.04 (+0.16 % w.r.t. DAEM-opt.)
(e) On DAEM only (operated for optimized revenues) [GWh] 799.74± 0.05 800.73± 0.04 (+0.12 % w.r.t. DAEM-opt.)
(f) On JERM (operated with reserve) [GWh] 739.74± 0.05 740.84± 0.04 (+0.15 % w.r.t. DAEM-opt.)

AEPtheory [GWh] 941.24 942.71 (+0.16 % w.r.t. DAEM-opt.)

icantly modified compared to the base layout. Indeed, while
the structure of rows has been approximately maintained, it
can be observed that more turbines are placed together in a
row, while consecutive rows are more distant from one an-
other and are not parallel (which was the case for all rows in
the base layout). A few turbines have a more irregular posi-
tion (in between rows).

Another interesting characteristic to compare between the
optimized and base layouts is the power rose. It shows the
power output of the wind farm with regard to wind direction
for a given wind speed. In Fig. 8, the power is normalized by
the wind farm rated capacity (for Northwind, 221.4 MW). It
allows identifying the wind directions leading to higher wake
losses.

The power rose in Fig. 8a shows that the base layout ex-
hibits many power drops, with wake losses being the most
severe for directions of 135 and 315° (0° corresponds to wind
blowing from the north, then clockwise counting). This pat-
tern is inherent to regular layouts, where turbines are placed
in rows equidistant from each other and wake losses are at
their maximum when most turbines are aligned with the wind
direction. In Fig. 8b, wake losses are still prevalent for wind
directions of 135 and 315°, but they are less severe, and
power drops are smoothed for other directions. Indeed, while
still located in rows, turbines from different rows are more
distant, allowing wind speed to recover between consecutive
rows. However, it should be noted that a more irregular tur-
bine placement can lead to higher installation costs and fa-
tigue loading (Sickler et al., 2023).

4.4.1 Comparison with optimized layout for AEP
maximization

We also compare our novel formulation for WFLO with
the objective function widely used in the current liter-
ature, i.e. AEP maximization. The yearly expected rev-

enues and AEP results are summarized in the box plots
in Fig. 9, where optimizations were run for different val-
ues of K · T and five different initial random conditions
for each. We can see that yearly expected revenues are
higher for layouts optimized with our new objective func-
tion. The mean yearly expected revenue for JERM op-
timizations is EUR 71.8956± 0.105 million, while it is
EUR 71.7638± 0.106 million for AEP optimizations. The
mean absolute difference is EUR 0.1318 million, i.e. 0.18 %,
thus with increased revenues of EUR 2.6 million over the
farm lifetime. However, for AEP, no strong claim can be
made regarding the superiority of one of the optimiza-
tions. Indeed, the difference in AEP, approximately equal to
0.05 %, is lower than the uncertainties in energy metrics.

Figure 10 shows the expected yearly revenues on JERM
as a function of AEP for the layouts optimized for revenue
maximization with reserve and AEP maximization. The up-
permost black circle on the right represents the optimized
layout giving the highest revenues on JERM but also the
highest AEP. It should be noted that this layout corresponds
to the best layout optimized for revenue maximization with
reserve, for which results are given in Table 5. It is quite sur-
prising that the best AEP is not obtained for a layout opti-
mized for AEP maximization. This aspect should be further
investigated in future work.

Another interesting observation is that yearly revenues on
JERM are generally higher for layouts optimized for revenue
maximization with reserve: if a diagonal is drawn in the scat-
terplot, all triangles are located below that line compared to
the circles. And if a vertical line is plotted for a given AEP,
black circles are always located above the triangles. In other
words, for the same level of AEP, the layouts optimized for
reserve lead to higher revenues on JERM than the ones ob-
tained for AEP maximization.
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Figure 7. (a) Base layout of Northwind offshore wind farm. (b) Best layout optimized for revenue maximization with participation in the
reserve market.

Figure 8. Power roses of Northwind (a) base layout. (b) Layout optimized for revenue maximization in JERM.

4.5 Generalization to unseen future data

In Sect. 4.2–4.4, historical data from 2023 were used dur-
ing the SGD optimizations, as well as for the computation of
expected yearly revenues for the optimized layouts. In this
section, revenues and supplied energy will be assessed with
historical data from 2024, i.e. data unseen during the opti-
mization process. Indeed, it is valuable to have optimized
layouts that also yield improved revenues for future years.

First, wind data and electricity prices from January to July
2024 are analysed. The wind rose of 2024, plotted in Fig. 12,
shows patterns comparable with 2023: dominant wind direc-
tions are mostly south-westerly. More wind blowing from the
north-east is visible in Fig. 5, which is not the case here.
It can be seen in Fig. 11a that day-ahead prices, similar to
2023, have lower values for the direction of dominant winds,
although this is less noticeable than in 2023. Moreover, day-

ahead prices in 2024 have overall lower mean values than in
2023. Reserve capacity prices do not vary much with wind
direction, while activation prices show more variability but
no significant drop for the directions of dominant wind. The
overall mean values are of the same order of magnitude as for
the previous year, and we again observe a sharp increase in
reserve activation prices between 20 and 25 ms−1. However,
this peak is less pronounced, with a mean peak value under
200 EURMWh−1, while it reached almost 250 EURMWh−1

in 2023. This could be explained by fewer sudden-high-wind
events (e.g. storms), a smoother farm cut-out, or better an-
ticipation by the TSO. Normalized activation volumes ex-
hibit lower values for directions of dominant wind. There-
fore, while the wind, prices, and activated reserve volume of
2024 share some similarities with data from 2023, they also
exhibit noticeable differences. They are thus relevant to test
the validity of the optimized layouts on unseen data. The case
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Figure 9. Optimization results associated with AEP optimizations and JERM optimizations. The yearly expected revenues (a) and AEP (b)
are plotted as box and whisker plots.

Figure 10. Expected yearly revenues on JERM plotted versus AEP. Each point corresponds to one optimized layout, with the black circles
representing layouts optimized with reserve, and the grey triangles are for layouts optimized for AEP maximization.

presented here uses Rmax = 50 MW when the wind farm is
operated with reserve.

For the base layout, it can be observed in Table 6 that re-
sults show the same trends already noticed for 2023: rev-
enues on DAEM only are increased when energy bids are
made to maximize revenues and not power production. Par-
ticipating in reserve leads to yearly revenues improved by
20.96 %, while it was only 7.82 % for 2023. A reason for
this better improvement is the overall lower values of day-
ahead prices in 2024, thus giving more opportunities to make
revenues on reserve markets. Indeed, allowing participation

in reserve markets increases revenues significantly when the
day-ahead market is less profitable.

The best layout optimized for AEP is the same as the one
presented in Table 3, i.e. optimized with 2023 data. When op-
erated using 2024 data, the optimized layout leads to higher
total revenues and supplied energy, of the same order of mag-
nitude as for 2023. These results show that the optimized lay-
out obtained with data from 2023 is still relevant for 2024,
even though both years showed dissimilarities in wind distri-
bution. Therefore, the best optimized layout for AEP shows
robustness to wind conditions.
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Figure 11. Mean electricity prices with regard to (a) wind direction and (b) wind speed in 2024. (c) Mean normalized activated volumes of
reserve with regard to wind direction.

Figure 12. Wind rose at the location of Belgian offshore wind farms
for 2024 from ERA5 data (latitude: 51.5° N, longitude: 2.75° E).

In Table 7, the best layouts are the same as the ones pre-
sented in Table 5, i.e. optimized with 2023 data. When op-
erated using 2024 data, the optimized layout on JERM leads
to slightly higher total revenues and supplied energy. These
results show that the JERM-optimized layout obtained with
data from 2023 is still relevant for 2024, even though both
years have dissimilarities in wind distribution and prices.
Therefore, the best optimized layout on JERM shows robust-
ness to market conditions.

Finally, if we again compare our methodology with the
AEP maximization formulation, we observe the same pat-
terns as for 2023. Indeed, when plotting expected yearly rev-
enues on JERM as a function of AEP, for layouts optimized

Figure 13. Expected yearly revenues on JERM in 2024 plotted
versus AEP. Each point corresponds to one layout optimized us-
ing 2023 data, with the black circles representing layouts optimized
with reserve, and the grey triangles are for layouts optimized for
AEP maximization.

for revenues on JERM and for AEP, we still see in Fig. 13
that the grey triangles representing layouts for AEP maxi-
mization are generally below the black circles.

5 Conclusions

In the coming years, offshore wind farms are expected to
have a significant role in restoring frequency balance through
the provision of reserve. If reserve markets grow and the con-
tribution of wind farms to reserve provision becomes impor-
tant, then future farms should account for those flexibility re-
quirements in their design procedure, even though the limited
size of the reserve market might not allow every wind farm to
fully participate. In this paper, a new methodology for WFLO
is developed to account for future offshore wind farms partic-
ipating in secondary upward reserve markets. The objective
function aims at maximizing revenues from both day-ahead
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Table 6. Expected yearly revenues and supplied energy in 2024 for the base and best layout optimized for AEP with 2023 data, both
operated for maximizing production on DAEM (a, d), maximizing revenues on DAEM only (b, e), and maximizing revenues on JERM (c, f,
with maximum reserve bids Rmax = 50 MW). Results are reported as µ± σ√

S
, where µ and σ relate to forecast uncertainty.

Base Layout optimized for AEP

Expected yearly revenues

(a) On DAEM only (operation for prod. max.) [EUR . . . million] 18.8916± 0.0053 19.5544± 0.0047 (+3.51 % w.r.t. base)
(b) On DAEM only (operated for optimized revenues) [EUR . . . million] 21.3610± 0.0044 22.0442± 0.0041 (+3.20 % w.r.t. base)
(c) On JERM (operated with reserve) [EUR . . . million] 25.8388± 0.0046 26.5736± 0.0043 (+2.84 % w.r.t. base)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 446.21± 0.03 456.88± 0.03 (+2.39 % w.r.t. base)
(e) On DAEM only (operated for optimized revenues) [GWh] 395.40± 0.03 405.71± 0.03 (+2.61 % w.r.t. base)
(f) On JERM (operated with reserve) [GWh] 347.78± 0.03 357.80± 0.03 (+2.88 % w.r.t. base)

AEPtheory [GWh] 507.85 517.89 (+1.98 % w.r.t. base)

Table 7. Expected yearly revenues and supplied energy in 2024 for the base and best layout optimized for DAEM and JERM with 2023 data,
both operated for maximizing production on DAEM (a, d), maximizing revenues on DAEM only (b, e), and maximizing revenues on JERM
(c, f, with maximum reserve bids Rmax = 50 MW). Results are reported as µ± σ√

S
, where µ and σ relate to forecast uncertainty.

Layout optimized Layout optimized
on DAEM on JERM

Expected yearly revenues

(a) On DAEM only (operation for prod. max.) [EUR . . . million] 19.6570± 0.0051 19.6934± 0.0042 (+0.19 % w.r.t. DAEM-opt.)
(b) On DAEM only (operated for optimized revenues) [EUR . . . million] 22.1287± 0.0042 22.1754± 0.0041 (+0.21 % w.r.t. DAEM-opt.)
(c) On JERM (operated with reserve) [EUR . . . million] 26.6592± 0.0045 26.7110± 0.0044 (+0.19 % w.r.t. DAEM-opt.)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 458.35± 0.03 458.86± 0.03 (+0.11 % w.r.t. DAEM-opt.)
(e) On DAEM only (operated for optimized revenues) [GWh] 407.16± 0.03 407.90± 0.03 (+0.18 % w.r.t. DAEM-opt.)
(f) On JERM (operated with reserve) [GWh] 359.27± 0.03 359.89± 0.03 (+0.17 % w.r.t. DAEM-opt.)

AEPtheory [GWh] 519.83 520.15 (+0.06 % w.r.t. DAEM-opt.)

and reserve markets. It uses stochastic gradient descent for
the optimization and probabilistic forecasts of wind power
and electricity prices. An inner optimization problem pro-
vides the total power contracted on the JERM and the alloca-
tion of power to reserve procurement purposes.

When applied to a real-life Belgian test case, results show
that yearly revenues are expected to increase in a significant
way when accounting for participation in reserve markets,
while exhibiting a lower supplied energy. This revenue aug-
mentation is amplified when the maximum value for reserve
bids is larger. The layout was then optimized for different
objectives. A first increase in expected revenues and AEP is
obtained by optimizing the layout for AEP, i.e. the objec-
tive function widely used in the literature. Another increase
was observed when maximizing expected revenues on the
day-ahead market instead of AEP. Indeed, this allows includ-
ing electricity prices in the optimization process. Thirdly, a
slight augmentation is seen when including participation in
reserve markets in the objective function. Indeed, this al-

lows better reflecting real-world market conditions and en-
sures that layouts are evaluated under more comprehensive
profitability criteria. Although revenue differences are small
(∼ 0.1 %–0.3 %), JERM-optimized layouts consistently per-
form at least as well as, and occasionally better than, DAEM-
optimized ones. Finally, the optimized layouts also yield
better revenues when computed using unseen data. Besides
higher revenues, it is critical that wind farms are designed to
produce more energy when prices are higher, usually corre-
sponding to periods of low electricity production. Maximiz-
ing production when prices are low or even negative, gener-
ally associated with a surplus of generation, leads to spillage
of renewable energy.

The perspectives of this work are twofold. First, a better
modelling of forecast errors could take into account cross-
correlation between wind, price, and activated reserve fore-
casts (though this would not change the WFLO formulation).
Secondly, the impact on blade loads could be relevant to as-
sess the costs versus benefits of providing reserve services.
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Indeed, wind farms participating in the reserve market should
have less fatigue loading due to a reduced activity (less en-
ergy supplied), which would increase the farm lifetime and
reduce the operation and maintenance costs of the wind farm
components.
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