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Abstract. This study evaluates the impact of an enhanced sampling rate on turbulence measurements using the
Vaisala WindCube v2.1 lidar profiler. A prototype configuration, sampling 4 times faster than the commercial
setup, was compared to the commercial WindCube v2.1, with reference measurements provided by a 2D sonic
anemometer mounted on a measurement mast. Over the 47 d experiment, the prototype configuration showed
performance similar to the commercial setup for key performance indicators (KPIs) like slope and the coefficient
of determination of mean wind speed compared to reference measurements, with both configurations meeting
the “best-practice” threshold. However, for mean wind speed differences, the commercial configuration met the
best-practice level, while the prototype met the “minimum-acceptance” criterion. Additionally, the data avail-
ability of the prototype configuration was 0.5 % lower than that of the commercial configuration. Moreover, the
increased sampling rate of the prototype lidar resulted in higher mean variance in instrumental noise compared
to that of the commercial configuration. Despite this limitation, the mean noise-corrected along-wind variance
measured by the prototype lidar was approximately 7 % higher than that of the commercial lidar. This effect was
especially evident at higher wind speeds. Error metrics for the noise-corrected along-wind standard deviation in
the prototype lidar were approximately 25 % lower than those of the commercial configuration. However, the
observed improvements to the prototype configuration in measuring turbulence fell short of expectations due to
inherent limitations in the measurement process within the probe, where spatial and temporal filtering effects
constrain the detection of turbulence at certain scales.

1 Introduction

Accurate turbulence data enable better understanding and
control of flow patterns, optimizing the design, operation,
and maintenance of wind energy systems. Turbulence plays
a critical role in the wind energy sector because it directly
influences the unsteady aerodynamic loads experienced by
turbines (e.g., Frandsen, 2007; Mücke et al., 2011; Dimitrov
et al., 2017). These fluctuating loads affect the structural in-
tegrity and operational stability of wind turbine components.
Therefore, precise turbulence measurement is essential for
enhancing the efficiency and safety of turbine operations,
minimizing wear and tear on vital components, and extend-

ing the lifespan of these costly assets. Additionally, improved
turbulence characterization can facilitate more precise wind
resource assessments, aiding in site selection and the overall
planning of wind energy projects (e.g., Yang et al., 2021).

In the wind energy sector, the utilization of wind lidar
profiler technology has gained significant traction in recent
years, complementing the traditional meteorological mast
equipped with in situ sensors like cup or sonic anemometers
as the standard means of measuring key mean wind proper-
ties, such as speed and direction. Wind lidar profilers present
compelling advantages, including the potential for cost re-
duction compared to meteorological masts and the capac-
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Figure 1. A schematic illustration of inter- and intra-beam effects in the WindCube v2.1 lidar profiler measurement process. The blue
cylinder represents the probe volume, corresponding to the dimensions of the commercial lidar configuration. The positions of the five beams
are labeled bi , where i ranges from 1 to 5. The inclination of the diverging beams (from beam 1 to beam 4) with respect to the vertical z axis
is φ = 28°. Beam 5 is aligned with the z axis, while beams 1 and 3 are aligned with the x axis, and beams 2 and 4 are aligned with the y axis
in the coordinate system of the instrument, as stipulated by the manufacturer. The black dots indicate the centers of the probe measurement
volumes.

ity to measure at similar or even greater heights above the
ground (e.g., Gottschall et al., 2012).

Wind lidar profilers can be categorized according to their
emission waveforms, i.e., pulsed or continuous, and measur-
ing technique, i.e., Doppler beam swinging (DBS) (Strauch
et al., 1984) or velocity-azimuth display (VAD) (Browning
and Wexler, 1968). The measurement methods used by wind
lidar profilers are fundamentally different from those used
by cup or sonic anemometers. Anemometers estimate wind
speed over a small volume of just a few cubic centime-
ters, whereas pulsed lidar profilers provide an average over
a cylindrical probe several dozen meters long with a cross-
sectional diameter of less than 1 cm (Fig. 1).

However, wind lidar profilers have yet to garner
widespread acceptance for turbulence measurement, which
remains a focal point of ongoing research. In contrast to
turbulence data derived from reference instruments such as
sonic anemometers, turbulence data from lidar profiler mea-
surements suffer from systematic errors induced by (i) the
inter-beam effect, also known as the cross-contamination ef-
fect; (ii) the intra-beam effect, i.e., the space–time averaging
effect within the probe volume (Fig. 1); and (iii) instrumental
noise.

The inter-beam effect can result in either underestimation
or overestimation of turbulence metrics, which arise from

the modulation of energy associated with eddies of specific
wavenumbers (Kelberlau and Mann, 2020). This effect is par-
ticularly relevant in the context of the assumption of instanta-
neous homogeneity, which underlies multi-beam lidar mea-
surement techniques. Under this assumption, the turbulent
field is considered spatially homogeneous across the beams
at each instant in time, a condition that, if violated, can lead
to inter-beam contamination. Any phase difference between
the horizontal and vertical components of an eddy signif-
icantly impacts the filtering of flow structures, potentially
leading to amplification or attenuation of their measured tur-
bulent energy (Theriault, 1986; Gargett et al., 2009).

The intra-beam effect refers to a probe time-averaging
phenomenon occurring within the lidar probe, leading to an
underestimation of turbulence metrics. It arises from two
anisotropic filtering processes: (1) spatial filtering due to av-
eraging over the probe volume and (2) temporal filtering
caused by averaging over the beam’s pulse accumulation
time,1t , at a given measurement position. These two effects
give rise to a transfer function, H , applied by the instrument
to the signal measured within the probe. The transfer func-
tion includes a part due to time-averaging (the sinc function)
and a part due to space-averaging (the Gaussian function),
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Here, k is the turbulent structure wave vector; b is the beam
pointing vector; U is the vector associated with the wind di-
rection of magnitude U ; and σl and σr represent the Gaus-
sian weighting factors in the along-beam and cross-beam di-
rections, respectively. A detailed mathematical derivation of
Eq. (1) is provided in the Supplement.

From Eq. (1), it follows that wind field structures with
wavelengths smaller than σl in the along-beam direction are
attenuated, as are those with wavelengths smaller than σr in
the cross-beam direction. However, in the latter case, these
structures are so small that the filtering effect becomes negli-
gible, as the cross-section of the probe is approximately 1 cm
(Fig. 1). Ultimately, assuming the Taylor frozen-turbulence
hypothesis, the wave vector domain that passes through the
filter is defined by the intersection of two slices: one per-
pendicular to the direction of U , which preserves structures
longer than π1tU , and another perpendicular to the direc-
tion of b, which retains structures longer than σl . All other
structures are filtered out.

Pulsed lidar profilers require several seconds to com-
plete a full scanning cycle, resulting in a low sampling rate
that causes discrepancies between turbulence measurements
taken by anemometers and those by lidar profilers (e.g., Peña
et al., 2009). While the sampling rate governs how quickly
the lidar progresses through a scan cycle, it is directly in-
fluenced by pulse accumulation time. Consequently, even if
the sampling rate is increased, pulse accumulation can still
limit the ability of the lidar to resolve small-scale turbulent
structures. Since turbulent motion scales vary from millisec-
onds to hours and from centimeters to kilometers (e.g., Stull,
2000), it is crucial to account for both temporal and spatial
filtering effects when assessing lidar-based turbulence mea-
surements.

The concept of measuring turbulence using remote sens-
ing instruments has gradually evolved since the early works
in radar meteorology by Lhermitte (1962) and Browning
and Wexler (1968). Lhermitte (1969) was the first to pro-
pose a method for inferring turbulence by analyzing the vari-
ance of radial velocity measurements through VAD scanning.
Following this, Wilson (1970) conducted pioneering exper-
iments using a pulsed Doppler radar to detect turbulence
within the convective boundary layer (0.1–1.3 km). However,
these early measurements were limited to turbulence scales
larger than the pulse volume and smaller than the scanning
circle, and no validation against reference instruments was
performed, which calls their reliability into question.

Kropfli (1986) expanded Wilson’s approach to capture tur-
bulence scales larger than the scanning circle by integrating
data from multiple scans. Although initially developed for

Doppler radar, these methods were later adapted for Doppler
lidar. Eberhard et al. (1989) were the first to apply Wil-
son’s and Kropfli’s methods using lidar, and Gal-Chen et al.
(1992) further refined the technique with a different scan-
ning configuration. Despite these advancements, the signifi-
cant probe length (around 100 m) limited studies to the con-
vective boundary layer due to considerable probe volume
averaging, especially near the ground. Frehlich (1994) and
Frehlich et al. (1994) demonstrated the averaging effect of
the measurement of the structure function, showing that this
effect becomes more pronounced at smaller separation dis-
tances. To address this limitation, research shifted toward un-
derstanding and mitigating probe volume averaging effects.
Smalikho et al. (2005) provided explicit formulae to account
for the small-scale filtering effect of the finite probe volume
in continuous-wave lidar, proposing three different methods
for a staring lidar using (1) the width of the Doppler spec-
trum, (2) the velocity structure function, and (3) the 1D ve-
locity spectrum. The expression for the structure function
was derived under the assumption of local isotropy in the
inertial subrange. Kristensen et al. (2011) later re-derived
this expression, assuming a Lorentzian probe volume weight-
ing function. However, averaging effects continue to pose
challenges for turbulence measurements in the surface layer,
where wind turbines operate. These effects lead to an under-
estimation of the variance derived from wind lidar compared
to reference turbulence measurements, as demonstrated in
Mann et al. (e.g., 2009) or Sjöholm et al. (e.g., 2009).

This paper explores advancements in the Vaisala Wind-
Cube v2.1 lidar profiler, focusing on a key modification: in-
creasing the sampling rate by reducing the pulse accumu-
lation time. This enhancement is assessed for its impact on
measuring mean wind speed, data availability, and along-
wind variance and its square root, i.e., the standard devia-
tion. The latter is particularly important, as it is used in the
wind power industry to compute turbulence intensity (TI),
a critical metric for turbine load assessment, site suitability,
and energy yield predictions. Additionally, the influence of
instrumental noise is analyzed to confirm that the potential
improvements in turbulence estimates with the higher sam-
pling rate are not simply a result of increased noise.

The paper begins with a detailed overview of the data and
methods, including the prototype configuration of the Wind-
Cube v2.1 and the field measurement setup (Sect. 2). The
study compares the prototype configuration to the commer-
cial WindCube v2.1 and to a sonic anemometer installed on
a meteorological mast, which serves as the reference mea-
surement. The methodology section then focuses on veloc-
ity spectra analysis, instrumental noise evaluation, and vari-
ance computation of instrument coordinates. Additionally,
key performance indicators and error statistics used for val-
idation are outlined. The results section presents findings on
mean wind speed, data availability, standard deviation, vari-
ance, and instrumental noise contributions (Sect. 3). This
is followed by a discussion of the implications, addressing
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Figure 2. Top view of a WindCube v2.1 lidar showing the posi-
tions of its five beams. The x axis is oriented from beam 3 towards
beam 1, the y axis extends from beam 4 towards beam 2, and the
vertical z axis points upward along beam 5. The arrow indicates
north. For the present study, the primary x axis of the lidars was
oriented at −62° relative to north.

both the advantages and challenges of a higher sampling rate
(Sect. 4). The paper concludes with key takeaways on how
the increased sampling rate enhances turbulence detection,
while considering measurement limitations and filtering ef-
fects (Sect. 5).

2 Data and methods

2.1 Prototype configuration with increased sampling
rate

The WindCube v2.1 lidar is designed for general atmospheric
measurements, such as mean wind speed and direction, re-
quiring a careful balance between the temporal resolution,
spatial resolution, and carrier-to-noise ratio (CNR). Its de-
fault sampling rate is optimized to ensure high data qual-
ity and availability across varying altitudes and atmospheric
conditions while maintaining system efficiency and manage-
able data processing.

The WindCube v2.1 employs the Doppler beam swing-
ing (DBS) technique to measure wind speed. This method
utilizes an optical switch that sequentially directs the lidar
beam toward four directions (0, 90, 180, and 270° relative to
the reference x axis), each inclined at φ = 28° from the ver-
tical. A fifth beam is directed vertically upwards, resulting in
wind measurements at five distinct positions (Figs. 1 and 2).

In its standard commercial configuration, the WindCube
lidar collects data at each position for approximately 1t =
0.8 s before switching to the next. Including transition times,
a complete DBS scan is performed in 4 s, yielding a line-of-
sight (LOS) velocity sampling rate of 0.25 Hz (Table 1). This
sampling rate is well-suited for capturing turbulent structures

Table 1. LOS velocity measurement parameters for the commercial
and prototype WindCube v2.1 configurations.

Configuration LOS Accumulation LOS Probe
sampling time samples length

rate (s) per (m)
(Hz) 30 min

Commercial 0.25 0.8 450 23
Prototype 1.00 0.2 1800 23

larger than 100 m. However, wind turbine components expe-
rience loads from turbulence across a wide range of scales.
Increasing the sampling rate is crucial for broadening the ve-
locity spectrum captured by the lidar, potentially enabling
the detection of extra turbulent energy that influences turbine
performance.

Theoretically, a higher sampling rate improves temporal
resolution and extends the resolved turbulence frequency
range. However, for wind lidar profiler technology, this en-
hancement comes with trade-offs. The duty cycle, which rep-
resents the proportion of time the lidar transmits pulses, de-
creases as the sampling rate increases, potentially reducing
signal strength. Moreover, increasing the sampling rate re-
quires a reduction in accumulation time, resulting in fewer
pulses per sample and increasing noise. The commercial
WindCube v2.1 configuration balances these factors to maxi-
mize data reliability. It integrates a high number of pulses per
measurement to enhance signal quality, making it well-suited
for general wind resource assessment. However, its probe
length of approximately Lprobe = 23 m (Fig. 1, Table 1) lim-
its its ability to resolve small eddies compared to point sen-
sors like sonic anemometers.

In response to the demand for capturing additional turbu-
lent energy, we developed a modified version of the Wind-
Cube v2.1 that operates 4 times faster, achieving a LOS ve-
locity sampling rate of 1 Hz. This modification was achieved
by reducing the accumulation time for data collection from
each beam in conjunction with a reduction in the number of
transmitted pulses. The factor of 4 was chosen as a com-
promise between increasing temporal resolution and main-
taining an acceptable CNR and data availability. This choice
is intended to keep wind measurements comparable to those
from the commercial configuration, while enabling the cap-
ture of additional turbulent energy. The actual impact on
measurement performance will be assessed in the study.

2.2 Field measurement

The field measurement campaign was conducted by Det
Norske Veritas (DNV) at the lidar validation test site in
Janneby, Germany (Fig. 3). The site’s flat terrain ensures
orography-free flow, making it ideal for lidar verification tri-
als. It offers good exposure to largely undisturbed wind con-
ditions from most directions. Situated just a few meters above
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Figure 3. (a) Test site location at Janneby, Germany. Black arrows indicate the beam orientations for the commercial and prototype config-
urations. The x and y axes of the instrument coordinate system (see Fig. 2) are marked with black arrows. (b) Configuration of the meteo-
rological mast, showing the position of the sonic anemometer. NW and SE denote the northwest and southeast directions. The schematic in
panel (b) also provides a bird’s-eye view of the meteorological mast and test site layout, including the lidar test pads.

mean sea level, the site features low surface roughness due to
its predominantly agricultural land use (Fig. 3a). Two wind
turbines (WT N100 and WT N117; Fig. 3a) are located near
the meteorological mast. Their wake-affected wind sectors
are shown in blue in Fig. 4 and lie outside the sectors se-
lected for turbulence analysis (gray areas in Fig. 4, Sect. 2.5).
The closest turbine is 210 m from the mast. A few small
human-made structures (e.g., houses, sheds), all under 15 m
in height, are situated about 500 m southwest of the mast.

The meteorological mast is a 100 m, 3-fold guyed lattice
tower with a constant face width of 0.4 m. It is equipped with
six MEASNET-calibrated Thies First Class Advanced cup
anemometers (no. 4.3352) and a Thies 2D sonic anemometer
(no. 4.3830). However, only the Thies 2D sonic anemome-
ter is used in this study to provide reference measurements
of mean wind speed and turbulence, as the cup anemometer
data are not available. The mounting arrangements are con-
sistent with the currently valid International Electrotechnical
Commission (IEC) and International Energy Agency (IEA)
recommendations for the use of anemometry at meteorologi-
cal masts. As shown in Fig. 3b, the sonic anemometer points
towards 150° from true north and is mounted at 97 m above
ground, which corresponds to the average hub height of mod-

ern land-based wind turbines. The sonic anemometer was set
to record continuous horizontal wind speed and direction at
a sampling rate of 4 Hz. Potential wake effects from the me-
teorological mast structure were considered in the analysis
of the sonic anemometer data. The wind directions associ-
ated with flow disturbances caused by the mast itself overlap
with the wake sector of wind turbine WT N117, which was
excluded from the analysis.

Adjacent to the measurement mast, both the commercial
lidar configuration and a prototype version with an enhanced
sampling rate were installed 3 and 13 m apart the mast, re-
spectively. Both lidars were aligned such that beams 1 and 3,
which correspond to the x axis (Fig. 2), were oriented at
−62° from true north (Fig. 3). According to the manufac-
turer’s recommendation, the x axis is the primary axis and
should be oriented relative to north. Beams 2 and 4 are fixed
along the y axis. One of the measurement heights of both li-
dars was set to 97 m above ground to coincide with the height
of the sonic anemometer deployment on the mast.

The field measurement campaign was conducted over two
periods: from 12 to 25 November 2021 and from 7 Decem-
ber 2021 to 10 January 2022. These two measurement pe-
riods were combined to form a 47 d dataset. To facilitate a

https://doi.org/10.5194/wes-10-1869-2025 Wind Energ. Sci., 10, 1869–1885, 2025



1874 M. Thiébaut et al.: Evaluating the enhanced sampling rate for turbulence measurement with a wind lidar profiler

Figure 4. Wind rose showing wind data recorded over 47 d by the
sonic anemometer at 97 m a.g.l. (meters above ground level). Gray-
shaded areas indicate the wind sectors selected for the turbulence
analysis in this study, corresponding to events when the wind was
aligned (±5°) with either beam pair 1–3 (aligned with the x axis)
or beam pair 2–4 (aligned with the y axis), as numbered in circles.
Blue-shaded areas indicate wind sectors contaminated by the nearby
wind turbines WT N100 and WT N117 (Fig. 3a).

comparison of turbulence measurements, the sonic-derived
wind dataset was resampled to match the sampling rate of
the LOS velocities measured by the prototype configura-
tion. This ensures that similar turbulence timescales are cap-
tured when calculating and comparing turbulence estimates.
Therefore, the sonic anemometer measurements were resam-
pled at 1 Hz.

The 47 d dataset was segmented into 2256 subsets, each
comprising 30 min of data. For each subset, the commercial
lidar provided 450 measurement points, while the prototype
lidar provided 1800 points, corresponding to their respective
sampling rates of 0.25 and 1 Hz (see Table 1). The selection
of a 30 min window rather than the standard 10 min interval
commonly used in the wind energy industry was guided by
the aim of reducing random errors in turbulence measure-
ments, following the recommendations of Lenschow et al.
(1994).

2.3 Velocity spectra

The power spectral density of the velocity, i.e., the velocity
spectra, provides valuable information about the distribution
of turbulent kinetic energy across different scales of motion

within the wind flow. This understanding helps in character-
izing turbulence and its effects on wind turbine performance
and structural loads.

Velocity spectra were computed using Welch’s method
(Welch, 1967). This method computes an estimate of the
spectrum by dividing the data into overlapping segments,
computing a modified periodogram for each segment, and
averaging the periodograms. The Hann window with 50 %
overlap was applied to each segment to reduce spectral leak-
age and improve frequency resolution. The 50 % overlap is a
reasonable trade off between accurately estimating the signal
power, while not over-counting any of the data.

Fitting turbulence velocity spectra derived from lidar-
reconstructed velocity components to turbulence models
should be avoided due to the inter-beam effect, which dis-
torts the spectra and complicates their physical interpretation.
Therefore, such spectra were not considered in this study.
The focus was on velocity spectra Si(f ) derived from the
LOS velocities measured by beam i. The primary limitation
of this approach is the intra-beam effect. Spectra were com-
puted for each 30 min subset of data.

The spectra, Si(f ), were fitted with a parametric expres-
sion (Teunissen, 1980; Olesen et al., 1984; Tieleman, 1995)
in the frequency domain f , to which we add a componentNi
associated with the power spectral density of instrumental
noise of the LOS velocity measured by beam i (see Sect. 2.4):

Si(f )=
m

(1+ nf )β
+Ni . (2)

The coefficient m primarily controls the vertical scaling or
amplitude of the spectrum, whereas n influences the rate at
which the function decays as f increases. The exponent β
determined the shape of the spectrum.

Three different weighting schemes were considered: an
unweighted scheme, a low-frequency-weighted scheme with
weights proportional to the logarithm of the frequency, and
a high-frequency-weighted scheme with weights inversely
proportional to the logarithm of the frequency. Assessing the
fitting accuracy included comparing the variance obtained
from the integrated fitted spectra with the measured spectra
and calculating their absolute relative differences.

2.4 Instrumental noise

Lidar measurements are inherently influenced by signal noise
and potential variations in aerosol fall speeds, both of which
contribute additional terms to the observed variance. Assum-
ing that all atmospheric flow contributions to the observed
LOS velocity variance within the short timescales considered
are of a turbulent nature, the variance σ 2

bi of the LOS veloc-
ity measured by beam i can be expressed as the sum of three
independent terms (Doviak and Zrnic, 1993):

σ 2
bi = σ

2
pi + σ

2
ni + σ

2
di . (3)
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Here, σ 2
pi represents the net contribution from atmospheric

turbulence at scales measurable by the lidar (Brugger et al.,
2016), σ 2

ni denotes the variance associated with instrumen-
tal noise, and σ 2

di accounts for the variance caused by vari-
ations in aerosol terminal fall speeds within the probe vol-
ume. However, σ 2

di can typically be neglected, as particle fall
speeds are generally less than 1 cm s−1 (e.g., Bodini et al.,
2018). Noise has been identified through two different meth-
ods: a spectral approach and an autocorrelation approach, as
accurately identifying the variance of noise is critical to our
study.

2.4.1 Spectral method

Instrumental noise is a critical factor in the spectral anal-
ysis of velocity time series. In the spectrum of a velocity
time series, this noise typically manifests as a flattening of
the spectrum at higher frequencies, indicating a white-noise
characteristic that contributes equally across these frequen-
cies (e.g., Thomson et al., 2012; Durgesh et al., 2014; Guerra
and Thomson, 2017; McMillan and Hay, 2017; Thiébaut
et al., 2020). At lower frequencies, the spectrum is usually
dominated by the actual signal, which may show a charac-
teristic decay or specific features related to the physical pro-
cess being measured, such as turbulence. As the frequency
increases, the influence of the instrumental noise becomes
more prominent, leading to a flattened spectral region where
the noise dominates.

In Eq. (2), Ni represents the constant power spectral den-
sity of noise, which contributes to the spectral flattening ob-
served at higher frequencies. The variance of the noise de-
pends on the technical characteristics of the device measur-
ing the velocity, such as the Nyquist velocity, the signal spec-
tral width, the number of pulses and points per range gate,
and the signal-to-noise ratio. Theoretical expressions for the
variance of this noise can be derived and subsequently re-
moved from the computed turbulence metrics to improve ac-
curacy (Pearson et al., 2009; O’Connor et al., 2010; Bod-
ini et al., 2018, 2019; Wildmann et al., 2019). However, the
technical specifications of lidar profilers are no longer openly
shared with users, making it impossible to evaluate this noise
theoretically. To address this, it is essential to evaluate the
noise using an alternative method, such as the spectral ap-
proach employed in this study. This approach is compara-
ble to the method proposed by Richard et al. (e.g., 2013) or
Durgesh et al. (e.g., 2014). It enables the determination of
the power spectral density of noise, Ni , associated with the
LOS velocity measured by beam i. Subsequently, the vari-
ance of the instrumental noise, σ 2

ni , can be derived by multi-
plying Ni by the Nyquist frequency, fN (e.g., McMillan and
Hay, 2017):

σ 2
ni =NifN. (4)

2.4.2 Autocorrelation function method

An alternative method for computing the variance of the in-
strumental noise involves the calculation of the autocorrela-
tion function (ACF) of the squared LOS velocity time series,
as proposed by Lenschow et al. (2000). The ACF quantifies
the similarity between a signal and its time-shifted versions
across various time lags. This measure provides insight into
how much of the signal correlates with its past values, which
is essential for distinguishing between the noise and signal
components.

According to Lenschow et al. (2000), after calculating the
ACF, the ACF values (excluding the first lag) are fitted to
a 2/3 power-law function. This power-law model describes
the decay of correlation over time, allowing for the extraction
of a coefficient that characterizes how the correlation dimin-
ishes as the time lag increases. From this power-law fit, the
value of the ACF as the lag tends toward zero is estimated by
extrapolation from the fitted model. This value is associated
with the signal variance.

Subsequently, the total variance of the signal is calculated.
The instrumental noise variance, σ 2

ni , is then determined by
subtracting the signal variance derived from the fitted power-
law model from the total variance. This process enables the
separation of the signal and noise contributions from the
overall variance. The application of the ACF method requires
that the data be stationary. To verify this assumption, a sta-
tionarity test was performed for each 30 min subset using
the augmented Dickey–Fuller (ADF) test. The null hypoth-
esis of the ADF test states that the data are non-stationary,
which was assessed through the determination of a signifi-
cance level, commonly set to 0.05 or 5 % (e.g., Hayat, 2010).

2.5 Computation of the variance in instrument
coordinates

The conventional method for computing variance and stan-
dard deviation (the square root of variance) from wind li-
dar profiler measurements relies on deriving second-order
statistics from the reconstructed instantaneous velocity com-
ponents based on LOS velocities. This approach inherently
combines, at each time step, measurements taken at sampling
points separated by several tens of meters, depending on the
height level of interest. The assumption of instantaneous flow
homogeneity (inter-beam effect) introduces uncertainty into
the derived statistics, which is difficult to quantify and can
lead to either overestimation or underestimation of the stan-
dard deviation, depending on the frequency and flow config-
uration. Additionally, this traditional method is affected by
both intra-beam filtering and instrumental noise. Crucially,
because variance is computed from the reconstructed instan-
taneous velocity components, it does not account for the
noise-induced variance present in the LOS velocity time se-
ries, which will result in overestimation of variance.
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The combined influence of the inter-beam effect, intra-
beam effect, and instrumental noise can result in variance
estimates derived from the traditional approach that may ap-
pear to align more closely with those derived from a sonic
anemometer but for reasons unrelated to the actual turbu-
lence characteristics. Consequently, the benefits of an in-
creased sampling rate for turbulence measurement using a li-
dar profiler cannot be accurately assessed with this approach.

The variance method, as referred to in the studies (e.g.,
Stacey et al., 1999a, b; Lu and Lueck, 1999; Rippeth et al.,
2002; Guerra and Thomson, 2017; Thiébaut et al., 2022), of-
fers an alternative to the traditional approach for computing
variance. This method calculates the second-order statistics
of the three velocity components by deriving them directly
from the second-order statistics of the LOS velocities. Un-
like the traditional approach, the variance method is unaf-
fected by the inter-beam effect. However, it is still influenced
by the intra-beam effect and instrumental noise. Notably, the
impact of instrumental noise can be identified and removed.
Hereafter, hat notation is used to denote the standard devia-
tion or variance derived from this method.

The variance method enables the calculation of the vari-
ances, σ̂ 2

x and σ̂ 2
y , of the velocity components ux and uy (in

instrument coordinates) as

σ̂ 2
x =

1

2sin2φ

(
σ 2

p3
+ σ 2

p1
− 2cos2φσ 2

p5

)
(5)

σ̂ 2
y =

1

2sin2φ

(
σ 2

p2
+ σ 2

p4
− 2cos2φσ 2

p5

)
, (6)

where σ 2
pi = σ

2
bi − σ

2
ni (Eq. 3) is the variance of the LOS ve-

locity recorded by beam i, corrected for the variance of in-
strumental noise.

In this paper, we restrict the application of the variance
method to situations where the wind aligns (±5°) with a sin-
gle pair of opposite beams (either pair 1–3 or pair 2–4) of the
lidar profilers. This alignment condition was met in 17.1 %
of the cases (gray areas in Fig. 4). Under these conditions,
it can be reasonably assumed that the covariance term, σ̂uv
(where v represents the cross-wind velocity), which corre-
sponds to σ̂xy in this specific condition, is negligible (e.g.,
Newman et al., 2016). Specifically, when the wind aligns
with beams 1 and 3, we have σ̂ 2

u = σ̂
2
x . Conversely, when the

wind aligns with beams 2 and 4, it follows that σ̂ 2
u = σ̂

2
y . For

brevity, we use σ̂ 2 in the place of σ̂ 2
u hereafter. The standard

deviation, σ̂ , is then compared to the along-wind standard
deviation, σ , which is derived from sonic anemometer mea-
surements.

2.6 Key performance indicators and acceptance criteria

The first step of our analysis focuses on key performance in-
dicators (KPIs) related to mean wind statistics, such as wind
speed. These include the mean differences, slope, and the
coefficient of determination (R2) at reference heights cor-

responding to sonic anemometer measurements. The veri-
fication process follows the standard lidar performance re-
quirements set by DNV (2009), which define acceptance cri-
teria (ACs) as either best practice or minimum-allowable tol-
erances. Applied to wind speed, these criteria flag any KPIs
exceeding the defined thresholds as deviations. Table 2 sum-
marizes the ACs established by DNV, which are tested in this
paper for wind speed KPIs.

Additionally, the paper addresses data availability. Data
availability is defined as the ratio of valid data points returned
by the lidar to the maximum number of possible points that
could be acquired during the test. To pass the test, the stan-
dard lidar performance set the data availability threshold to
90 % (Table 2).

2.7 Error statistics metrics

This paper focuses on turbulence measurements, specifically
the standard deviation and variance of the along-wind veloc-
ity, obtained from both the commercial and prototype lidars.
These measurements are compared to the standard deviation
provided by the reference instrument: the sonic anemome-
ter. To assess the accuracy and reliability of the lidar turbu-
lence measurements, various error statistics are used. These
include the following:

– Root-mean-square error (RMSE). This quantifies the
average magnitude of the errors.

RMSE=

√√√√ 1
M

M∑
i=1

(Xi −Yi)2 (7)

– Mean absolute error (MAE). This calculates the aver-
age absolute difference between predicted and observed
values.

MAE=
1
M

M∑
i=1
|Xi −Yi | (8)

– Bias. This represents the systematic error between the
lidar and reference measurements.

Bias=
1
M

M∑
i=1

(Xi −Yi) (9)

– Coefficient of determination (R2). This indicates the
proportion of variance in the lidar measurements that
is explained by the reference data.

R2
= 1−

M∑
i=1

(Xi −Yi)2

n∑
i=1

(
Yi −Y

)2 (10)
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Table 2. Acceptance criteria for KPIs of mean wind speed in wind lidar profiler certification.

KPI – wind speed Definition Best practice Minimum Deviation

Difference Percentage difference in mean wind speeds between lidar
and reference over the verification campaign relative to the
campaign mean wind speed.

< 1 % [1–1.5] % > 1.5 %

Slope Slope from single-variable regression, constrained to pass
through the origin.

[0.98–1.02] [0.97–1.03] < 0.97 or > 1.03

R2 Correlation coefficient from single-variable regression. > 0.98 > 0.97 ≤ 0.97

Data availability Mean percentage of available data points in each 30 min
subset relative to the total number of possible records.

≥ 90 % – < 90 %

Table 3. Acceptance criteria for KPI achievement applied to the
mean wind speed associated with the commercial and prototype
configurations. XX denotes the best practice and X indicates the
minimum acceptance, as defined in Table 2.

Configuration Difference Slope R2 Data availability

Commercial XX XX XX XX
Prototype X XX XX XX

Here, Xi represents the lidar measurement, Yi the corre-
sponding reference measurement from the sonic anemome-
ter, Y the mean of the reference measurements, and M the
number of turbulence estimates. Together, these statistical
metrics provide a comprehensive evaluation of the lidar’s
performance at capturing turbulence characteristics relative
to the reference instrument.

3 Results

3.1 Mean wind speed and data availability

The first step in proposing enhancements to lidar technol-
ogy is to evaluate their impact on mean wind speed measure-
ments. Figure 5a shows that the mean vertical wind speed
profiles measured by both configurations are closely aligned.
However, the difference between the mean wind speed mea-
surements provided by the commercial configuration and the
reference measurement (black cross in Fig. 5) at the refer-
ence altitude is smaller, amounting to 0.98 % compared to a
1.41 % difference for the prototype configuration. These re-
sults demonstrate that the commercial configuration closely
matches the best-practice AC criterion for the difference in
mean wind speed, while the prototype configuration, with a
larger difference, only meets the minimum criterion (Tables 2
and 3).

Moreover, the commercial configuration exhibits data
availability ranging from 99.5 % at the lowest measurement
height, i.e., 40 m above the ground, to 93.0 % at the highest,
i.e., 200 m above the ground, with an overall vertical average

availability of 98.2 % (Fig. 5b). Similarly, the prototype con-
figuration follows this trend, with data availability decreasing
with altitude. The prototype achieves a vertical average avail-
ability of 97.7 %, with a minimum of 92.3 % recorded at the
highest measurement altitude. The prototype configuration
consistently shows data availability that is, on average, 0.5 %
lower than that of the commercial configuration at nearly all
measurement altitudes. Both lidar configurations exceed the
90 % data availability threshold set by DNV (2009).

Figure 6 presents the linear regression of the 30 min av-
eraged wind speed measured by both lidar configurations in
comparison to the reference instrument. Both the commer-
cial and prototype configurations match the best-practice cri-
teria, with slope values of 1.0 and R2 values of 0.9847 for
the commercial configuration. The prototype configuration
shows values that are 1 % lower for the slope and similar R2,
but these differences are minimal and are still within the ac-
ceptable range for best practice.

3.2 Impact of the sampling rate on turbulence energy
capture

The impact of increasing the sampling rate on turbulence
measurement can initially be assessed using data from a
sonic anemometer, specifically through the computation of
along-wind velocity spectra. Integrating these spectra pro-
vides the along-wind variance, σ 2. Figure 7 illustrates the
individual spectra and the mean spectrum averaged over the
47 d dataset in both log–log and linear formats. The mean
spectrum clearly follows the f−5/3 slope, confirming the
presence of the energy cascade (Fig. 7a).

The linear representation (Fig. 7b) highlights the fact that
most of the energy associated with larger eddies is concen-
trated in the frequency range from 0 to fNc = 0.125 Hz, cor-
responding to the Nyquist frequency of the LOS velocity in
the commercial lidar configuration. However, additional en-
ergy associated with smaller eddies exists within the range
from fNc to fNp = 0.5 Hz, the latter being the Nyquist fre-
quency of the prototype lidar configuration.
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Figure 5. Mean vertical profiles, averaged across the 47 d dataset, of wind speed (a), data availability (b), the standard deviation derived
from the variance method (c), and CNR (d) measured using the commercial (solid-blue curves) and prototype (dashed-orange curves) con-
figurations. In panel (a), the error bars represent 95 % confidence intervals computed via bootstrapping, illustrating the statistical uncertainty
in the mean. The black crosses represent the reference measurements from the sonic anemometer, and the gray dashed horizontal line marks
its position at 97 m above ground.

Figure 6. Scatter plots of the 30 min averaged wind speed measurements over the 47 d campaign, comparing the commercial lidar (a) and
prototype lidar (b) with the reference sonic anemometer. Red-dashed lines indicate the linear regression fits.

To quantify this effect, the variance was computed by in-
tegrating the spectra over two frequency ranges. First, the in-
tegration from 0 to fNc simulated the variance measurable
by a sonic anemometer with a sampling rate equivalent to
that of the commercial lidar. This yielded a mean variance
of 0.4712 m2 s−2. Second, the integration from 0 to fNp sim-
ulated the variance measurable with a sampling rate equiva-
lent to that of the prototype lidar, resulting in a mean variance
of 0.6314 m2 s−2. This comparison indicates that increasing
the sampling rate by a factor of 4 relative to the commer-
cial lidar configuration could capture an additional 34 % of

the variance. However, this represents the maximum possi-
ble improvement, as it is derived from measurements using
a sonic anemometer, which is not affected by technical lim-
itations such as the space–time volume averaging inside the
probe of a wind lidar profiler.

3.3 LOS velocity spectra

The determination of the instrumental noise from the spectral
method involves computational fitting of the LOS velocity
spectra using a parametric expression (Eq. 2). Three weight-
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Figure 7. Individual spectra (light-blue curves) and the mean spectrum (orange curve) measured by the sonic anemometer over the 47 d
measurement campaign presented in log–log (a) and linear (b) formats. Vertical black-dashed lines indicate the Nyquist frequencies, fNc
and fNp , for the commercial and prototype lidar configurations, respectively. The solid-pink line in panel (a) shows the classic spectral
slope f−5/3.

Figure 8. (a) The LOS velocity spectrum measured by beam 5 of the prototype lidar (solid black) and fitted using Eq. (2) with three different
weighting schemes: unweighted (dashed green), low-frequency-weighted (dashed red), and high-frequency-weighted (dashed blue). This
panel corresponds to the study focused on selecting the optimal weighting scheme. (b) The optimal scheme (high-frequency weighted) is
applied to the LOS velocity spectrum measured by beam 5 of the commercial lidar (blue) and the prototype lidar (orange).

ing schemes were systematically explored to enhance fitting
accuracy and minimize errors relative to the measured spec-
tra. Figure 8a illustrates an example of the three weighting
schemes applied to a measured spectrum. This iterative pro-
cess was conducted across both lidar configurations, yielding
consistent results described hereafter.

The fitted spectra closely matched in the low-frequency
domain, up to approximately f = 0.1 Hz, but strong di-
vergences were observed thereafter. The low-frequency-
weighted scheme produced a curve substantially below the
measured spectra at higher frequencies, whereas the un-
weighted scheme yielded a curve slightly above the mea-
sured spectra in this frequency range. In contrast, the
high-frequency-weighted scheme provided a fit that closely
matched the measured spectra across all frequencies and ex-
hibited the lowest mean error. For instance, when applied
to the prototype lidar, the mean variance was 0.2321 m2 s−2

for all integrated fitted spectra using the high-frequency-
weighted scheme compared to 0.2262 m2 s−2 for all inte-
grated measured spectra. This results in an absolute error of
2.6 %. Conversely, not employing any weighting during the
fitting process resulted in an absolute error between the mean
variance nearly 3 times higher, 8.5 %. Assigning weights to
the low frequencies resulted in a mean absolute error ex-
ceeding 6 times that of the high-frequency-weighted scheme,
16.9 %. Thus, the high-frequency-weighted scheme was cho-
sen for the fitting. An example of this fitting applied to in-
dividual LOS velocity spectra for both the commercial and
prototype configurations is shown in Fig. 8b. This weighted
scheme enabled the systematic identification of the plateau
at higher frequencies, which is characteristic of white noise.
Other weighting schemes did not consistently exhibit this
plateau, making it challenging to reliably determine the value
of Ni .
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3.4 Instrumental noise

3.4.1 Carrier-to-noise ratio

Figure 5d shows that the CNR of the prototype lidar is consis-
tently lower than that of the commercial system throughout
the altitudes of measurement, with a mean value across all
heights of−8.9 dB. On average, the prototype lidar’s CNR is
8.5 % lower, indicating a weaker signal and thus a higher rel-
ative noise level compared to the commercial lidar. Despite
this difference in magnitude, the mean vertical profiles of
CNR for both lidars follow the same trend: the CNR reaches
a minimum near the ground, increases to a maximum at ap-
proximately 100 m above ground, and then decreases again,
reaching another minimum at the highest measurement alti-
tude.

3.4.2 Comparison of the spectral and ACF methods

The spectral method yields a median variance that is
1.5 times higher than that of the ACF method for the com-
mercial and prototype lidars (Table 4). While this suggests
differences in how each method characterizes noise, the spec-
tral method also results in a mean instrumental noise that is
30 %–40 % lower than that of the ACF method, indicating
variations in the way noise is estimated. Moreover, the spread
of mean values is notably narrower when using the spectral
method, particularly for the commercial lidar, where it is re-
duced by half compared to in the ACF method. This sug-
gests a potential advantage in terms of consistency and sta-
bility. Given these observations, we used the spectral method
to correct the measured variance, as it appeared to provide
more stable estimates of instrumental noise.

To validate the applicability of the ACF method and in-
vestigate the higher spread of mean values of instrumental
noise associated with this method, the ADF test was applied
to each 30 min data subset. The results show that approxi-
mately 8 % of the subsets yielded p values just above the
0.05 significance threshold, although none exceeded 0.06.
This indicates that, for these subsets, the null hypothesis of
non-stationarity (see Sect. 2.4.2) could not be rejected. Con-
sequently, they cannot be confidently considered stationary,
and the ACF method is not strictly valid for them. This lim-
itation may partly account for the higher variability in noise
estimates produced by the ACF method, as non-stationary
data can lead to inconsistent results in autocorrelation-based
analyses.

3.4.3 Contribution of instrumental noise to the
measured LOS velocity variances

The parametric expression (Eq. 2) used to fit the LOS veloc-
ity spectra measured by beam i enables the identification of
the power spectral density of instrumental noise, Ni , and the
derivation of the variances, σ 2

ni (Eq. 4). Figure 9 compares
the mean magnitude of σ 2

ni to the mean variance of the net

Figure 9. Mean variance of the net contribution from atmospheric
turbulence (σ 2

pi ) corrected for instrumental noise derived from the
spectral method and measured by each beam i at scales observ-
able by the commercial (dark-gray) and prototype (light-gray) lidar
profilers. Dashed areas represent the mean variance of instrumental
noise, σ 2

ni . The averages were computed over the 47 d dataset.

contribution from atmospheric turbulence, σ 2
pi , corrected for

the instrumental noise at scales observable by the commer-
cial and prototype lidar profilers.

The mean values of σ 2
ni , which are nearly identical across

all beams, were found to be 0.0108 m2 s−2 for the commer-
cial configuration (Table 4). A similar trend was observed
for the prototype configuration, although the mean variance
of instrumental noise was 68 % higher, 0.0181 m2 s−2 (Ta-
ble 4). Notably, the contribution of instrumental noise vari-
ance to the total variance, σ 2

bi (Eq. 3), was found to be 4.8 %
and 7.4 % for the commercial and prototype lidar configura-
tions, respectively.

The mean variances, σ 2
pi were consistently higher for mea-

surements obtained with the prototype configuration. Across
all beams, the mean value was 0.2288 m2 s−2, which is 7.8 %
higher than the corresponding mean value for the commer-
cial lidar measurements.

3.5 Along-wind standard deviation

Figure 10 presents scatter plots of the along-wind standard
deviation, σ̂ , derived from the variance method applied to
measurements of both lidar configurations compared to the
standard deviation, σ , obtained from the reference sonic
anemometer. The prototype configuration demonstrates su-
perior performance across all error metrics, with bias, MAE,
and RMSE approximately 25 % lower than those of the com-
mercial configuration (Table 5). Additionally, the coefficient
of determination is 5 % higher. There is also a reduction in
the relative error in the mean standard deviation, with the
prototype configuration showing values of 5.7 % compared
to 7.8 % for the commercial configuration.

Figure 11 presents wind-speed-binned estimates of σ̂ com-
pared to estimates of σ (black curve) as a function of binned-
averaged wind speed. For all wind speeds, the standard de-
viation measured by the sonic anemometer consistently re-
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Table 4. Median and mean (± spread) variance of instrumental noise for commercial and prototype lidars computed from the LOS velocity
measurements across all beams using the spectral and ACF methods.

Commercial lidar Prototype lidar

Methods Spectral ACF Spectral ACF

Median (m2 s−2) 0.0076 0.0050 0.0129 0.0081
Mean± spread (m2 s−2) 0.0108± 0.0102 0.0148± 0.0228 0.0181± 0.0175 0.0237± 0.0294

Figure 10. Scatter plots of the along-wind standard deviation, σ̂ , derived from the variance method applied to measurements of the commer-
cial and prototype lidar configurations versus the standard deviation, σ , derived from the reference sonic anemometer. The standard deviation
estimates are restricted to cases where the wind direction was aligned with one pair of opposite beams.

Table 5. Error statistics of the along-wind standard deviation de-
rived from the variance method corrected for instrumental noise and
applied to measurements collected by the commercial and prototype
lidars in comparison to the reference sonic anemometer.

Bias MAE RMSE R2 Relative
(m s−1) (m s−1) (m s−1) error (%)

Commercial lidar −0.0639 0.0886 0.1218 0.9138 7.8
Prototype lidar −0.0466 0.0678 0.0871 0.9574 5.7

mains higher than that derived from both lidar configurations.
Below wind speeds of 8 m s−1, the standard deviation val-
ues from both lidar configurations closely match each other.
Within this wind speed range, the standard deviation associ-
ated with the commercial lidar is 2.7 % higher than that from
the prototype configuration. However, above this wind speed
threshold, the standard deviation associated with the proto-
type configuration increases more rapidly with wind speed
compared to the commercial lidar. In this wind speed range,
the standard deviation associated with the prototype lidar
is 13.0 % higher than that associated with the commercial
configuration. For all wind speed ranges, the prototype lidar
measurements exhibited a mean standard deviation and vari-
ance that are 3.5 % and 7.2 % higher, respectively, than those
of the commercial configuration.

Figure 11. Along-wind standard deviation, σ̂ , derived from mea-
surements of the commercial lidar (blue curve) and prototype li-
dar (orange curve) compared to the standard deviation, σ , obtained
from reference sonic anemometer measurements (black curve) as a
function of wind speed.

4 Discussion

The increased sampling rate resulted in a relatively slight
0.5 % reduction in data availability compared to the com-
mercial configuration over the 47 d dataset. While this differ-
ence is minimal, longer measurement campaigns, typically
lasting over a year for wind site characterization, may ac-
cumulate more instances of data loss due to environmental
factors, hardware limitations, or maintenance events, poten-
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tially making the impact of reduced availability more notice-
able over time. Following the measurement campaign pre-
sented in this paper, the prototype configuration was installed
in December 2022 on Planier Island in the Mediterranean
Sea, where it remains operational. The wind characteristics
derived from the full year of 2023 are presented in Thiébaut
et al. (2024), including a detailed analysis of data availability.
Encouragingly, up to 160 m a.s.l. (meters above sea level),
annual data availability exceeded the 90 % threshold consid-
ered best practice. Beyond this height, availability gradually
declined, reaching below 70 % at 220 m. While this high-
lights an area for further optimization, the prototype lidar
has already demonstrated strong performance at critical mea-
surement heights.

Moreover, the prototype configuration performed compa-
rably to the commercial setup in terms of mean wind char-
acteristics. While the commercial configuration met the best-
practice threshold for all key performance indicators (KPIs),
the prototype also achieved this standard, with the exception
of mean wind speed differences, where it met the minimum-
acceptance level within the best-practice range. This result
is promising, as it confirms that the prototype lidar meets
industry standards, while offering opportunities for further
refinement.

Reducing the accumulation time increases the sampling
rate, which helps limit the temporal averaging of the wind
signal and preserves more of the high-frequency variance
within the instrument’s resolvable range. However, this also
requires a careful evaluation of instrumental noise and its
associated variance to ensure that observed changes in vari-
ance can be confidently attributed to atmospheric turbulence
rather than to measurement artifacts. In this study, the noise-
induced variance was estimated using two independent meth-
ods. For both lidar configurations, the noise levels were con-
sistent with values reported in previous studies, such as the
WindCube lidar analysis by Mann et al. (2009), supporting
the reliability of our estimates. As expected, the higher sam-
pling rate of the prototype lidar led to increased instrumen-
tal noise due to the reduced number of transmitted pulses
(Pearson et al., 2009). The noise variance constituted approx-
imately 5 % of the total variance for the commercial configu-
ration and over 7 % for the prototype. While non-negligible,
this contribution was accounted for in all variance-based met-
rics.

However, the impact of increased sampling must be inter-
preted with care. If the sampling frequency is too low relative
to the turbulent fluctuations present in the flow, aliasing oc-
curs: unresolved high-frequency energy is folded into lower-
frequency bands, distorting the spectral distribution. While
the reduced accumulation time increases the sampling fre-
quency and helps mitigate aliasing effects, it does not fully
recover the true spectral shape, given the finite temporal res-
olution. Therefore, the observed increase in variance with the
prototype lidar should primarily be attributed to reduced tem-

poral and spatial filtering rather than to a direct gain in tur-
bulent energy capture. This distinction is critical.

Increasing the sampling rate does not linearly capture
more variance from smaller eddies. Instead, the accumula-
tion time acts as a low-pass filter on the LOS velocity sig-
nal, attenuating contributions from high-frequency turbulent
fluctuations. Systems with longer accumulation times, such
as the 0.8 s used in the commercial lidar, are more affected
by this filtering, especially at higher wind speeds where the
effective probe length, Leff, becomes longer due to advec-
tion. The effective probe length refers to the spatial distance
over which the LOS wind velocity is effectively averaged,
accounting for both the fixed probe length and the distance
traveled by air during the accumulation period. It can be es-
timated as

Leff = Lprobe+U1t. (11)

A longer effective probe length increases spatial averag-
ing and attenuates variability in the measurements. In con-
trast, the prototype lidar, with a shorter 0.2 s accumulation
time, experiences less temporal averaging and thus preserves
a greater portion of the wind variance from smaller-scale mo-
tions. This contributes to the higher along-wind variances
observed in the prototype configuration compared to in the
commercial system. Despite this, the observed increase in
variance remains significantly below the theoretical benefit
expected from increasing the LOS sampling rate, as deter-
mined through sonic anemometer measurements. The mea-
surement volume of a sonic anemometer is effectively point-
like in comparison to the much longer probe length of wind
lidar profilers. The anemometer is essentially free of the
probe time-averaging effect, which enables it to capture the
wind signature of very small eddies.

5 Conclusions

The prototype configuration of the WindCube v2.1 lidar pro-
filer demonstrated comparable performance to the commer-
cial system in terms of mean wind characteristics and data
availability, meeting industry standards. Moreover, this study
demonstrates that increasing the sampling rate of LOS wind
velocity measurements by reducing the accumulation time in
pulsed wind lidar systems effectively mitigates temporal and
spatial averaging effects inside the probe volume, thereby im-
proving turbulence measurements. The prototype configura-
tion, with a 4-fold increase in the sampling rate compared
to the commercial system, preserved additional variance by
reducing both spatial and temporal averaging rather than by
directly resolving smaller eddies, particularly at higher wind
speeds, where advection lengthens the effective probe length.
Despite these gains, the increased sampling rate introduced
trade-offs, including higher instrumental noise and a slight
reduction in data availability. The noise was systematically
corrected, and its impact was found to be manageable.
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The findings underscore the importance of carefully bal-
ancing temporal resolution, noise, and probe length when
configuring lidar systems for turbulence retrieval. While
commercial lidars can be programmed by the manufacturer
to match the prototype’s sampling rate, it is advisable to val-
idate the lidar’s performance through certification after such
adjustments. Looking forward, optimizing both accumula-
tion time and probe length in tandem may enhance the ability
of wind lidar systems to capture turbulence more accurately.
However, such changes must be approached cautiously, as
reducing these parameters can also compromise data avail-
ability, especially under challenging atmospheric conditions.
Balancing resolution and reliability will be key to supporting
broader applications in wind energy assessments and atmo-
spheric boundary layer research.
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