
Wind Energ. Sci., 10, 1907–1928, 2025
https://doi.org/10.5194/wes-10-1907-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lidar-assisted nonlinear output regulation of wind
turbines for fatigue load reduction

Robert H. Moldenhauer and Robert Schmid
Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia

Correspondence: Robert H. Moldenhauer (moldenhauer.r@student.unimelb.edu.au)

Received: 19 December 2024 – Discussion started: 24 January 2025
Revised: 5 May 2025 – Accepted: 29 May 2025 – Published: 9 September 2025

Abstract. Optimizing wind turbine performance involves maximizing or regulating power generation while
minimizing fatigue load on the tower structure, blades, and rotor. In this article, we explore the application of
a novel turbine control methodology referred to as nonlinear output regulation (NOR) for improving turbine
control performance. NOR constructs a torque balance equation under which the closed loops follow desired
stable dynamics, and solves it for the generator torque in partial load operation and for the blade pitch angles
in full load operation, in a unified manner across both operating regions. The regulation relies on an estimate
of rotor-effective wind speed (REWS). We consider estimation based on the turbine’s SCADA, in particular the
immersion and invariance (I&I) estimator, as well as lidar. Furthermore, we propose to use an average of the
I&I and lidar estimates, where the lidar buffer time is chosen to compensate I&I’s delay, to obtain a real-time
low-variation estimate.

The performance of the NOR controller with the averaged I&I and lidar estimate is compared against a state-
of-the-art baseline reference controller known as ROSCO in both its standard feedback-only configuration as
well as an existing lidar-assisted control (LAC) version of ROSCO that uses a pitch feedforward. NOR, with
the averaged I&I and lidar estimate, matches this lidar-assisted ROSCO rotor speed tracking improvements over
feedback-only ROSCO, but also significantly reduces fatigue loads and actuator usage. In particular, the blade
flapwise damage equivalent loads (DELs) reduction corresponds to a doubled lifespan, and pitch rate is reduced
by more than a third. The reductions are achieved without sacrificing power generation.

1 Introduction

Wind energy conversion systems are one of the most cost-
effective and widely used sources of renewable energy. A
2021 study by Fraunhofer ISE (Bundesverband der Energie-
und Wasserwirtschaft, 2023) put the levelized cost of en-
ergy (LCOE) for wind energy in Germany at EUR 0.0394–
0.0829 (3.94–8.29 cents) per kW h, which is approximately
half the LCOE of lignite, hard coal and gas turbines (Kost
et al., 2021). In 2022 wind energy accounted for 21.7 % of
energy production in Germany. The fastest growing market
is China, where market volume of wind energy is expected to
grow from 443.74 GW in 2023 to 772.64 GW in 2028 (Mor-
dor Intelligence, 2024).

Over recent years, upwind, three-bladed, horizontal-axis
variable-speed and variable-pitch wind turbines have become

the predominant type (Gambier, 2022). The grid connection
of variable-speed turbines is realized with power convert-
ers. With electronics the generator torque can be controlled,
which affects the energy that is extracted from the rotor, and
therefore how much it is accelerated or decelerated. Variable-
pitch refers to the availability of blade pitch actuation, with
the main purpose of decreasing energy capture at high wind
speeds for safety. The primary control objective is to maxi-
mize power capture at lower wind speeds, and to not exces-
sively exceed rated power at higher wind speeds. This can
be achieved with fairly simple control methods, and more
sophisticated methods can provide only marginal power cap-
ture improvements. An important secondary control objec-
tive is fatigue load reduction. As wind is inherently turbu-
lent, tower and blades are subject to ever-changing stress and

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



1908 R. H. Moldenhauer and R. Schmid: Nonlinear output regulation of wind turbines

strain, which causes mechanical fatigue. Furthermore, the
blade pitch actuation is susceptible to wear and tear. These
factors are the reason why wind turbines generally have a
lifespan of only approximately 20 years. Therefore, the re-
duction of fatigue loads and actuator usage through control
has the potential to make wind turbines more durable and
further decrease their LCOE.

Control methods for improving turbine performance have
been the subject of extensive research for at least five
decades, and summaries are available in the monographs
(Bianchi et al., 2007; Munteanu et al., 2008; Luo et al., 2014;
van Kuik and Peinke, 2016; Gambier, 2022), for example.
For a very recent survey on control methods for wind tur-
bine fatigue load reduction, see Yaakoubi et al. (2023). Such
methods may be broadly separated into strategies for life-
of-turbine operating methods that seek to improve turbine
lifespan by derating, or even shutting down, the turbine in
certain operating conditions, and real-time control methods
that seek to achieve maximum power point tracking (MPPT)
or rated power generation while designing the control actua-
tion in a manner that reduces strain on the tower, blades, and
generator. Papers in the first category include (Bech et al.,
2018), who sought to identify extreme precipitation events
causing the largest effect on turbine blade fatigue loads. Op-
erational strategies to find suitable trade-offs between fatigue
loads and power production in the long-term management of
a wind farm have been investigated in Requate et al. (2023)
and (Kipchirchir et al., 2023).

In this paper we give our attention to the second category
of controller methodologies, in which conventional control
methods for MPPT are augmented to reduce fatigue loads.
According to a 2016 review about the state of the art and fu-
ture challenges of wind turbine control, the industry standard
is to use single-input single-output (SISO) gain-scheduled
proportional–integral–derivative (PID) regulators (van Kuik
and Peinke, 2016, Chap. 4). The Reference Open-Source
Controller (ROSCO) (Abbas et al., 2022) was recently devel-
oped to provide a modular reference wind turbine controller
that represents industry standards and provides better perfor-
mance than existing reference controllers, in particular the
baseline controller of Jonkman et al. (2009).

Many researchers have investigated control methodologies
that use an estimate of the wind speed. Wind speed estima-
tion can be classified into two approaches. The first approach
uses the rotor speed measurement and other data available
from the turbine’s SCADA to compute the rotor-effective
wind speed (REWS), a single wind speed value represent-
ing the equivalent steady, horizontal and uniform upstream
velocity. Many strategies, such as the extended Kalman fil-
ter, immersion and invariance (I&I) estimator, and power bal-
ance estimator, have been investigated to compute the REWS
estimate. See (Soltani et al., 2013) for a comparison of esti-
mation methods.

The second approach involves external wind measurement
devices, most commonly involving light detection and rang-

ing (lidar) sensors, which uses lasers to measure wind speeds
in front of the turbine. A detailed description of lidar for
wind turbines can be found in Schlipf (2016). Lidar-assisted
control (LAC) has been shown to successfully reduce fatigue
loads in Schlipf et al. (2013); Fu et al. (2023).

One popular control methodology enabled by wind speed
estimation is disturbance accommodation control (DAC),
also known as disturbance tracking control, which was in-
troduced by (Balas et al., 1998). DAC uses superposition of
a stabilizing feedback term and a feedforward of the distur-
bance estimate, aimed at disturbance rejection. If control and
disturbance are matched, an equation can be solved to find
a feedforward gain, which immediately compensates the dis-
turbance. In wind turbines, drivetrain and blade pitch actu-
ation dynamics, albeit being relatively fast, make this equa-
tion unsolvable directly. It is therefore solved approximately
(Yuan and Tang, 2017), (Yaakoubi et al., 2023). DAC was
also featured in Wright (2004) and Wright and Fingersh
(2008). Wright et al. (2006) showed that DAC can reduce
loads on the low-speed shaft in field tests, compared to a
baseline controller.

Exact output regulation (EOR) is a classical linear con-
trol systems architecture that is able to track time-varying
reference signals while rejecting time-varying disturbances
(Saberi et al., 2000). The reference and disturbance signals
are assumed to be generated by a known exosystem. EOR
feeds forward the exosystem state, where the feedforward
gain matrix is obtained as solution of a Sylvester equation,
to asymptotically track the reference under the influence of
the disturbance. In Mahdizadeh et al. (2021) EOR was first
applied for wind turbines in conjunction with lidar, and sim-
ulations showed significant fatigue load reduction compared
to baseline controller of (Jonkman et al., 2009) and DAC. In
Woolcock et al. (2023) the I&I estimator was used instead of
lidar, without significantly affecting the control performance.

A notoriously difficult challenge of wind turbine control
is the Region 2.5 problem, which is concerned with the tran-
sition between below-rated (Region 2) and above-rated (Re-
gion 3) operation. This is because the structure of the con-
trol problem changes, where in Region 2 blade pitch angles
are fixed to a lower saturation and generator torque regu-
lates rotor speed, whereas in Region 3 the roles are reversed,
with generator torque being fixed to an upper saturation and
blades regulating rotor speed. ROSCO employs a set point
smoothing technique that modifies references to the torque
and blade pitch controllers, to avoid harmful interaction and
ensure that most of the time one saturation is active (Abbas
et al., 2022); also see Schlipf (2019); Zalkind and Pao (2019).

The main contributions of this paper are twofold. First,
we propose a novel nonlinear wind turbine control de-
sign methodology, referred to as nonlinear output regulation
(NOR), which solves the Region 2.5 problem directly by de-
sign. The main idea is that the closed loop shall follow de-
sired stable dynamics, from which, using a standard nonlin-
ear turbine model, a torque balance equation is derived. In
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Region 2, this determines the generator torque. If, however,
this generator torque exceeds its upper limit, the controller
switches to Region 3 and then solves the same equation for
the blade pitch angles under saturated generator torque. If
this equation fails to admit a solution due to insufficient wind,
the controller switches back to Region 2. Hence, NOR cre-
ates a seamless transition between Regions 2 and 3, where
at any point in time exactly one saturation is active and, in
theory, the closed loop follows the same dynamics across the
region switching.

To solve the torque balance equation, NOR uses a wind
speed estimate. When using the I&I estimator, we show that
the resulting NOR+I&I controller is similar to ROSCO in
that linearized closed loops are of the same form, which al-
lows conversion of tuning parameters. We further show that
NOR+I&I compensates errors in the model, which alleviates
biases in the power coefficient surface. Importantly, NOR’s
use of a wind speed estimate also allows direct inclusion of
lidar estimates in a unified manner across operation regions.
In particular, we propose to use an average of I&I and lidar
estimates, which is the second main contribution of this arti-
cle. The lidar estimate is buffered to be ahead of REWS by
the same time as the I&I estimate is lagging behind. By av-
eraging, these delays compensate and an on-time estimate
is obtained, which has lower variation than the individual
signals because the high-frequency noise affecting both es-
timates has different (stochastically independent) sources.

The performance of NOR was tested with OpenFAST
(NREL, 2019) on the IEA 15 MW reference turbine (Gaert-
ner et al., 2020). Full-field wind signals at mean wind
speeds between 5 and 20 ms−1 were generated with TurbSim
(Jonkman, 2006), in accordance with the IEC standard (IEC,
2005). The simulations consider the power generation, the
fatigue loads for the tower, blades and main shaft, the blade
pitch actuation, and rotor speed tracking performance. As
baseline controllers for our performance comparisons we use
the feedback-only ROSCO (Abbas et al., 2022) as well as the
LAC of Fu et al. (2023) and references therein, which adds
a lidar-based pitch feedforward to ROSCO, and for which
we use the acronym ROSCO+LPFF. Our results show that
ROSCO+LPFF, while it expectedly significantly improves
tracking performance over feedback-only ROSCO, does not
reduce lifetime damage equivalent loads (DELs) and even in-
creases pitch rate. On the other hand, NOR with the averaged
I&I and lidar estimate matches ROSCO+LPFF’s rotor speed
tracking performance, but also significantly reduces fatigue
loads and actuator usage. In particular, blade flapwise DELs
are reduced by 6.7 %, which corresponds to a doubling of
lifespan, and pitch rate is reduced by 36 % over ROSCO. The
improvements are due to the high quality of the I&I and li-
dar average and NOR’s ability to incorporate this information
seamlessly in both Regions 2 and 3.

The paper is organized as follows: In Sect. 2 we discuss all
aspects of the modelling of the 15 MW turbine considered in
this study. In Sect. 3 we describe the I&I and lidar methods

Table 1. 15 MW reference turbine parameters (Gaertner et al.,
2020).

hub height 150 m
rotor radius R 120 m
rated power Prated 15 MW
cut-in wind speed 3 ms−1

rated wind speed vrated 10.59 ms−1

cut-out wind speed 25 ms−1

rated rotor speed �rated 7.56 rpm
minimum rotor speed �min 5 rpm
optimal power coefficient Cp,opt 0.489
optimal tip speed ratio λopt 9
generator efficiency ηgen 95.76 %

used for wind speed estimation, and in Sect. 4 we describe
the novel NOR and existing ROSCO and ROSCO+LPFF
control methodologies to be compared in our performance
comparisons. In Sect. 5 we describe the Simulink™ simu-
lation environment that was used to test and compare these
three control methodologies for their power generation and
fatigue loads under a wide range of wind profiles. Next, in
Sect. 6, we provide the results of our simulations and discuss
the relative performance of NOR against ROSCO. Some fi-
nal remarks are given in the Conclusion, and the Appendix
contains some more theoretical analyses and comparisons of
NOR and ROSCO.

2 Wind turbine modelling

The wind turbine model considered in this work is the IEA
15 MW reference turbine, documented in Gaertner et al.
(2020). It has a variable speed, collective pitch controller, and
a low-speed, direct-drive generator. The main parameters are
listed in Table 1. Depending on the wind speed, four oper-
ating regions are defined. In Region 1, below cut-in speed,
there is insufficient wind to power the turbine. In Region 2,
which is between cut-in wind speed and rated wind speed,
as much power as possible shall be produced. Above rated
wind speed, the rated power of 15 MW can be produced. In
Region 3, which is between rated and cut-out wind speed,
due to the load capacity of mechanical components and con-
straints by the generator and grid connection, power output
shall be near rated, without overspeeding of the rotor. Oper-
ating the turbine in Region 4 would cause excessive loads, so
power generation is shut down to protect the turbine.

In the following sections we introduce a standard simpli-
fied turbine model that will be used to design the NOR con-
troller. Performance simulations will be conducted with the
high-fidelity OpenFAST (NREL, 2019) model.
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Figure 1. Power coefficient surface of the 15 MW reference tur-
bine.

2.1 Aerodynamic torque

Let R denote the rotor radius and ρ the air density. The to-
tal power of uniform wind moving through the rotor disc,
termed instantaneous power, is

Pwind(vx)=
1
2
ρπR2v3

x, (1)

where vx is the magnitude of the horizontal component of the
wind velocity vector perpendicular to the rotor plane. The
power extracted from the wind by the blades is the aero-
dynamic power, and the ratio of the aerodynamic power to
the instantaneous power is given by the power coefficient
Cp(λ,θ ). It depends on the tip speed ratio

λ=
R�

vx
, (2)

where � denotes the rotor speed, and the blade pitch angle
θ . The power coefficient surface of the 15 MW reference tur-
bine is shown in Fig. 1.

The maximal power coefficient Cp,opt = 0.489 is achieved
at optimal tip speed ratio λopt = 9 and θ = 0°. The aerody-
namic power and aerodynamic torque are, respectively,

Pa(�,vx,θ )=
1
2
Cp(λ,θ )ρπR2v3

x, (3)

Ma(�,vx,θ )=
1
2
Cp(λ,θ )ρπR2v3

x/�. (4)

The aerodynamic thrust force, which will be relevant for fa-
tigue load reduction, can be modelled similar to the aerody-
namic torque as

Fa(�,vx,θ )=
1
2
Ct(λ,θ )ρπR2v2

x . (5)

The thrust coefficient surface Ct(λ,θ ) is shown in Fig. 2.
Notice that the thrust coefficient significantly decreases

when the blade pitch angle becomes positive. For this rea-
son, the largest thrust forces occur when switching between
Regions 2 and 3.

Figure 2. Thrust coefficient of the 15 MW reference turbine.

In reality, wind is naturally turbulent, so the previous as-
sumption of vx as a uniform wind moving through the rotor
disc is not accurate. Thus, we consider vx to be the REWS of
a turbulent wind field, which is the speed of a uniform wind
field that causes the same aerodynamic torque (by Eq. 4) as
the turbulent wind field. It is a single wind speed value rep-
resenting the equivalent horizontal and uniform upstream ve-
locity.

2.2 Turbine low-dimensional model

Based on Newton’s second law of motion, the wind turbine
is modelled by the following one-dimensional nonlinear dy-
namical model:

J �̇=Ma(�,vx,θ )−Mg. (6)

Here J = 318628138 kgm2 is the total moment of inertia of
the rotating parts, including blades, hub, drivetrain, and gen-
erator, obtained from NREL (2021). The mechanical power
extracted from the rotor by the generator is

Pmech =�Mg, (7)

where Mg denotes the generator torque, and the electrical
power is modelled as

Pel = ηgenPmech, (8)

where ηgen is the generator efficiency; see Table 1. To pro-
duce the rated power of 15 MW, a mechanical power of
15.665 MW is required.

2.3 Generator and blade pitch actuation

From Eqs. (6)–(7), we see that the turbine power generation
is determined by the rotor speed, and the rotor speed may
be controlled by the generator torque and blade pitch angles.
The generator torque is controlled via the power electronics
in the generator (Gao et al., 2021). The power electronics re-
sponse is significantly faster than the dynamics of the model
in Eq. (6), as is the blade pitch actuation. Thus, for control
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design purposes, we disregard these dynamics and treat both
Mg and θ as control inputs that are immediately available
for control actuation. In simulations we assume blade pitch
actuation dynamics; see Sect. 5 for details.

2.4 Control objective and operating points

In this section we detail the control objectives based on
the model in Eq. (6). The steady-state operating points for
�,Mg,Pmech, and θ as functions of the wind speed vx are
shown in Fig. 3, and explained in the following. The rotor
speed reference �ref is to be kept between the minimum and
maximum/rated speeds�min and�rated listed in Table 1. The
reference �ref follows the optimal tip speed ratio λopt when-
ever these constraints allow, leading to the formula

�ref(vx)=max{min{λoptvx/R,�rated},�min}. (9)

Below rated wind speed, the steady-state blade pitch angle
θref is such that the power coefficient is maximized for the
current tip speed ratio; note that when the lower saturation
�min is active, the tip speed ratio is below λopt, and high-
est power coefficient is achieved for positive θ . Above rated
wind speed, θref is such that rated power is achieved, and
hence given by the implicit equation

Pratedη
−1
gen = Pa(�rated,vx,θref(vx)). (10)

The power curve in Fig. 3 is the aerodynamic power achieved
when rotor speed and blade pitch angle follow Eqs. (9) and
(10), i.e.

Pref(vx)= Pa(�ref(vx),vx,θref(vx)). (11)

The generator torque curve in Fig. 3 is

Mg,ref(vx)= Pref(vx)/�ref(vx). (12)

The main goal of the controller is to track these
reference/steady-state values depending on the time-varying
REWS vx .

Peak shaving is a technique to reduce aerodynamic thrust
force peaks by modifying θref (Abbas et al., 2022). Figure 4
shows the original θref and the incurred aerodynamic thrust
force Fa, computed using Eq. (5), as dashed lines. Notice
that a sharp peak occurs around rated rotor speed; this is
because Fa is proportional to v2

x , but significantly declines
as θ increases, as can be seen in Fig. 2. Peak shaving re-
duces this by already actuating blades slightly below rated
wind speed. This reduces power generation. However, thanks
to the flatness of the Cp surface (see Fig. 1) at low θ , this
power sacrifice is relatively small. We limit Fa to Fa,max at
approximately 2 MN. This leads to a minimum pitch sched-
ule θmin(vx), which is obtained by solving

Fa(�ref(vx),vx,θmin(vx))= Fa,max (13)

when a solution exists, and equal to the previously defined
θref otherwise. This θmin, shown in Fig. 4, acts as lower satu-
ration for θ in all our considered controllers.

Figure 3. Desired equilibrium operating points of the model in
Eq. (6) without peak shaving.

Figure 4. Steady-state blade pitch angles (blue) and aerodynamic
thrust forces (red) with peak shaving (solid) and without (dashed),
and minimum pitch schedule θmin (dotted). The dashed blade pitch
angle is the same as in Fig. 3.

2.5 Fatigue loads

Wind turbulence leads to ever-changing stress and strain of
the mechanical components, and ultimately material fatigue.
Lowering these fatigue loads compared to state-of-the-art
controllers is the main objective of the NOR controller pro-
posed in this work. The four principal fatigue loads, illus-
trated in Fig. 5, and the typical highest displacements that
occur under normal operation of the IEA-15MW turbine, are:

1. Tower fore–aft bending moment MyT : in wind direc-
tion, caused by the aerodynamic thrust force of incom-
ing wind.

2. Tower side-to-side bending moment MxT : sideways,
caused by the aerodynamic torque transferred to the
tower.

3. Blade flapwise bending moment MyB : in wind direc-
tion, caused by aerodynamic thrust force.
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4. Main shaft torsion (MST): torsion of the shaft connect-
ing the rotor with the generator.

The blade edgewise bending moment is another important
fatigue load, but it is mostly due to the motion of the blades
under gravity. As this cannot be alleviated by any control ac-
tuation, we do not consider it in our performance compar-
isons.

2.6 Fatigue load analysis

To estimate the material fatigue, rainflow counting and
Miner’s rule are used to calculate a DEL based on the
root moments. As larger load cycles cause disproportion-
ately greater damage, cycle amplitudes are weighted with the
Wöhler exponent and summed. The DEL is calculated as

DEL=

(
T20 years

T nC,ref

K∑
k=1

nkA
m
k

)1/m

, (14)

where T20 years = 631134720 s is the nominal lifespan of the
turbine, 20 years, nC,ref = 2× 106 is a reference number of
cycles, the value was chosen as in Schlipf (2016), T is the
time duration of the load history, K is the number of rain-
flow cycles, Ak is the amplitude of the kth cycle, nk = 0.5 or
nk = 1, depending on whether the kth cycle is a half cycle or
full cycle, m is the Wöhler exponent. Empirically found val-
ues of m= 4 for welded steel (tower material) and m= 10
for fibreglass (blade material) are customary (Schlipf, 2016).
The interpretation of Eq. (14) is that two million cycles with
the DEL as amplitude cause the same damage as the recorded
load history, if it is repeated over the nominal lifespan of
20 years.

DELs from simulations at different mean wind speeds are
combined according to the Weibull distribution in Fig. 6 to
obtain a lifetime DEL estimate. This figure shows a his-
togram obtained from 10 min mean wind speeds measured
in Bremerhaven, Germany in the winter of 2009 (Schlipf,
2016).

The lifetime DEL is a mean of the DELs from the indi-
vidual simulations, weighted with the probability from the
Weibull distribution and the Wöhler exponent.

Due to the high Wöhler exponents, the material fatigue
mostly comprises a few large cycles, rather than many small
cycles. The highest peaks and lowest valleys have a large
influence on the DEL. This means that the transition per-
formance between Regions 2 and 3 is crucial, because that
is where the highest aerodynamic thrust occurs, as noted in
Sect. 2.5. Wind turbulence naturally leads to a lot of fluctua-
tion in the bending. The aim of our controller design will be
to reduce these fluctuations, while still generating maximum
power. This will be achieved by smooth yet firm control ac-
tion to make the peaks and valleys less extreme and avoid ex-
citation of natural frequencies. This requires real-time wind
speed estimation, which is discussed in the next section.

3 Wind speed estimation

In this section we discuss the two approaches to wind speed
estimation that are employed in our simulations. The first
approach uses data available from the turbine’s SCADA
to compute the REWS. Many such model-based estimation
techniques have been proposed in the wind energy research
community. (Soltani et al., 2013) present a comprehensive
list of REWS estimators until 2013, and compare them in
simulations and field tests. There, the I&I estimator was
found to be among the best performance-wise, while be-
ing the simplest to implement. It was recently employed in
(Woolcock et al., 2023).

Second, we briefly describe wind speed estimation ob-
tained from lidar measurements.

3.1 I&I estimator

I&I was first introduced in Astolfi and Ortega (2003) as a
tool for stabilization and adaptive control of nonlinear sys-
tems; also see Astolfi et al. (2008). In Liu et al. (2009) these
ideas were adapted for parameter identification of nonlinear
systems. The premise here is that a nonlinear system depends
on an unknown constant parameter. Based on monotonicity,
the I&I estimator converges to that parameter. In Ortega et al.
(2011) and Ortega et al. (2013) this technique was applied
to wind speed estimation in wind turbines. The wind speed
is naturally time-varying, but still treated like the constant
unknown parameter. This is suitable, as long as the dynam-
ics of the observer is significantly faster than changes of the
REWS.

The general formulation of the I&I estimator based on Or-
tega et al. (2013) is:

– Proposition 1. Consider the system

ẋ = F (t)+8(x,ξ ), (15)

where x(t) ∈ R, the function F (t) and the mapping 8 :
R×R→ R are known, and ξ ∈ R is a constant unknown
parameter. Assume that there exists a smooth mapping
β : R→ R such that the parameterized mapping

Qx : R→ R, ξ 7−→ β ′(x)8(x,ξ )

is strictly monotonically increasing. Then the I&I esti-
mator
˙̂
ξ I =−β ′(x)

(
F (t)+8

(
x, ξ̂ I +β(x)

))
, (16)

ξ̂ = ξ̂ I +β(x) (17)

is asymptotically consistent. That is,

lim
t→∞

ξ̂ (t)= ξ (18)

for all
(
x(0), ξ̂ I (0)

)
∈ R×R and F (t) such that(

x(t), ξ̂ (t)
)

exist for all t ≥ 0.
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Figure 5. Visualizations of principal fatigue loads. Tower fore–aft and blade flapwise bending are mainly a result of aerodynamic thrust
force, while tower side-to-side bending and MST are mainly caused by aerodynamic torque.

Figure 6. Weibull distribution adapted from Schlipf (2016, Fig. 2.9)
based on mean wind speeds recorded in Bremerhaven at a reference
height of 102 m, with scale parameter λ and shape parameter k.

In Ortega et al. (2011) and Ortega et al. (2013) the I&I
estimator is applied to the wind turbine dynamics in Eq. (6),
except only Region 2 is being considered. The generalization
to both Region 2 and 3 is immediate. The identification of
variables in Eq. (15) is as follows:

1. x :=� is the rotor speed, ξ := vx is the REWS, and
ξ̂ := v̂x , ξ̂ I = v̂Ix .

2. F (t) := −Mg(t)/J is the acceleration of the rotor from
the generator, and 8(x,ξ ) :=Ma(�,vx,θ )/J is the ac-
celeration caused by aerodynamic torque.

3. β(x) := κx for a design parameter κ > 0.

A diagram of the I&I estimator is shown in Fig. 7. To under-
stand why the estimator works, consider the combined dy-
namics of the turbine and observer, which are

�̇=
1
J
Ma(�,vx,θ )−

1
J
Mg, (19)

˙̂vIx =
κ

J

(
Mg−Ma(�,v̂x,θ )

)
, (20)

v̂x = v̂
I
x + κ�, (21)

leading to

˙̂vx = ˙̂v
I
x + κ�̇=

κ

J

(
Ma(�,vx,θ )−Ma(�,v̂x,θ )

)
. (22)

Now the need for the monotonicity assumption becomes
apparent: If, assuming constant � and θ , the function
Ma(�,vx,θ ) is strictly monotonically increasing in vx , then
v̂x converges to vx . The term v3

x in the aerodynamic torque is
monotonically increasing. However, vx also appears in Ma
through the tip speed ratio and the power coefficient. For
very high or low tip speed ratio the power coefficient drops
rapidly, which can cause Ma(�,vx,θ ) to decrease as vx in-
creases. In Ortega et al. (2011) and Ortega et al. (2013) suffi-
cient conditions for monotonicity of the aerodynamic torque
within a certain range are given. In all simulations conducted
for this paper the I&I estimator was stable, indicating that un-
der typical operating conditions the monotonicity is fulfilled.
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Figure 7. Overview of the I&I estimator based on Eqs. (20) and (21), with gain scheduling described in Sect. 3.1.1. Inputs are the blade
pitch angle θ , rotor speed � and generator torqueMg. The output is the wind speed estimate v̂x . Blue boxes mean that a (nonlinear) function
is applied, where Ma(�,vx ,θ ) is the aerodynamic torque as in Eq. (4). Green triangles are gains, and × indicates multiplication of signals.

3.1.1 Gain-scheduling of I&I estimator

Due to the nonlinearity of the aerodynamic torque, the I&I
estimator with constant gain κ would have different time con-
stants at different operating points. To counteract this, κ is
adapted depending on the current wind speed estimate. Let κ̃
be the desired I&I cut-off frequency, and let

α :=
∂

∂vx
Ma(�,v̂x,θ ) (23)

be the sensitivity of the aerodynamic torque with respect to
wind speed at the current rotor speed, wind speed estimate,
and blade pitch angle. The unfiltered I&I gain is then

κunfiltered = κ̃Jα
−1. (24)

This is passed through a low-pass filter (LPF) with long
(slow) time constant to yield κ , in order to avoid harmful
contributions of the gain-scheduling to the estimator dynam-
ics.

3.2 Lidar wind speed estimation

Lidar uses infrared light and the Doppler effect to measure
the horizontal wind speed vx at a number of evenly dis-
tributed points on a circular cross-section of the wind field at
the focal distance from the rotor plane (Schlipf et al., 2023).
Spatial averaging is applied to the wind speeds at each point
to estimate vx at the focal distance from the turbine blades.
Our inclusion of the lidar estimate into the controller follows
Fu et al. (2023); also see Schlipf (2016). The raw lidar signal
is passed through a first-order LPF with transfer function

Glidar(s)=
ωlidar

s+ωlidar
(25)

with cutoff frequency ωlidar, which is where the filter gain
is −3 dB, and where s is the complex frequency. Then, the
filtered signal is buffered to synchronize it with the REWS
at the rotor. The corresponding time delay is calculated us-
ing the lidar lead time Tlead =1x/vx , where 1x is the lidar
measurement distance and vx the mean wind speed, the aver-
age lidar measurement time (half of the full scan time Tscan),
and the time delays Tfilter and Tpitch caused by the LPF and
pitch actuation:

Tbuffer =max(Tlead− Tscan/2− Tfilter− Tpitch,0). (26)

The filter time delay can be approximated as Tfilter = 1/ωlidar;
see Fu et al. (2023, Eq. 30) for a more detailed approach. See
Sect. 5 for the exact values used in our simulations.

3.3 Averaging of I&I and lidar estimates

We propose to use an average of I&I and lidar estimates,
v̂x = (v̂x,I&I+ v̂x,lidar)/2, where the buffer time in Eq. (26)
is modified to

Tbuffer =max(Tlead− Tscan/2− Tfilter− 2Tpitch− TINI,0), (27)

with TINI = κ̃ being the time delay caused by the I&I estima-
tor (see Sect. 3.1.1). This means that the buffered lidar esti-
mate is ahead of REWS by the same time the I&I estimate is
lagging behind, therefore their average, accounting for pitch
actuation delay, is on time with the REWS at the rotor. The
procedure is illustrated in Fig. 8. Conceptually, we expect
the average estimate, which we denote with the acronym
I&I+lidar, to be more accurate than the individual signals, as
data from different sources are combined. It is reasonable to
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Figure 8. Comparison between wind speed estimates; REWS calculated as weighted cubic mean of the wind field (Schlipf, 2016, Sect. 3.4.2)
(blue), lidar signal passed through the LPF in Eq. (25) (red), filtered lidar signal buffered by Eq. (26) to be Tpitch ahead of REWS (yellow),
filtered lidar signal buffered by Eq. (27) to be 2Tpitch+TINI ahead of REWS (purple), I&I estimate (green), and final I&I+lidar estimate, i.e.
the average of the purple and green estimates (light blue).

assume that high-frequency noise between I&I and lidar sig-
nals is stochastically independent, hence the I&I+lidar sig-
nal has lower variance. This smoother wind speed estimate is
expected to cause smoother control actuation, which reduces
pitch travel as well as peak loads and ultimately material fa-
tigue. This is verified by simulations in Sect. 5. Furthermore,
we test a weighted average v̂x = (1−α)v̂x,I&I+αv̂x,lidar,

where α ∈ [0,1] is the share of lidar. The buffer time is then
modified to

Tbuffer =max(0,Tlead− Tscan/2− Tfilter

−α−1Tpitch−α
−1(1−α)TINI), (28)

which is designed to guarantee synchronicity between v̂x and
the actual REWS for linear flanks and coincides with the
value in Eq. (26) in the all-lidar case of α = 1.

4 Wind turbine control methodologies

In this section we describe the control methodologies that
will be compared in our simulations. We first introduce the
novel Nonlinear Output Regulation (NOR) controller and
its combinations with I&I and lidar REWS estimators. As
a benchmark for performance comparisons we then briefly
describe the ROSCO controller of Abbas et al. (2022), first
in its standard feedback-only form and then as LAC with a
blade pitch feedforward as in, e.g. Fu et al. (2023), for which
we write ROSCO+LPFF. We include ROSCO+LPFF in our

simulations to show that NOR+I&I+lidar’s performance is
not only superior to ROSCO (which is expected due to the
use of more information), but also an existing LAC method
that uses the same information as NOR+I&I+lidar. Finally,
we compare the controllers from a conceptual perspective,
before the rest of the paper is dedicated to performance com-
parisons through simulations.

4.1 NOR with wind speed estimates

In the following a simple nonlinear wind turbine controller
is proposed. The aim is to regulate the turbine rotor speed
for Region 2 and 3 power generation, and hence we describe
it as NOR control. The controller requires a REWS estimate
v̂x that can be the output of any of the estimators in Sect. 3.
Figure 9 shows the closed-loop setup with the I&I estimator,
for which we adopt the acronym NOR+I&I. Integration of
lidar estimates is discussed in Sect. 4.1.1.

Design is based on the one-dimensional model for rotor
speed dynamics in Eq. (6), i.e.

J �̇=Ma(�,vx,θ )−Mg, (29)

where Mg and θ are control inputs and vx an exogenous dis-
turbance. The rotor speed reference �ref is similar to that in
Eq. (9), but using the wind speed estimate v̂x in place of the
unknown vx , i.e.

�ref =max
(

min
(
λoptv̂x

R
,�rated

)
,�min

)
. (30)
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Figure 9. Overview of the NOR+I&I closed loop. � and �f are unfiltered and filtered rotor speed, Mg is generator torque, θc is blade
pitch control, θ is blade pitch angle after the actuation dynamics, and v̂x is the wind speed estimate. See Fig. 7 for the I&I estimator and
Algorithm 1 for the NOR controller. The “Rotor speed reference” and “pitch saturation” blocks apply the functions�ref in Eq. (30) and θmin
in Fig. 4, respectively. Yellow blocks are LPFs.

The idea of the NOR controller is that, if v̂x = vx , the rotor
speed shall follow the desired closed-loop dynamics:

�̇= µ(�ref−�), (31)

where µ > 0 is a design parameter. Multiplying this with J
and combining it with Eq. (29) leads to the equation

Ma(�,vx,θ )−Mg = Jµ(�ref−�), (32)

which the controller must satisfy at all times. As θ is fixed
to θmin in Region 2 and Mg is constrained in Region 3, NOR
chooses the remaining free control variable (that is, Mg in
Region 2 and θ in Region 3) depending on � and v̂x such
that Eq. (32) holds, and switches between the regions when
required. This leads to the control law given in Algorithm 1,
which is further explained in the following. For this explana-
tion we disregard the rotor speed LPF and blade pitch actua-
tion dynamics, i.e. assume �f =� and θ = θc.

The parameter ϕ ∈ [0,1] indicates whether the controller
in Region 3 is designed to track rated torque, rated power, or
a combination of these. By Eq. (35), ϕ = 1 leads to constant
torque Mg =Mrated, and ϕ = 0 leads to constant power by
Mg = Prated/�. In all subsequent simulations ϕ = 1 is used.
The minimum pitch schedule θmin is as in Fig. 4.

This controller regulates rotor speed in Region 2 using the
generator torque, by compensating aerodynamic torque and
adding a feedback term based on the desired closed-loop dy-
namics (see Eq. 34, note the similarity to Eq. 32). If the gen-
erator torque control in Eq. (34) were to exceed rated torque
(if ϕ = 1) or rated power (if ϕ = 0), i.e. the inequality in the
if-condition is not satisfied, then the else-branch representing
Region 3 control applies. Then, Eq. (36) has a unique solu-
tion θ that is at least θmin(v̂x), as detailed in Remark 1 below.
By substituting θ and Mg (from either region) into Eq. (29),
it can be seen that the closed loop follows Eq. (31) if the wind
speed estimate is perfectly accurate, i.e. v̂x = vx , as intended.

Algorithm 1 Nonlinear output regulation (NOR) controller.

Inputs: wind speed estimate v̂x , low-pass filtered rotor speed
�f
Outputs: generator torque Mg, blade pitch angle control θc
if
Ma(�f , v̂x ,θmin(v̂x ))+ Jµ(�f −�ref)≤ ϕMrated+
(1−ϕ)Prated

�f
then
(Region 2 / below-rated operation)

θc← θmin(v̂x ) (33)

Mg←Ma(�f , v̂x ,θmin(v̂x ))+ Jµ(�f −�ref) (34)

else
(Region 3 / above-rated operation)

Mg← ϕMrated+ (1−ϕ)Prated/�f (35)

solve Mg =Ma(�f , v̂x ,θc)+ Jµ(�f −�ref) for θc (36)

endif

– Remark 1. Existence and uniqueness of a solution θ >
θmin(v̂x) of Eq. (36) is due to the intermediate value the-
orem and monotonicity. Indeed, Ma(�,v̂x,θmin(v̂x))−
Mg > Jµ(�ref−�) in Region 3, which means that θmin
would give higher aerodynamic torque than Eq. (36) de-
mands. For high blade pitch angles the power coefficient
becomes zero or even negative. In between, due to con-
tinuity of the Cp surface and the intermediate value the-
orem, a solution exists. This solution is unique since,
for any relevant tip speed ratio, the power coefficient
is monotonically decreasing in θ when θ > θmin. This is
not directly obvious; for example, for a tip speed ratio of
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4, the maximum power coefficient is attained at approx-
imately 5.8°, meaning that there are potentially two so-
lutions for θc above and below that. However, θmin from
peak shaving is always way above this threshold (then
approximately 15°), thus restricting it to the higher, then
unique, pitch angle. If, despite this, the solution is not
unique at times (perhaps due to unusually high or low
rotor speeds), then the larger of the two solutions should
be chosen.

The NOR controller performs a smooth transition between
Regions 2 and 3, meaning that θ andMg do not jump. Indeed,
at the time of region switching it holds that

Ma(�,v̂x,θmin(v̂x))+ Jµ(�−�ref)

=ϕMrated+ (1−ϕ)
Prated

�
, (37)

under the assumption that all the signals are continuous in
time. The torque controls in Eqs. (34) and (35) in Regions 2
and 3 are the left- and right-hand side of that equation and
therefore coincide. Furthermore, the solution of Eq. (36) is
then θmin(v̂x), and indeed equal to Eq. (33).

NOR+I&I’s design parameters are the gains κ̃ and µ. In-
creasing them improves rotor speed tracking at the cost of
higher actuator usage. Different values may be chosen de-
pending on mean wind speed, or gain-scheduling may be
applied. Furthermore, the maximum aerodynamic thrust in
Eq. (13) that generates θmin for peak shaving can be adjusted
to trade off thrust related DELs (i.e. tower fore–aft and blade
flapwise DELs) and power sacrifice.

NOR+I&I compensates model errors in the Cp surface
(that NOR heavily relies upon) without the need of an in-
tegrator in the controller. Intuitively, this is because, since
I&I and NOR use the same Cp surface, any over- or under-
estimation of REWS by the I&I estimator has the opposite
effect in the NOR controller, thus cancelling out errors. In
fact, suppose the power coefficients are assumed too high,
then the I&I estimator overestimates the aerodynamic torque
caused by any given wind speed. This leads it to underesti-
mate the wind speed based on the actual aerodynamic torque
the rotor experiences. The NOR controller now works with
an underestimated wind speed estimate and an overestimated
Cp surface. These two effects compensate in the aerodynamic
torque formula (Eq. 4). The NOR controller then choosesMg
in Eq. (34) and θc in Eq. (36) to balance out the actual aero-
dynamic torque and thereby avoids persistent tracking errors.
This is mathematically proven in Appendix A.

– Remark 2. The NOR controller is a nonlinear and sim-
plified version of the EOR controller of Mahdizadeh
et al. (2021); Woolcock et al. (2023), which is a lin-
ear control methodology that constructs exosystems to
model low-order approximate wind speed dynamics and
uses them to generate pitch and torque feedforwards
which, in theory, regulate rotor speed under changing

Figure 10. Section of Fig. 9, with the addition of lidar.

wind speed and account for shaft torsion and blade pitch
actuation dynamics. We found, however, that neglecting
shaft torsion and blade pitch actuation dynamics does
not lower performance. This simplification allows the
nonlinear approach of NOR which foregoes the need for
linearization, gain scheduling, and exosystems, and also
enables the smooth switching between Regions 2 and 3.
The NOR controller can be seen as a to-the-best-of-our-
knowledge novel version of DAC.

4.1.1 Lidar inclusion into the NOR controller

When lidar or I&I+lidar is used instead of just the I&I es-
timator, a mean correction should be applied to the (filtered
and buffered) lidar estimate as shown in Fig. 10. Otherwise,
errors in the Cp surface lead to persistent discrepancies in
rotor speed and power tracking. The mean correction en-
sures that the combination of estimator and controller ben-
efits from the error correction phenomenon mentioned above
for NOR+I&I and detailed in Appendix A. To achieve this
mean correction, the difference between I&I and lidar esti-
mates is passed through a slow LPF (where the time constant
should be at least a minute) and then added back onto lidar.
The resulting signal has the high-frequency content of lidar
and low-frequency content of the I&I estimate.

– Remark 3. When we simulated NOR+I&I+lidar with-
out this mean correction, a significant discrepancy of
approximately 5 % to 10 % in Region 3 average power
generation occurred, indicating that the mean correction
is essential. The reason for the discrepancy was proba-
bly due to biases in the Cp surface. Note that our simu-
lations use the high fidelity OpenFAST model, so a dif-
ference between the modelled Cp surface and the ac-
tual behaviour in simulations is expected. In Sect. 6 we
see that NOR+I&I(+lidar) in our simulations very accu-
rately tracks rated rotor speed and rated power in Region
3 on average without a constant offset. This indicates
that the bias correction for the Cp surface detailed in
Appendix A and the mean correction introduced above
indeed work in practice.
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4.2 ROSCO

To compare the performance of the NOR controller, we use
ROSCO, the state-of-the-art modular reference wind turbine
controller that was shown to perform comparably to, or better
than, previous reference controllers in Abbas et al. (2022).
Figure 11 shows an overview of the ROSCO setup used in
this paper. The components are explained in the following;
see Sect. 5 for tuning.

– Wind speed estimator. A REWS estimate is used to de-
termine rotor speed reference and minimum blade pitch
angles. In our simulations we use ROSCO’s default Ex-
tended Kalman Filter.

– Torque and blade pitch PI controllers. For the genera-
tor torque and blade pitch angle controls, independent
SISO PI controllers, i.e.

Mg =K
g
P (�g

ref−�f )+Kg
I

∫
(�g

ref−�f ) dt, (38)

θc =K
θ
P (�θref−�f )+Kθ

I

∫
(�θref−�f ) dt, (39)

are used. To account for nonlinearity of the aerodynamic
torque, the blade pitch controller is gain-scheduled. De-
tails on that can be found in Appendix B. The generator
torque control is saturated at rated torque (this usually
occurs in Region 3). The blade pitch angle control is
saturated to be at least a certain minimum blade pitch
angle (this usually occurs in Region 2 and around rated
wind speed), details are further below.

– Reference signal and set point smoothing. The rotor
speed reference �g

ref for the generator torque controller
is based on Eq. (9), i.e. optimal tip speed ratio satu-
rated between minimum and rated rotor speed. The ro-
tor speed reference �θref for the blade pitch controller
is based on rated rotor speed. To ensure proper re-
gion switching, these values are modified by a set point
smoothing technique. A correction term

1�=

[(
θ − θmin

θmax

)
kvs−

(
Mg,rated−Mg

Mg,rated

)
kpc

]
�rated (40)

with design parameters kvs and kpc is computed. If it is
positive, it is subtracted from the torque control refer-
ence, and if negative, subtracted from the pitch control
reference instead. In view of Fig. 11,

1�+ =max{1�,0}, �
g
ref =�ref−1�

+, (41)

1�− =min{1�,0}, �θref =�rated−1�
−. (42)

Set point smoothing ensures that most of the time one
of the controllers is saturated.

– Saturations. Generator torque is saturated with rated
torque as upper limit. Blade pitch commands are sat-
urated with θmin as lower limit (see Fig. 4) for power
maximization at low wind speeds and peak shaving.

– Additional filters. Generator speed, as well as the wind
speed estimate going into the pitch saturation, are low-
pass filtered, to lessen the effect of measurement errors
and reduce control actuation.

4.3 ROSCO with lidar-assisted feedforward pitch
control (ROSCO+LPFF)

Augmenting conventional feedback controllers like ROSCO
with lidar-based pitch feedforward, originally referred to as
LAC, can significantly improve performance; see, for exam-
ple, Schlipf (2016); Fu et al. (2023). Following the design of
Fu et al. (2023) and references therein, a feedforward blade
pitch angle is computed as

θFF = θref(v̂x,lidar), (43)

where θref is the steady-state pitch curve defined in Eq. (10),
also see Fig. 3, and v̂x,lidar is the REWS estimate obtained
from lidar as in Sect. 3.2. For reasons detailed in Schlipf
(2016), θFF, instead of directly being added to the feedback
terms in Eq. (39), is differentiated and added before the in-
tegrator, leading to the following pitch control law to replace
Eq. (39):

θc =K
θ
P (�θref−�f )+

∫ (
Kθ
I (�θref−�f )+ θ̇FF

)
dt. (44)

All other components of the ROSCO+LPFF controller in our
study are the same as ROSCO.

4.4 Comparison between NOR+I&I and ROSCO

We briefly compare NOR+I&I and ROSCO from a con-
ceptual point of view. Note that NOR+I&I, even though it
uses v̂x as feedforward, is still a feedback controller (like
ROSCO), because the I&I estimator computes v̂x from plant
outputs. The first-order plant dynamics in Eq. (29), NOR
(which uses a static control law with no internal states) and
the first-order I&I dynamics in Eq. (22) lead to a second-
order combined closed-loop, similar to the second-order dy-
namics that ROSCO is designed for. In Appendix B we
provide a theoretical comparison between these two closed
loops via linearization. This enables conversion of the tuning
choices for the design parameters, in particular the propor-
tional and integral gains of ROSCO to µ and κ̃ of NOR+I&I
and conversely. We use this procedure to tune NOR+I&I
based on ROSCO’s tuning; see Sect. 5 for details. This anal-
ysis identifying the linearized closed loops only works in Re-
gions 2 and Region 3 in isolation, and does not take into
account the region switching. Here lies one of the differ-
ences between NOR and ROSCO; while ROSCO employs
set-point smoothing to avoid harmful interference between
its two SISO loops, NOR by design transitions seamlessly
between the regions. This, together with the direct inclusion
of the wind speed estimate v̂x , allows effective use of lidar
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Figure 11. Overview of the ROSCO simulation setup. Rotor speed regulation is achieved by two SISO PI controllers, where saturations and
set point smoothing avoid conflict between them. Yellow blocks are LPFs.

preview information in both regions. In particular, the region
switching is enhanced by lidar, whereas the ROSCO+LPFF
in Sect. 4.3 only uses lidar feedforward in Region 3. In fact,
our simulation results in Sect. 6 show that NOR+I&I+lidar
provides superior performance to ROSCO+LPFF particu-
larly when switching regions. Finally, NOR permits direct
inclusion of peak shaving and pitch actuation at low wind
speeds into the control design through θmin, whereas ROSCO
applies it as a saturation after the blade pitch controller. The
difference is then that the torque controller of NOR is “in-
formed” of these blade pitch changes, whereas ROSCO’s
torque controller is not.

5 Turbine simulation environment and tuning

Here we describe the various components of our simulation
environment for testing the performance of the ROSCO and
NOR controllers.

– Turbine and wind simulation. We used OpenFAST
(NREL, 2019) as our turbine simulator on the IEA
15 MW reference turbine in the fixed-bottom monopile
configuration (Gaertner et al., 2020). Full-field wind
signals of length 120 min with mean wind speeds be-
tween 5 and 20 ms−1 (at hub height) were generated
with TurbSim using the parameters listed in Table 2.

– Lidar simulation. We employed the simulation toolbox
given in Schlipf et al. (2023); Guo et al. (2023) using
the nacelle-mounted Molas NL400 lidar system with
four measuring points. We adopted the measurement
distance and opening angle that were found in Fu et al.
(2023) to maximize coherence between the processed li-
dar estimate and actual REWS for this type of lidar sys-
tem, listed in Table 3. Furthermore, we adopt the same

parameters for the filtering and buffering as in Fu et al.
(2023). For simplicity we adopted Taylor’s frozen wind
hypothesis, meaning that the wind field was assumed
not to evolve between the focal point and the blades,
and hence the wind evolution component of the toolbox
was not used. This hypothesis is appropriate for rela-
tively flat terrain where geological features do not inter-
act with the air flow between the measurement point and
blades. Blade blockage of the lidar beam is neglected.

– ROSCO implementation. ROSCO is applied with peak-
shaving and set point smoothing using the default pa-
rameters for the IEA 15MW reference turbine, listed in
Table 4. We simulate both the feedback-only form of
ROSCO introduced in Sect. 4.2 and the ROSCO+LPFF
modification introduced in Sect. 4.3.

– NOR tuning. We choose κ̃ and η depending on mean
wind speed. The NOR controller is tuned based on the
tuning choices of ROSCO according to Eqs. (B19) and
(B20) in Appendix B, which results in NOR+I&I and
ROSCO having the same linearized closed-loop dynam-
ics. This gives κ̃ = η = 0.12 s−1 for below-rated mean
wind speed, and κ̃ = η = 0.2 s−1 above rated. To create
a transition, we keep κ̃ and η constant in each simulation
based on the mean wind speed, with values of 0.12 up
to 8.59 ms−1, and then increasing linearly to 0.2 from
12.59 ms−1. Peak shaving is built into the NOR con-
troller as outlined in Sect. 4.1.

– Additional filters. To model blade pitch actuation, a
second-order LPF with undamped natural frequency
π/2 rads−1 and damping factor 0.7 is included be-
tween the blade pitch angle output of the controllers
and the blade pitch angle input of OpenFAST. The fol-
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lowing LPFs, as indicated in Fig. 9, and with param-
eters listed in Table 5, are used: In ROSCO, the ro-
tor speed measurement is by default passed through a
second-order LPF. The wind speed estimate, that min-
imum blade pitch angles are computed with, is passed
through a first-order LPF. For the sake of comparability,
the same filters are used for NOR. Finally, the variable
gain of the gain-scheduled I&I estimator is filtered with
a first-order LPF, to avoid harmful effects of the gain-
scheduling on the dynamics.

– Performance metrics. For each controller and each of
the 16 mean wind speeds, eight performance metrics are
computed as follows from simulation data in the time
interval between tstart = 300 s and tend = 7200 s:

– The average power generation,

– four metrics relating to the turbine fatigue loads,
which are the tower fore–aft and side-to-side DELs
based on root moments, with Wöhler exponent 4;
the average of the three blade flapwise DELs based
on root moments, with Wöhler exponent 10, and
the MST DEL based on rotor torque, with Wöhler
exponent 4.

– The average pitch rate as a measure for pitch actu-
ator wear:

1
tend− tstart

tend∫
tstart

|θ̇ (t)|dt.

– The root-mean-square (RMS) error between ro-
tor speed �(t) and �rated, but only accounting for
above-rated wind speeds, i.e.

1
tend− tstart

√√√√√ tend∫
tstart

α(vx(t))(�(t)−�ref(v̂x(t)))2 dt,

where α(vx)= 1 whenever vx > vrated and 0 oth-
erwise, and vx being calculated as weighted cubic
mean of the wind field at the rotor (Schlipf, 2016,
Sect. 3.4.2).

– The maximum rotor speed.

With the exception of the average power generation, a
smaller measure indicates superior performance in all
cases.

For the DELs, we computed lifetime weighted means
across all wind speeds according to Wöhler exponent and a
Weibull distribution as described in Sect. 2.6. Because the
Weibull distribution in Fig. 6 models wind speeds at a ref-
erence height of 102m, we scale up the distribution accord-
ing to the power law with exponent 0.2 to a reference height

Table 2. TurbSim parameters.

Duration 2 h
Turbulence class B
Turbulence model IECKAI
Power law exponent default
Time step 0.25 s
number of grid points in vertical direction 33
number of grid points in horizontal direction 33
hub height 150 m
grid height 250 m
grid width 250 m

Table 3. Parameters of the lidar measuring system and data pro-
cessing.

Measurement distance 220 m
Opening angle 15°
Scan time Tscan 0.25 s
Lidar LPF ωlidar 0.1467 rads−1

Lidar LPF delay Tfilter 6.7067 s
Pitch actuation delay Tpitch 0.9 s

of 150m, resulting in a new scale parameter of 8.33 ms−1.
For average power and pitch rate we calculate the arithmetic
mean weighted with Weibull distribution, for RMS error the
quadratic mean weighted with Weibull distribution, and for
maximum rotor speed the maximum across all wind speeds.

6 Performance results and comparisons

– Overview. The results of our turbine simulations com-
paring feedback-only ROSCO, ROSCO+LPFF and
NOR+I&I+lidar are shown for individual mean wind
speeds in Fig. 12 and averaged across all wind speeds
in Table 6. See Fig. 13 for a 3 min time series that illus-
trates how NOR+I&I+lidar achieves fatigue load reduc-
tion. Fig. 14 illustrates the effects of different weight-
ings between I&I and lidar. The results are discussed in
the following.

– Lifetime fatigue loads. Figure 12 shows that
NOR+I&I+lidar achieves significant reductions in
tower fore–aft DELs for above-rated mean wind
speeds compared to both ROSCO and ROSCO+LPFF.
However, highest tower DELs occur at low wind
speeds due to resonance between the monopile of the
IEA15MW model, which has a natural frequency of
approximately 1.5 rads−1, and the 3P frequency of the
rotor at 5 rpm. In particular the side-to-side bending is
very lightly damped, leading to large random variation
in the DEL across simulations, which explains the spike
of NOR+I&I+lidar at 6 ms−1. For a turbine model
where resonance between monopile and 3P does not
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Figure 12. Performance comparisons between feedback-only ROSCO (blue), ROSCO with lidar pitch feedforward (red) and NOR+I&I+lidar
with equal weighting from 2 h simulations at each wind speed on the IEA 15 MW turbine.

occur, NOR+I&I+lidar would achieve more significant
tower fore–aft lifetime DEL reduction compared to
ROSCO and ROSCO+LPFF than listed in Table 6.
NOR+I&I+lidar achieves a significant blade flapwise
lifetime DEL reduction of 6.68 % over ROSCO,
whereas ROSCO+LPFF slightly increases it, mostly
due to its performance near rated wind speed. Based on
Eq. (14) with Wöhler exponent 10, a DEL reduction of

6.68 % corresponds to an increase in lifespan of 99.6 %,
i.e. almost doubling it.

– Lifetime actuator usage. While the lidar feedforward
in ROSCO+LPFF causes increased pitch rate com-
pared to ROSCO, NOR+I&I+lidar achieves a substan-
tial reduction across all wind speeds. Compared to
ROSCO+LPFF, NOR+I&I+lidar reduces pitch rate by
more than 40 %. This significantly reduces wear on the
pitch actuation system. The reduction in pitch rate does
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Figure 13. Comparison between feedback-only ROSCO (blue), ROSCO with lidar pitch feedforward (red), and NOR using the average
between I&I and lidar estimates (yellow). Shown is a 3 min interval of the simulation at mean wind speed 12 ms−1. The minimum pitch
commands θmin are due to peak shaving. Notice how at 740 and 840 s NOR+I&I+lidar uses the lidar preview information in Region 2 to
increase generator torque sooner than ROSCO and ROSCO+LPFF. This reduces subsequent blade pitch peaks in Region 3 at 760 and 850 s,
which in turn reduces the drop in tower base for-aft and blade root flapwise bending moments, and ultimately reduces DELs. Also note
how blade pitch and generator torque controls are overall less oscillatory for NOR+I&I+lidar compared to ROSCO and ROSCO+LPFF. The
different region switching behaviour can be observed as well: Where ROSCO’s set point smoothing creates short transitional windows in
which both or neither the minimum blade pitch and maximum generator torque saturations are active, NOR always activates exactly one.

not come at the cost of power generation and rotor speed
tracking performance compared to ROSCO+LPFF. The
pitch rate reduction is mainly due to the averaging
of I&I and lidar estimates, which creates a smoother
feedforward signal with less high-frequency content.
Fig. 13 confirms that the blade pitch commands of
NOR+I&I+lidar are much more steady and less oscil-
latory than those of ROSCO and ROSCO+LPFF.

– Results at 18 m s−1. Table 7 compares the DELs at a
mean wind speed of 18 ms−1, including the results re-
ported in Fu et al. (2023) for ROSCO+LPFF using a
four-beam continuous wave lidar with the same tuning
and turbine model as in our study. Our study has repli-
cated the performance numbers in Fu et al. (2023) quite
closely. They are not identical due to differences in the
wind field, where Fu et al. (2023) consider an evolving
field whereas we assume Taylor’s frozen wind hypothe-
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Figure 14. Comparison of different weightings of I&I and lidar for the NOR controller (see Sect. 3.3), with α = 0 (left) to α = 1 (right). The
optima are marked for each performance criterion.

Table 4. ROSCO design parameters.

Variable speed closed-loop frequency ωg
des 0.12 rads−1

Variable speed closed-loop damping ζ g
des 1

Pitch control closed-loop frequency ωθdes 0.2 rads−1

Pitch control closed-loop damping ζ θdes 1
Set point smoothing variable speed gain kvs 1
Set point smoothing pitch control gain kpc 10−3

Set point smoothing max. blade pitch angle θmax 30°

Table 5. Additional LPF parameters. The frequencies refer to the
−3 dB cutoff frequencies.

Generator speed 2nd-order LPF frequency 1.008 rads−1

Generator speed 2nd-order LPF damping 0.7
Wind speed 1st-order LPF for pitch saturation 0.21 rads−1

I&I variable gain 1st-order LPF 0.033 rads−1

sis, and different simulation runtimes. NOR+I&I+lidar
achieves approximately twice the reduction in tower
fore–aft and blade flapwise DELs of ROSCO+LPFF
over ROSCO at this wind speed, while being only
slightly worse on rotor speed tracking. This shows that
NOR+I&I+lidar’s improvements over ROSCO+LPFF
are not only due to the use of lidar in both regions
rather than just Region 3; even in Region 3 in isolation
NOR+I&I+lidar is superior.

– Weighting of I&I and lidar. Figure 14 confirms that the
averaged I&I and lidar estimate yields much better per-
formance than when only the individual I&I or lidar sig-
nals are used for NOR. Lowest rotor speed RMS error
is achieved when weighting I&I slightly more, whereas
blade flapwise DEL benefits from higher lidar contribu-
tion. The fact that tower fore–aft DEL is lowest at full
lidar is probably an unexpected side effect of the de-
terioration in rotor speed tracking (which leads to less
resonance between tower bending and the 3P rotor fre-
quency) and should therefore be disregarded. An equal
weighting realizes a good trade-off between all crite-
ria. Presumably, this is because an equal weighting pro-
duces the most accurate wind speed estimate with the
lowest variance and least high-frequency content. Note,
however, that under different tuning choices for the li-
dar LPF and I&I estimator the optimal weighting may
change.

– Interpretation of performance improvements. We iden-
tify the following two main reasons for the superior
performance of NOR+I&I+lidar. The first is NOR’s
unified design approach and seamless transition be-
tween Regions 2 and 3, which is particularly enhanced
by lidar. This is indicated by the significant improve-
ments NOR+I&I+lidar achieves over ROSCO+LPFF
near rated wind speed as shown in Fig. 12, with
ROSCO+LPFF even performing worse than ROSCO on
tower fore–aft and blade flapwise DELs. We saw in
Fig. 13 that NOR+I&I+lidar achieves these improve-
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Table 6. Lifetime average performance metrics of (feedback-only) ROSCO, and percentage change of ROSCO+LPFF and NOR with aver-
aged I&I and lidar compared to ROSCO. With the exception of average power, a reduction is better.

Lifetime ROSCO ROSCO+LPFF cf. ROSCO NOR+I&I+lidar cf. ROSCO

Tower fore–aft DEL 340.89MNm +0.35% −1.53%
Tower side-to-side DEL 324.96MNm −0.01% +0.60%
Blade flapwise DEL 51.75MNm +0.46% −6.68%
Main shaft DEL 7.78MNm −0.03% −6.48%
Pitch rate 0.035°s−1

+8.94% −36.37%
Average power 7.683MW −0.02% +0.30%
Rotor speed RMS error 0.084rpm −9.03% −8.87%
Maximum rotor speed 9.206rpm −3.61% −5.66%

Table 7. Performance metrics of feedback-only ROSCO, and percentage change of ROSCO+LPFF and NOR+I&I+lidar compared to
ROSCO, at mean wind speed 18 ms−1. The numbers reported in Fu et al. (2023) are given in parentheses.

At 18 ms−1 ROSCO ROSCO+LPFF cf. ROSCO (Fu et al. (2023)) NOR+I&I+lidar cf. ROSCO

Tower fore–aft DEL 303.02MNm −6.99% (−4.3%) −12.38%
Tower side-to-side DEL 176.14MNm +6.58% +1.18%
Blade flapwise DEL 71.51MNm −3.19% (−2.9%) −6.92%
Main shaft torque DEL 1.87MNm −49.40% −49.85%
Pitch rate 0.069°s−1

+26.63% −35.24%
Average power 14.97MW +0.04% −0.27%
Rotor speed RMS error 0.441rpm −41.94% (−44.6%) −37.54%
Maximum rotor speed 9.206rpm −3.61% −5.66%

ments at region switching by a smoother transition that
requires less extreme adjustments by the controls and
consequently reduces fatigue loads. The second rea-
son is the use of the averaged I&I and lidar estimate,
where, as speculated in Sect. 3.3, this lower varia-
tion estimate indeed significantly reduces actuator us-
age and fatigue loads. The use of this average for NOR
versus the traditional lidar signal for ROSCO+LPFF
is the main difference between these controllers (see
Sect. 4.4). This means that the significant improvements
NOR+I&I+lidar achieves over ROSCO+LPFF at high
wind speeds (as listed in Table 7) are most likely due to
this averaging.

Some further comparisons of the ROSCO and the NOR
controllers from a systems theory perspective are included in
the Appendices.

7 Conclusions

We have introduced a novel nonlinear controller design
methodology for wind turbine control that utilizes wind
speed estimation that may be derived from the turbine’s
SCADA, lidar measurements, or both. NOR is based on the
simple idea that the turbine, modelled as a first-order dif-
ferential equation, should follow desired stable dynamics.
In Region 2 the blade pitch angles are fixed to maximize

power subject to peak shaving, while in Region 3 the gen-
erator torque is fixed to rated. The remaining one of these
two is then chosen to solve a torque balance equation that
realizes the desired dynamics, assuming that the wind speed
estimate is perfectly accurate. Region switching is designed
such that the torque balance equation always has a unique
solution, the control signals do not jump when switching and
always exactly one of them is saturated. We further intro-
duced the averaging of I&I and lidar estimates to create a
higher quality low-variation wind speed estimate. Extensive
simulation studies over a broad range of mean wind speeds
and performance metrics showed that the NOR+I&I+lidar
controller matches ROSCO+LPFF’s capabilities of improv-
ing rotor speed tracking, but also significantly reduces fatigue
loads and actuator usage.

From a design perspective, NOR has several advantages
over ROSCO. It utilizes a simple nonlinear turbine model,
and hence avoids the need for gain-scheduling methods
based on a range of linearization points. It provides a uni-
fied design approach over both operating regions. The closed
loop maintains the desired dynamics, and Region 2 torque
and Region 3 pitch controller transition in a continuous fash-
ion. In this respect, NOR is also an improvement over the ear-
lier gain-scheduled linear output regulation methods used in
Mahdizadeh et al. (2021) and (Woolcock et al., 2023). NOR
enables direct and seamless inclusion of lidar wind speed es-
timates across operating regions, which ROSCO cannot do as
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easily. This, combined with the high quality of the averaged
I&I and lidar estimate leads to the significant performance
improvements of NOR+I&I+lidar.

While in this work the NOR controller was designed to
achieve MPPT, the controller can be adapted to output a dif-
ferent desired power. Thus future work can consider an ap-
plication of NOR to problems of active power generation to
provide grid frequency support services.

Appendix A: Correction of modelling errors in
NOR+I&I

The combination of NOR and I&I is robust towards errors
in the modelling of the aerodynamic torque, in the sense
that there are no asymptotic tracking errors even if there is
a model mismatch. The reasoning for this is presented in the
following.

By substituting Eq. (34) or Eq. (36) into Eq. (29), it follows
that

J �̇=Ma(�,vx,θ )−Ma(�,v̂x,θ )+ Jµ(�ref−�). (A1)

Generally, the NOR controller, because it relies on an aero-
dynamic torque modelMa(�,vx,θ ), would be susceptible to
discrepancies of that model from reality. However, the com-
bination with the I&I estimator, which uses the same model
for its wind speed estimate, compensates such errors. To see
this, let Ma(�,vx,θ ) be the real aerodynamic torque that
the wind applies, and M̂a(�,v̂x,θ ) be the estimated aero-
dynamic torque that NOR and I&I use, with M̂a indicating
a different model from Ma, mainly due to biases in the Cp
surface. Equation (22) for the I&I estimator then becomes

˙̂vx =
κ

J
(Ma(�,vx,θ )− M̂a(�,v̂x,θ )). (A2)

Assume now that the wind speed vx is constant. Then v̂x con-
verges to some value v̂∞x , which is generally different from
vx . From Eq. (A2) it follows that

Ma(�,vx,θ )= M̂a(�,v̂∞x ,θ ). (A3)

Under the different aerodynamic torque model M̂a the closed
loop in Eq. (A1) becomes

J �̇=Ma(�,vx,θ )− M̂a(�,v̂x,θ )+ Jµ(�ref−�). (A4)

Using Eq. (A3) it follows that in the limit the closed loop has
the dynamics

J �̇= Jµ(�ref−�), (A5)

which is stable and achieves perfect reference tracking de-
spite the model discrepancy.

Intuitively, this robustness can be explained in the fol-
lowing way: If, for example, the power coefficients in M̂a
are higher than in reality, the I&I estimator underestimates
the wind speed. The NOR controller computes the genera-
tor torque based on underestimated wind speed and overesti-
mated power coefficient. These two effects compensate, and
the correct aerodynamic torque is compensated.

Appendix B: Theoretical comparison between NOR
and ROSCO

The combination of NOR controller and I&I estimator is a
form of “pseudo-feedforward”. This is because the I&I esti-
mate is the output of the estimator dynamic system, which
has the rotor speed as input. Thus a feedforward of the I&I
estimate works similarly to a PI controller. This means that
NOR+I&I is a essentially a feedback controller like ROSCO,
formulated as feedforward.

In this appendix a connection between NOR+I&I and
ROSCO is established, which allows for comparison and
even conversion of the control architectures. With lineariza-
tion, both lead to second-order closed-loop dynamics, and
the parameters of the controllers can be converted into one
another. Then, NOR+I&I and ROSCO are fundamentally
the same controller. However, as pointed out before, NOR
has advantages in the region switching and inclusion of li-
dar. A similar linearization analysis can be done to compare
NOR+I&I+lidar with ROSCO+LPFF.

B1 Linearized NOR in either region

Consider an equilibrium �∗,v∗x ,θ
∗,M∗g of the model in

Eq. (6). Denote the partial derivatives of the aerodynamic
torque by

α =
∂Ma(�∗,vx,θ∗)

∂vx

∣∣∣∣
v∗x

, (B1)

β =
∂Ma(�∗,v∗x ,θ )

∂θ

∣∣∣∣
θ∗
, (B2)

γ =
∂Ma(�,v∗x ,θ

∗)
∂�

∣∣∣∣
�∗
, (B3)

and the deviations from the equilibrium by 1�=�−�∗,
etc. The linearizations of the model in Eq. (6), the NOR con-
troller in Eqs. (34) and (36) and the estimator in Eq. (22) are

J �̇= α1vx +β1θ + γ1�−1Mg, (B4)
1Mg = α1v̂x +β1θ + γ1�+ Jµ1�− Jµ1�ref, (B5)
˙̂vx = κ̃(1vx −1v̂x). (B6)

Note that this is the case no matter if the controller is oper-
ating in Region 2 or 3. Substituting Eq. (B5) into Eq. (B4)
gives

J �̇= α(1vx −1v̂x)+ Jµ(1�ref−1�) (B7)

= ακ̃−1 ˙̂vx + Jµ(1�ref−1�). (B8)

By differentiating Eq. (B7) and using Eq. (B8) to replace ˙̂vx ,

J �̈= αv̇x −α ˙̂vx + Jµ(�̇ref− �̇), (B9)
J �̈= αv̇x − κ̃J �̇+ Jµ(1�ref−1�)+ Jµκ̃(�̇ref− �̇). (B10)

Rearranging and dividing by J gives the closed loop:

�̈+ (κ̃ +µ)�̇+ κ̃µ1�= αJ−1v̇x +µ�̇ref+ κ̃µ1�ref. (B11)
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B2 Linearized ROSCO in Region 2

In Region 2 ROSCO uses a gain-scheduled PI controller of
the form

1Mg =K
g
P (�ref−�)+Kg

I

∫
(�ref−�)dt. (B12)

Inserting this into Eq. (B4) and differentiating leads to

J �̈= αv̇x + γ �̇+K
g
P (�̇− �̇ref)+K

g
I (�−�ref), (B13)

and rearranging gives

�̈−
K

g
P
+ γ

J
�̇−

K
g
I

J
1�=

α

J
v̇x −

K
g
P

J
�̇ref−

K
g
I

J
�ref. (B14)

B3 Linearized ROSCO in Region 3

Assume that the generator torque is set constantly to its rated
value. The PI controller now takes the form

1β =Kθ
P (�ref−�)+Kθ

I

∫
(�ref−�)dt. (B15)

Inserting this into Eq. (B4) and differentiating yields

J �̈= αv̇x + γ �̇+βK
θ
P (�̇ref− �̇)+βKθ

I (�ref−�), (B16)

and rearranging gives

�̈+
βKθ

P − γ

J
�̇+

βKθ
I

J
1�

=
α

J
v̇x +

βKθ
P − γ

J
�̇ref+

βKθ
I

J
1�ref. (B17)

B4 Parameter tuning for desired closed loop

We found that NOR+I&I and ROSCO lead to second-order
closed-loop dynamics when linearized. This closed loop can
be tuned using the controller and estimator gains. Let the
closed-loop undamped natural frequency be ωdes, and the
damping factor be ζdes. The desired left-hand side is then

�̈+ 2ζdesωdes�̇+ω
2
des1�. (B18)

The equations to tune the parameters of both controllers, ob-
tained from equating this to the left-hand sides of Eqs. (B11),
(B14) and (B17), are then, for Region 2:

2ζdesωdes κ̃ +µ −
K

g
P+γ

J
,

ω2
des κ̃µ −

K
g
I

J
.

(B19)

And for Region 3:

2ζdesωdes = κ̃ +µ=
βKθP−γ

J
,

ω2
des = κ̃µ=

βKθI
J
.

(B20)

Note that the special case ζdes = 1 leads to κ̃ = µ= ωdes.

With these equations, parameterizations of NOR+I&I and
ROSCO can be converted into one another, such that the lin-
earized closed loops are the same. The two controllers are
then, if looked at in one region in isolation, two sides of the
same coin. While ROSCO approaches the nonlinearity with
gain-scheduling, where the gains are obtained from differ-
entials of the aerodynamic torque, NOR+I&I directly works
with the nonlinear aerodynamic torque model. By the chain
rule, the controllers result in the same closed loop.
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