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Abstract. Large offshore wind farms face operational challenges due to turbine wakes, which can reduce en-
ergy yield and increase structural fatigue. These problems may be mitigated through wind farm flow control
techniques, which require reliable wake detection (recognising the presence of a clear wake) and characteri-
sation (parametric description of a wake’s properties) as prerequisites. This paper presents a novel three-stage
framework for generalised wake detection and characterisation. First, a regression model utilises blade loads,
pitch and rotor rotational speed data to estimate the wind speed distribution across the rotor plane. Second,
a convolutional neural network undertakes pattern recognition analysis to perform wake detection, classifying
rotor-plane wind estimates as “fully impinged”, “left impinged”, “right impinged” or “not impinged”. Third,
where wake impingement is detected, two-dimensional Gaussian fitting is undertaken to provide a parametric
wake characterisation, providing outputs of the wake centre location and wake lateral width. The framework
is trained and tested in a simulation environment incorporating the Mann turbulence model, the dynamic wake
meandering (DWM) model for generating wakes and an industrial-grade aeroelastic solver. The testing is un-
dertaken under a wide range of wind conditions, with mean ambient wind speeds from 5-15m s~! turbulence
intensities from 3 %-9 % and a full range of wind directions. Results show high accuracy of wind field esti-
mation, with the mean RMSE across all test cases being 3.7 % when normalised by mean ambient wind speed.
The wake detection model accurately identifies the presence of a wake for approximately 77 % of tested wind
fields, with subpar performance observed for more extreme conditions or those at the limits of the training data
used. The final wake characterisation stage is shown to flexibly adapt to changing wind conditions, successfully
tracking the wake’s position even for more turbulent conditions. The proposed framework therefore demonstrates
strong potential as a generalised approach to wake detection and characterisation.

cus for both research and industry is shifting towards a farm-

The wind industry has advanced significantly in recent years,
reaching a total worldwide installed capacity of 906 GW at
the end of 2022 (Hutchinson and Zhao, 2023). Despite being
a mature field, some challenges still remain to be solved. Due
to the increasing size of modern wind farms, there is a newly
posed challenge of effectively operating clusters of hundreds
of multi-megawatt machines. For this reason, the current fo-

level approach for operations, control and maintenance.

A wind turbine interacts with the incoming wind flow, ex-
tracting energy and creating a wake: a downstream region
of decreased wind speed and increased turbulence. Due to
their varied impact on the farm’s performance, wakes play
a crucial role in turbine operation. A turbine affected by
wakes from upstream machines has a lower energy yield due
to a wake-generated velocity deficit in the upcoming flow
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(Adaramola and Krogstad, 2011; Barthelmie et al., 2010).
Having the rotor experience a more turbulent wind field leads
to uneven aerodynamic loading on the machine, inducing se-
vere fatigue cycles in its structure (Churchfield et al., 2012).
A turbine under waked flow conditions is also prone to expe-
riencing additional loads due to large-scale motions of wake
meandering, further enhancing its fatigue (Madsen et al.,
2010; Larsen et al., 2013).

Via various control techniques it is possible to mitigate
the negatives of waked flow conditions, optimising turbine
operation for reliable and effective performance. The earli-
est developments in this area likely date back to a study by
Steinbuch et al. (1988), where the authors implement axial
induction control to increase the energy yield by reducing
wake effects. Numerous methods for optimising wind farm
flow follow; some examples include wake steering by intro-
ducing yaw offsets (Howland et al., 2020; SGRE, 2019) or
dynamic individual pitch control (Frederik et al., 2020) and
dynamic induction control (Munters and Meyers, 2018) to
induce enhanced mixing in the wake.

To use the above-mentioned approaches in a closed-loop
control scheme, dynamic information on whether the im-
pinging wake is being successfully redirected or dispersed is
required (Raach et al., 2016). Moreover, before starting the
control action, there first needs to be confirmation that a tur-
bine is indeed wake-affected to facilitate an intervention to
its normal operating cycle. For the sake of the discussion in
this work, we refer to these two flow control prerequisites as
wake detection and wake characterisation. The former refers
to the action of recognising that a given turbine is experi-
encing a clear wake impingement from a nearby machine,
in such a way that it has a significant (in both magnitude
and time) influence on its performance. The latter refers to
the action of identifying the properties of the wake using a
simplified parametric representation and monitoring how the
values of these parameters change in time.

There is a growing effort in the research community to de-
velop new wake detection and characterisation techniques.
Up-to-date approaches focus on implementing remote sens-
ing techniques or using a turbine’s operational data. The
former is usually achieved with the use of light detection
and ranging (lidar) devices, with recent literature featuring
numerous examples of their successful application in wake
characterisation (Bingol et al., 2010; Trujillo et al., 2011;
Conti et al., 2020; Lio et al., 2020). A recent study (Raach
et al., 2016) investigates the use of lidar-based wake char-
acterisation directly in a closed-loop wake steering scheme,
showing promising results. Despite achieving good perfor-
mance, the lidar-based approaches unavoidably rely on addi-
tional hardware, which is not currently present at most wind
farms and represents a significant additional cost. A differ-
ent way of tackling the problem is to employ the relation-
ship between the wind field and turbine response. The basic
idea behind this approach is that a variation in the incoming
flow can be correlated with changes in signals such as blade
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root bending moments and generator speed. The widely dis-
cussed method introduced by Bottasso and Schreiber (2018)
relies on using out-of-plane blade root bending moments to
approximate the local wind speed in each of the rotor quad-
rants, thus allowing for partial wake detection. The method
is tested in the field (Schreiber et al., 2020) using a setup of
two wind turbines and a met mast, providing a proof of con-
cept for the qualitative wake detection. The idea of mapping
between the blade loads and local wind speeds has also been
used by others; some examples include studies by Kim et al.
(2023), Simley and Pao (2016), and Liu et al. (2021). A study
by Onnen et al. (2022) pushes this approach further, imple-
menting out-of-plane blade loads to achieve accurate charac-
terisation of the meandering wake deficit with the use of an
extended Kalman filter (EKF). The authors also discuss the
potential of using the estimation uncertainty metric to detect
the wake presence. The method is validated via wind tunnel
(Onnen et al., 2023) and field (Onnen et al., 2025) experi-
ments, showing a strong correlation between the estimated
wake position and the reference lidar measurements. A sim-
ilar blade-load-based approach is also considered by Dong
et al. (2021), where the authors investigate wake characteri-
sation with an EKF setup within a simulation environment.
In another study by Farrell et al. (2022), the authors imple-
ment a recurrent neural network trained with experimental
and simulation data to estimate the lateral position of the
wake centre.

All in all, we identify the research gap as follows: exist-
ing wake estimation methods primarily focus on the wake
characterisation aspect, with both lidar- and load-based ap-
proaches offering high accuracy. Up-to-date wake detection
studies have analysed wake impingement in a scenario with
a single upwind turbine at a fixed distance, for a fixed set of
wind directions. This handles only part of the overall prob-
lem in a realistic setting, where the turbine experiences a full
range of wind directions. For the majority of inflow angles,
the turbine is not directly affected by a nearby turbine’s wake;
it does however receive a large amount of random flow fluc-
tuations due to operating in the highly turbulent atmospheric
boundary layer. Without robust knowledge of whether the
turbine operates under wake impingement or not, there is a
risk of implementing a wake characterisation scheme on a
naturally occurring turbulent eddy, hence providing incorrect
and misleading inputs to the control system.

In this paper, we seek to bridge the above-identified gap
by proposing a generalised three-stage approach that per-
forms wind field reconstruction, wake detection and wake
characterisation within a single framework. Firstly, the in-
stantaneous wind field interacting with the rotor is estimated
using turbine operational and load data. Secondly, a neural
network approach is implemented to classify whether the es-
timated wind field represents a case of “full”, “partial” or
“no” wake impingement. Thirdly, if clear wake impinge-
ment is detected, a parametric wake model is fitted in or-
der to characterise the centre and lateral width of the cur-
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rently observed wake. A novel end-to-end methodology is
presented, which aims to provide both a demonstrator and a
performance benchmark for generalised wake detection and
characterisation methods of this type. The trained models are
tested across a full range of wind directions within a virtual
offshore wind farm, evaluating the method’s performance for
wakes shed at various upstream distances. The simulation en-
vironment incorporates Mann turbulence wind boxes, the dy-
namic wake meandering (DWM) model for generating wake
interactions and aeroelastic code to compute the turbine re-
sponse. This work focuses on developing a novel solution
that can confidently assert when a turbine is impinged by a
wake from a nearby machine — a key factor for farm-wide
wake steering control.

The paper is structured as follows: Sect. 2 discusses the
methodology used for the framework’s development and
training; Sect. 3 presents the results of the framework val-
idation; Sect. 4 considers the discussion on the framework
applicability and limitations; and, lastly, Sect. 5 covers the
conclusion and addresses future work.

2 Methodology

Section 2.1 discusses the layout of the developed framework
and its high-level characteristics. The details of the imple-
mentation are described in Sect. 2.2 to 2.5.

2.1 A summary of the proposed framework

Figure 1 shows the information flow between the models
within the proposed wake estimation framework. Figure 2
presents two examples that illustrate the framework’s perfor-
mance when (a) the wind field does not have a clear wake im-
pingement from a nearby turbine and (b) when it does. The
high-level details on the individual models that the frame-
work consists of are discussed in the following.

The first constituent model in the developed framework is
a wind field estimator, which, when provided with turbine
response time series as the input, is capable of producing
the wind field reconstruction, thus showing the flow at the
rotor as the output. This process is hereafter referred to as
wind sensing. A successfully generated wind field estima-
tion provides sufficient information to analyse the flow field
and extract the desired wake impingement information. For
this framework, we propose performing wake detection us-
ing a convolutional neural network (CNN), which, after be-
ing trained, can distinguish flow with a well-defined wake
deficit from a nearby turbine. If a likely wake impingement is
detected, a suitable algorithm aiming to estimate the wake’s
properties is to be implemented. The ultimate framework out-
put data are two time series of the wake centre position and
wake lateral width, describing the horizontal distance where
the degree of wake impingement is significant. The combi-
nation of these two time series provides a simplified two-
dimensional representation of a meandering wake deficit.
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Figure 1. A flowchart describing the proposed wake estimation
framework.

This representation can serve as an input to wind farm flow
control techniques that are informed by the lateral proper-
ties of the impinging wake, such as those that use yaw as
a control action (Howland et al., 2020; SGRE, 2019). Fo-
cusing specifically on the lateral properties is also motivated
by the fact that the wake meandering is more pronounced in
the transverse direction than in the vertical direction, with
the ratio reflecting the turbulence intensities of the respective
components (Yang and Sotiropoulos, 2019). The developed
methodology also allows us to extract a time series of a peak
wake deficit AU value; however this is not discussed in this
work.

2.2 Framework implementation: training data acquisition

The simulation environment allows the modelling of the op-
eration of a given turbine at any location within the wind
farm layout, capturing wake impingement effects from mul-
tiple turbines simultaneously. While this aspect plays a key
role during testing, training is limited to interactions between
two devices located on the farm border: a first-row wake
“emitter” and a second-row wake “receiver”, spaced approx-
imately 6 rotor diameters apart. The role of the “receiver” is
to provide the turbine response data for training. Four wind
directions, representing four distinctive wake impingement
scenarios, as seen from the front of the rotor, are defined as
follows: (a) fully impinged, with the turbine directly down-
stream of the closest neighbour; (b) partially impinged, with
the wake impacting the left side of the rotor; (c) partially im-
pinged, with the wake impacting the right side of the rotor;
and (d) no impingement. The wind direction differs by 5°
between the fully and partially impinged cases. This setup
allows us to clearly differentiate between the effects of full
and partial wake impingement and standalone atmospheric
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Figure 2. Two examples showing the framework’s performance. (a) The incoming wind field does not have a clear wake deficit; thus the
framework does not go into the wake characterisation. (b) There is a clear wake deficit; thus the final step of wake characterisation is
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Figure 3. Simulated wind farm with highlighted locations of two
turbines of interest and selected wind directions for the training pro-
cess.

turbulence. It ensures that only one wake impacts the “re-
ceiver” turbine; including multiple wakes would complicate
the impingement effects and make it more challenging to de-
fine wake detection classes (see Sect. 2.4). The partial layout
of the wind farm and the wind directions defining the four
classes are shown in Fig. 3.

A dataset comprised of 1200 simulations is produced, with
simulation parameters and run counts presented in Table 1.
Ambient wind speed U,mp and ambient turbulence intensity
I.mp values are varied to ensure that the simulated conditions
represent a multitude of different offshore wind states. Each
simulation consists of generating a unique wind field and cal-
culating the corresponding time series of instantaneous tur-
bine response. Synthetic wind fields are acquired by generat-
ing ambient turbulence boxes using the Mann spectral tensor
model (Mann, 1994) and superimposing them with wakes
generated with the SGRE’s in-house implementation of the
DWM model (Larsen et al., 2007). The version of the model
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Table 1. Training simulation subsets. For each wind direction,
300 simulations capturing all Uy, and I, combinations are per-
formed.

Wind Impingement Uamp [m s71] Iymb No. of
direction  case [%] simulations
[°]
9 Full
4 Partial left .
14 Partial right 5-25 (step size 0.2) 3,5,7 300
45 None
Total: 1200

used follows the parameterisation suggested in the latest IEC
standard (IEC, 2019). In its essence, the DWM model regards
the wake as a passive tracer being moved laterally and verti-
cally by stochastic turbulence with a characteristic length of
twice the rotor diameter or larger. The turbine operation for
the simulated conditions is calculated using the aeroelastic
code BHawC. Since ambient wind fields are acquired with
the Mann turbulence model, the atmospheric conditions are
assumed to be neutral (Mann, 1994). The presence of verti-
cal wind shear is simulated using the wind profile power law,
with a shear exponent value of 0.07 selected for all cases.
Turbines are simulated with no yaw angle misalignment.

2.3 Framework implementation: wind sensing
2.3.1 Wind sensing input and output data selection

Figure 4 illustrates the training of the wind sensing model
and demonstrates its application scheme. By providing a var-
ied dataset of turbine response time series and the corre-
sponding wind field representations, the estimator “learns”

https://doi.org/10.5194/wes-10-1943-2025



P. Fojcik et al.: Wind turbine wake detection and characterisation utilising blade loads and SCADA data 1947

(a) Training (b) Application
BHawC [« DWM New data New
estimation
Input: Output: Input: Output:
turbine wind field at turbine wind field at
response the rotor response the rotor
Extracted Extracted Extracted Extracted
input output input output
features features features features
Wind field J L Trained wind _I
estimator field
training estimator

Figure 4. Simplified diagram visualising the flow of data during
(a) training and (b) application of the wind sensing model.

to approximate the wind speed distribution at the rotor from
the turbine sensor data.

The aeroelastic code provides access to an extensive set
of turbine response signals, such as component accelerations
or generator speed. A conditional dependence analysis (read-
ers further interested in the specific method used are referred
to Azadkia and Chatterjee, 2021) is undertaken to deter-
mine which data channels are best coupled with the varia-
tions in the flow. The algorithm tests different combinations
of turbine signals, estimating the likelihood that wind speed
can be deterministically predicted from them. The following
combination with the strongest overall correlation to wind
speed is identified and used in wind sensing: blade root bend-
ing moments in both the flap-wise and the edge-wise direc-
tions; mean pitch across all three blades, simply calculated
as B = (B1 + B2 + B3)/3; and rotor rotational speed w. Rotor
azimuth angle and individual pitch angles are also extracted
to use for transformations of other inputs.

The wind field is considered to be a three-dimensional
Cartesian grid, with three axes: X, representing streamwise
distance; Y, representing lateral distance; and Z, represent-
ing vertical distance. To represent the wind speed distribu-
tion in the flow, each point on that grid stores the local val-
ues of three wind speed components, U, V and W, which
correspond to the spatial variation in the X, Y and Z axes,
respectively. For this specific application, the wind field is
represented with the spatial distribution of the longitudinal
wind speed component U, as it is the one that is primarily
impacted by wake deficit (Dimitrov et al., 2017). All models
treat the wind field as a time series of YZ slices, showing the
chronological sequence of U distributions at the rotor plane.

2.3.2 Wind sensing input processing

Selected turbine response time series are processed to ex-
tract the optimal features from the raw data. The processes
described in this section are applied during both training
and performance testing — they are an integral part of the
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pflap/edee flap/edge blade root bending moments, M;ut/ i in
and out-of-plane blade root bending moments, j — blade index,
Mihrust/tilt/(...)/vertical — rotor loads. A detailed description can be

found in the text.

data “pipeline”. Figure 5 illustrates the transformations tak-
ing place in the feature extraction.

First, using the pitch signals, the edge- and flap-wise blade
root bending moments are transformed to in- and out-of-
plane coordinates. Performing the rotation between the two
frames is calculated for a given blade j as follows:

out . flap
Mi| [ cos (B;)  sin(B;) } M 1)

M} —sin(B;) cos(B;) Mje. ge
where M;’“t and M}“ are out-of- and in-plane root bending

moments, respectively; M?ap and M°* are flap and edge
root bending moments, respectively; and ; is the instanta-
neous pitch angle.

Next, using the azimuth angle time series, the Coleman
transformation (Coleman, 1943) is applied to the blade load
data. It allows us to effectively map the separate, rotary-
frame bending moments from each blade onto a stationary
frame of reference. As a result, the dynamic response to the
variation in the wind can be expressed with six variables de-
scribing the loads for an entire rotor: Minrust, Mtite and My,
(for out-of-rotor-plane movement) and Miorques Miateral and
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M ertical (for in-rotor-plane movement). These are referred to
as rotor loads. The Coleman transformation is defined as fol-
lows:

13 0 0
Cy)=| 0 2/3 0
L0 0 2/3
1 1 1

cos(y) cos (w + ZT”) cos (1// + %’T)

. @

where ¥ is the rotor azimuth angle. It is used to transform
the blade loads as follows:

M thrust M ?Ut
Mge | =C) | M* |, 3
| My M
M torque M in
Miateral C(W) M én ’ (4)
L M yertical M én

where M{"} is the out-of-plane bending moment, and M 123 is
the in-plane bending moment for blade indices 1-3.

The rotor load time series are decomposed into their key
frequency components. This process is visualised in Fig. 6.
The five frequency components selected via a conditional de-
pendence study (Azadkia and Chatterjee, 2021) are cos(OP),
used to describe the mean signal value; cos(1P) and sin(1P),
used to describe the once-per-revolution variation; and, fi-
nally, cos(3P) and sin(3P), used to describe the thrice-per-
revolution variation. A sliding window function with a width
of three revolutions is applied, projecting the original load
time series onto each of the frequency components. The
Fourier coefficient vectors (@1—as) obtained from these pro-
jections are stored, producing a coefficient time series for
each rotor load.

In order to capture the short-term temporal dependencies
and patterns in the time series of all wind sensing inputs,
the features are embedded with their lagged values. For each
sample in a time series, two additional features expressing
the past value of the curve are added. These lagged features
are obtained by shifting the time series 4 and 8 s from the cur-
rent time stamp. This effectively makes the estimation more
stable and noise resistant, as the wind slice is reconstructed
with turbine response across several seconds. Specific lag
values used are determined by testing the framework’s per-
formance with a few different configurations and choosing
the one that gives the best overall results.

Due to implementing the transformations discussed in this
section, using the turbine response data as wind sensing input
effectively stops being a time series modelling task; instead,
it becomes a time-independent regression task. Considering
the entire feature extraction process, at each point in time,
a 96-dimensional input vector captures and encodes the tur-
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Figure 6. An example of rotor load time series decomposition
into frequency component coefficient vectors (a1—as), capturing
the contributions of each Fourier mode at each point in time.

bine’s current operating state. Table 2 serves as a summary
of these features.

2.3.3 Wind sensing output processing

The three-dimensional wind field representations are pro-
cessed for data compression and efficient extraction of their
key features for the best application in wind sensing. The
wind field is represented with a sequence of YZ slices show-
ing the U distribution at each point along the X axis. The
spatial features of each slice are extracted, capturing the key
characteristics of the wind field in a more compact form. The
feature extraction is performed using the two-dimensional
discrete cosine transform (DCT) (Ahmed et al., 1974). The
result is similar to applying the principal component analy-
sis; however, as opposed to this far more complex method,
the DCT is a fixed transform and does not require any train-
ing. The DCT effectively converts the wind slice into a col-
lection of cosine functions oscillating at different frequencies
in both the vertical and the horizontal directions. Each DCT
coefficient corresponds to a specific frequency in the trans-
formed domain and describes the contribution of each fre-
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Table 2. A summary of features extracted from turbine response.

Original turbine  Preprocessing methods Resultant
response no. of
signal features
M ‘l)fg M 123 Rotation matrix, Coleman transform, frequency decomposition, lag embedding 90
B Lag embedding 3
w Lag embedding 3

Total: 96

quency in the distribution of U on the given YZ slice. This
concept, applied to an example wind field YZ slice, is pre-
sented in Fig. 7.

The lower-order frequencies primarily capture the large-
scale structures of the field, while the higher-order frequen-
cies are more associated with encoding smaller-scale, ran-
dom fluctuations. It can be seen that the most significant val-
ues can be found in the upper-left corner of the diagram,
meaning the majority of flow distribution is being kept by
the lower orders of DCT coefficients. For this reason, the
key information on the flow can be easily extracted by stor-
ing only the lower-order coefficients and disregarding the
higher-order coefficients. Truncating the collection of DCT-
order coefficients essentially acts as a spatial low-pass filter.
In this work, retention of eight DCT coefficients is found to
enhance computational efficiencies while allowing for good
wind sensing accuracy. The right plot in Fig. 7 shows the ef-
fect of truncating the higher frequencies; it can be noticed
how the wind slice is significantly “smoothed”, leaving only
the major U fluctuations.

2.3.4 Training the wind sensing estimator

Having extracted the features from both the inputs and the
outputs, two-thirds of data are used for the wind field esti-
mator training, while the remaining one-third is put aside for
generating wind field estimations for wake detector testing.
The current implementation utilises a localised linear regres-
sion approach (Cleveland et al., 1988), where the estimator
training is performed for multiple localised models. The pre-
processed turbine response data are a time series of multi-
dimensional input points, with each dimension representing
a different feature (see Table 2). Two of these dimensions,
namely unlagged B and unlagged w (these being the key vari-
ables indicating the turbine’s operating point), are used to de-
fine a projection plane, allowing input points to be mapped
and binned by their values. A set of evenly spaced points on
this plane is selected, and a local linear regression model is
trained at each. Training data are assigned to models based
on proximity within a defined radius, with overlapping points
contributing to multiple estimators. Predictions for new in-
puts are made using the model nearest to their location on
the projection plane. As a result, the training process builds

https://doi.org/10.5194/wes-10-1943-2025

functions that correlate the inputs to outputs only at a narrow
section of data distribution. This eliminates the need to fit a
global non-linear function that would singlehandedly need to
describe the complex relationship between wind and turbine
signals.

2.4 Framework implementation: wake detection

Considering that wake detection can essentially be reduced
to a classification task, we propose dealing with it by im-
plementing a convolutional neural network. The overview of
this deep learning technique can be found in Appendix A.
The approach is to operate on the YZ snapshot samples (so-
called “front view’’), which show the estimated instantaneous
wind component U across the whole rotor area. This allows
for clear differentiation between impinged and non-impinged
conditions. To accurately capture the different forms of wake
impingement, four distinct classes are defined. These are as
follows: (a) fully impinged, with the turbine directly down-
stream of the closest neighbour; (b) partially impinged left,
with the wake impacting the left side of the rotor; (c) partially
impinged right, with the wake impacting the right side of the
rotor; and (d) no detectable impingement.

The turbine response time series from the remaining
400 simulations, set aside during the wind sensing estima-
tor training, are now used for generating wind field esti-
mations. These estimations form the basis of a new dataset
for CNN training. The training samples are labelled accord-
ing to the wind direction specified in their respective sim-
ulation setup. In turn, the four classes directly relate to the
four wind directions used during the training data acquisi-
tion (see Sect. 2.2). An extensive manual review of the pro-
duced samples allows for the following conclusion: in the
available dataset, a clear, non-dissipated wake is only visible
for lower values of the selected ambient wind speed range —
typically up to 14—-16 ms~!, depending on the ambient turbu-
lence intensity. Simulations with higher wind speeds exhibit
stronger wake meandering, which results in the wake deficit
often being absent from the YZ snapshot samples. The wake
deficit depth is also weaker due to the smaller thrust force
in the above-rated operation. Consequently, many samples
labelled “fully” or “partially impinged” do not, in fact, ex-
hibit a wake. The aim of the detector is to reliably recognise
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Figure 7. An example showing how the YZ slice of the wind field (a) is transformed into a matrix of DCT components (b) and then back
into a truncated slice of wind through an inverse DCT (c). The red square indicates which DCT coefficients are stored for the implemented

wind field representation.
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Figure 8. Example front-view YZ snapshot samples representing
four classes defined for the neural network training. The rotor area
is indicated with the black circle.

whether the turbine is likely experiencing a wake impinge-
ment from a nearby machine. To ensure this robustness, the
training data must exclude the aforementioned mislabelled
samples. With that in mind, the CNN is trained with data
from simulations where the mean ambient wind speed Uymp
is between 5 and 15 ms~! while maintaining the full range of
turbulence intensity values (3 %, 5 % and 7 %). The YZ snap-
shot samples are taken every 10 s from the available training
data, resulting in 11 200 labelled samples. Figure 8 shows se-
lected YZ samples being appropriate examples of each one of
the four classes.

The implemented CNN architecture is presented in Ta-
ble 3. The input layer has the same resolution as the YZ slice
of estimated wind. The three convolution layers have an in-
creasing number of kernels, allowing the network to progres-
sively learn more complex features at deeper levels (Goodfel-
low et al., 2016). A batch normalisation layer is added after
each of the convolution layers for the sake of normalisation
of weight gradients and neuron activations, thus speeding up
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Table 3. Implemented CNN architecture.

Layer no. Name Details

1 Image input Layer size =32 x 32

2 Convolution 8 kernels with size =3
3 Batch normalisation

4 ReLLU

5 Max pooling Pool size =2, stride =2
6 Convolution 16 kernels with size =3
7 Batch normalisation

8 ReLU

9 Max pooling Pool size =2, stride =2
10 Convolution 32 kernels with size =3
11 Batch normalisation

12 Fully connected

13 Output normalisation ~ Type: softmax

14 Classification Layer size =4

the training process. Two max pooling layers reduce the spa-
tial size of the feature maps. The activation function is se-
lected as the rectified linear unit (ReLLU). The final three lay-
ers transform the learned features into predictions, connect-
ing all of the neurons, normalising outputs into probabilities
and performing final classification. An extended description
of the layers used can be found in Appendix A. The optimal
hyperparameter values are chosen based on trial and error,
with the CNN accuracy monitored through integrated test-
ing.

The training is conducted using MATLAB’s Deep Learn-
ing Toolbox. A total of 90 % of the available labelled data
(10080 samples) are used for training. The samples are shuf-
fled before the training process and after each one of the four
epochs. The training is repeated several times to make sure
there are no deviations. The remaining 10 % of samples are
used for an integrated testing cycle, which automatically oc-
curs after the training is complete. Figure 9 shows its results
in the form of a confusion matrix. As can be observed, the
main source of error is the misclassifications between the
“fully impinged” and “no detectable impingement” classes.
This phenomenon is further investigated in Sects. 3 and 4,
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where the performance of each of the models is analysed in
more detail under a variety of conditions.

2.5 Framework implementation: wake characterisation

The final part of the developed framework is the identifica-
tion of the key wake parameters in cases where a clear wake
impingement is detected. This is undertaken by scanning for
the characteristic velocity deficit shape in the appropriate
wind field representations.

2.5.1 Two-dimensional Gaussian fitting

The “tracking” of wake position and width is achieved by im-
plementing a two-dimensional Gaussian fitting scheme based
on a least squares algorithm. This method is a commonly
used solution in the literature for dynamic wake property
analysis (Abkar and Porté-Agel, 2015; Trujillo et al., 2011;
Conti et al., 2020). First, the wake deficit is defined for every
sample as follows:

Udet(y,2) = U(y,2) — Uamb. )

where U(y, z) is the instantaneous wind speed distribution
across the YZ plane, and Uyyp, is the mean ambient wind
speed value.

A general bivariate two-dimensional Gaussian function for
spatial variables of y and z is expressed as

A 1
Soivariate (¥, 2) ZJTUyO’z 1— ,02 p |: 2 (1 — ,02)

=y 20y —y)(z—z)
o2 oy0;

ERY)
N ;) )} ©

where A is the amplitude equal to the height of the peak;
oy and o, are standard variations along the Y and Z axes, re-
spectively; p is the correlation coefficient between the func-
tion’s spread in Y and Z; and y, and z. are the means along Y
and Z, respectively.

The time series of wake deficits from Eq. (5) is fitted
to Eq. (6) through a Levenberg—Marquardt non-linear least
squares algorithm implemented with MATLAB’s Optimiza-
tion Toolbox. Fitted Gaussian parameters are then used to
identify wake properties: the function peak at (y., z¢) can be
interpreted as the position of the wake centre; oy, and o, de-
scribe the spread of the wake along the Y and Z axes, respec-
tively; and p can be used to calculate the lengths of the semi-
minor and semi-major axes of the wake ellipse and their ori-
entation with respect to the YZ axes. The initial guess for oy
and o is defined as half of the rotor diameter D in order to
best reflect the typical width expected of a wake.

As explained earlier, the framework outputs refer solely to
the lateral wake characteristics, which are expressed by the
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variation on the Y axis. Out of all fitted parameters, only two
are required to describe the lateral wake variation: y. and 0.
To parametrically represent the size of the wake deficit, it is
assumed that the lateral half width corresponds to the stan-
dard deviation in the Y direction. With that in mind, the
wake extends laterally for 2oy, with the fitted centre y. in
the middle. Figure 10 shows an example of the bivariate two-
dimensional Gaussian fit applied on a YZ wind field sample,
with the key characterised properties indicated.

2.5.2 Filtering with moving average window

The lateral wake half-width and centre position time series
are smoothed using a moving average filter to reduce high-
frequency noise from sample-by-sample variability while
preserving slower variations associated with wake meander-
ing. This way, the ultimate characterised wake property time

series yft and o are defined as follows:

t
filt
Ye (@) _l Ye(0)
[oﬁ“(r) ]‘r / [ayw) }de' @

The variable t stands for window size in seconds, which is
calculated separately for every wind field in the following
manner:

Lmeand

T= , (¥
Unn

where Lpeand 18 the characteristic meandering length equal
to two rotor diameters (with the value corresponding to find-
ings from the literature, used in several wake models like
the DWM itself, Larsen et al., 2007), and Uhp, is the mean
U value at hub height.

It should be noted that in this method of moving average
filtering, the averaging window is not centred at the current
sample; instead, the window extends from the past sample
occurring T seconds ago to the current sample. As a result,
the filtered wake centre and lateral half-width time series ex-
perience a small lag of t/2.

2.5.3 Treatment of non-impinged samples

To satisfy the assumption that wake characterisation should
not be performed for wind samples without clear impinge-
ment, the filtered wake properties are treated for a given time
stamp i as follows:

ORAOR
yi(i), o (i), if class (i) = fully/partially impinged )
NaN, if class (i) = no detectable impingement °

The assignment of NaN (not a number) values ensures that
the samples identified as non-impinged are not being repre-
sented with a two-dimensional Gaussian wake in the frame-
work output.

Wind Energ. Sci., 10, 1943-1962, 2025




1952 P. Fojcik et al.: Wind turbine wake detection and characterisation utilising blade loads and SCADA data
Fully impinged 6 23 11.2%
[2]
§ Partially impinged left 3 4 2.5%
g Partially impinged right 13 7 6.7%
'_
No detectable impingement 27 2 2 11.0%
\ " .
,\(\geé o & o o ((\e“
w© 59 S N
R\ W« W« RO
@Y W e
< oo™ e
N

Predicted Class

Figure 9. Confusion matrix for the integrated testing of the trained CNN. Each row represents the instances of a true class, whereas each
column represents the instances of a predicted class. As a result, the values in the diagonal (blue) and off-diagonal (orange) cells correspond
to correct and false classifications, respectively. Percentages of correct (blue) and false (orange) classifications within each true class are

shown on the right.
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Figure 10. An example of a bivariate two-dimensional Gaussian fit
performance applied to a YZ wind field sample. The rotor outline is
marked with the black line, the fitted wake ellipse is marked with
the white line, the fitted wake centre at (yc, z¢) is marked with the
red x sign and the extent of the fitted lateral half width oy, is marked
with dashed lines.

3 Results

3.1 Performance evaluation

The framework’s performance is evaluated with 3600 new
simulations divided into 10 subsets. The configurations with
the number of runs are shown in Table 4. Each simulation
is paired with the corresponding turbine response. All sim-
ulations are performed for one “receiver” turbine, which is
more centrally located within the wind farm compared to
the machine used for the training; by doing so, it experi-
ences different types of impingement for different wind di-
rections. Both qualitative and quantitative performance anal-
ysis is conducted for each of the three constituent models.

Wind Energ. Sci., 10, 1943-1962, 2025

Table 4. Testing simulation subsets. For each Uy, and Iy com-
bination, 360 simulations capturing the full wind direction spectrum
are performed.

Uamb [ms™1] Iymb [%]  Wind direction [°] No. of
simulations
5,7,9,11, 13,15 5 . 2160
10 3.5.7.9 1-360 (step size 1) 1440
Total: 3600

In this work, the reference for quantitative analysis of
the models’ accuracy is the collection of the raw DWM-
generated wind fields. Wind sensing accuracy analysis
is a straightforward calculation of root mean square er-
ror (RMSE) between the U data points in simulated wind
fields and the estimated equivalents. A reference for wake
detection accuracy analysis is created via a new classifier
trained analogically to the process described in Sect. 2.4,
with the only difference being that the training dataset is
derived from simulated wind fields, not the estimated ones.
Without the bias from the wind field reconstruction, this clas-
sifier achieves approximately 99 % accuracy under integrated
testing. As such, its classifications across all 3600 raw wind
fields (with the wind sensing step not performed) are thus
taken to be the “ground truth” reference. Finally, the refer-
ence for wake characterisation is obtained by processing a
raw simulated wind field: a two-dimensional Gaussian is fit-
ted, moving average filtering is applied and “non-impinged”
wind slice samples are removed analogically to the process
described in Sect. 2.5.

The wind sensing accuracy is first analysed by plotting
the RMSE across the YZ plane for two example simulations
from the testing dataset, presenting low and high ambient
turbulence. This is shown in Sect. 3.2. The wind-direction-
dependent wind sensing and wake detection performance is
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Figure 11. Wind sensing RMSE plotted across YZ slice, normalised
by the corresponding U,y value of 10m s~ (a) LIymb = 3 %;
(b) Iymb =9 %. The rotor outline is marked with the dotted white
line.

then analysed via a study of the sensitivity to Uymp and Iymp,
comparing these models’ mean accuracy across the entirety
of the 10 subsets described above. This is discussed in
Sect. 3.3. Section 3.4 presents detailed wake characterisation
results. This is achieved by visualising the framework’s per-
formance across selected wind fields from the testing dataset,
followed by computing the quantitative performance metrics
of wake characterisation.

3.2 Wind sensing: YZ-wise accuracy

Figure 11 compares the YZ plane distribution of the wind
sensing RMSE for low (a) and high (b) turbulence intensity.
This distribution is obtained by calculating RMSEj., at every
YZ location over the full duration of the simulation #;:

J
RMSEwen(y,2) = | — 3 (U, 2) = UMy, 2))%,
ti=0
(10)

where UF*(y,z) and Ul.DWM(y,z) are the YZ-specific U at
time i for the estimated and DWM wind field, respectively.
Both plots show the error to be higher at the rotor centre and
in the corners outside the rotor area. The high-Inp plot re-
ports significantly higher RMSE, with the critical corner area
reaching approximately twice the value of the low-turbulence
case. The ring-like pattern of the area with the lowest error
(dark blue in the plot) is repeated across all wind conditions,
whose plots are not shown here for brevity.

3.3 Wind sensing and wake detection: ambient
condition sensitivity study

For all 3600 simulations, the YZ distributions of wind sensing
RMSE (such as the examples in Fig. 11) are averaged across
the entire rotor plane to obtain a single simulation-specific
mean value. Furthermore, to check how the RMSE changes
with wind conditions, mean RMSEg., values averaging all
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Table 5. A comparison of performance metrics in wind sensing
and wake detection under varying Uymp and Iymp. RMSEgey is nor-
malised by the corresponding Uyp, value.

Uamb Iymp  Normalised RMSEge
ms™']  [%]  RMSEgn (%]
(%]

5 5 6.7 67
7 5 3.9 18
9 5 33 14
11 5 3.1 11
13 5 2.7 17
15 5 2.3 23
10 3 2.2 7
10 5 3.1 20
10 7 4.3 19
10 9 5.6 30

360 simulations with the same U,y and Iy are calculated.
These values are presented in Table 5.

For each of the 3600 simulations, the proportion of sam-
ples (YZ wind slices at a point in time) classified as a clear
wake impingement (“fully impinged”, “partially impinged
left” or “partially impinged right”) is calculated. These
simulation-specific impingement ratios are compared to their
equivalents in the reference established by the “ground truth”
classifier (see Sect. 3.1). This provides a quantitative mea-
sure of the wake detection error for a given wind direction.
A single wake detection RMSEge value is calculated across
the entire wind direction range for each of the 10 Uyyp and
I,mp combinations:

1 Nwd 2
RMSEger = | — Y (& —rPVM)7, (11)
0= a2 )

where nyq is the number of wind directions (360 for the
full wind direction range), r¢* is the simulation-specific
estimated impingement ratio and r,PWM is the simulation-
specific impingement ratio from the raw DWM wind refer-
ence.

These values are presented in the rightmost column of Ta-
ble 5. Figures 12 and 13 show the impingement ratios (both
the DWM “ground truth” and the estimated values) across
the full range of wind directions and under varying Uymp and
Iymb conditions. For each Uy and Iy combination, the
plot displays the wind farm layout with the wake “receiver”
turbine in the centre. Polar values visualise the proportion of
samples for a given wind direction classified as flow with a
clear wake deficit. These proportions are shown as radial val-
ues between 0 (all simulation samples identified as “no de-
tectable impingement”) and 1 (all simulation samples iden-
tified as “full impingement”, “partial impingement right” or
“partial impingement left”).
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Figure 12. The wake detection model performance tested under a full wind direction range for six U, values between 5 and 15ms™".

1

Iymb =5 % for all cases. The radial values in blue and orange indicate the impingement ratio for a given wind direction. The wind farm

layout is shown in the background.

3.4 Wake characterisation: time-wise accuracy

Figures 14 to 17 provide a detailed performance analysis
of the framework across four example wind fields. In each
figure, plots (a) and (b) show hub-height horizontal slices
of the simulated and estimated U distributions, respectively.
The (c) plots display direct wake detection outputs from the
CNN’s classification, assigning a value between 0 and 1 to
each of the four classes, representing the probability of a

Wind Energ. Sci., 10, 1943-1962, 2025

sample depicting a corresponding wake impingement case.
These probabilities sum up to 1, so a near-perfect class rep-
resentation has a confidence score near 1, with the other three
values near 0. The (d) plots present the outputs of wake char-
acterisation, showing the fitted and filtered lateral wake prop-
erties against the DWM reference (see Sect. 3.1).

Figures 14 and 15 compare the performance under high
and low Iy, respectively. They also exhibit different de-
grees of wake-rotor overlap, allowing us to investigate both
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Figure 13. The wake detection model performance tested under a full wind direction range for four I, values between 3 % and 9 %.
Uamb = 10ms~! for all cases. The radial values in blue and orange indicate the impingement ratio for a given wind direction. The wind

farm layout is shown in the background.
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Figure 14. Uy, = 10m sl Iymb = 9 %, fully impinged. (a) Horizontal slice of the simulated wind field at hub height. (b) Horizontal slice
of the estimated wind field at hub height, obtained with the wind sensing model. (¢) Classification scores obtained with the wake detection
model. (d) Fitted wake properties obtained with the wake characterisation model next to the reference fitted on the raw DWM wind.
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Figure 15. Uymp = 10ms ™!, Iy = 3 %, partially impinged. (a) Horizontal slice of the simulated wind field at hub height. (b) Horizontal
slice of the estimated wind field at hub height, obtained with the wind sensing model. (¢) Classification scores obtained with the wake
detection model. (d) Fitted wake properties obtained with the wake characterisation model next to the reference fitted on the raw DWM

wind.
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Figure 16. Uy = 15 ms~!, Iymb = 5 %, no impingement. (a) Horizontal slice of the simulated wind field at hub height. (b) Horizontal
slice of the estimated wind field at hub height, obtained with the wind sensing model. (c¢) Classification scores obtained with the wake
detection model. (d) Fitted wake properties obtained with the wake characterisation model next to the reference fitted on the raw DWM
wind.

full- and partial-impingement scenarios. Figures 16 and 17 RMSE is calculated over the time series of both the lat-
show the performance in a scenario with no turbines up- eral wake centre and the wake width. Samples classified as
stream of the “receiver” device. They show the effects of op- “no detectable impingement”, containing NaN values as dis-
erating under low- and high-Uymp conditions, respectively. cussed in Sect. 2.5, are excluded from the calculation.

Quantitative metrics for wake characterisation accuracy
are computed as shown in Eqgs. (12) and (13). Using the ref-
erence derived from raw DWM wind fields (see Sect. 3.1),
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Figure 17. Upymp = 5ms ™!, Iy = 5 %, no impingement. (a) Horizontal slice of the simulated wind field at hub height. (b) Horizontal slice
of the estimated wind field at hub height, obtained with the wind sensing model. (¢) Classification scores obtained with the wake detection
model. (d) Fitted wake properties obtained with the wake characterisation model next to the reference fitted on the raw DWM wind.

1 & 2
RMSE}, = |3 (e —yliowm)  a2)
\ =0
o O (il fil 2
RMSE; = \ e 2 (Gy,,-t(est) — Gy,it(DWM)> (13)
=l

Here n; is the simulation duration; yg

the estimated yi' and o;ﬂt at time i, respectively; and

ygllF(DWM) and oyﬁ’ll.t(DWM) are yit and crf“ at time i from
the reference fitted on the raw DWM wind, respectively.

Table 6 shows the wake characterisation RMSE calculated
for four example wind fields, comparing the model’s accu-
racy for full and partial wake impingement under high and
low Imb. For brevity, only two of these wind fields are visu-
alised in Figs. 14 and 15. Wind fields in which the DWM ref-
erence primarily shows “no detectable impingement” — such
as those in Figs. 17 and 16 — are excluded from the RMSE
analysis, as the reference wake characterisation mostly con-
tains NaN values.

1t filt
;(est) and ay,l.(est) are

4 Discussion

4.1 Evaluation methods

The reference for wake detection is based on the classifica-
tions from a detector trained with simulated (rather than es-
timated) wind fields. This allows us to consider the effects
of varied wake dispersion under different ambient conditions
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Table 6. Performance metrics for wake characterisation.

Impingement  Upmb  Lamb RMSEX, ~ RMSEJ
case ms™1]  [%] D] [D]
Full 10 9 0.05 0.09
Full 10 3 0.03 0.04
Partial 10 9 0.1 0.1
Partial 10 3 0.03 0.05

and arguably fits this analysis better than a general impinge-
ment definition based strictly on inflow angle. Indeed, to the
best of the authors’ knowledge, there is not a widely recog-
nised definition of wake impingement (e.g. by means of re-
duced power output) that could be used here instead.

Wake characterisation accuracy is evaluated by processing
the raw DWM wind with the methods from Sect. 2.5, thus
extracting reference wake properties. This approach is pre-
ferred over taking the “ground truth” from the meandering
wake centres applied internally in the DWM model, as turbu-
lent fluctuations in the synthetic wind field — along with addi-
tional imposed turbulence — can cause the actual wake expe-
rienced by the turbine to deviate from the calculated position.
Moreover, this method naturally accommodates the interac-
tion of multiple, combined wakes. A reference derived by
fitting a Gaussian profile on a simulated wind field has been
used in other studies (Lejeune et al., 2022).

However, it should be noted that using the same method-
ology to both perform estimations and establish a reference,
with the only major difference being the source of the wind
field, carries a bias. This is especially relevant for calcu-
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lated wake characterisation metrics; calculated RMSE val-
ues could be expected to increase with the use of a different
reference approach. In future work, we aim to address this
through validation with higher-fidelity simulations and wind
field data.

4.2 Framework performance
4.2.1 Wind sensing

Although there are minor discrepancies for specific wind
conditions, the developed wind sensing model presents gen-
erally good performance with low error between reference
and estimated values. Figure 11 reveals that the wind field
reconstruction quality is the highest at the radial distance of
approximately half of the rotor radius. This is likely due to
the fact that the flow impacting the mid-blade region has the
largest influence on the root bending moments. The YZ lo-
cations outside of the rotor plane yield the highest RMSE
due to blade sensors being unable to meaningfully react to
the flow fluctuations from that region. Figures 14 and 15
show that major flow fluctuations are well captured in the
estimated wind field representations. Some smoothing oc-
curs for smaller-scale fluctuations, but this does not pose a
major problem for wake detection. In fact, the attenuation
of less significant turbulent eddies allows the wind sens-
ing procedure to act as a spatial filter, focusing on larger
flow structures like a wake deficit. The sensitivity study from
Sect. 3.3 shows that the normalised RMSEg., rises with in-
creasing Iymp, Which can be attributed to the higher flow
complexity in more turbulent wind. The cause of higher error
in low-Uypmyp, cases is investigated in Fig. 17. The wind field
reconstruction shows a minor U deficit that is not present in
the simulated wind field, which is identified by the CNN as
a wake impingement. This phenomenon occurs for the ma-
jority of wind directions at Uymp = 5 ms~! (see Fig. 12a),
which in turn is the cause of high wake detection RMSE cap-
tured in Table 5. Looking at the high-U,mp case in Fig. 16,
it is apparent that a more heterogeneous wind field effec-
tively disperses such anomalies. This emergence of “fake”
wakes under low-wind-speed conditions is likely a result of
the training dataset composition, 75 % of which shows wake
impingement, leaving only 25 % for purely ambient turbu-
lence cases. Using a single wind sensing estimator across
these cases introduces a bias, as the model is predominantly
trained on wake impingement conditions. The misclassifica-
tion between “fully impinged” and “no detectable impinge-
ment” is quantified by the confusion matrix in Fig. 9.

4.2.2 Wake detection

Examining both Fig. 12 and Fig. 13, most plots show the
wakes generated by upstream turbines to be correctly identi-
fied for the corresponding wind directions at the “receiver”
turbine. There is a distinct difference in the proportion of
samples identified as a wake depending on the distance
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between the “emitter” and “receiver”. For turbines further
away, the proportion of detected impingement is lower due
to the wake losing its distinctive shape over a longer dis-
tance and interacting with the turbulent atmospheric bound-
ary layer for a longer time. This relationship is evident in
both the number of “impingement” samples per simulation
(Iength of the blue/orange peak) and the number of wind di-
rections for which the wake is detected (width of the blue/o-
range peak).

The superposition of wakes does not appear to have a sig-
nificant effect on wake detection performance. Wakes from
eastern turbines (a single machine upstream) do not yield
substantially different wake detection results than wakes
from deep inside the wind farm to the west. This is likely a
consequence of the wake superposition approach used, where
wind speed at each YZ grid point on the receiving turbine is
derived based on the strongest influencing wake deficit. As a
result, the primary aspect impacting the wake detection per-
formance is the distance between the “receiver” and “emit-
ter” machines. This is also due to limiting the training data to
one pair of “emitter”—“receiver” turbines at a fixed distance.

As shown in Table 5, the wake detection RMSE largely
follows the trends from the wind sensing RMSE. This is ex-
pected, as one model uses the outputs from the other. The
highest error across all cases is reported for ambient wind
speed of Sms~!, which is due to the wind sensing anomaly
described above. The wake detection is progressively more
accurate with increasing U,y (attributed to dispersion of the
anomaly), until the RMSE begins to rise above 11 ms~!. Vi-
sual inspection of Fig. 12e and f reveals that this is a con-
sequence of increased estimation—reference mismatch at the
wind directions with high impingement ratios. These wind
speeds usually correspond to above-rated operation, where
the wakes are less pronounced due to decreased thrust, likely
making them more difficult to detect. The wake detection
RMSE rises with increasing Iy, values; the plots in Fig. 13
show that the main source of the error is increasing “noise”
of some wake impingement detected for all of the wind direc-
tions. This is expected, as more turbulent wind fields contain
more large-scale ambient eddies that could be identified as a
wake.

The sample-by-sample classification is presented in the
(c) plots in Figs. 14 to 17. The CNN'’s output aligns with the
respective wind slice samples; for example, when wake me-
anders from the centre to the Y -positive part of the snapshot,
the highest probability transitions from “full impingement”
to “partial impingement left”. This indicates that the instan-
taneous wake position can be, at least to some extent, tracked
even without a dedicated wake characterisation model.

4.2.3 Wake characterisation

Figures 14 and 15 show the sample-by-sample wake deficit
characterisation for two example wind fields. Visual com-
parison between the simulated wind field in the (a) plots
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and characterised wake in the (d) plots shows that the wake
behaviour is appropriately captured in both cases. The es-
timated wake properties fit the reference values reasonably
well. The time series of the fitted wake centre and lateral
border are near continuous for lower Iy, while higher Imp
yields a characterisation with a few gaps. This is due to
the removal of samples classified as the “no detectable im-
pingement” class, which happens more often when the deficit
shape is distorted by increased ambient turbulence. Table 6
brings further insight, showing quantitative characterisation
accuracy metrics for full and partial impingement under low
and high I,yp. As expected, higher turbulence causes the es-
timated wake properties to diverge more from the reference,
thus increasing the RMSE. For all wind fields, the error is
higher for oy, than for yc, likely due to the wake centre be-
ing more easily identified by the least squares algorithm (it
is simply the area with the lowest value). Error comparisons
between full and partial impingement reveal mostly similar
values, with the only outlier being RMSEZflaI at Iymp =9 %,
where the partial wake error is twice that of the full wake.
This is a logical outcome, given the increased difficulty of
characterisation when the wake meandering motion is strong
and the centre is outside the YZ snapshot.

Figure 17d shows how the “fake” wake anomaly discussed
above results in a characterisation performed on ambient
turbulence. This effect is gone when Ugmp is higher (see
Fig. 16d), which is why the characterisation is missing for
the entire wind field except a few isolated samples.

4.3 Applicability

Overall, the presented performance shows that the devel-
oped methodology is a promising solution to the challeng-
ing problem of generalised wake impingement estimation.
The less accurate wake detection for U,y values of 5 and
15ms~! is less critical after the consideration of specific
application of this work. Firstly, at Uy, = Sms™! the tur-
bine is usually close to its cut-in wind speed (Carrillo et al.,
2013), meaning that for many cases, applying flow control
would not be necessary. Secondly, the wind farm flow control
brings the largest benefits for below-rated operation, where,
due to higher energy extraction and lower wind, the wakes
are more pronounced (Scott et al., 2024). These conditions
align with the scenarios where the framework demonstrates
optimal performance. Wind speeds above 13ms~! (where
the framework performance deteriorates) are generally less
frequent than lower-wind-speed conditions (Shu and Jesson,
2021), further mitigating the impact of these issues. A similar
comment can be made with respect to wake detection RMSE
increasing with I,np. Wake steering control brings the largest
benefits when the wind is less turbulent, which is where the
framework shows the best performance.

The presented results also highlight that wake detection
accuracy is highly dependent on the training data selection.
This indicates that improved performance across a broader
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range of conditions could be achieved by extension of the
training dataset, e.g. by learning the wake deficit shape from
various “receiver” turbines. One of the testing subsets has
Imb equal to 9 %, a value outside the training range of 3 %—
7 %. While having one of the highest errors in the study,
the wakes within this subset are nonetheless detected at cor-
rect wind directions. This highlights the framework’s ability
to produce reasonable results for wind fields with ambient
conditions “unknown” to the estimator. This is highly ad-
vantageous for the field application context, where the pre-
deployment training procedure would only capture some of
the wind effects experienced by the wind farm.

4.4 Current limitations

The present methodology treats each YZ wind snapshot en-
tirely independently. It therefore seems clear that improved
performance (and solutions for some of the problematic cases
which are identified) could be readily achieved by extend-
ing the methodology to undertake a post-processing analy-
sis which accounts for time variations in results. This could,
for example, allow for the imputation of gaps that occur
in characterised time series for more turbulent wakes (see
Fig. 14); moreover, by considering classifications of time-
adjacent snapshots, it could help in the correct detection of
fully impinged cases which are misidentified as unimpinged.
Kalman filtering appears to be a technique well suited to
these possible methodological extensions.

It should also be highlighted that the application of a mov-
ing average filtering within the methodology results in pre-
dictions lagging behind the true wind field. This lag ranges
from approximately 12s for Uump = 15ms~! to approxi-
mately 58s for Uyyp =5 ms~!. These values are a conse-
quence of matching the filtering window width to the wind
field’s typical meandering timescales (see Eqgs. 7 and 8). In
the context of wind farm flow control, these levels of lag
are not necessarily problematic, and the lag may be remov-
able by introducing methods such as Kalman filtering. Rel-
evant literature (Luo et al., 2024; Zhou et al., 2023) shows
that long short-term memory networks could potentially pro-
vide a short-term forecast of the wake dynamics, thus pro-
viding an alternative solution. Further research needs to be
conducted to investigate these leads.

Note also that the range of ambient turbulence intensities
used for framework testing falls between 3 % and 9 %, and
the atmospheric conditions for both training and testing are
considered neutral. Large offshore wind farms could experi-
ence higher levels of turbulence deep within the turbine grid
due to multiple wake interactions (Shaw et al., 2022). These
simplifications should be acknowledged, and other turbu-
lence levels, along with incorporating both stable and unsta-
ble boundary layer conditions, should be analysed in future
work. Similarly, turbine yaw offsets are also not considered
in this work. The current analysis implemented a medium-
fidelity wake model, and so further work should also extend
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this framework to more realistic wake structures, for exam-
ple, those obtained through large-eddy simulations.

5 Conclusions

The proposed method for generalised wake impingement de-
tection and characterisation shows good performance for a
wide range of tested wind conditions. The framework’s ef-
fectiveness is sensitive to ambient wind speed and turbu-
lence intensity levels, with the best performance observed for
wind speeds between 7 and 13 ms~! and turbulence intensi-
ties ranging from 3 % to 7 %. Wind field reconstruction re-
ports high accuracy with an all-around RMSE of 3.7 % when
normalised by mean ambient wind speed. The wake detec-
tion model correctly responds to the wake presence; aver-
aging the RMSE across all wind fields used in testing indi-
cates that the correct wake impingement case is identified
for approximately 77 % of the samples. Wake characterisa-
tion appropriately adapts to the meandering motion, achiev-
ing high accuracy; wake centre tracking reports an average
RMSE of 0.08 and 0.03 D for Iy, of 9 % and 3 %, respec-
tively; and wake lateral border tracking reports an average
RMSE of 0.1 and 0.05 D for Iymp of 9% and 3 %, respec-
tively. This work provides a baseline concept for generalised
wake impingement estimation, which, with further improve-
ments, could greatly contribute to better-informed wind farm
flow control. Current limitations are identified, with the most
important including the shortcomings of the evaluation meth-
ods and anomalies in wind sensing. Next steps for the further
development of this framework include validation of the cur-
rent setup in progressively more realistic environments (in-
cluding yaw misalignment, higher-fidelity wind fields and
wakes, and utilisation of field data), an extension of the train-
ing dataset (towards accounting for more flow phenomena
from more turbines at different distances), and methodolog-
ical extension to capture time variance between individual
two-dimensional snapshots and opportunities for imputation
and forecasting of wake properties. Kalman filtering is iden-
tified as a likely route to extending the framework in this
manner.

Appendix A: Convolutional neural network

CNNs are a specialised type of deep learning method, op-
timised for working with grid-like data (most commonly
two-dimensional images). Their design is perfectly suited for
learning spatial features from input data, making them espe-
cially effective for image recognition and classification tasks.
Due to several key achievements in recent years, they have
revolutionised areas such as facial recognition, handwriting
analysis and autonomous vehicles (Li et al., 2022). In the
context of wind energy, some examples of CNN implementa-
tion include wind power prediction (Zhu et al., 2017; Harbola
and Coors, 2019) and early fault detection and classification
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(Rahimilarki et al., 2022). The input layer of the CNN is the
size of the grid-like data it processes — in a simple example
of a grey-scale image, it would be its width multiplied by its
height. If the task at hand is to classify the image, for exam-
ple, determining which handwritten digit the image shows,
then the output layer would consist of 10 nodes (one for each
digit), each holding a confidence value between 0 and 1. The
actual processing occurs in the hidden layers located between
the input and output layers, and for most CNNs, these layers
are a combination of the following:

— Convolutional layer. This layer applies learnable filters
(also called kernels) that slide across the input data, only
working on a small patch of the data at a time. A dot
product of the kernel and data at each position creates a
measure of how close a patch of data resembles a given
spatial feature, such as an edge or arch. Doing this for
the entire input results in a feature map. Performing this
operation through multiple iterations with many ker-
nels, progressively optimising their weights, allows us
to combine small features into larger ones and is ulti-
mately the key to detecting patterns.

— Activation function. Normally following the convolu-
tion layers, various activation functions like the rectified
linear unit (ReLU) introduce non-linearity, enabling the
network to learn complex patterns. It is achieved by re-
stricting the connections between the neurons when the
weighted sum is too low.

— Pooling layers. The pooling layers reduce the spatial
size of feature maps, decreasing computational com-
plexity and helping to prevent overfitting. Max pooling
is the most commonly used method of doing so, select-
ing the maximum value from each patch of the feature
map.

— Fully connected layer. After several cycles of
convolution—activation—pooling,  this layer con-
nects every neuron in one layer to every neuron in the
next, combining features learned by previous layers to
produce final predictions.

While designing the neural network, one needs to decide on
the number and type of hidden layers implemented in its ar-
chitecture, as well as on the hyperparameters such as the
number and size of learnable filters. Moreover, as with all
deep learning techniques, the performance of the CNN is
heavily dependent on the quality of data used for its train-
ing.

Code and data availability. The simulation tools, wind farm
model and other data used in this research are property of Siemens
Gamesa Renewable Energy.
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