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Abstract. Wind energy is considered a sustainable renewable energy source; however, it faces the challenge of
significant operating and maintenance costs. The research proposes a hybrid fault detection method to combine
the physical domain knowledge with the machine learning models to provide an overview of the health of wind
turbine drivetrain components. Signal processing indicators are computed from raw vibration signals measured
from strategically placed accelerometers over drivetrain components. It produces an immense number of indica-
tors as each indicator is sensitive towards certain types of faults, and manual monitoring becomes an unfeasible
task. The machine learning models are trained using signal processing indicators and supervisory control and
data acquisition (SCADA) data. The normal behavior modeling technique is employed to learn the healthy opera-
tion of the machine from data collected during healthy machine operation. The trained normal behavior machine
learning models label each indicator in a healthy or faulty state over time. The labeled state-of-the-art signal pro-
cessing indicators are fused to provide a high-level health status overview of wind turbine drivetrain components.
It helps to derive the required details from many condition indicators, which is valuable when managing multiple
components in a single wind turbine across an entire wind farm. The proposed hybrid fault detection method is
validated on an offshore wind farm with multiple years of condition monitoring data. It provides a high-level
health overview that is readily understandable for non-expert wind farm operators, and for more detailed fault
analysis, experts can conduct a comprehensive inspection.

O&M cost accounts for 30 % of the total energy cost, primar-

Renewable energy has experienced significant growth in re-
cent years and has reduced the impact of global warming.
In 2022, international investments in the renewable energy
sector reached USD 1.3 trillion to decarbonize fossil-fuel-
based energy production (IRENA and CPI, 2023). The grow-
ing interest in renewable energy has led to a substantial in-
crease in clean, green energy production. The global installed
wind energy capacity has escalated to 906 GW due to the fast
growth observed during recent years (Hutchinson and Zhao,
2023). The increasing interest in renewable and wind energy
is accompanied by the challenge of significant operating and
maintenance (O&M) costs. In the case of offshore wind, the

ily due to the remote and challenging environmental condi-
tions of offshore locations. Offshore wind energy sites are
advantageous for wind energy due to the availability of more
consistent and strong winds to harvest (Gao and Odgaard,
2023). This situation offers ample opportunities for cost re-
duction in offshore wind energy by identifying faults at early
stages to plan efficient group maintenance strategies by com-
bining multiple wind turbines or components (Wang et al.,
2022b). It is crucial to accurately determine the health sta-
tus of wind turbines to plan efficient maintenance strategies
during low energy demand and suitable weather conditions
to reduce the O&M cost (Helsen et al., 2017).
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The advancement of Industry 4.0 introduced Internet of
Things (IoT) devices, facilitating the transfer of sensor data
over the Internet (Ma et al., 2022). The wind industry uti-
lized this opportunity and equipped wind turbines with var-
ious IoT sensors to gather a wide range of data (Verstraeten
et al., 2019a). Moreover, the drive to automate every con-
ceivable industrial process has made the mechanical indus-
try increasingly intricate, owing to the complex interrelations
between numerous complicated components and procedures.
Wind turbines are complex machines because they operate
under constantly evolving operating conditions in challeng-
ing weather and environmental settings. The nonstationary
conditions of wind turbines pose significant challenges to
fault detection (Liu et al., 2023). As a result, there is a grow-
ing need for more advanced maintenance strategies to effec-
tively manage and uphold wind turbine performance (Zonta
et al., 2020). The big data collected from multiple IoT sen-
sors enable continuous health monitoring of wind turbines.
They transform the maintenance strategies from periodic or
reactive to predictive (Nejad et al., 2022). Currently, predic-
tive maintenance is the most optimal maintenance strategy,
which allows planning future group maintenance by identify-
ing faults at the initial stage, leveraging the continuous data
measurements provided by IoT sensors. Predictive mainte-
nance methods involve training machine learning models us-
ing historical data from IoT sensors to predict the current
health state of a wind turbine. It provides insight to execute
group maintenance or arrange necessary measures to extend
the wind turbine’s operational life (Zhang et al., 2019; Car-
valho et al., 2019). The life of a wind turbine affected by an
early-stage fault can be increased by only utilizing it during
high demand (Verstraeten et al., 2019b). The wind energy
O&M cost is reduced when reliability is improved and wind
turbines are available to produce energy in line with demand
(Clark and DuPont, 2018).

The IoT sensors installed on wind turbines have the capac-
ity to measure various types of data, primarily used for vi-
bration analysis, acoustics, oil analysis, strain measurement,
and thermography. Supervisory control and data acquisition
(SCADA) is a widely used data acquisition and monitor-
ing system for wind turbines. It collects various types of
data, including wind speed, power output, and rotor speed,
which are essential for assessing the operating condition of
the wind turbine. The measured data are used to monitor
components such as gearboxes, generators, main bearings,
blades, and towers (Garcia Marquez et al., 2012). SCADA
data have been utilized for detecting faults in the generator
(Chesterman et al., 2022; Peter et al., 2022) and the main
bearing (Beretta et al., 2021). SCADA data offer a cost-
effective health monitoring solution since they eliminate the
need for additional sensor installations. However, SCADA-
based condition monitoring is unreliable; only a small subset
of SCADA parameters is suitable for fault detection (Nejad
et al., 2022). A large subset of SCADA parameters is utilized
as machine learning model features to enhance fault detec-
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tion and improve the reliability of SCADA-based condition
monitoring (Renstrom et al., 2020; Lima et al., 2020; Dienst
and Beseler, 2016). Among condition monitoring techniques,
vibration analysis has emerged as a primary method for con-
dition monitoring (Nejad et al., 2022; Helsen et al., 2017;
Peeters et al., 2019a). However, raw data are not sufficient to
provide insights to develop effective predictive maintenance
strategies. Signal processing indicators derived from raw vi-
bration data are used to monitor the health status of wind
turbines. Experts are required to monitor individual indica-
tors to identify emerging fault trends. Numerous signal pro-
cessing methods are used to compute such indicators, with
each one sensitive to specific types of faults. Therefore, it is
unfeasible for experts to continuously monitor each indica-
tor, especially when a wind farm has multiple wind turbines,
and each wind turbine contains many components. Machine
learning models can provide a high-level health status (Jamil
etal., 2023Db, a) or label the indicators with healthy and alarm
states for easy interpretation (Peeters et al., 2019b).

The signal processing indicators for fault detection are
categorized into two groups: time domain and frequency
domain indicators. Time domain indicators, such as mean
and standard deviation, are statistical parameters that en-
able the determination of health degradation trends by mon-
itoring deviations from established normal behavior. These
time domain features include statistical parameters such
as root mean square, kurtosis, peak to peak, Moors kur-
tosis, peak energy index, and crest factor (Peeters et al.,
2017, 2018a, 2019b). Time domain indicators significantly
simplify health analysis since they do not require knowledge
of the characteristic frequencies of components. Nonethe-
less, these indicators only indicate which sensor has detected
a fault, without offering insights into the specific nature of
the fault. In contrast, frequency domain indicators not only
detect faults but also specify which component is experienc-
ing the fault by utilizing characteristic frequencies associated
with those components. Bearing characteristic frequencies
are the inner race, outer race, roller cage, and roller, while
gears have distinct characteristic frequencies associated with
gear meshing. These characteristic frequencies are tracked in
the spectral domain of the signal and its envelope (Ho and
Randall, 2000; McCormick and Nandi, 1998). Fault detec-
tion methods based on cyclostationarity are gaining popular-
ity in rotating machinery fault detection applications (Antoni,
2009). These methods highlight the modulation in signals in-
troduced by faults in rotating components.

There is a rising interest among the research community
in employing machine learning models for fault detection
(Liu et al., 2018; Xiang et al., 2022). The most commonly
used machine learning models include artificial neural net-
works (Marugén et al., 2018), support vector machines (Vi-
dal et al., 2018; Widodo and Yang, 2007), and deep neu-
ral networks (Dibaj et al., 2023; Jia et al., 2016; Ibrahim
et al., 2016). These machine learning applications are im-
plemented by leveraging signal processing features as they
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depict substantial fault trends (Peeters et al., 2019b; Jamil
et al., 2023b, a; Perez-Sanjines et al., 2023). However, a pri-
mary challenge for machine learning models is the scarcity
of fault cases, as machines typically operate in a healthy state
for the majority of their operational time. Therefore, training
a classifier to distinguish between normal and faulty health
states may not be an optimal technique. Transfer learning
provides a viable solution to address the issue of limited data
availability in the machine learning discipline. It enables the
transfer of data or knowledge from similar domains to en-
hance the prediction performance of machine learning mod-
els (Zhuang et al., 2021). In the context of fault detection,
transfer learning enhances detection capabilities by transfer-
ring learned knowledge from a similar source domain to a tar-
get domain (Bai et al., 2021), while avoiding negative trans-
fer (Jamil et al., 2022). However, transfer learning does re-
quire a few known faulty cases to improve supervised learn-
ing fault detection models. It implies that in order to deploy
a fault detection model in industry, a wind turbine must ex-
perience a failure event that provides the necessary data to
train a fault detection classifier. The acquisition of fault data
for machines poses a significant challenge, as it requires the
occurrence of faults before training a robust health status
classifier to differentiate between healthy and faulty states.
However, healthy data are available to measure after the ma-
chine begins operations. A more practical approach in such
cases involves employing a machine learning model capable
of learning healthy behavior and detecting faults by identify-
ing deviations from the learned normal behavior. The normal
behavior model (NBM) is trained on the expected behavior
and identifies deviations as anomalies. This approach allows
for the utilization of healthy wind turbine data to train NBMs
and detect a potential fault when any deviation from the ex-
pected behavior is observed (Peeters et al., 2019b; Helsen
et al., 2018; Wang et al., 2022a). Peeters et al. (2019b) intro-
duced a hybrid fault detection method that leverages signal
processing statistical indicators computed during a healthy
operating period to train an NBM. The trained NBM is able
to label indicators’ healthy states and any possible deviations
as a faulty trend. Temperature signals are less sensitive com-
pared to the vibration signals towards any fault introduction;
however, they do exhibit trends that can indicate fault trends.
NBMs trained on healthy temperature signals are able to suc-
cessfully detect gearbox faults in wind turbines (Helsen et al.,
2015, 2018). Chesterman et al. (2022) compare statistical
and machine learning NBM pipelines to detect wind turbines
generating bearing faults using SCADA data. Perez-Sanjines
et al. (2023) employed coherence maps derived from vibra-
tional signals to train normal behavior deep learning models
to detect mechanical faults in wind turbine rotating compo-
nents. Normal behavior modeling is the most effective ma-
chine learning approach for mechanical condition monitor-
ing and failure prediction, as concluded from a comparison of
various SCADA -data-based condition monitoring techniques
(Chesterman et al., 2023). The key advantage of the normal
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behavior model (NBM) includes its ability to perform unsu-
pervised learning and detect failures without prior exposure
to them. NBM can be easily adapted to various types of data
from any component or process by learning normality and
triggering an alarm when the normality is violated.

The proposed method is a hybrid fault detection approach
to provide a high-level health status summary by adapt-
ing to changing operating conditions by using vibration and
SCADA data. It combines the computational capabilities of
machine learning with domain knowledge of signal process-
ing indicators. This method leverages domain knowledge to
train machine learning models, providing results that are both
easily interpretable and explainable compared to black-box
machine learning models only predicting the presence of
faults. The effectiveness of the proposed method has been
validated across multiple real-life wind farms, spanning sev-
eral years of operational data. It has demonstrated a notable
capability to detect fault trends at their early stages. The key
contributions of this research can be summarized as follows:

Development of a fully automated vibration and
SCADA-data-based drivetrain monitoring pipeline.

— The method introduces physical domain knowledge to
enhance machine learning models’ prediction perfor-
mance.

— It provides a high-level health status overview by adapt-
ing to changing operating conditions.

— It has been validated on many real-world wind farms,
leveraging multiple years of data, and exhibited promis-
ing results.

2 Hybrid condition monitoring fault detection
method

The proposed approach is a hybrid condition monitoring
method for fault detection. This method integrates vibration-
based signal processing indicators and SCADA data with
machine learning models. Although SCADA data have not
been designed primarily for wind turbine condition monitor-
ing (Tautz-Weinert and Watson, 2017), the proposed method
derives operational information about the wind turbine from
these data. A range of signal processing techniques are em-
ployed to compute indicators from vibration signals, in-
cluding time domain statistical indicators, frequency domain
spectral features, and cyclostationary indicators. These com-
puted indicators serve as the input for machine learning
NBMs trained to classify the indicators into healthy or faulty
states. Subsequently, the approach calculates the count of in-
dicators labeled as faulty at each time step to provide a high-
level overview of the wind turbine’s health. Figure 1 offers
a visual representation of the hybrid condition monitoring
pipeline, which commences with data acquisition from sen-
sors installed on the wind turbine drivetrain. The SCADA
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Figure 1. The hybrid condition monitoring pipeline commences
with data acquisition from a wind turbine. These data are then
used to compute signal processing features, which are subsequently
passed as input into machine learning models alongside SCADA
data to predict alarms.
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data are collected through the SCADA system, while the
vibrational data are measured by the condition monitoring
system. Since these systems operate at different frequen-
cies and intervals, the data from both sources are integrated
by aligning them based on matching timestamps. The com-
bined dataset is derived by merging the vibration data mea-
surements with their corresponding SCADA data measure-
ments. This unified dataset is passed to machine-learning-
based NBMs to label the measurements as healthy and faulty
states. Finally, in the last stage, alarms are triggered based on
the number of indicators classified as faulty per timestamp.

The proposed hybrid condition monitoring pipeline is
structured into three distinct steps:

— Computation of signal processing time domain and fre-
quency domain condition indicators

— Labeling computed indicators as healthy and faulty
states using normal behavior machine learning models

— Alarming to provide a high-level health status of the
wind turbine

2.1 Signal processing

The condition indicators that are fed to the normal behavior
models are the result of an extensive signal pre-processing
phase that tries to track any significant changes in the mea-
surements. The following paragraphs detail the different
steps required to arrive at a set of meaningful and effective
condition indicators for fault detection.

Due to the nonstationary nature of wind turbine drive-
trains, the measured vibration signals cannot be fully ana-
lyzed directly without knowledge of the rotating speed or
instantaneous angular speed (IAS) of the drivetrain shafts.
Given that not every turbine has a high-resolution angle en-
coder installed on its drivetrain, the first step in the signal
processing pipeline is the automated estimation of the IAS
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directly from the vibration signals. To achieve this automated
estimation, knowledge of the kinematic orders present in the
gearbox is necessary, i.e., the gear ratios. Using these kine-
matic orders, we can employ the harmonic frequencies that
each gear produces as input for the multi-order probabilis-
tic approach (MOPA) (Leclere et al., 2016) to obtain a first
rough speed estimate. The benefit of MOPA is its ease of
use as well as its ability to deal with strong speed varia-
tions without the need for fine-tuning a bandpass filter. Once
the initial speed estimate is obtained, this estimate is refined
through the multi-harmonic demodulation (MHD) method,
which does need an initial rough speed estimate in order to
work properly (Peeters et al., 2022). However, MHD typi-
cally produces much more accurate speed estimates that are
on par with a physical angle encoder. Afterwards, the esti-
mated speed needs to pass a quality check to ensure it actu-
ally improves the ensuing processing steps and will lead to
meaningful condition indicators.

Once the instantaneous angular speed is known, the data
are angularly resampled and can then be used for further
data cleaning steps. Typically, the data are separated into
deterministic and stochastic signal content since gears and
bearings are considered to primarily produce only one of
these two distinct signal characterizations. Common meth-
ods to achieve this separation are cepstrum editing (Peeters
et al.,, 2018b, 2017), discrete/random separation (Peeters
et al., 2020), linear prediction coding (Antoni and Randall,
2004), self-adaptive noise cancellation (Ho, 1999), and phase
editing (Barbini et al., 2017). This approach gives rise to
a tripling of the signals to use for condition indicator cal-
culation as there is now the raw signal and the determinis-
tic and stochastic signals. Another commonly employed pre-
processing technique is the usage of a filter bank (Antoni,
2021). Bandpass-filtering the signal prior to indicator calcu-
lation increases the sensitivity of the computed statistics to
frequency-localized phenomena. Since a fault might be am-
plified by the transfer path from the source to the receiving
sensor, resonances can play an important role in the detection
through statistics of the fault (Randall, 2021). Hence, adding
frequency dependency to the condition indicator calculation
can greatly enhance the efficacy with which a pipeline is ca-
pable of early fault detection. One of the most popular ex-
amples of this aspect is the kurtogram (Antoni, 2007), which
employs a binary—ternary filter bank to track the kurtosis of
different frequency bands. Similar filter bank structures can
also be used for statistics other than kurtosis (Peeters et al.,
2019c).

After speed estimation and data cleaning, the final signal
processing step is to compute condition indicators on the pre-
processed data. For complex machinery, there are usually a
lot of potential components that can fail, meaning that a very
targeted approach is often not possible due to a lack of his-
torical insights. Therefore, the most common approach is to
calculate a wide array of indicators that look at all poten-
tial changes in a signal, be it in the time or the frequency
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domain. In the time domain, several statistics are calculated
on all the pre-processed signals, i.e., the signals after deter-
ministic/stochastic separation and filtering. Most of these in-
dicators are common vibration analysis condition indicators
such as RMS, kurtosis, crest factor, and negentropy. These
indicator types can generally be characterized as quantifying
either the Gaussianity or the stationarity of a signal (Antoni
and Borghesani, 2019; Kestel et al., 2023). In the frequency
domain the condition indicators are linked to the character-
istic frequencies linked to the kinematics of the drivetrain.
The harmonics produced by the gears and shafts are tracked
in both the autopower spectra and the envelope spectra to
check for increases in first- and second-order cyclostationar-
ity that could be related to degradation (Napolitano, 2016).
Also, the sidebands that surround the fundamental harmon-
ics are tracked as they are often a useful indicator of degra-
dation in the case of gear wear (Zhang et al., 2021). Due
to the pre-processing and the computation of many different
features, the total number of condition indicators typically
ends up being in the hundreds or even thousands for a sin-
gle sensor. Multiply that number by the number of sensors
and machines and it becomes clear that manual investigation
of each indicator trend very quickly becomes completely un-
feasible for a human. The difficulty, however, is dealing with
these indicators in an automated manner that allows for early
fault detection while also avoiding too many alarms or false
positives which would again increase the manual investiga-
tion work required. The next sections detail the proposed ap-
proach to handle such large sets of condition indicators in a
reliable manner on a fleet-wide level.

2.2 Normal behavior models

Normal behavior or anomaly detection models are special-
ized in identifying data observations that deviate from the
established pattern of normal behavior. NBMs are used in ap-
plications to identify abnormalities or outliers, such as fault
detection, fraud detection, intrusion detection, and medical
diagnosis (Chandola et al., 2009). It is crucial to define the
normal behavior of the model to effectively detect anoma-
lies. If the model is trained on data containing abnormalities,
it may face difficulty identifying anomalies.

The proposed method relies on exclusively utilizing
healthy data, ensuring that it does not incorporate faulty ob-
servations to detect mechanical faults.

The NBMs are trained using historical healthy data col-
lected from sensors installed on wind turbine components.
The proposed hybrid approach uses vibrational signals and
SCADA data. Figure 2 illustrates that the trained NBMs take
the unlabeled indicator as input and label them with healthy,
warning, and faulty states at each timestamp. The condi-
tion indicators are derived from the vibration signal, while
SCADA data are used together with the condition indica-
tors for machine learning models. The NBMs learn the nor-
mal behavior of wind turbine components from the healthy
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data, and faults are detected when the model predictions
observe deviations from the learned normal behavior. The
wind turbine operates in complex weather and environmen-
tal conditions, which presents a greater challenge for fault
detection methods due to varying wind speeds and chang-
ing operating conditions. A model trained on observations
from a low-wind-speed operating regime could misclassify
an observation as a fault when applied to observations from
a high-wind-speed operating regime. The proposed method
addresses this issue by incorporating a step to ensure op-
erating condition independence to mitigate the influence of
varying operating regimes. K-means clustering is used to
segment the measured data into distinct operating regimes
using wind turbine operational data. The operating parame-
ters from the SCADA data, such as active power and rotation
speed, are utilized to define these operating regime clusters.
Before NBM predicts the health status of the associated indi-
cator, the K-means clustering model, trained on the operating
parameters of healthy data, assigns each observed data point
to a corresponding operating regime. An individual NBM is
trained for each indicator per operating regime. The objective
of a machine learning model is to predict the value of a con-
dition indicator based on the SCADA operating parameters.
The model is trained on healthy data to predict indicator val-
ues reflecting normal behavior based on the input SCADA
operating parameters. A fault introduces changes in the vi-
bration signal, causing deviations from the expected normal
behavior. As a result, the trained model can identify faults
by comparing the difference between the predicted indicator
value, based on the SCADA operating parameters, and the
actual measured value. The active power and rotation speed
are SCADA operating parameters which serve as the input
features for the machine learning model to predict the ex-
pected value of a specific signal processing indicator target
variable.

Various regression models, including linear regression,
Bayesian ridge regression, support vector regression, mul-
tilayer perceptron regression, and decision tree regression,
are assessed as NBM. Among these, Bayesian ridge regres-
sion produced superior results. Consequently, it is selected
for NBM, which is a Bayesian approach to linear regres-
sion with ridge (L2) regularization. It leverages probability
distributions for the regression coefficients to estimate the
model parameters and quantify uncertainty in predictions.
This probabilistic framework is valuable for robust model-
ing and assessing the level of uncertainty associated with the
model’s coefficient estimates and predictions. Equation (1)
represents the Bayesian ridge regression model.

Y =80+ p1X1+prXo+e€ ()

In this equation, Y represents the condition indicator, the
variable to be predicted. X; and X, correspond to the
SCADA operational parameters as active power and rota-
tion speed are the input variables or features of the model.
The coefficients By, B1, and B, are model parameters, with
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Figure 3. A measurement is considered healthy when the difference
between the measured and predicted indicator values falls within
=+ 2 standard deviations, labeled as a warning when the difference
is between 2 and 4 standard deviations, and classified as faulty when
it exceeds 4 standard deviations.
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Bo denoting the intercept term. In Bayesian ridge regression,
these coefficients are considered random variables, enabling
probabilistic modeling. The term € represents the error term,
accounting for data variability and noise. The NBM trained
on healthy data predicts the indicator value corresponding to
a healthy machine behavior based on the provided SCADA
operational parameters. The machine’s health status, specific
to each condition indicator within its operating regime, is as-
sessed by comparing the actual and predicted indicator val-
ues using the two-sigma rule, as illustrated in Fig. 3. Under
this rule, deviations within 2 standard deviations of the pre-
dicted value are considered healthy, capturing approximately
95 % of the expected variation in a normal distribution. De-
viations between 2 and 4 standard deviations are labeled as
warnings, while those exceeding 4 standard deviations are
classified as faults. The proposed thresholding approach en-
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ables early fault detection to provide operators with more
time to plan and implement maintenance strategies. How-
ever, as sensitivity requirements may vary across applica-
tions, an extended n-sigma framework can be employed, set-
ting the threshold at n standard deviations from the mean,
to adapt the fault detection strategy to specific operational
needs.

2.3 Alarming

While the individual labeled indicator trends are easy to in-
terpret, observing a large number of indicator trends is chal-
lenging and quickly becomes entirely unfeasible for a large
number of machines and sensors. The proposed method in-
corporates an alarming step to aggregate multiple indicators
into a single high-level indicator. It provides a comprehen-
sive global health status overview of wind turbine compo-
nents, eliminating the need to inspect individual indicators
separately.

The high-level indicator is generated by applying a slid-
ing window across the entire time series of each indicator
to identify healthy, warning, and faulty intervals, as illus-
trated in the Fig. 4. A faulty interval represents consecutive
detected faulty windows. A sliding window spanning 60d is
utilized, as measurements are taken at intervals of 10s ap-
proximately every 2 or 3 d. Each measurement is assigned a
value of 0, 0.5, or 1, corresponding to healthy, warning, or
faulty predicted states by NBM, respectively. The status of
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Figure 4. The sliding window over a single indicator’s time series to identify continuous faulty intervals based on labeled as a warning and

healthy measurements determined by the NBM.

each window is determined as healthy or faulty by count-
ing the number of warning and faulty measurements based
on these assigned values. The mean of the assigned values is
calculated, and if the mean is equal to or greater than 0.3, the
window is labeled as faulty. To eliminate outliers, any faulty
interval shorter than 1 month is excluded.

As shown in Fig. 5, the high-level indicator is an aggrega-
tion of all indicators computed from a single sensor’s vibra-
tion signal, providing a high-level health status overview of
the components on which it is installed. This high-level in-
dicator depicts the indicators observing faulty intervals. The
high-level health indicator is derived by adding the number
of indicators having a labeled faulty interval during a month.
The high-level indicator is visually represented as a bar plot,
showcasing the number of signal processing indicators that
are observing faults during 1 month. Early-stage faults are
initially detected by a limited set of signal processing indica-
tors. As the fault’s severity progresses more indicators start
observing the fault trend. Furthermore, our proposed method
allows experts to examine individual indicators tracking fault
trends, facilitating a more detailed examination of the identi-
fied faults.

3 Experiments

The proposed method is validated on a wind farm compris-
ing more than 50 wind turbines. For the analysis, data are
collected at a sampling frequency of 20 kHz using strategi-
cally positioned accelerometers on the wind turbine drive-
train components. This data collection process involves mea-
suring data for 10 s during a single measurement every 2 to
3d over several years. Consequently, an approximate total
of 150 measurements are obtained each year. From these in-
dividual raw vibration signal measurements, multiple signal
processing statistical and frequency domain indicators are
derived. The signal processing indicators are computed from
the raw vibration data obtained by a single sensor. To as-
sess the variability in wind speeds and its influence on the
wind turbine’s operating conditions, the data are segmented
into four distinct operating regimes before the NBM train-
ing phase. A distinct NBM is trained for each computed in-
dicator per operating condition to label the indicators with
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healthy, warning, or faulty state at each timestamp. Approx-
imately 1 year of healthy data are used to train the NBMs,
ultimately enabling the ability to track an indicator’s fault de-
tection trends over multiple years. The labeled indicators are
combined into a single high-level health indicator for each
sensor located on a specific wind turbine drivetrain compo-
nent at a particular position. The detected faults by the pro-
posed method are subsequently confirmed via manual bore
scope inspections conducted by engineers on the drivetrain
components.

4 Results

The proposed method is validated on an entire offshore wind
farm. Due to confidentiality constraints, specific informa-
tion about the wind farm or individual wind turbines cannot
be disclosed. Consequently, plots have been generated with
anonymized axes to showcase the results while preserving
the confidentiality of the sensitive information. However, for
the purpose of the result demonstration, a detailed analysis
of four specific cases is presented in this section. These cases
include three instances of fault detection at different wind
turbine life stages and one where the wind turbine remains
consistently healthy throughout the observation period. This
section elaborates on these diverse fault cases associated with
different wind turbine drivetrain components to offer a com-
prehensive illustration of the proposed method’s ability to de-
tect faults within rotating components of the drivetrain. Fig-
ures 6, 7, and 8 depict the faulty scenarios, while Fig. 9 illus-
trates a healthy case. These visual representations showcase
the results obtained at three distinct stages of the proposed
method. Each figure demonstrates the proposed method out-
put at three different stages, including the derived signal pro-
cessing indicators, the machine learning labeled indicators
categorized as healthy, warning, and faulty, and a high-level
health status overview illustrating the counts of faulty indica-
tors. The x axis represents the time of observation spanning
multiple years, while the y axis displays the values of indica-
tors in both labeled and unlabeled plots. Additionally, the sig-
nal processing labeled indicators, determined by the machine
learning NMBs, indicate the health status of the indicator at
a specific timestamp. It is denoted by green, yellow, and red
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Figure 5. The high-level health indicator is derived by combining data from various indicators computed from a single sensor’s raw vibration
signal. It provides an idea of the number of indicators detecting fault trends at a timestamp.

colors for healthy, warning, and faulty states, respectively. In
the high-level health indicator plot, the y axis represents the
count of indicators observing fault trends. The green shaded
area on the labeled and high-level health indicator plots rep-
resents the training healthy period for NBMs. Although the
green area spans 2 years in the figure, it is important to note
that a substantial number of measurements are missing dur-
ing the initial year. Consequently, the actual healthy data
measurements are approximately equal to 1 year.

The planetary stage channel fault is depicted in Fig. 6.
It is challenging for signal processing indicators to detect
early-stage planetary stage channel faults. Therefore, a no-
table impulsive increase in the number of indicators observ-
ing faults is observed instead of gradual growth in indica-
tor fault trends. The manual inspection revealed indentations
on the planet gear and ring gear teeth. Additionally, stand-
still mark damage is observed on the rollers of the planet
gear bearing. Figure 7 illustrates a generator channel fault,
observing a gradual increase in the number of indicators de-
tecting fault trends in proportion to the fault’s intensity. In the
early stages of the fault, only a handful of indicators observe

Wind Energ. Sci., 10, 1963-1978, 2025

the fault, but as the fault progresses, an increasing number
of indicators begin to depict fault trends. Notably, the early
detection of the generator channel fault, along with the incre-
mental rise in the number of indicators observing faults over
time, allows wind farm operators more time for maintenance
planning compared to the immediate surge in indicators ob-
served for the planetary stage channel fault. The high-speed
stage (HSS) channel fault case is shown in Fig. 8, where a
significant number of indicators commenced detecting fault
trends at the early stage of the fault. This early response
signals the introduction of a fault, which engineers confirm
through manual inspection; this revealed abrasive wear on
the roller flange of the generator-side HSS bearing. In con-
trast to faulty cases, the case of a healthy planetary stage
channel is depicted in Fig. 9. The signal processing indica-
tors do not detect any significant fault trends. However, a few
indicators exhibit minor fault observations during the typical
run-in period when the moving mechanical components are
still settling. Furthermore, a minimal fault trend is observed
towards the end, but it lacks significance compared to the
faulty cases. The healthy case is also verified through a man-
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F. Jamil et al.: Leveraging signal processing and machine learning for automated fault detection 1971

© 40
E o
> 30 . o* '
22 ¢ .
210 ) ."\;- .o, N

cotantioomnd’ A’ o X'ewe Yoo cvamems’s i  °

’ Multi-year time index
(a) Indicator 1
.

0 30 .
E}
©
>
520
"
L .
S 10 .
£ %o

.o ealbe cuoame o0iifemtioe *

Multi-year time index

(¢) Indicator 2

-
w
LICYR Y
.
o, o0

Indicator value
o
a o

.

»
T XN
Multi-year time index

e .,

(e) Indicator 3

.
® 0.50 .
=
©
> 045 o ° .
- . .
. D .

%040 . " fects %, S .\--°. S
" . . e o L
g B T A R
£035 . -~ LY g % e 0 e,
s .

.

Multi-year time index

(g) Indicator N

.
20
E e
S 3 . o° 3
s .
g2 . o
T .
£ 10 % e ae
= T T R
Multi-year time index
(b) Labelled indicator 1
.

v 30 .
S
s
5 20
]
S .
5 10 .
£ ‘e

0 s mdmenewe wasme cales sutomme ¢ Wlumme © ©

Multi-year time index

(d) Labelled indicator 2

Indicator value
SR
(=] (9]
S
H
o, 00t

o
o]

of o

"t‘:&'."'.'f:’:ﬁ. :"'3,'"‘\’0.:.’. o °

Multi-year time index

(f) Labelled indicator 3

© 050

3

S oas K} . .

5 0. ey . ‘e

' 0.40 °, *° . . .. R

S st e e U e N

£o35 e A e aFe $o T Tl o T .,
5 . .

Multi-year time index

(h) Labelled indicator N

Faulty indicator's count

.-
Multi-year time index

(i) High-level health indicator

Figure 6. A planetary stage channel fault is detected by multiple low-level signal processing indicators and then also depicted in the high-
level health indicator. The fault is later confirmed in a comprehensive bore scope inspection.

ual inspection, where all bearings and gears exhibit no signs
of wear or damage and are found to be in good condition.

4.1 Performance analysis

The proposed method is validated using real wind farm
data, which presents challenges in performance analysis due
to data imperfections. A key challenge is the uncertainty
in the exact timing of fault initiation; however, fault cases
are confirmed through manual inspection. Therefore, fault
cases identified during a manual inspection are considered
actual faults, while the remaining cases are classified as
healthy. Additionally, fault-related frequencies may appear in
channels monitoring neighboring components, which further
complicate the fault detection. Since precise details about
real wind farm data are unavailable, the following assump-
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tions are made to define true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs):

— TP: the model correctly identifies a manually confirmed
fault as faulty.

— TN: the model correctly classifies a healthy case as
healthy.

— FP — false alarm: the model incorrectly predicts a
healthy case as faulty.

— FN — missed fault detection: the model fails to detect a
fault and incorrectly classifies it as healthy.

The performance of the proposed method is evaluated on
10 wind turbines, where manual inspection confirmed faults
in 19 drivetrain components of eight turbines. A confusion

Wind Energ. Sci., 10, 1963-1978, 2025
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Figure 7. A generator channel fault is detected by multiple low-level signal processing indicators and then also depicted in the high-level
health indicator. The fault is later confirmed in a comprehensive bore scope inspection.

matrix is created to evaluate the performance of the proposed
method based on the assumptions defined for TP, TN, FP, and
FN. The confusion matrix, as shown in Fig. 10, indicates 19
TPs, 0 FNs, 30 FPs, and 61 TNs. The method successfully
detects all faults confirmed during manual inspection and
does not predict confirmed faults as healthy. However, there
are several reasons for false-positive predictions. An early-
stage fault may not be confirmed during manual inspection,
and the channel monitoring a healthy component might regis-
ter fault frequencies from neighboring components. The val-
idation dataset consists of data from 10 wind turbines, with
19 confirmed faulty drivetrain components identified through
manual inspection, while the remaining 91 channels are con-
sidered healthy. Due to the data imbalance, the model’s per-
formance cannot be effectively evaluated using standard pre-
cision, recall, and F; score metrics. Instead, weighted pre-
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cision in Eq. (2), recall in Eq. (3), and F; score in Eq. (4)
are calculated to provide a comparative performance assess-
ment, where Ny and Ny, are the number of actual faulty and
healthy cases, respectively. Similarly, Precisiony, Recallf, and
F1¢ represent the precision, recall, and F; score for the faulty
label, respectively. On the other hand, Precisiony, Recally,
and Fy, represent the precision, recall, and F score for the
healthy label, respectively.

(Ng x Precisiony) + (Np x Precisiony,)

Weighted Precision = @
Nt + Ny
Ni x Recallp) + (N, x Recall
WeightedRecall:( t X Recallg) 4 (Np x Recallp) )
Ni+ Ny
Nt x Fy; N F
Weighted F Score = Nt X Fi) + (No x Fy,) “
Nt + Ny

Table 1 presents the evaluation metrics — precision, recall,
and F score — for faulty and healthy cases, along with their
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Figure 8. A high-speed stage channel fault is detected by multiple low-level signal processing indicators and then also depicted in the
high-level health indicator. The fault is later confirmed in a comprehensive bore scope inspection.

Table 1. Weighted evaluation metrics of fault detection method.

Precision Recall  Fp score
Faulty 0.39 1.00 0.56
Healthy 1.00 0.67 0.80
Weighted average 0.89 0.73 0.76

weighted averages. The results show that the model achieves
high recall (1.00) for faulty cases, ensuring all confirmed
faults are correctly detected. For the healthy case, the model
demonstrates perfect precision (1.00), meaning all predicted
healthy cases are healthy. However, the recall of 0.67 for
the healthy class indicates that some actual healthy cases are
misclassified as faulty.

https://doi.org/10.5194/wes-10-1963-2025

The weighted precision (0.89) indicates that the model’s
prediction, across both healthy and faulty cases, is 89 % cor-
rect. However, the weighted recall (0.73) suggests that the
model correctly identifies 73 % of actual healthy and faulty
cases. Ideally, both precision and recall should be high, but
in practice, there is a trade-off between false positives (FPs)
and false negatives (FNs). Increasing recall may reduce false
alarms (FP) but could lead to missed fault detection (FN).
Balanced accuracy, as defined in Eq. (5), is a performance
metric used to evaluate a model’s accuracy when dealing
with imbalanced datasets. The model has achieved a bal-
anced accuracy of 84 %, highlighting its reliability in accu-
rately predicting fault cases.

TP TN
) o)

1
Balanced Accuracy = 3 (TP TN + TNTFP

Wind Energ. Sci., 10, 1963-1978, 2025
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Figure 9. A planetary stage channel healthy case depicted a healthy state throughout the observed time period.

For effective fault detection, it is crucial to minimize false
fault alarms while ensuring no fault detection is missed.
Moreover, real wind farm data validate the method’s real-
world applicability but present challenges, since only faulty
cases are labeled with certainty. Therefore, an accurately la-
beled dataset is essential for precisely evaluating the perfor-
mance of the proposed method.

5 Discussion

The proposed hybrid method combines physics-based sig-
nal processing indicators with machine learning techniques
to detect faults in wind turbine drivetrains. The labeled sig-
nal processing indicators, which include healthy, warning,
and faulty states, can be easily analyzed without expert
knowledge. Furthermore, the high-level health status pro-
vides an overview of wind turbine components’ health with-
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out requiring the inspection of individual condition indica-
tor trends. This proposed method can serve both engineer-
ing experts and non-expert operators, offering them a health
status overview tailored to their needs. A non-expert opera-
tor can gain a high-level understanding of the fleet’s health
to plan upcoming maintenance campaigns, while an expert
can obtain a more detailed overview to understand the na-
ture of the fault and determine the specific maintenance re-
quirements for a particular component. The method has been
validated across all wind farm drivetrain components, with
bore scope inspections confirming the results. For demon-
stration purposes, we discuss four cases in this study, where
data have been observed over multiple years. A total of 1
year of healthy data are used to train the NBMs in the train-
ing phase. The drivetrain components observe the faults at
different stages of their life cycle. Early fault detection of the
planetary stage gears and bearings is often particularly chal-
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Figure 10. Confusion matrix of the fault detection method with
19 true positives, 0 false negatives, 30 false positives, and 61 true
negatives.

lenging and typically leads to only minor increases in con-
dition indicator trends which are difficult to detect manually.
The proposed hybrid pipeline accurately tracks the degrada-
tion of the planet gear, ring gear teeth, and planet gear bear-
ing roller faults through the high-level alarm trend. In the
remaining two cases, the generator and HSS channel faults
are identified at an early stage, and an increasing trend is ob-
served in the high-level indicator. The fault trends observed
by the proposed hybrid method are confirmed after monitor-
ing the abrasive wear on the roller flange of the generator-
side HSS bearing. In contrast, the planetary stage in the
healthy case remains fault-free throughout the observing pe-
riod, and the inspection confirms no wear or damage on the
bearings and gears. The method’s performance is evaluated
through a study of 10 wind turbine datasets, which are mon-
itored by 110 sensors, including 19 confirmed faulty cases.
These faults are confirmed through manual mechanical in-
spections conducted by technicians. Due to the imbalanced
nature of our fault data, balanced accuracy is used as the per-
formance metric. The model has achieved a balanced accu-
racy of 84 %. The proposed method demonstrates high reli-
ability in fault detection, accurately identifying all 19 drive-
train fault cases in the performance analysis of 10 wind tur-
bines. However, some false alarms arise due to the complex-
ities of real wind farm data. A high threshold reduces false
alarms but increases the risk of missing actual faults. There-
fore, a lower threshold is adopted to prioritize early-stage
fault detection, as identifying potential issues as early as pos-
sible is critical to provide sufficient time to plan and execute
maintenance strategies. A higher threshold may reduce false
alarms, but it can compromise the detection of subtle changes
in indicator trends, limiting the ability to identify faults at an
early stage. Additionally, it becomes challenging to suppress

https://doi.org/10.5194/wes-10-1963-2025

false alarms when a sensor captures fault frequencies origi-
nating from neighboring components.

The proposed hybrid method effectively provides a com-
prehensive assessment of the turbine’s health, encompassing
both a high-level overview and detailed insights into indi-
vidual condition indicators for each installed accelerometer.
However, the training process demands substantial computa-
tional resources due to the requirement of individually train-
ing an NBM for each condition indicator. Future work aims
to address this challenge by developing an explainable ma-
chine learning model that can adapt to all condition indica-
tors simultaneously while providing both a holistic evalua-
tion of the turbine’s health and an in-depth analysis of in-
dividual condition indicator fault trends. It will significantly
mitigate the computational burden. The multitude of condi-
tion indicators employed in this approach plays a critical role,
as each indicator demonstrates sensitivity to distinct fault cat-
egories. By leveraging the correlations among indicators, it
becomes feasible to streamline the number of necessary in-
dicators while maintaining robust fault detection capabilities.
Nevertheless, this requires a detailed data analysis of indica-
tors over multiple cases before eliminating any indicators.
The proposed method integrates two data sources: the vibra-
tional signals measured by accelerometers installed on the
components and SCADA data. As a consequence, the ap-
plication of this hybrid condition monitoring fault detection
method is limited to wind turbines that are equipped to mea-
sure both vibration and SCADA data. Future work will fo-
cus on vibrational analysis to reduce dependence on SCADA
data. However, developing a standalone vibration-based con-
dition monitoring method will require high-quality vibration
data to extract operational information.

6 Conclusions

A hybrid fault detection method was introduced that com-
bines advanced signal processing techniques with machine
learning to offer a comprehensive overview of the health of
wind turbine drivetrain components. The proposed method
provided a high-level health status overview to address the
vast number of condition monitoring indicators, as individu-
ally monitoring all available condition indicators is not pos-
sible when managing multiple components in a single wind
turbine across an entire wind farm. This method not only fa-
cilitates high-level health assessments but also allows for in-
depth inspections of signal processing indicators, making it a
versatile tool suitable for both experts and non-expert stake-
holders. The proposed method has been validated across an
entire wind farm fleet, where it consistently achieved satis-
factory results in the majority of cases. To further validate its
effectiveness, manual bore scope inspections were conducted
after the fault detection process, confirming the presence of
mechanical faults. The combination of physical knowledge
and the computational power of machine learning in our

Wind Energ. Sci., 10, 1963-1978, 2025
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approach holds great promise for enhancing the reliability
and efficiency of wind turbine maintenance and performance
monitoring.
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