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Abstract. The substantial computational expense associated with the dynamic analysis of wind turbines pro-
hibits efficient design evaluations and site-specific performance predictions. This research explores the effective-
ness of principal component analysis and discrete cosine transform dimensionality reduction methods to identify
key spatial and temporal patterns in a wind field, which are subsequently used by a long short-term memory
(LSTM) algorithm to model the wind turbine responses. This study strikes a balance between prediction ac-
curacy and training data requirements by employing an efficient feature selection technique and a multi-stage
modelling approach that incrementally learns the information about the target variable. Furthermore, a multi-task
learning strategy is adopted, allowing the LSTM model to predict multiple target variables at once, thus remov-
ing the necessity for separate models for each target variable. This method alleviates the computational cost of
dynamic analysis of a wind turbine by addressing the challenges introduced by high-dimensional wind fields
and time-consuming numerical integration processes. The findings show that this comprehensive approach sig-
nificantly reduces computational cost while maintaining accuracy across all target variables, thereby facilitating

design feasibility assessments and site-specific studies of wind turbines.

1 Introduction

Wind turbines, in an attempt to maximise energy capture,
have grown significantly over the last few decades, with
their scale seeing unprecedented growth (Roga et al., 2022).
The increased scale of wind turbines translates to higher
loads, deformations, and more accumulated damage. Achiev-
ing an efficient design in the presence of these challenges
is not a trivial task. Studies focused on efficient controls,
advanced technologies, and an improved understanding of
wind turbine operations have led to more efficient operation
of wind turbines (Sarkar et al., 2020b; Sarkar and Fitzger-
ald, 2020, 2022; Abbas et al., 2022; Njiri and Soffker, 2016;
Sun et al., 2012; Tan et al., 2022; Fitzgerald et al., 2023). In
addition, use of reliability and optimisation principles in the
design of wind turbines can further improve their design, en-
suring consistent reliability in the wake of these challenges.
However, evaluating multiple possible design combinations
to arrive at an optimal solution satisfying multiple constraints
requires high computational resources due to the non-linear

dynamics of the underlying model and the non-convex na-
ture of the optimisation problem. Such optimisation studies
can become computationally unfeasible to perform with an
increasing number of parameters. For a wind turbine, the
computational cost of optimisation is further compounded
due to a large number of uncertain parameters involved, site-
specific loading envelopes, and the high computational cost
of running numerical models. To address these issues, this
study presents a methodology to develop a machine-learning-
based model to predict the dynamic response of a wind tur-
bine at a fraction of the computational cost of a numerical
model. The proposed model is not only efficient but also
maintains high accuracy, as demonstrated through bench-
marking against a validated numerical model, discussed later
in this study.

Dynamic analysis of wind turbines refers to analysing
the structural response subjected to stochastic wind inflow
during operation. Wind speeds can fluctuate significantly
across the rotor plane within the wind turbine rotors, re-
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sulting in varying wind conditions experienced at various
points within the rotor area. This effect is more pronounced
in turbines with higher rotor diameters. Furthermore, because
wind speeds change over time, these spatial points within
the rotor area are subjected to temporal variations in wind
speed. Therefore, accurate prediction of a wind turbine’s re-
sponse to dynamic forces necessitates a realistic simulation
of wind speed variations across its large rotor area and their
evolution over time. The complexity of the spatiotemporal
wind field introduces a fundamental challenge in wind tur-
bine modelling in terms of a high dimensionality of the in-
put space. TurbSim (Jonkman, 2009), a widely used turbu-
lent wind field simulator, is a key tool for this purpose but is
impacted by this dimensionality issue. The challenges aris-
ing from the high dimensionality of TurbSim data have been
highlighted in many studies (Pereira et al., 2019; Haghi and
Crawford, 2022; Bashirzadeh Tabrizi et al., 2019). Some
studies have explored the use of a surrogate modelling ap-
proach (Haghi and Crawford, 2024) and dimensionality re-
duction techniques (Lataniotis, 2019; Garcke et al., 2017) to
alleviate this issue. In this study, the dimensionality reduction
approach has been used to extract critical information from
a high-dimensional representation of the wind field. Dimen-
sionality reduction has been an active area of research in the
domain of surrogate modelling (Hou and Behdinan, 2022),
processing speech signals (Markaki and Stylianou, 2008),
digital photographs (Van Der Maaten et al., 2009), or medi-
cal imagery (Hamarneh et al., 2011). Specialised literature on
various dimensionality reduction techniques and their com-
parative performance on standard datasets is presented by
Van Der Maaten et al. (2009). By identifying and retaining
the most informative features, dimensionality reduction tech-
niques facilitate efficient analysis of a dataset while reducing
computational complexity and improving interpretability. To
this end, principal component analysis (PCA) and the dis-
crete cosine transform (DCT) are used in this study to arrive
at a low-dimensional representation of the inflow wind. Fur-
ther, building on these extracted features, a long short-term
memory (LSTM) model is developed to capture the temporal
dependence between the features of inflow wind and struc-
tural response.

LSTM models are a type of recurrent neural network
(RNN) with an internal memory state that captures the long-
term dependence of the input features on the target variable.
LSTM models have been implemented successfully in wind
turbines for power forecasting (Banik et al., 2020; Yu et al.,
2019; Woo et al., 2018) and damage detection (Choe et al.,
2021; Xiang et al., 2021; Chen et al., 2021). Further, Dim-
itrov and Go¢men (2022) has demonstrated the use of LSTM
as a virtual sensor, which can be used to predict the wind tur-
bine parameters that are difficult to measure accurately on-
site using SCADA and operational load measurements. Such
models are applicable during the operational phase of wind
turbines, where on-site measurements are available. How-
ever, very limited literature exists for the use of LSTMs in
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structural response prediction of wind turbines during the
design and analysis stage, where extensive load measure-
ment and SCADA data are not available (Woo et al., 2018;
Shi et al., 2023; Zhu et al., 2024; Baisthakur and Fitzgerald,
2024). In this context, the current paper aims to develop an
LSTM model for application in the analysis and design stage,
focusing on predicting the dynamic response of a wind tur-
bine using the model-generated datasets.

Wind turbines represent a special class of structures whose
response is impacted by multiple disciplines, including atmo-
spheric modelling, principles of machines, structural dynam-
ics, control engineering, and electronics. An efficient sur-
rogate model should be able to integrate the various prin-
ciples impacting the wind turbine while computing its re-
sponse. To address this, a multi-stage modelling approach
has been used, where incremental information about the tar-
get is gained in multiple stages. Due to the increasing scale
and flexibility of the wind turbines, multiple degrees of free-
dom (DOFs) are required to model a wind turbine structure
and capture its intricate deformation patterns. Therefore, in
order to get complete information about the system, the re-
sponse at each DOF needs to be evaluated. However, creat-
ing a surrogate model for each DOF would necessitate de-
veloping multiple surrogate models. As the number of DOFs
increases, the computational burden associated with train-
ing and implementing individual models can increase signif-
icantly. To address this, multi-output learning, also known as
multi-task learning, has been used in this study to model mul-
tiple target variables using a single LSTM model (Thrun and
Mitchell, 1995; Caruana, 1997). Multi-task learning lever-
ages the inherent relationships between different target vari-
ables to develop a single, unified model capable of simulta-
neously predicting multiple target variables for a given set
of input parameters. This approach is particularly useful in
modelling structural response where multiple response vari-
ables are closely related to each other and are driven by a
common external force. The use of dimensionality reduction
techniques with a feature selection algorithm and multi-task
learning approach leads to an efficient LSTM model capable
of emulating the dynamics of wind turbines. The organisa-
tion of the paper is as follows: Sect. 2 details the numerical
model of the wind turbine employed in this research, while
Sect. 3 offers a concise overview of the importance of di-
mensionality reduction and the methods implemented in this
research. Section 4 elaborates on the LSTM architecture and
the multi-task learning strategy. In addition, Sects. 5 and 6
describe the method for generating stochastic wind fields and
the rationale for selecting input and output parameters for the
surrogate model, respectively. Finally, Sect. 7 illustrates the
numerical results, evaluating model performance regarding
accuracy and computational efficiency. The paper concludes
with Sect. 8, which summarises the key findings and contri-
butions of this research.
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2 Numerical model of the IEA 15 MW wind turbine

The numerical model of the wind turbine used in this study is
developed using a multi-body dynamics methodology, based
on Kane’s dynamics principles (Kane and Levinson, 1985).
Kane’s dynamics approach is very effective in managing the
intricate interactions among various components of the tur-
bine, facilitating a precise representation of the overall sys-
tem dynamics. By employing Kane’s method, the complex-
ity of deriving equations of motion is significantly reduced,
and it allows for a simplified computer implementation com-
pared to traditional methods such as Euler-Lagrange and
d’ Alembert’s principle.

In total, 22 degrees of freedom are included to accurately
represent the dynamics of the wind turbine components. The
foundation is modelled as a monopile support structure with
six degrees of freedom, encompassing three translational and
three rotational motions. The tower is represented using the
modal summation technique, which involves four principal
mode shapes that characterise the tower’s movements in both
the fore-aft and side-to-side directions. However, the axial
shortening and twisting of the tower due to external loads are
not taken into account. To ensure an accurate depiction of
rotor speed, the azimuth of the generator and the twisting of
the low-speed shaft are included in the model. The blades are
treated as flexible elements, employing the modal summation
method with three mode shapes for each blade — two modes
for flapwise deformations and one mode for edgewise de-
formations. For force evaluation and modal integration, each
blade is discretised into 50 stations along its span. This dis-
cretisation follows the original configuration provided by the
National Renewable Energy Laboratory (NREL) in the re-
lease documentation of the IEA 15 MW reference turbine
(Gaertner et al., 2020).

Multiple reference frames are established to articulate the
motion of different system components and to define their
orientations relative to one another. The equilibrium equa-
tions for a simple holonomic multi-body system, derived us-
ing Kane’s approach, are expressed as follows:

F,+Ff=0. ()

Here, F; represents the generalised active forces, whereas F*
denotes the inertia force. These forces can be expressed in
terms of kinematic variables as follows:

n
F, = ZEUrX; .FXi_i_Ew'{Vi .MNi, )
i=1
n .
Fr ==Y EufinNEaX) — Eo EY, 3

i=1

In these equations, FXi is the force vector acting on the cen-
tre of mass of point X;, and M Ni is the moment vector act-
ing on the rigid body N;. The terms £v" and Eo! indi-
cate the partial linear and angular velocities of point X; and
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rigid body N;, respectively. Additionally, £ H"i represents
the time derivative of the angular momentum of rigid body
N; about its centre of mass X; in the inertial frame, expressed
by the equation:

EfgNi — [Ni EGNi { E (\Ni o [Ni ENi 4)

The final governing equation of the system is structured as
follows:

M(q, g + f(q,4,t)=0. (&)

In this expression, M(q, t) is the inertia matrix, and § is
the acceleration vector. The function f(q,q,t) is the force
vector, which comprises both external and restoring forces
acting on the structure. Numerical methods are employed to
solve this system of equations, specifically the fourth-order
Runge—Kutta method in this study. Because the main objec-
tive of this numerical model is to generate the data required
for developing the LSTM model, a comprehensive deriva-
tion of equations of motion is not presented in this work,
but interested readers may refer to Sarkar and Fitzgerald
(2021) for further details. The application of this numerical
model across multiple domains has already been established
in prior studies (Sarkar et al., 2020b, a; Sarkar and Fitzgerald,
2020, 2022; Fitzgerald et al., 2023).

The analysis conducted in this research employs the spec-
ifications of the 15 MW wind turbine from the International
Energy Agency (IEA), categorised as an International Elec-
trotechnical Commission (IEC) Class 1B direct-drive unit,
with a rotor diameter of 240 m and a hub height of 150 m.
The technical report outlining the IEA 15MW reference
wind turbine Gaertner et al. (2020) provides a comprehen-
sive explanation of the wind turbine’s key characteristics
and operational parameters. The wind turbine is modelled
on the basis of Kane’s dynamics principles. The multi-body
model developed in this research has been validated by com-
paring its response to NREL’s OpenFAST model (Jonkman
et al., 2022), a widely used open-source framework for wind
turbine dynamics simulation. The validation is performed
for the below-rated steady-state conditions. The steady-state
conditions are used as a baseline for validation, as they sim-
plify the analysis by isolating the model’s behaviour from
the added complexity introduced by transient dynamics. This
validation exercise verifies the overall stiffness of the model
and ensures that it accurately captures the fundamental struc-
tural and aerodynamic interactions. The results of this val-
idation are shown in Figs. 1, 2, 3, and 4. Figures 1 and 2
present a comparison of the blade tip deformation response
between the developed numerical model and OpenFAST in
the in-plane and out-of-plane directions, respectively. Fig-
ure 3 shows the comparison of the rotor speed, whereas Fig. 4
illustrates the comparison of the Fourier spectrum of the side-
to-side deformation of the tower top between the two models.
The comparison highlights that the numerical model devel-
oped in this study can accurately match the response predic-
tion of the OpenFAST model, establishing the accuracy of

Wind Energ. Sci., 10, 1979-2004, 2025




1982

the numerical model. This model is utilised to generate the
data required for training the machine learning model.

This numerical model uses the turbulent wind inflow gen-
erated by TurbSim to drive the system response. Wind fields
created by TurbSim offer a high-dimensional representation
of turbulent wind. The following section presents the dimen-
sionality reduction techniques employed to tackle the high
dimensionality of the wind-field data.

3 Dimensionality reduction techniques for wind
field data

Dimensionality reduction refers to the process of transform-
ing high-dimensional data into a meaningful representation
with reduced dimensionality. Dimensionality reduction is of-
ten used as a preprocessing step before building surrogate
models for high-dimensional input spaces. Reduction in di-
mensions facilitates faster model training and can improve
the robustness of surrogate models by focusing on the most
relevant features (Bishop and Nasrabadi, 2006; Brunton and
Kutz, 2022).

Mathematically, let X denote a high-dimensional dataset,
where each row corresponds to an observation and each col-
umn represents a feature. If p is the number of observations
and N is the number of features, then X is a p x N matrix.
If p is a large number, handling such high-dimensional data
poses computational challenges and can lead to inefficiencies
in analysis and modelling tasks. Let Z represent the reduced-
dimensional representation of the original dataset X, where
Zis a p x n matrix, with n < N being the reduced number of
dimensions. The goal of reducing dimensionality is to find a
mapping function f : X — Z that captures the important in-
formation in the original data while reducing its dimension-
ality.

In the context of wind turbines, TurbSim simulations can
generate wind fields consisting of thousands of data points
across space and time. Dimensionality reduction is crucial to
transform these complex wind fields into more manageable
representations for efficient response prediction. Various di-
mensionality reduction techniques are explored in the liter-
ature for application to high-dimensional problems; among
all these techniques, PCA is one of the most widely used ap-
proaches (Pearson, 1901; Jolliffe and Cadima, 2016). PCA is
a statistical technique that focuses on capturing spatial cor-
relations within the data by identifying the principal compo-
nents that capture the maximum variance in the dataset. PCA
offers computational efficiency and linear mapping, making
it suitable for handling large-scale wind datasets encountered
in wind turbine modelling. Lataniotis (2019) has shown that
PCA consistently outperformed the other dimensionality re-
duction techniques implemented in their research in terms of
reconstruction error and robustness of the results over dif-
ferent repetitions on the standard datasets used in dimen-
sionality reduction problems. PCA implemented for wind
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speed forecasting (Skittides and Friith, 2014; Geng et al.,
2020), wind turbine fault detection (Zhang et al., 2021),
and monitoring (Wang et al., 2016) has also delivered good
results. Principal components can capture recurring spatial
and temporal trends in wind speed variations. The reduced-
dimensional representation using PCA further helps in data
handling and analysis. While PCA excels at capturing the
variance within the data through linear relationships, it might
overlook the presence of underlying non-linear patterns in
complex wind fields. Also, while principal components rep-
resent significant variance, interpreting their physical mean-
ing can be challenging for wind fields. To address these po-
tential limitations, DCT is used as a complementary tech-
nique in this research.

DCT offers a powerful tool to analyse the dynamics of the
wind field by decomposing the data into the underlying fre-
quency components, revealing patterns of spatial and tempo-
ral variation (Ahmed et al., 2006). Unlike PCA, DCT em-
phasises the frequency-domain representation of signals or
images, using its energy compaction property to highlight
dominant frequency components. This data transformation
allows DCT to capture the energy content of a signal or im-
age in fewer coefficients by exploiting the characteristics of
the data in the frequency domain. This property enables ef-
fective compression and representation of wind data, which
can be exploited for dimensionality reduction by capturing
dominant spatial and temporal correlations inherent in wind
speed fields. The components obtained through DCT (cosine
functions with specific frequencies) correspond directly to
spatial variations of different wavelengths or scales within
the wind-field data. This representation makes the DCT com-
ponents physically interpretable. Recently, DCT has been ap-
plied by Schir et al. (2024) for dimensionality reduction of
the stochastic wind field and has been shown to deliver good
results.

Given the distinct strengths and limitations of both PCA
and DCT for wind field representation, their suitability to re-
duce the dimensionality of turbulent wind fields and capture
maximum information with a minimum number of variables
is investigated in this study. The mathematical formulation of
these methods is presented in the next section.

3.1 Principal component analysis

PCA is a mathematical tool that transforms potentially cor-
related features into a smaller set of uncorrelated variables
called principal components. This transformation maximises
the variance explained by each component, thus highlighting
the most prominent patterns within the data. In PCA, the data
are normalised to have zero mean to ensure that principal
components capture variations from the average behaviour
and not the absolute magnitude of the wind speeds. Follow-
ing the original notations, assume that X € R?*" represents
the original wind field dataset matrix, with p observations
(time steps) and N features (spatial locations). The mean-
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Figure 1. Model verification: comparison of in-plane deformation responses at the blade tip.
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Figure 2. Model verification: comparison of out-of-plane deformation responses at the blade tip.

centred dataset (X’ € RP*V) is given by
(6)

where X is the mean vector of the dataset. PCA computes
the covariance matrix to quantify the pairwise linear relation-
ships between different features within the wind field data.
The covariance matrix (X) of the mean-centred data is com-
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puted as

z = L(X’TX/). (7)
p—1

Further, eigen-decomposition of the covariance matrix (%)

is performed to identify the directions of maximum variance

within the wind field data and quantify the amount of vari-

ation captured along each direction. The eigenvectors (V €
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RN>*NY and their corresponding eigenvalues (A € R'V) are
represented using the eigenvector matrix V with N columns
and eigenvalue vector A with N entries:

V=(vi, v vy ),

A=0O1,22,..,AN).

In PCA, the eigenvectors are sorted in decreasing order of
their corresponding eigenvalues so that the eigenvector with
the largest eigenvalue represents the principal component ex-
plaining the most variance in the wind field data. The number
of principal components required to capture the maximum
information about the wind field data is examined using the
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time (s)

cumulative explained variance, calculated as
k
EpRTLE ®)
Zi:l)\’i

A common approach is to select the smallest number of
principal components (k) that achieve a desired percentage
of explained variance. Finally, the original high-dimensional
dataset X is projected onto the new basis spanned by
the selected principal components to obtain the reduced-
dimensional representation Zpca € R”*", where n is the de-
sired number of principal components to retain. The projec-
tion can be expressed as

Zpca =XV,

where V,, is the matrix containing the first n eigenvectors
corresponding to the largest n eigenvalues. This projection
transforms the original features representing wind speeds at
different grid points into a reduced set of features. By select-
ing the n principal components with the largest eigenvalues,
PCA ensures that these new features capture most of the es-
sential variation within the wind field data.

3.2 Discrete cosine transform

DCT is a frequency-domain transformation technique that
uses real-valued cosine functions as its basis. For a discrete
signal x(n) of length N, the 1D DCT is calculated using
Eq. (9):

N—-1
z(k) = Zx(n)~cos (% (n—i—%) k> ®

n=0

https://doi.org/10.5194/wes-10-1979-2025



S. Baisthakur and B. Fitzgerald: Multi-task learning long short-term memory model

where z(k) is the kth frequency component of the sig-
nal transformed using DCT. Following the approach imple-
mented by Schir et al. (2024), a mathematical correspon-
dence can be established between a 2D spatial wind field grid
generated using TurbSim and an image. At a given time in-
stance ¢, the wind field is defined over a spatial grid of size
(Nx x Ny), and each grid point (7, j), representing a spatial
location in the wind field, can be mapped to a pixel in the
image. The magnitude of the wind speed at a point in the
grid, denoted by (X (i, j)), determines the intensity of its cor-
responding pixel (see Fig. 5). This formulation allows us to
treat the spatial wind field at each time step as a 2D image,
enabling the DCT to be applied independently at every time
instance. This results in a time-resolved representation of
spatial wind structures across the wind field. Using this rep-
resentation of the wind field, 2D DCT is used to analyse wind
speed variations across spatial scales and directions. The 2D
DCT of the wind field (X), denoted by Zpct(u, v), is calcu-
lated using Eq. (10):

N—1Ny—1
Zper(u, v) =a@aw) Y Y X(, ))
i=0 j=0
2i+1 2j+1
0S —n( i+ Lu cos —71( J+ D , (10)
2N, 2N,
such that
1 .
., 1=0
a(u) = V7% _ (an
o I1<i<N,—1
and
1 .
., j=0
a(v) = 3 ‘/? ) ) (12)
J. 1<j=<Ny—1

where u and v are frequency indices representing spatial
frequencies in the transformed domain and «(u) and «(v)
are normalisation factors ensuring orthogonality of the ba-
sis functions. The coefficients (Zpct(u, v)) obtained from
the 2D DCT represent the strength of different frequency
components present within the wind field. These frequency
components correspond to variations in wind speed at dif-
ferent spatial scales. The low-frequency coefficients, associ-
ated with low values of u and v, represent spatial patterns or
trends throughout the wind field grid, which capture smooth
variations in the spatial domain. In contrast, high-frequency
coefficients represent finer-scale, localised wind speed fluc-
tuations and turbulent structures. These coefficients capture
rapid, often less spatially organised changes in wind speed
over short distances within the wind field. The DCT must
be applied at each time step, where the snapshot of the
wind speed grid at that time instance acts as an image. By
analysing the energy distribution across different DCT co-
efficients, the dominant spatial scales of variation present
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Figure 5. Modelling wind speed data at a time instance ¢ as an
image.

in the wind field can be identified. Using the 2D DCT of a
wind field and ranking the coefficients by their magnitudes,
a subset of coefficients that capture the majority of the es-
sential variations of the wind field can be identified. Re-
taining the significant coefficients and discarding the high-
frequency components result in a compressed representation
of the wind field, preserving the dominant spatial patterns in
the wind field. For each selected DCT component, its tempo-
ral evolution, formed by concatenating its values across suc-
cessive time steps, constitutes a feature sequence. Further,
an LSTM model is developed using these features to pre-
dict the deformation response of the wind turbine blades. Us-
ing these features for model training ensures that both spatial
and temporal dynamics are effectively represented. This ap-
proach leverages the spatial structure of the wind field while
preserving its temporal evolution. The details of the LSTM
model architecture are presented in the next section.

4 Long short-term memory model and multi-task
learning

An LSTM model is a type of recurrent neural network (RNN)
specifically designed to handle sequential data by capturing
both long-term and short-term dependencies between input
and output variables. Unlike conventional feed-forward neu-
ral networks, which process input independently and lack
memory of previous states, RNNs employ a feedback mech-
anism in which the network’s output at each step is fed back
as input. This recursive structure enables RNNs to model the
temporal dependencies inherent in sequential data. However,
traditional RNNs suffer from the problem of vanishing gradi-
ents, where gradients become too small to effectively update
the parameters of the network during training, particularly
for long sequences (Hu et al., 2018). The LSTM architecture
addresses this limitation by introducing gating mechanisms
(input, forget, and output gates) that regulate the flow of
information and gradients through the network (Hochreiter
and Schmidhuber, 1997). These gates allow LSTMs to re-
tain important information over long sequences and mitigate
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the vanishing gradient problem, making them well-suited for
tasks involving sequential data with complex temporal de-
pendencies. Although more advanced architectures such as
transformers (Vaswani et al., 2017) have gained popularity
for their ability to model long-range dependencies through
self-attention mechanisms and their parallelisable structure,
they often require significantly larger datasets and computa-
tional resources to achieve optimal performance. Transform-
ers excel in tasks like natural language processing, where
massive datasets are available, and parallel computing can
be fully leveraged. However, for applications such as wind
turbine modelling, where datasets may be limited and the
temporal structure of the data is critical, LSTMs offer a prac-
tical and efficient alternative (Li et al., 2018). Their ability
to capture temporal dependencies with fewer parameters and
computational requirements makes them a suitable choice for
this specific domain. The core component of an LSTM is the
memory cell, which consists of these gating mechanisms. Se-
lective data retention and elimination are performed as the
data passes through these gates. Based on the task of each
gate, they are commonly known as follows.

— Input gate: this gate receives the model features at the
current time step and the hidden state predicted at the
previous time step as input. This gate combines these
two inputs to create a candidate for storing new infor-
mation. Mathematically, this operation is represented in
Eq. (13).

iy = og(Wi X x¢+ Ri X hy—1 + bj) (13)

— Forget gate: the input to the forget gate is the same as
the input gate. This gate combines the information from
input features at the current time step with the hidden
state from the previous time step and estimates what
past information is no longer relevant. This operation
is presented in Eq. (14).

fi=0g(Wt X x¢ + Rg X hy—1 + by) (14)

— Cell state: the cell state in an LSTM unit undergoes up-
dates influenced by the output of the forget gate and the
input gate, which determine the significance of new and
existing memory. A cell state is the actual memory of
the LSTM, which holds the information across many
time steps. The cell state acts as the long-term mem-
ory of the unit. This operation is represented through
Eqgs. (15) and (16).

ci = 0g(We X X+ Re X hy—1 + be) (15)
= fircm1tic o (16)

— Output gate: the output gate combines the cell state up-
dated at the current time step with the previous hidden
state, creating the current hidden state, predicting the
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Figure 6. LSTM architecture (adopted from Calazone, 2022).

network’s output (hidden state) at the current time step.
This gate acts as the short-term memory of the unit.
Equations (17) and (18) represent this operation mathe-

matically.
oy = 0g(Wo X xt + Ry X hy—1 + bo) (17)
hy = oy - oc(cy) (18)

In Egs. (13) through (18), x represents the feature vector of
the LSTM model, and / denotes the hidden state, a crucial
output of the LSTM unit. The subscript “t” denotes the tem-
poral position of the vectors, where ¢ refers to the current
time step, t — 1 refers to the previous step, and so forth. The
symbols “i”, “f”, “c”, and “0” correspond to the input gate,
forget gate, cell state, and output gate, respectively. In each
gate, W signifies the fixed weights, R denotes the recurrent
weights, and b represents the bias term. The o symbol sig-
nifies the sigmoid activation function, ensuring non-linearity
in the input-output transformation and constraining the gate’s
output within the interval [0, 1]. The sigmoid activation func-
tion is given by Eq. (19):

1
14+e*

o(x)= (19)
Multiple LSTM units can be stacked together to capture com-
plex relationships in the data. A sketch of a typical LSTM
memory cell and data flow is presented in Fig. 6, adopted
from Calazone (2022).

Multi-task learning is an approach in machine learning
in which a model leverages the information shared between
different output variables to learn the dependencies to pre-
dict multiple outputs using a set of common input parame-
ters (Caruana, 1997). The multi-task learning model has been
found to deliver better results by jointly learning various de-
pendent parameters rather than by learning them indepen-
dently (Zhang and Yang, 2018). In the multi-task learning
method, various deep learning layers are stacked together to
efficiently learn patterns from the data. In standard machine
learning approaches, only one output parameter is learnt at
once; however, multiple parameters equalling the total num-
ber of neurons in the final layer can be predicted using a
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multi-task learning model. An overview of multi-task learn-
ing, its application, and detailed classification can be found
in Zhang and Yang (2018).

5 Generation of stochastic wind field and data
preparation

Wind turbines are subjected to stochastic turbulent wind in-
flow during their operation, which significantly influences
power generation and structural loads. Generating a realistic
wind inflow pattern is therefore crucial for ensuring the va-
lidity of simulation results. In this study, TurbSim (Jonkman,
2009) is used to generate the wind field that acts on the
wind turbine. TurbSim serves as a stochastic tool to gener-
ate full-field representations of turbulent winds, using sta-
tistical models to emulate wind dynamics. TurbSim oper-
ates on a statistical model to produce time series data com-
prising three-dimensional wind speed vectors across a fixed
two-dimensional vertical grid. This grid remains stationary
in space during the inflow generation process. To gener-
ate wind fields specific to wind turbine configurations and
site conditions, TurbSim provides customisable parameters
that encompass turbine geometry and meteorological factors.
These parameters control the size and complexity of the wind
dataset. Key TurbSim parameters include the following.

1. Random seeds: TurbSim uses two random seeds (Rand-
Seedl and RandSeed?2) to create random phases for the
velocity time series and ensure reproducibility. These
seeds generate unique stochastic realisations for speci-
fied environmental conditions. Further, these seeds can
be varied at constant meteorological parameters to pro-
duce various stochastic patterns with similar statistical
properties.

2. Grid dimensions: the parameters GridHeight and Grid-
Width define the vertical and horizontal extent of the
computational domain, whereas NumGridY and Num-
GridZ govern the spatial resolution. The hub height
(HubH}) serves as a reference point for the placement of
the grid. A representative image of the TurbSim grid en-
compassing the wind turbine rotor is presented in Fig. 7.

3. Meteorological conditions: the variable TurbModel de-
fines the spectral model used for generating the wind
speed field. Key statistical properties include mean
wind speed (Urer), turbulence intensity (IECturbc), sur-
face roughness length (Zg), and power law exponent
(PLExp).

The IEA 15 MW reference wind turbine, characterised by
a 240m rotor diameter and a 150 m hub height, is mod-
elled using a rectangular domain measuring 285 m x285m
with a 25 x25 spatial grid layout. A single 10 min wind
field, with a temporal discretisation of 0.05 s, yields 625 fea-
tures with 12 000 observations each, resulting in a very high-
dimensional input space. The dimensionality of the input

https://doi.org/10.5194/wes-10-1979-2025

1987

Grid width

y

Grid height

Figure 7. Visual representation of a TurbSim grid.

space is further compounded, as multiple wind fields are re-
quired to train a surrogate model. An LSTM model may en-
counter challenges, such as overfitting and increased compu-
tational and memory requirements, when dealing with such
high-dimensional input data. To mitigate these issues, dimen-
sionality reduction techniques are used to extract essential in-
formation from the input space while minimising the number
of variables.

5.1 Selection of input variables

The development of a surrogate model relies on the gen-
eration of a representative dataset covering various opera-
tional scenarios. Because the model learns the relationship
between input and output purely based on the training data,
the proper selection of wind field parameters and their distri-
butions is critical. Although the surrogate model can extrap-
olate beyond the training data bounds, its prediction accu-
racy in these regions is uncertain (Chen et al., 2018; Hastie
et al., 2009; Brunton and Kutz, 2022). This study focusses
on onshore wind turbines operating under normal conditions,
which significantly influence fatigue loading and power pro-
duction. The inflow wind patterns are influenced by multi-
ple parameters; however, modelling all of them is computa-
tionally prohibitive. Sensitivity analyses, such as those con-
ducted by Dimitrov et al. (2018), have shown that turbulence
intensity (TI), mean wind speed (U), and the power law ex-
ponent (o) have the greatest impact on wind turbine loads un-
der normal operating conditions. These parameters are there-
fore selected for generating the wind fields. The bounds for
these parameters are presented in Table 1. The wind speed
range of 3-25 ms~! is adopted from the operational range of
the reference 15 MW wind turbine, ensuring that all simula-
tions remain within its cut-in and cut-out wind speed limits.
The bounds for TI and « are based on the approach outlined
in Dimitrov et al. (2018). In this study, the lower limit for
a is set at O to focus the analysis solely on positive wind
shear. Negative shear values are omitted to simplify the anal-
ysis and constrain the parameter space. Negative shear leads
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to uncommon inflow conditions that can cause atypical blade
loading patterns that, although intriguing, fall outside the cur-
rent surrogate modelling framework aimed at typical and fre-
quently encountered operating scenarios.

The spatial correlations, temporal variability, and turbu-
lence inherent in wind make it a fundamentally random pro-
cess. This randomness stems from aleatory uncertainty due
to the inherent variability of wind speed and epistemic un-
certainty arising from limitations in modelling or measur-
ing all factors influencing wind behaviour. Training a sur-
rogate model capable of accurately predicting wind turbine
responses under these uncertainties requires the generation
of multiple realisations (ensembles) for each set of environ-
mental parameters. Quantifying these uncertainties is essen-
tial for making realistic risk assessments. However, identify-
ing the minimum number of seeds required so that the sur-
rogate model can efficiently identify the underlying patterns
in these wind fields is a crucial factor governing the amount
of data required for training these models. In a different ap-
plication, the IEC guidelines (IEC, 2019) recommend con-
sidering six random realisations for each mean wind speed
to calculate fatigue damage, which implies that six seeds
can effectively capture the variability in wind fields. In ad-
dition, these guidelines recommend keeping environmental
conditions constant within a wind speed limit. This approach,
combined with the inherent variability in TI and «, leads to
a large number of required simulations. A study by Hiibler
et al. (2018) shows that assuming constant environmental
conditions within a wind speed bin does not fully capture
the uncertainty in fatigue damage and recommends scatter-
ing environmental conditions within a bin for a more com-
prehensive assessment. In this study, a combination of these
sampling approaches is used to simulate the wind fields re-
quired to train the surrogate model; the mean wind speed
values within the turbine’s operational range are selected us-
ing Sobol sampling, a low-discrepancy quasi-random method
that ensures uniform coverage of the wind speed space. Scat-
tering environmental conditions within a wind speed bin also
acts as a crucial data augmentation technique for the sur-
rogate model, which prevents overfitting to a limited set of
wind patterns and significantly improves generalisation. To
this end, in this study, a total of 16 realisations are generated
for each mean wind speed U, assuming a random combina-
tion of RandSeedl, TI, and «. In total, this approach results
in 50 mean wind speed values each combined with 16 reali-
sations (varying RandSeedl, T1, and «), generating a dataset
of 800 simulations for training the surrogate model. This en-
sures a broader sampling of wind patterns while considering
computational constraints. As such, wind fields are generated
using TurbSim with the following key settings.

1. Spectral model: Kaimal spectral model (IECKAI)

2. Turbulence model: normal turbulence model (NTM)
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3. Grid size: 25x25 grid with a spatial extent of
285m x 285 m

4. Temporal discretisation: 0.05 s

The response of the wind turbine for these loading con-
ditions is simulated using the numerical model presented in
Sect. 2 with a time step of 0.005 s to ensure accuracy and nu-
merical stability. The response is simulated for 800 s, and the
data for the first 200 s are excluded from the analysis to elim-
inate the effect of transience. The ROSCO controller (Ab-
bas et al., 2021, 2022) is used to optimise the performance
of the wind turbine by regulating the rotor speed and blade
pitch angle. The structural response is then downsampled to
align with the temporal resolution of the wind field data. The
dataset is split into training, validation, and testing subsets
with a ratio of 75 : 12.5: 12.5. To ensure representative cov-
erage across all mean wind speeds, this division is performed
using the random seed index: for each mean wind speed, 12
wind fields are used for training, while two each are reserved
for validation and testing. This approach preserves the sta-
tistical diversity across the datasets and prevents bias toward
any particular wind condition.

The high dimensionality of the wind field data (a 25 x 25
grid over 600 s results in an input matrix of 12 000 x 625) un-
derscores the importance of dimensionality reduction tech-
niques. The PCA and DCT methods transform a wind field
grid into different representations, providing a different basis
for capturing the spatiotemporal variations. However, these
techniques alone do not reduce the number of features. To
address this, the recursive feature addition (RFA) method
(Guyon and Elisseeff, 2003; Guyon et al., 2002) is used to
select an optimal subset of features. RFA iteratively adds fea-
tures based on their relevance to the target variable, evaluated
using metrics such as the root mean squared error (RMSE).
This process continues until adding extra features no longer
improves model performance. A detailed analysis of various
approaches for feature selection, their computational cost,
and the resulting accuracy for an LSTM model is presented in
Baisthakur and Fitzgerald (2025). By combining PCA, DCT,
and RFA, this study identifies the most influential parame-
ters for training the LSTM model, ensuring computational
efficiency and robust performance.

6 Selecting the output parameter

The versatility of a surrogate model and its ability to pro-
vide comprehensive information depend on its output pa-
rameters. Within the existing literature, a variety of surro-
gate models have been formulated to predict quantities as-
sociated with load components, such as the fatigue damage
equivalent load and reactions in tower and blade structures
(Haghi and Crawford, 2024; Schir et al., 2024; de N San-
tos et al., 2023; Bai et al., 2023). However, these load com-
ponents are derived from responses at particular degrees of
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Table 1. Environmental parameters used and their limits.

Parameter

Lower bound

Upper bound

Mean wind speed (m sfl)

Turbulence intensity (%)

Shear exponent

3 25

0.025 OI8 (6.8 +0.75-U +3(19)%)

0 Oref, UB +0.4<§)<U$ax)

freedom (DOFs), and the extrapolation from DOF responses
to load reactions remains straightforward, thus not necessi-
tating substantial computational resources. In this specific
context, the model developed in this study is aimed at pre-
dicting the dynamic responses of blade deformation and in-
dividual DOF, which can be subsequently utilised to compute
the loads and reactions. Moreover, to obtain results that are
physically quantifiable, an additional LSTM model has been
developed to predict the blade’s in-plane and out-of-plane
deformation responses. This selection of target variables en-
sures that the surrogate model maintains sufficient versatility
to calculate multiple derived quantities.

In this approach, multi-task learning streamlines the mod-
elling process and enhances the model’s capacity to cap-
ture complex interactions and dependencies within the sys-
tem by exploiting shared information across related outputs.
In the context of wind turbine blade analysis, the responses
of different DOFs are often governed by common load el-
ements acting on the blade structure. By jointly modelling
these responses within a multi-task learning framework, the
model can leverage shared features and patterns, leading to
improved generalisation and predictive performance. For ex-
ample, the numerical model presented in Sect. 2 uses the
normal mode summation method to model the blade defor-
mation. This approach characterises the blade response using
three DOFs, i.e. g1F1, ¢B1F2, and gg1g1, Which represent the
modal coordinate of blade deformation corresponding to the
first bending mode in the flapwise direction, second bending
mode in the flapwise direction, and first bending mode in the
edgewise direction. Using this method, the blade deforma-
tion at any point located at a distance x from the blade root at
any time instance ¢ is given by Eq. (20), where ¢ represents
the corresponding mode shape.

q(x,1) = ¢B1F1(x)gB1F1(?) + PB1E2(X)gB1E2(F)
+ ¢B1E1(X)gB1E1 (1) (20)

This deformation response can be projected into global co-
ordinates to compute the blade tip in-plane (gip) and out-
of-plane (gop) deformation using the approach presented in
Jonkman (2003). The multi-output learning paradigm is em-
ployed to develop an LSTM model to predict the time history
responses of these three DOFs. Therefore, the LSTM model
capable of predicting response at these three DOFs can be
used to compute multiple derived quantities such as loads,
reaction, and fatigue damage equivalent load without much
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computational overhead. In addition, the model is extended
to predict in-plane and out-of-plane blade deformations, as
these quantities provide physically measurable responses for
application in virtual sensing and model validation through
experimental measurements. The LSTM model development
and the corresponding results for these target variables are
presented in the next section.

7 Numerical results

In this section, numerical results are presented to demon-
strate the performance of LSTM models in predicting the dy-
namic response of wind turbine blades under turbulent wind
conditions. The methodology begins with the generation of
stochastic wind fields using TurbSim, following the param-
eter bounds presented in Table 1 and the sampling strategy
described in Sect. 5. These wind fields serve as input to the
numerical model of the 15 MW wind turbine (Sect. 2), which
generates the training data for the LSTM model. To address
the challenges posed by high-dimensional input data, while
training the LSTM model, PCA and DCT are used to capture
the governing spatial and temporal trends in the wind field.
The RFA method is then used to select an optimal set of input
features for the LSTM model.

The LSTM models developed using wind speed data alone
were able to capture the time-varying mean response; how-
ever, they struggled to model fluctuations around the mean.
This limitation arises because the wind turbine response is
heavily influenced by the controller algorithm, which reg-
ulates the rotor speed and blade pitch angle, thereby gov-
erning the system dynamics. Predicting the response using
only wind speed data would require an impractically large
dataset to capture the underlying dependence on controller
dynamics. To address this, a multi-stage modelling approach
is implemented in this study. In the first stage, LSTM models
are developed to predict the controller response (rotor speed
and blade pitch angle) using reduced-order representations
of the wind field as input. In the second stage, the predicted
control parameters from the first LSTM model are combined
with the PCA and DCT components to train another LSTM
model to predict the blade deformation response. A concep-
tual framework for this approach is presented in Fig. 8. This
approach divides the problem into smaller, more manage-
able sub-tasks, consistent with the physics of the problem.
The direct physical relationship between the inputs and out-
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puts at each sub-task reduces the data requirements and re-
sults in a more efficient surrogate model. The performance
of each LSTM model, along with their training and results,
is discussed in the next section. Wind turbine behaviour dif-
fers significantly between the above-rated and below-rated
regions due to distinct controller principles. While the pre-
sented methodology can be applied separately to each region
to develop individual models, the features and model archi-
tecture may vary. To avoid information overload, this section
focusses exclusively on results for the above-rated condition.

7.1 Predicting control parameters

This section presents the methodology used to develop the
LSTM model to predict control parameters. The numerical
results are presented, and the model performance is compre-
hensively analysed. The control parameters, i.e. rotor speed
and blade pitch angle, are governed by the properties of the
inflow wind. These parameters are tuned using a specially de-
signed controller to optimise the performance of a wind tur-
bine. The controller used to regularise the rotor speed aims
at achieving higher efficiency in power production in below-
rated wind speeds, whereas the blade pitch angle controller
aims to maintain constant power production for above-rated
wind speeds. The controller algorithm introduces additional
uncertainty in the response of the wind turbine. In this study,
the controller algorithm is treated as a black box to develop
a surrogate model. Here, an LSTM model is developed to
predict the controller response as a function of wind speed
data processed through the PCA and DCT algorithms. In the
preliminary analysis, a multi-task learning model was used
to simultaneously predict the blade pitch angle and rotor
speed as a function of PCA and DCT features. However, this
approach failed to model both parameters simultaneously
with the required level of accuracy. Alternatively, individual
LSTM models developed to predict one parameter at a time
were found to deliver better results. Based on these observa-
tions, the blade pitch angle and rotor speed are modelled sep-
arately through individual LSTM models. In addition, it was
observed that the rotor speed can be better modelled through
PCA features, and the blade pitch angle dynamics are cap-
tured more accurately using DCT features. This distinction
can be attributed to the nature of the controller responses
and the type of information captured by each feature rep-
resentation. Blade pitch adjustments are typically triggered
by localised and high-resolution spatial variations, such as
wind shear and turbulence, which are effectively captured by
the spatial frequency decomposition offered by DCT. Rotor
speed, by contrast, reflects a more integrated response influ-
enced by the overall wind field across both space and time,
making it more sensitive to the global modes captured by
PCA. The following sections present the model architecture
and its performance in predicting the individual controller re-
sponse.
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7.1.1  Predicting rotor speed response using PCA

In the preliminary analysis, the PCA approach was found to
be more effective in modelling the rotor speed response. Sup-
plementing the principal component with the average rotor
wind speed was found to further improve the model predic-
tions. This section presents the development of the LSTM
model trained using principal components of wind speed data
and the rotor-averaged wind speed as input features. The
model architecture is shown in Fig. 9. In this deep learn-
ing model, the sequence input layer inputs sequential data
to the network, where the size of the sequence layer is equal
to the number of input features. The LSTM layer is used to
learn long-term dependencies between time steps and extract
temporal patterns from sequential data. This layer performs
additive interactions, which can help improve gradient flow
over long sequences during training (Hochreiter and Schmid-
huber, 1997). Because the model should generalise well over
a wide range of wind speeds, a normalisation layer was used,
which normalises a mini-batch of data across all channels for
each observation independently. The use of the normalisation
layer after the learning layers speeds up the training and im-
proves the performance of the model. A fully connected layer
was then used to combine the temporal patterns and trans-
form these extracted features. Although a fully connected
layer extracts the learnt information from the LSTM layers, it
also increases the risk of overfitting. To avoid this, a dropout
layer was added to the model. A dropout layer randomly sets
the input elements to zero with a given probability, which
helps to avoid overfitting the training data and improves the
generalisation ability of the network. In this architecture, a
constant dropout probability of 10 % was assumed for each
dropout layer. The first fully connected layer was used to
aggregate the information from the LSTM layer, while the
second fully connected layer was used to represent the ac-
tual output parameters. The final fully connected layer in the
model matches the number of target variables. The final fully
connected layer in the LSTM model developed to predict ro-
tor speed has only one neuron. The number of neurons in the
final layer of a multi-task learning model is always greater
than one. This model was trained using the Adam optimisa-
tion algorithm (Kingma and Ba, 2014). Initially, the first five
principal components, which cumulatively capture 50 % of
the variance in the wind speed data, were selected to capture
the dominant patterns in the wind speed data. This feature set
was further filtered using RFA by iteratively adding features
and evaluating the performance of the model to find the op-
timal feature set that yields the best results. During the RFA
process, the rotor-averaged wind speed was considered as a
fixed element in the input set. Table 2 summarises the range
of hyperparameters used for exploration in this study. Hy-
perparameters are model parameters set prior to training that
govern the model architecture and learning behaviour. Here,
the number of neurons in the fully connected layer and the
number of cells in the LSTM unit were chosen as the hy-
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Figure 9. LSTM model architecture for predicting rotor speed.

Table 2. Summary of hyperparameter exploration for predicting
controller response.

Hyperparameter Parameter range  Optimised values
LSTM layer — 1 [1-100] 81
Fully connected layer — 1 [1-100] 64

perparameters due to their direct influence on model capac-
ity and performance. The parameter bounds were selected
based on prior literature, preliminary experiments, and com-
putational resource considerations. These ranges define the
search space for the Bayesian optimisation technique used
to tune the model. The hyperparameters are tuned using the
Bayesian optimisation technique; the optimised parameter
values are also presented in Table 2.

Figure 10 shows the RMSE obtained from validation data
using different principal components as input features. This
figure shows that the LSTM model developed using the first
principal component combined with the rotor-averaged wind
speed corresponds to the lowest prediction error in the vali-
dation dataset. Here, rotor-averaged wind speed refers to the
spatially averaged wind speed over the entire rotor swept area
at each time instant, representing the effective inflow veloc-
ity experienced by the wind turbine rotor. Adding more input
features using the RFA method did not increase the accu-
racy of the model predictions. To this end, the first princi-
pal component of the spatiotemporal wind, along with rotor-
averaged wind speed, is used as input features to predict the
rotor speed. A visual representation of the predictions of the
LSTM model relative to the actual rotor speed across differ-
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Figure 10. RMSE in rotor speed prediction using different principal
components.

ent wind fields is presented in Fig. 11, demonstrating the ac-
curacy of the model. The overall efficiency of this approach
can be contextualised by the fact that the proposed approach
reduces 625 input features to only two variables capable of
capturing the overall dynamics. This underscores the impor-
tance of PCA in simplifying complex datasets without sacri-
ficing crucial information.

7.1.2 Predicting blade pitch response using DCT

The LSTM model used to predict the blade pitch response
shares the same architecture as shown in Fig. 9. Wind speed
data, transformed using DCT, served as input, and RFA was
used to determine the most informative subset of DCT fea-
tures for optimal prediction accuracy. Similarly to the rotor
speed prediction model, the rotor-averaged wind speed acts
as a fixed element of the input feature set during the RFA
process of the blade pitch prediction model. In this model,
the wind speed grid at each time step was treated as an im-
age. 2D DCT was applied to this image to decompose it into
different spatial frequency components. The process of mod-
elling wind speed data as an image and processing it through
2D DCT inherently distributes relevant information across
the off-diagonal terms of the output matrix. As such, the oft-
diagonal terms in the DCT matrix share mutual information
about spatial frequencies in the horizontal and vertical direc-
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Figure 11. Rotor speed predictions of the LSTM model using the PCA feature.

tions. To capture this information, the DCT components were
grouped to form feature subsets, each representing an incre-
mental higher-frequency subset. A mathematical definition
of a feature subset z; is given by Eq. (21):

zi=Zpctn Xxn(l:i,1:i)— ZpcTtn
xn(l:i—1,1:i—1)V1 <i <n. 21)

A visual representation of component groups of the DCT ma-
trix is shown in Fig. 12. This figure illustrates the grouping
of 2D DCT components for a 5 x 5 matrix, as described in
Eq. (21). Each group z; represents an incremental subset of
spatial frequency components, starting from the lowest fre-
quencies (top-left corner of the matrix) and progressively in-
cluding higher frequencies. This grouping captures the mu-
tual information shared across the off-diagonal terms of the
DCT matrix, which encode spatial frequency information in
both the horizontal and vertical directions. The visual rep-
resentation in the figure highlights how each subset of fea-
tures z; is constructed, taking the difference between suc-
cessive submatrices of the DCT output. Figure 13 presents
a representative 5 x 5 matrix of a wind field, where the spa-
tial frequency in the horizontal direction increases from left
to right and the frequency in the vertical direction increases
from top to bottom. In each successive iteration of the RFA
method, the input features in Fig. 13 corresponding to the
highlighted components of the matrix in Fig. 12 are selected.
Using this feature definition along with the RFA scheme, the
LSTM model was trained to predict the blade pitch response.

Wind Energ. Sci., 10, 1979-2004, 2025

The initial 5 x 5 submatrix of the 25 x 25 matrix obtained
through 2D DCT was selected as the dominant subset of in-
put features, as it represents the lower-frequency patterns,
which can more effectively capture general trends in the wind
speed data. Figure 14 presents the RMSE obtained for the
LSTM model trained on each group of DCT components
(presented in Fig. 12), demonstrating that the first compo-
nent, representing the lowest-frequency patterns extracted by
the DCT, achieves the best performance in predicting the
pitch angle of the blade. This signifies that low-frequency
fluctuations in wind speed play a dominant role in driving
the blade pitch response. The findings of the RFA showing
the best predictive capacity of the LSTM under the low-
frequency component can be explained using control the-
ory. The control system governing the blade pitch angle is
designed to optimise turbine performance and stability by
filtering out high-frequency disturbances and adjusting the
blade pitch angle in a more deliberate and controlled manner.
This intentional smoothing of blade pitch variations serves
to mitigate the impact of sudden changes in wind speed and
maintain the overall stability and efficiency of turbine oper-
ation. Figure 15 further reinforces this observation by com-
paring the actual blade pitch response to the LSTM model
predictions for different wind fields. The proposed model ef-
ficiently captures the overall trends in blade pitch response
across different mean wind speeds, highlighting the general-
isability of the LSTM model. The predictions of rotor speed
and blade pitch angle are combined with the PCA and DCT
data to predict the deformation response at the blade tip. In

https://doi.org/10.5194/wes-10-1979-2025
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Figure 12. Visual representation of DCT components considered in the RFA method.
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Figure 13. A 5 x 5 submatrix of the DCT representation of the wind field.

this stage, the rotor speed was transformed into the angular
position of the blade so that it could more effectively capture
the rotation frequency.

7.2 Predicting blade response

In this section, a two-layer LSTM model architecture was
implemented to predict the deformation response of the wind
turbine blade. To explore the effectiveness of the PCA and
DCT methods, two sets of input features are considered:

1. Principal components of the wind field, combined with
the angular position of the blade and the blade pitch
angle predictions of the LSTM models described in
Sects. 7.1.1 and 7.1.2.

2. Coefficients of the discrete cosine transform of the wind
field, combined with predictions of the pitch angle and

https://doi.org/10.5194/wes-10-1979-2025

Number of DCT Components

Figure 14. RMSE in blade pitch prediction using different DCT
components.
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Figure 15. Blade pitch angle predictions of the LSTM model using DCT features.

the angular position of the blade from the LSTM models
described in Sects. 7.1.1 and 7.1.2.

The results of these two approaches were compared to as-
sess the capabilities of PCA and DCT in the context of blade
response prediction. A multi-task learning approach was em-
ployed to simultaneously predict the blade response. Initially,
the model was trained to predict in-plane and out-of-plane
deformations, which was subsequently extended to predict
the response of individual blade DOFs in the flap- and edge-
wise directions. MATLAB® codes used for model training
and validation are available at Baisthakur (2024).

7.2.1 Blade response prediction with PCA features

Following the approach outlined in the previous sections, this
section presents the model developed to predict the blade
response and the corresponding results. The architecture of
the model for the prediction of blade response is detailed in
Fig. 16. The LSTM architecture is designed through an it-
erative process, and hyperparameter optimisation is used to
identify the most optimal parameters for various layers. The
number of hidden units in the learning layers was used as a
hyperparameter in this study. The performance of the model
is evaluated using the normalised root mean squared error
(NRMSE) between the predictions in the validation data and
the actual results. NRMSE is used as an error metric because
it normalises the RMSE by the range of the observed data,
making it suitable for comparing model performance across
signals with different magnitudes, such as in-plane and out-
of-plane deformations. The use of NRMSE ensures inter-
pretability and fairness in evaluating the model’s accuracy,

Wind Energ. Sci., 10, 1979-2004, 2025

as it accounts for variations in signal scales, which is particu-
larly important when analysing multi-task learning outcomes
for wind turbine blade dynamics. Table 3 summarises the
hyperparameter exploration. A progressively smaller range
is used for the bounds of hyperparameters, as consistently
decreasing the number of hidden units was found to deliver
better results. Using the angular position of the blade and the
pitch angle as constant features (i.e. features permanently in-
cluded in the input set throughout the feature selection pro-
cess), the principal components of the wind speed data were
selected using the RFA algorithm. In this context, the RFA al-
gorithm does not start from an empty set but always includes
these two features as part of the input, which are governed
by the physics of the problem. This approach enables accu-
rate predictions of both in-plane and out-of-plane blade de-
formations (Fig. 17). In particular, the second principal com-
ponent, when paired with the angular position and pitch an-
gle of the blade, yielded the best performance. This suggests
that the second principal component likely captures patterns
more relevant to predicting blade deformations than the first
principal component, despite the fact that the first component
captures the maximum variance in the dataset. These findings
further reinforce the importance of using feature selection ap-
proaches in obtaining a simplified model representation with
a small set of the most informative features. This method was
further extended to predict the response at individual blade
DOFs, which are the most fundamental quantities in numer-
ical modelling, and the corresponding results are presented
in Figs. 18 and 19. Using the fifth principal component as
the input feature in conjunction with the blade angular po-
sition and pitch angle produced the lowest RMSE to predict
the response at individual blade DOFs.

https://doi.org/10.5194/wes-10-1979-2025
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Figure 16. LSTM model architecture for predicting blade response.

Table 3. Summary of hyperparameter exploration to optimise the
number of hidden units in learning layers.

Hyperparameter Parameter range ~ Optimised values
LSTM layer — 1 [100-200] 138
LSTM layer - 2 [50-100] 63
Fully connected layer — 1 [1-50] 44

Here, it can be seen that a higher level of accuracy was
obtained in the prediction of DOFs ¢gF; and ggig; as com-
pared to gg1r2. This can be attributed to the higher frequency
of the mode shape for ggir2. Furthermore, the absolute mag-
nitude of gpir> shows that this DOF has a lower impact on
total deformation compared to the response of gpr;. How-
ever, it is evident from Figs. 18 and 19 that a good approx-
imation in predicting all the DOFs is achieved by capturing
the governing dynamics in all the parameters.

7.2.2 Blade response prediction with DCT features

Building upon the PCA approach, the use of DCT features
for the prediction of the blade response is explored in this
section. The LSTM model follows the same model architec-
ture presented in the previous section (Fig. 16). Following
the methodology adopted in Sect. 7.2.1, the model architec-
ture was trained using DCT features. Figure 20, Fig. 21, and
Fig. 22 demonstrate the precision of DCT in predicting the
blade response, capturing the dynamics of the target variable.
The best performance for blade response prediction was ob-
tained using the second group of DCT components presented
in Fig. 12 as input features, whereas the blade DOF predic-
tions achieve higher accuracy under the combination of the
second and third groups of DCT components.

Table 4 provides a comparison of the NRMSEs obtained
for models developed using the PCA and DCT features,
highlighting DCT’s superior performance in predicting the
blade response. These results highlight that the LSTM model
can efficiently predict the dynamic response of wind turbine
blades. The accuracy of the predictions also depends on the
dimensionality reduction algorithm and the features chosen
for the development of the model. The accuracy achieved
in the intermediate stage of the multi-stage modelling ap-
proach also significantly impacts the final model predictions.
These results also demonstrate that DCT, by focussing on
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Table 4. Comparison of LSTM model performances trained using
PCA and DCT features. IP and OoP denote “in-plane” and “out-of-
plane”, respectively.

Output parameter NRMSE
PCA DCT
Blade IP deformation 0.074  0.047

Blade OoP deformation  0.083  0.059
Blade DOF —gpFi 0.092 0.081
Blade DOF —ggF2 0.112 0.102
Blade DOF —gg g 0.073  0.065

spatial frequency patterns, delivers better results in predict-
ing the blade responses. While temporal convolutional net-
works (TCNs) have been successfully used to predict dam-
age equivalent loads (DELs) using wind speed data (Haghi
and Crawford, 2024), direct parallels cannot be drawn be-
tween these studies to compare model performance against
LSTM due to differences in objectives and scope. For ex-
ample, the referenced study uses TCNs to predict a single
variable (DEL) for a 5 MW wind turbine, whereas this work
focusses on predicting the time-history response of multiple
fundamental quantities for a 15 MW turbine. In the realm of
machine learning modelling, the suitability of a particular
model depends on several factors, including data availabil-
ity, computational resources, model complexity, and the spe-
cific requirements of the application. Only when these funda-
mental objectives are the same would a comprehensive com-
parison of various surrogate modelling techniques, including
TCNs and LSTMs, be an interesting direction for future re-
search. To this end, while TCNs have shown promise in cer-
tain tasks, LSTMs are found to be able to capture the com-
plex temporal dependencies inherent in wind turbine dynam-
ics, as demonstrated in this study. The next section focusses
on analysing the computational advantage of the developed
surrogate models.

7.3 Computational advantage of surrogate approach

The need to reduce the computational cost in predicting the
dynamic response of a wind turbine is at the heart of the sur-
rogate model developed in this study. Having established the
accuracy of the developed surrogate model, this section fo-
cusses on the computational advantages of using these mod-
els. A direct comparison of execution times was conducted to
quantify the extent of the computational efficiency of these
models. Both the numerical model and the surrogate model
were used to predict blade response for a 600 s turbulent wind
inflow generated using TurbSim. To ensure a fair compari-
son, only the essential blade DOFs and generator azimuth an-
gle were activated within the numerical model. The surrogate
modelling approach developed in this study offers a signifi-
cant computational advantage in predicting blade response.

Wind Energ. Sci., 10, 1979-2004, 2025
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Figure 17. Multi-task learning LSTM model predictions of blade deformations using PCA features: (a) blade out-of-plane deformation

response and (b) blade in-plane deformation response.
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Figure 18. Multi-task learning LSTM model predictions of blade flapwise DOFs using PCA features: (a) blade first flapwise DOF response
and (b) blade second flapwise DOF response.
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Figure 19. Multi-task learning LSTM model predictions of blade edgewise DOF using PCA features.

The execution time comparison shows a 75-fold speed im-
provement using the surrogate model compared to the corre-
sponding numerical model. This comparison highlights the
computational efficiency of the developed surrogate models.
The computational advantage allows for conducting a large
number of simulations required for site-specific performance
analysis. Furthermore, the ability of the surrogate model to
quickly predict blade deformations under varying wind and
control inputs makes it a useful tool for comprehensive fa-
tigue analysis of wind turbine blades. While quantifying the
computational gains, all the simulations were performed on
a system with an 8-core Intel Xeon CPU with a clock speed
of 3.8 GHz, using 32 GB RAM, and running on Microsoft
Windows 10 Pro. It is noted that the computational advan-
tage reported here pertains to the prediction phase of the sur-
rogate model. Although the data generation, model training,
and feature selection incur a one-time computational cost,
this overhead is significantly offset when the model is used
for large-scale simulation tasks such as fatigue analysis or
design exploration.

8 Summary and conclusion

In this paper, an approach that combines multi-stage mod-
elling and multi-task learning with dimensionality reduction
techniques and a feature selection algorithm was presented.
This combined method aims to enhance the efficiency of de-
veloping LSTM models for predicting blade response. Based
on the investigation performed in this paper, the following
conclusions can be drawn.

Wind Energ. Sci., 10, 1979-2004, 2025

— Dimensionality reduction: the effectiveness of PCA and

DCT in simplifying wind field data while retaining cru-
cial information for prediction tasks was demonstrated.
Both PCA and DCT, particularly when combined with
recursive feature addition, helped in achieving an effi-
cient model configuration and improved prediction ac-
curacy.

Rotor speed and blade pitch prediction: LSTM models
were developed for rotor speed prediction (using PCA
features) and blade pitch prediction (using DCT fea-
tures). These models achieved varying degrees of accu-
racy in capturing the dynamics of their respective target
parameters across different uncertainty levels in wind
conditions. Accurate rotor speed and blade pitch infor-
mation were identified as critical parameters for subse-
quent blade response prediction.

Blade response prediction: a multi-stage modelling ap-
proach was employed, where predicted control param-
eters were fed into an LSTM model to predict blade
deformations and DOF responses. Models trained us-
ing DCT features showed higher accuracy than those
trained using PCA features for this task, indicating
DCT’s ability to capture spatial frequency patterns driv-
ing blade dynamics.

Practical applications: the LSTM model presented in
this paper is trained using input-output data only. This
approach has potential applications in design feasibility
studies for those models where the exact model config-
uration is not available due to intellectual property con-
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Figure 20. Multi-task learning LSTM model prediction of blade deformations using DCT features: (a) blade out-of-plane deformation
response and (b) blade in-plane deformation response.
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Figure 21. Multi-task learning LSTM model prediction of blade flapwise DOFs using DCT features: (a) blade first flapwise DOF response
and (b) blade second flapwise DOF response.
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Figure 22. Multi-task learning LSTM model predictions of blade edgewise DOFs using DCT features.

cerns. Further, due to the low computational cost, these
models can be used within a model predictive control
framework for regulating the performance.

9 Limitations and future work

The surrogate modelling framework presented in this study
provides a computationally efficient means of predicting
wind turbine blade response using LSTM networks, in-
formed by recursive feature selection tailored to aerodynam-
ics and structural dynamics. While the results demonstrate
good predictive performance within the scope of the current
study, several limitations and directions for future work re-
main.

A primary limitation lies in the use of synthetic wind in-
put fields generated under controlled assumptions. Although
the wind fields used for model training span a realistic range
of turbulence intensities and spectral properties, they do not
capture full-scale atmospheric variability. Incorporating real-
field data or high-fidelity meteorological simulations could
improve robustness and extend applicability. Additionally,
the model is currently trained for a specific turbine config-
uration and structural model. Although the learning archi-
tecture is generalisable in principle, transferability to differ-
ent turbine sizes, control strategies, or structural layouts re-
quires careful re-validation. Future work could explore trans-
fer learning strategies to reduce retraining effort across dif-
ferent turbine designs. Although this study demonstrates the
ability of the surrogate model to accurately capture the dy-
namic response of wind turbine blades, its application to
downstream tasks such as fatigue analysis may introduce ad-

https://doi.org/10.5194/wes-10-1979-2025

ditional sources of uncertainty. Because fatigue assessments
are sensitive to the accumulation of cyclic loading effects
over time, even small prediction errors in the dynamic re-
sponse, particularly in phase or amplitude, could influence
the accuracy of damage estimates. It is therefore essential to
evaluate whether such discrepancies consistently amplify, at-
tenuate, or statistically cancel out over extended simulations.
Future work will focus on quantifying this uncertainty to es-
tablish confidence bounds when using surrogate models for
long-term performance and reliability assessments. Finally,
although computational gains during inference are signifi-
cant, the training phase remains time- and resource-intensive.
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