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Abstract. Incorporating more renewable energy into the electric grid is an important part of the strategy to
expand our energy portfolio. To make the incorporation of renewable energy into the grid more efficient and
reliable, numerical weather prediction models need to be able to predict the intrinsic nature of weather-dependent
renewable energy resources. This allows grid operators to accurately plan the amount of energy they will need
from each source (e.g., wind, solar, fossil fuel). For this reason, wind ramp events (rapid changes in wind speed
over short periods of time) are important to forecast accurately. This is because one of their consequences is that
wind energy could quickly be available in abundance or temporarily cease to exist. In this study, the ability of the
operational High Resolution Rapid Refresh numerical weather prediction model to forecast wind ramp events is
assessed in its two most recent versions: version 3 (HRRRv3, operational from August 2018 to December 2020)
and version 4 (HRRRv4, operational from December 2020 onward). The datasets used in this analysis were
collected in the United States Great Plains, an area with a large amount of installed electricity generation from
wind. The results are investigated from both annual and seasonal perspectives and show that the HRRRv4 is more
accurate at forecasting wind ramp events compared to HRRRv3. Specifically, the HRRRv4 shows an increased
correlation coefficient and reduced root mean square error relative to the change in wind power capacity factor
found in the observations and in the skill of forecasting both up and down wind ramp events, with a marked
increase in the HRRRv4’s skill at detecting up ramps during the summer (the HRRRv4 is nearly 50 % more
skillful than the HRRRv3). This demonstrates that the HRRR’s continuing evolution will better support the
integration of wind energy into the electric grid.
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1 Introduction

Many nations are making more investments in renewable en-
ergy sources (e.g., hydro, solar, and wind power). This is
both to grow their energy portfolio and for economic rea-
sons, given that renewable energy generation does not re-
quire the purchase of fuel. According to the International En-
ergy Agency (IEA; Renewables, 2023) more than 500 GW
of renewable electricity was added to grids around the world
in 2023. This was the largest jump (nearly 50 % from the
year 2022) in the last two decades. Solar power is taking the
lead in this new generation, followed by onshore and off-
shore wind energy (IEA; Renewables, 2023). Adding into
consideration the decreasing costs for wind and solar photo-
voltaic systems, the IEA report estimates that wind and solar
together will account for over 90 % of the renewable power
capacity that is added over the next 5 years (to 2028).

Due to the inherent variability of weather-dependent re-
newable energy resources, numerical weather prediction
(NWP) model developers are also investing resources to im-
prove forecasting of the meteorological variables of inter-
est for grid operators, who rely on NWP model forecasts to
plan for energy source allocation. Indeed, NWP forecasts of
wind speed have been used for over a decade in the decision-
making associated with integrating wind-generated power
into the electrical grid (e.g., Yu et al., 2014; Dong et al., 2016;
Jacondino et al., 2021). In this perspective, a series of Wind
Forecast Improvement Projects (WFIPs) have taken place in
the United States (US). These projects have been sponsored
by the US Department of Energy (DOE) and the National
Oceanic and Atmospheric Administration (NOAA) and in-
cluded partners from public and private institutions.

The first WFIP (WFIP1; Wilczak et al., 2014, 2015) fo-
cused on measuring the impact of including additional me-
teorological information to the initialization of operational
weather prediction models. WFIP1 conducted a 12-month
field campaign in 2011–2012 in the US Great Plains, an area
of large wind energy production. The second WFIP (WFIP2;
Shaw et al., 2019; Wilczak et al., 2019b; Olson et al., 2019b)
focused on an 18-month field campaign that took place in
2015–2017 in the US Pacific Northwest, also an area of large
wind energy production. The goal of WFIP2 was to improve
physical parameterizations within operational weather pre-
diction models in complex terrain, where the wind flow is
modulated by terrain features that are more difficult to sim-
ulate. The third WFIP (WFIP3) includes an 18-month field
campaign off the coast of New England in the eastern US,
where many offshore wind plants are currently being erected.
This ongoing effort, which started in February 2024, aims at
supporting offshore wind generation through better forecast-
ing for existing, new, and planned wind farms placed offshore
of this area.

All the findings from the WFIP efforts have been trans-
ferred to operational versions of the High Resolution Rapid
Refresh (HRRR) model. The HRRR is a regional, rapid-

refresh, convective-allowing (3 km horizontal grid) NWP
model run operationally by the National Weather Service
(NWS). The HRRR utilizes the Weather Research and
Forecasting (WRF) model (Skamarock and Klemp, 2008),
wherein the development focused on improving the suite of
physical parameterizations and data assimilation scheme to
work well with each other for a range of operational fore-
casting applications. The HRRR first became operational in
2014 and remains a key forecasting tool used by the NWS
and other groups due to its hourly update and high resolution.
Details on the HRRR’s configuration, data assimilation sys-
tem, physical parameterizations, and evaluation can be found
in Dowell et al. (2022) and James et al. (2022). This paper
will focus on two versions of the HRRR: version 3 (which
was operational in the NWS from 12 July 2018 to 1 De-
cember 2020) and version 4 (which became operational in
the NWS on 2 December 2020). The primary differences
between these two versions are (a) the improved horizon-
tal resolution of the data assimilation system, (b) improved
treatment of clouds that are smaller than the resolution of the
model, (c) the introduction of wildfire smoke into the model,
including its impact on solar radiation, (d) the improvement
of the vertical advection scheme, and (e) the reduction in the
strength of the numerical diffusion used within the model
(Dowell et al., 2022).

The intrinsic variability of the wind is amplified when the
wind speed is converted into power due to the relationship
between wind speed and wind power capacity factor. In the
range of wind speed values between the cut-in (minimum
wind speed below which no power production is obtained by
the wind turbines) and cut-off (maximum wind speed above
which wind turbines have to be shut down to avoid exceed-
ing turbine design loads) thresholds, a change of a few m s−1

in wind speed can result in a change in wind power produc-
tion of more than 50 %. When these large power production
changes happen over a short period of time (i.e., less than a
couple hours), they are referred to as wind ramps. The accu-
rate forecast of wind ramps is very important for wind en-
ergy operators and has potentially large economic impacts,
as they need to plan in advance what source of energy will
be available to the grid (Jeon, 2022; Jin et al., 2024). Turner
et al. (2022) and Jeon (2022) already demonstrated that im-
provements in the operational HRRR have resulted in signif-
icant economic savings for the US through better grid opera-
tor decision-making. In their studies, they found appreciable
economic gain between HRRR versions 1 (HRRRv1) and 2
(HRRRv2) and a smaller but still appreciable gain between
versions 2 (HRRRv2) and 3 (HRRRv3).

The accuracy of the NWP model at forecasting wind ramp
events cannot be estimated using standard statistical met-
rics (e.g., mean absolute error, correlation coefficient, or root
mean square error) because these would also take into con-
sideration the periods of time when the wind power is at its
minimum or full capacity. Therefore, a tool called the Ramp
Tool and Metric (RT&M) was developed to evaluate an NWP
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model only for the times when wind ramps occur, with the
aim of measuring the skill of the NWP model at forecast-
ing wind ramp events (Bianco et al., 2016). The RT&M has
been used during the WFIP1 (Bianco et al., 2016; Akish et
al., 2019) and WFIP2 (Djalalova et al., 2020) campaigns to
estimate the improvement in operational NWP models.

In this study, the RT&M is used to estimate the skill of
the operational HRRR model in its two most recent versions,
version 3 (HRRRv3) and version 4 (HRRRv4). The analy-
sis is performed using the datasets collected in the US Great
Plains, where wind energy production is abundant, and is
achieved on an annual basis, as well as on a seasonal basis.

The paper is organized as follows: the wind ramp defi-
nition and the RT&M used to evaluate the model forecast
skill are described in Sect. 2. The area of investigation and
the datasets (observational and model) used are presented in
Sect. 3. The diurnal and seasonal variability of wind speed
and ramp events in the study area are presented in Sect. 4.
The skill of the HRRRv3 and HRRRv4 models at forecasting
ramp events both from an annual and a seasonal perspective
is discussed in Sect. 5. Finally, the summary and conclusions
are in Sect. 6.

2 Wind ramp definition and description of the RT&M

Weather-dependent energy is subject to rapid changes of
power availability over short periods in time, referred to
as ramps. In this study, the dependence of the wind power
capacity factor (P ) on wind speed (WS), in the range of
wind speed values between 3–16 m s−1 (region II of the wind
speed to wind power capacity factor curve), is assumed to
be given by the formula presented in Wilczak et al. (2019a).
This formula is computed using the average of several wind
power capacity factor curves for IEC Class 2 turbines.

Additional information to be considered is as follows:
(a) below the cut-in wind speed (3 m s−1) the wind is insuffi-
cient to produce power by the wind turbines, and therefore
P = 0 (region I of the wind speed to wind power capac-
ity factor curve); (b) between 16 m s−1 and the cut-off wind
speed (25 m s−1) the wind power capacity factor is at its max-
imum (P = 1, region III of the wind speed to wind power
capacity factor curve); and (c) above the cut-off wind speed
the wind turbines have to be shut down to avoid strain on the
rotor, and therefore P = 0 (region IV of the wind speed to
wind power capacity factor curve).

The wind speed to wind power capacity factor curve is
presented in Fig. 1.

The RT&M has three components: the first is the identifi-
cation of ramp events in the time series of the observed and
model power data. The second is matching observed ramp
events with those predicted by the forecast model. The fi-
nal component is scoring the ability of the model to forecast
ramp events (both timing and intensity). As an exact defini-
tion of a ramp is not unique (i.e., how much the wind power

Figure 1. Wind speed to wind power capacity factor conver-
sion curve. Cut-in wind speed is 3 m s−1 and cut-off wind speed
is 25 m s−1. Regions I, II, III, and IV of the curve are indicated be-
tween the dashed lines.

capacity factor has to change and over what time period for
the event to be considered a ramp), a metric that is aimed at
evaluating an NWP model at forecasting ramp events has to
include a range of ramp parameters. Additionally, the skill
of a model at forecasting the occurrence of these events has
to consider the capability of the model to predict the time of
the event (or its central time, CT), its duration (1T ), and the
amplitude of the change in the wind power capacity factor
(1P ). The RT&M was developed to take into consideration
the fact that a ramp is not uniquely defined (several 1P and
1T combinations have to be considered) and that the skill of
the model is a function of accurately forecasting all three CT,
1T , and 1P variables. This RT&M is described in Bianco
et al. (2016).

Equations for the computation of the model skill score at
forecasting wind ramp events are formulated for different
matching scenarios between forecasted and observed ramps.
Specifically, eight possible scenarios of model vs. observed
events are considered, consisting of up/up, up/null, up/down,
null/up, null/down, down/up, down/null, and down/down, re-
sulting in the 3× 3 contingency table except null/null events
that do not impact the score. For null scenarios (up/null, nul-
l/up, null/down, and down null), the score will be equal to 0.
For the non-null scenarios the score is computed as a cube-
root equation dependent on the three nondimensional errors
associated with the amplitude, timing, and duration of the
ramp, with coefficients based on the eight different scenarios,
as described in detail by Eqs. (1)–(8) of Bianco et al. (2016).

This metric has potential usefulness for grid operators that
need to quantify the reliability of NWP models they depend
on for their decision-making or for NWP model developers to
test whether their efforts at improving the operational model
are reflected in better forecasts that can benefit the energy
sector.
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3 Area of investigation and dataset description

According to Table 1.14.B of the US Energy Information
Administration (EIA) electric power monthly report (US En-
ergy Information Administration Report, 2024), the six states
with the most electricity generation from wind in 2023 were
Texas, Iowa, Oklahoma, Kansas, Illinois, and New Mexico.
These six states combined produced about 64 % of total US
wind electricity generation in 2023.

This information is also confirmed by the two-dimensional
wind speed field output at 80 m above ground level (a.g.l.)
of the HRRR model (Fig. 2), which is a typical height used
for wind energy investigations. From this figure, larger val-
ues of 80 m wind speed can be seen in the six states listed
above, which explains why this region is important for wind
energy production (onshore wind turbine locations can be
seen here: https://energy.usgs.gov/uswtdb/viewer/#4.55/39.
88/-94.56, last access: 11 September 2025). Another inter-
esting feature shown in Fig. 2 is the lower values of sum-
mer 80 m wind speed (Fig. 2d) compared to winter (Fig. 2c).
Winter is defined as December, January, and February (DJF);
summer as June, July, and August (JJA). This will also be
explored later in the paper when comparing the model to the
observations (Sect. 4).

Atmospheric phenomena experienced in the US Great
Plains, and of large interest for wind energy, are low-level-
jets (LLJs). LLJs have been studied for many years (e.g.,
Bonner, 1968; Whiteman et al., 1997; Banta et al., 2002,
2008) and occur often in the US Great Plains, particularly
in the southern part of it (Freedman et al., 2008). They hap-
pen over relatively flat terrain during nighttime when the
boundary layer is stable, as the ground cools down during the
evening boundary layer transition and the flow is decoupled
just above the surface. This decoupling leads to an acceler-
ation of the flow above the atmospheric surface layer and
produces a layer of air with high momentum, which often
exhibits a maximum in the vertical profile of the horizontal
wind. Whiteman et al. (1997) analyzed the climatology of
the LLJ in the United States Great Plains from 2 years of
radiosonde data and found that the height of the jet maxi-
mum occurs most frequently in the 300–600 m height range,
with a peak between 300 and 400 m. Of course, it would be
ideal in this analysis to use a dataset of wind speeds at hub
height. Unfortunately, this is not possible as there were very
few such observational datasets available to carry out a mean-
ingful geographical investigation.

Previous studies (Schwartz and Elliott, 2005; Newman
and Klein, 2014) also recognize the fact that, although the
wind speed at hub height is the one of interest for wind en-
ergy application, most wind speed measurements are taken
at 10 m a.g.l. as tall meteorological towers are expensive
to build, operate, and maintain. Newman and Klein (2014)
used the Oklahoma Mesonet surface observation stations and
compared the most widely used extrapolation method to re-
late 10 m measurements to 80 m wind speeds collected by

tall towers. They found that the power law, which relies only
on the information of wind speed at a reference height (i.e.,
10 m a.g.l.) and a shear exponent (dependent on atmospheric
stability regimes), produced accurate 80 m wind speed esti-
mates from 10 m wind speed observations and concluded that
these could be therefore used for increasing our knowledge
of hub-height wind speed climatologies.

To ensure that the conclusions of our study are of inter-
est for the wind energy community, we investigate if the re-
sults found using 10 m wind speed are applicable to the wind
speed field at a typical hub height, such as 80 m a.g.l. Ramp
events can be divided into those that occur because of the
strong diurnal variability within the boundary layer and those
that are associated with meteorological phenomena such as
cold fronts, gust fronts, or other changes in forcing from tran-
sient mesoscale pressure gradient fields. Although the diur-
nal variation of wind speeds at 10 m and at several hundred
meters can be out of phase (with 10 m wind speeds decreas-
ing during the nighttime hours, while at 300–400 m they may
increase at night due to the low-level jet) diurnal variations at
both heights are driven by surface and boundary layer fluxes
and turbulent mixing. If improvements to the model’s param-
eterization of those diurnal processes increases forecast skill
at 10 m, one could speculate that improvements to forecast
skill would also be found at greater heights within the bound-
ary layer. Although we only use 10 m observations in our
analysis, evaluation of 10 and 80 m winds in the model in-
dicates that improvements to 80 m wind forecasts are in fact
expected. The results of this investigation are presented in
Appendix A, supporting the fact that our findings can be con-
sidered representative of the wind speed atmospheric field of
interest for renewable energy, and we will thereafter use wind
speed observations made at 10 m a.g.l. This study focuses on
the geographical area of the US Great Plains, where a large
number of observations are available. Model output at the
same height will be used for comparison.

3.1 Observational dataset description and preparation

The observational dataset used in this study is obtained by
the METeorological Aerodrome Report (METAR) stations,
a network of weather stations located mainly in airports
and used for flight planning and weather forecasting (https:
//aviationweather.gov/data/metar/, last access: 11 Septem-
ber 2025). The United States Geological Survey (USGS)
Wind Turbine database (https://eerscmap.usgs.gov/uswtdb/,
last access: 11 September 2025) was used to identify the lo-
cation of the wind turbines. The 10 m a.g.l. wind speed obser-
vations at locations that are within 20 km of a wind turbine
are extracted. Native METAR data are typically 15 or 20 min
resolution; as the output from the HRRR is hourly, we have
linearly interpolated the METAR observations in time to the
HRRR output times (i.e., the top of each hour). Generally,
the observation close to the top of the hour is within 10 min.
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Figure 2. Annual mean (a) and standard deviation (b) of the wind speed at 80 m derived from 1 h forecasts from the HRRR over 2020–2022.
Panels (c) and (d) show the mean wind speed for DJF and JJA, respectively, and panels (e) and (f) show the standard deviation of the wind
speed for DJF and JJA, respectively (using the same color bar ranges as in panels a and b).

Figure 3 shows the geographical location of the METAR
weather stations used in this study, which are superimposed
over the topography of the study area. The location of the
METAR weather stations allows for a geographically well-
distributed analysis of the results.

3.2 Operational model description and preparation

As mentioned earlier, the model of interest in this study
is the operational HRRR, which uses a 3 km grid spacing.
The HRRR is initialized from the operational Rapid Refresh
model (RAP; Benjamin et al., 2016) and assimilates other
observations (e.g., METAR, AMDAR aircraft, and weather
radar data) to derive its analysis, from which forecasts are
initiated. The HRRR provides 18 h forecasts every hour, but
four times per day the maximum forecast length is extended.
For those four initialization times (00:00, 06:00, 12:00, and
18:00 UTC), the HRRRv3 provides forecasts out to 36 fore-
cast hours, while the HRRRv4 goes out to 48 h. Additional

details on the model configurations and parameterizations are
provided in Dowell et al. (2022).

The “day-ahead” forecast is particularly useful for the en-
ergy community, as that is when decisions are made on the
amount of fossil fuel generation to have online, which de-
pends on the amount of wind (and solar) energy that is ex-
pected to be generated. Thus, we focused on the 00:00 UTC
initialization and used the 13 to 36 h forecasts from both the
HRRRv3 and HRRRv4. For each model, the 13 to 36 h fore-
casts were concatenated to provide continual temporal cov-
erage across the time periods analyzed. However, an artifi-
cial “ramp” could be created when merging the 36 h forecast
initialized at 00:00 UTC on day X with the 13 h forecast ini-
tialized on day X+ 1 at 00:00 UTC due to a slight bias be-
tween the two forecast runs. To reduce this impact, a three-
point (equivalent to 3 h) smoother was applied at the stitch-
ing points of the transition times (point 1 is a 36 h forecast of
day X and point 2 is a 13 h forecast of day X+ 1). For these
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Figure 3. Geographical location of the METAR weather stations
used in this study superimposed on the topography of the study area.

two points, the model output is an average over three points
(for point 1 these will be 35 and 36 h forecasts of day X and
a 13 h forecast of day X+ 1; for point 2 these will be a 36 h
forecast of day X and 13 and 14 h forecasts of day X+ 1)
with the two outer points having 25 % weight and the central
time having 50 % weight.

An example of how the model forecast runs are com-
bined together to provide a time series of wind power ca-
pacity factors to compare with the observations is presented
in Fig. 4. Both observed and modeled wind power capacity
factors are obtained by applying the wind power curve to the
10 m observed and modeled wind speeds. In this example, a
time series of the observed wind power capacity factors at
10 m a.g.l. for the KEWK METAR weather station, located
in Kansas, is presented with the black solid line for the time
period from 8 April 2021 to 13 April 2021. Dashed lines,
in different colors, present the HRRRv4 forecasts (out to 48
forecast hours) at 00:00 Z initialization times each day. The
solid red line represents the time series of the model data
obtained by the procedure described above. In this example,
several ramp events are identifiable. The sharpest down ramp
happens at the end of 8 April 2021, while the sharpest up
ramp event is noticeable at the end of 9 April 2021. During
these events, the available wind power capacity factor for a

wind turbine at this location could easily go from its maxi-
mum to zero and vice versa. The HRRRv4 tends to reproduce
the wind power capacity factor fairly well, with some inac-
curacy in the timing, amplitude, and duration of the ramp
events. These inaccuracies are taken into consideration by
the RT&M when the skill of the model is computed.

An optimal way to evaluate the relative skill of the
HRRRv3 against the HRRRv4 would be to use periods of
time when both models are available. However, since we
are assessing the operational models, there are no periods of
overlap that can be used. To prove that using different time
periods for the two versions of the HRRR is a valid alter-
native, we looked at the geographical distributions of wind
ramp events found for the 10 m a.g.l. wind power capacity
factor of the HRRRv3 in 2020 and the HRRRv4 in 2021 and
2022. Figure 5 shows the number of ramp events (for the
type of ramps defined as having a 1P/1T ≥ 40 %/2 h) at
each of the observational locations, represented with colored
circles as a function of the number of identified ramps. The
geographical distribution of the number of wind ramp events
agrees with the annual wind speed geographical distribution
presented in Fig. 2. Additionally, the geographical distribu-
tions of the number of these events are very similar between
HRRRv3 in 2020 (panel a), HRRRv4 in 2021 (panel b), and
HRRRv4 in 2022 (panel c). Of course, it has to be consid-
ered that the interannual variability of the wind distribution
across the study area could impact the results of this study. A
discussion about this possibility is included in Appendix B.
It is interesting to note how for all 3 years the number of
ramps is larger in the west side of the study area, in the north-
western part of Texas, in the southeast locations closer to the
Gulf of Mexico, and in Oklahoma. Consistently between the
years, there are fewer ramps in the central part of Texas and
on the eastern side of the study domain. The central, north-
ern, and northeastern parts of the study area experience fewer
ramp events, and the numbers are relatively consistent for all
3 years. This confirms that even though the time periods used
to evaluate the HRRRv3 and HRRRv4 are not coincidental,
the comparison is still valuable.

Similarly, the geographical distribution of the ratio be-
tween the number of forecast wind ramps (for the type of
ramps defined as having a 1P/1T ≥ 40 %/2 h) and those
observed for the 3 years is presented in Fig. 6a, b, and c. It
is noticeable how the models tend, in general, to find fewer
ramp events (ratio less than 1), which is expected due to the
smoother wind field output of the model compared to obser-
vations. This is in accordance with what was found by Bianco
et al. (2016) and by Djalalova et al. (2020). Nevertheless, it
is encouraging to find that the average of the ratio over the
study area tends to get closer to 1 for the HRRRv4 periods
relative to the HRRRv3 period (being equal to 0.53± 0.24,
0.58±0.24, and 0.68±0.22, respectively, for the years 2020,
2021, and 2022).

To further show that the ratio between the number of fore-
cast wind ramps and those observed improves over the years
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Figure 4. Time series of the wind power capacity factor from 8 April 2021 to 13 April 2021 from the KEWK METAR weather station, located
in Kansas (black line), and of the HRRRv4 forecasts (out to 48 forecast hours) at 00:00 Z initialization times (dashed lines in different color
for the different days). The wind power capacity factors are obtained by converting the 10 m observed and modeled wind speeds.

Figure 5. Geographical distribution of wind ramp events (1P/1T ≥ 40 %/2 h) at each tower location by year: HRRRv3 in 2020 is in
panel (a), and HRRRv4 in 2021 and 2022 is in panels (b) and (c), respectively.
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and the model versions, we present the geographical distribu-
tion of the improvement from 2020 to 2021 and from 2020
to 2022, in panels (d) and (e) of Fig. 6, respectively. As no-
ticeable, at most of the stations (72.5 % in panel d and 67 %
in panel e) the improvement is positive.

4 Diurnal and seasonal variability of 10 m wind
speed and ramp events in the observational and
model datasets

The composites of the diurnal variability of the 10 m wind
speed field over the study area are presented in Fig. 7 (right
y axes) for the four seasons in the different years. The spring,
summer, fall, and winter seasons are presented in panels (a),
(b), (c), and (d) for 2020, in panels (e), (f), (g), and (h) for
2021, and in panels (i), (j), (k), and (l) for 2022. The mean
diurnal observed wind speeds are in blue and modeled values
in magenta. The diurnal cycle of the 10 m wind speed field is
clearly evident, with winds weaker at nighttime and increas-
ing in value starting from sunrise into the daytime (local time
in the US Great Plains is LT=UTC−5).

The strongest daytime winds are experienced in the spring,
while summer has the weakest 10 m wind speeds throughout
the whole day. The models are able to reproduce the diurnal
variability of this field (magenta and blue time series for the
model and observations, respectively) across the 3 years and
for the different seasons. On the left y axes are plotted the
total number of ramps measured by the observations and by
the models for both up ramps (positive 1P ) and down ramps
(negative 1P ).

It is apparent that the daily distribution of ramp events an-
alyzed in this study follows the diurnal cycle of the 10 m
wind speed for all seasons with down ramps more evident
around 22:00–03:00 UTC when the 10 m wind speed sharply
decreases (around sunset), and up ramps are more evident
around 12:00–17:00 UTC when the 10 m wind speed sharply
increases (around sunrise). For this reason, the diurnal peaks
in the ramps coincide with the largest temporal changes in the
mean wind speed. We could speculate that a reverse behav-
ior in the diurnal cycle of wind speed may appear at higher
heights, especially at nighttime. This consideration is partic-
ularly valid at the height of the nose of the LLJ, although,
as mentioned earlier, Whiteman et al. (1997) found that the
height of the jet maximum occurs most frequently between
300–600 m.

Although, as discussed in Fig. 6, the number of observed
ramps is in general larger than the number of model ramps,
we performed a statistical analysis for the matched wind
ramp events (model and observed ramps are matched when
the distance between their relative central time is less than
the defined time window length, i.e., 2 h for the type of
ramps defined as having a 1P/1T ≥ 40 %/2 h). The cor-
relation and root mean square error (RMSE) in 1P for
these matched events at all sites are presented in Fig. 8. For

HRRRv4 we used the averaged correlation coefficient and
RMSE of years 2021 and 2022. With the exception of winter,
both the statistical metrics improve in HRRRv4 compared to
HRRRv3.

5 Models’ skill at forecasting ramp events

5.1 Annual geographical analysis

In this section, the geographical distribution of the annual
improvements in the skill of the HRRRv4 versus HRRRv3 is
discussed. The improvement in the skill is computed as

Improvement (%)= [(Skill HRRRv4)

− (Skill HRRRv3)]/(Skill HRRRv3)
× 100. (1)

Figure 9 presents the improvements in red (or degradation
in blue) in the skill scores for the year 2021 vs. 2020 and the
year 2022 vs. 2020, as well as for all ramps, up ramps only,
and down ramps only. The predominance of increased skill
(red) is apparent and it is quite uniform spatially, despite the
different geographical distribution of wind ramp events seen
in Fig. 5, denoting the improvement found in the HRRRv4
compared to the HRRRv3, confirming that physical develop-
ments in HRRRv4 are valid across the study area. This is true
for all ramps and for up ramps slightly more than for down
ramps.

5.2 Annual and seasonal statistical analysis

A similar analysis to the one presented in the previous sec-
tions was repeated for the individual seasons and is pre-
sented here averaged over the study area. The left axes of
Fig. 10 present bar charts with the ramp skill scores aver-
aged by model version annually and by season for all ramps,
up ramps only, and down ramps only; right axes show the
percentage improvements in skill score annually and by sea-
son for all ramps, up ramps only, and down ramps only.

Most noticeable is the marked increase in the skill of
detecting up ramps in HRRRv4 during the summer, with
HRRRv4 nearly 50 % more skillful than HRRRv3. Across
all seasons, and for both up ramps and down ramps, the skill
of the HRRRv4 is improved relative to that of HRRRv3. In-
terannual variability can play a role in the skill of the model
by year; nevertheless, in Appendix B we show that although
there is variability in the hub-height wind field between the
years 2021 and 2022, in both years the skill of the model
(HRRRv4) has improved substantially with respect to that of
year 2020 (HRRRv3). For instance, in spring and fall, the
increase in skill score is consistently greater than the interan-
nual variability, as shown in Appendix B, Fig. B2.
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Figure 6. Geographical distribution of the ratio of the number of model vs. observational wind ramp events (1P/1T ≥ 40 %/2 h) at each
tower location by year: HRRRv3 in 2020 is in panel (a), and HRRRv4 in 2021 and 2022 is in panels (b) and (c), respectively. Improvement
in this ratio is in panel (d) for HRRRv4 in 2021 vs. HRRRv3 in 2020 and in panel (e) for HRRRv4 in 2022 vs. HRRRv3 in 2020.

5.3 Daytime and nighttime statistical analysis

Since it could be argued that our results are dependent on
atmospheric conditions, it would be helpful to know under
which conditions conclusions drawn from 10 m data are most
robust and under which conditions further caution is needed.

To see if the improvements presented in the previous sec-
tion are still consistent between stable and unstable atmo-
spheric conditions, the dataset was divided into nighttime
and daytime (due to the lack of temperature measurements at

different levels from which to determine stability). We then
recomputed the models’ skills and skill improvements over
these different time periods for ramps defined as 1P/1T ≥

40 %/2 h.
The daytime period is selected to be 12:00 to 22:00 UTC

and the nighttime is 23:00 UTC plus 00:00 to 11:00 UTC.
The results of this exercise showed that the daytime skill of
the HRRRv4 years compared to the HRRRv3 year improved
by 10.3 % and 9.1 % in 2021 and 2022, respectively, and that
the nighttime skill of the HRRRv4 years compared to the
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Figure 7. Left axes: total number of wind ramp events for one ramp definition (1P/1T ≥ 40 %/2 h) over the study area as a function of time
of day (hours UTC) for the four seasons. Winter is defined as December, January, and February; spring as March, April, and May; summer
as June, July, and August; and fall as September, October, and November (left to right: spring, summer, fall, and winter) in the different years
(panels a–d: 2020; panels e–h: 2021; and panels i–l: 2022). Right axes: composites of the diurnal variability of the 10 m wind speed field
over the study area for the four seasons in the different years. Sunrise and sunset times are denoted by the red and navy arrows, respectively.

Figure 8. Left axes: bar charts of correlation coefficients (a) and
RMSE (b) of observed vs. modeled 1P (for matched wind ramp
events defined as 1P/1T ≥ 40 %/2 h) by year (left to right: annu-
ally and by season). There are two different sets of data, with 2020
in violet and the average of the years 2021 and 2022 in aqua. Right
axes: percentage improvements in correlation (a) and in RMSE (b).

HRRRv3 year improved by 9.0 % and 21.9 % in 2021 and
2022, respectively. These results show that, although there
are differences in values, the improvements are still consis-
tently positive for both daytime and nighttime periods and
for both HRRRv4 years compared to the HRRRv3 year.

6 Summary and conclusions

To increase energy availability and meet the demands for
new electricity generation, many nations are investing in re-
newable energy resources. Since the availability of renewable
energy resources is inherently weather-dependent, numerical
weather prediction (NWP) model developers are also invest-
ing resources to improve the forecast of the meteorological
variables of interest for grid operators.

In this study, the operational High Resolution Rapid Re-
fresh (HRRR) numerical weather prediction model is as-
sessed on its ability to forecast wind ramp events. Wind ramp
events are rapid changes in wind speed over short periods
of time, and their accurate forecast is very important for
wind energy operators so that they can reliably plan what
source of energy to count on for the grid. The two most
recent versions of the HRRR are considered in this study:
version 3 (HRRRv3, operational from August 2018 to De-
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Figure 9. Geographical distribution of the annual improvement of the HRRRv4 vs. HRRRv3 skill score at forecasting ramp events at each
tower location by year (panels a–c: 2021 vs. 2020; panels d–f: 2022 vs. 2020) for all ramps (a, d), up ramps (b, e), and down ramps (c, f).

cember 2020) and version 4 (HRRRv4, operational from De-
cember 2020 onward). Datasets used in this analysis were
collected in the United States Great Plains, an area with a
large amount of installed electricity generation from wind.
This study uses wind speed observations from METeorologi-
cal Aerodrome Report (METAR) stations made at 10 m a.g.l.
and model output at the same height. Our analysis of 10 and
80 m (a typical hub height) winds in the model indicates that
improvements to 80 m wind forecasts are in fact expected
in HRRRv4 compared to HRRRv3. We also found that the

number of ramps at 10 m correlates well with those at 80 m
(R = 0.82 for up ramps and R = 0.84 for down ramps), but
we recognize that a correlation of 0.84 explains only 70 % of
the variance between 10 and 80 m wind speeds and the num-
ber of ramps at those two heights. The remaining 30 % is un-
certainty that could possibly be reflected in different diurnal
wind speed and ramp event behaviors at these two heights.

The evaluation of the HRRR model in its two versions is
performed using the Ramp Tool and Metric (RT&M), a tool
aimed at measuring the skill of an NWP model at forecast-
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Figure 10. Left axes: bar chart with skill scores averaged by model
version annually and by season for all ramps (a), up ramps only (b),
and down ramps only (c). Right axes: percentage improvements
in skill score annually and by season for all ramps (a), up ramps
only (b), and down ramps only (c).

ing wind ramp events. This tool takes into consideration the
fact that a ramp is not uniquely defined and measures the ca-
pability of an NWP model to accurately forecast the time of
the event, its duration, and the amplitude of the change in the
wind power capacity factor.

The results are investigated from both annual and seasonal
perspectives and show how the HRRRv4 is more accurate
at forecasting wind ramp events compared to HRRRv3. The
HRRRv4 demonstrated notable improvements in the skill
of forecasting wind ramp events compared to the skill of
HRRRv3, with an increased correlation coefficient and re-
duced root mean square error relative to change in wind
power capacity factor found in the observations. Importantly,
this analysis shows that across all seasons and for both up
and down ramp events, the skill of the HRRRv4 is improved
relative to that of HRRRv3, with a marked increase in the
HRRRv4’s skill at detecting up ramps during the summer
(HRRRv4 nearly 50 % more skillful than HRRRv3). Some
of the advances between the versions of the model that likely
contributed to the improvements found in this study are an
improved higher-resolution data assimilation system, which
provides better detailed initial conditions for the model; re-
duction in the solar radiation bias at the surface that is the
result of the improved treatment of clouds, as the net radi-
ation at the surface drives the surface energy budget which
itself helps to drive turbulent mixing in the boundary layer;
and the reduction of the diffusion terms in the model, which

allows finer-scale features to be maintained longer into the
forecast before they dissipate.

This study demonstrates the positive evolution of the op-
erational HRRR model to support the integration of wind en-
ergy into the electric grid.

Appendix A

To demonstrate that the results of our study are of interest for
the wind energy community, we investigate the representa-
tiveness of 10 m wind speed to 80 m wind speed. As a first
step, we compared the HRRR model output at two levels:
10 and 80 m a.g.l. over the time period from 2020–2022. We
found a correlation coefficient equal to 0.84 between wind
speed values at these two heights. In addition, we converted
the time series of the model wind at these levels to power
and identified the number of ramps that reached 40 %/2 h at
both levels. In Fig. A1 we show the total number of ramps at
each METAR weather station location. In general, we found
that the number of ramps at 10 m is around 3 times less than
the ramps at 80 m, but the correlation between the number of
ramps at these two levels over all locations is high (R = 0.82
for up ramps and R = 0.84 for down ramps). We recognize
that a correlation of 0.84 explains only 70 % of the variance
between 10 and 80 m wind speeds and the number of ramps
at those two heights. The remaining 30 % is uncertainty that
could possibly be reflected in different diurnal wind speed
and ramp event behaviors at these two heights.

We also looked at the geographical distribution of the
ramps at these two levels, as presented in Fig. A2. The num-
ber of ramps at each site in this figure is normalized by the
maximum number of ramps at that level over the entire do-
main. This demonstrates that the spatial pattern of the occur-
rence of wind ramps, both up and down ramps, is qualita-
tively very similar at the two heights.

As noted in the main body of the paper, for all 3 years com-
bined the normalized number of ramps is larger in the west
side of the study area, in the northwestern part of Texas, in
Oklahoma, and Kansas, compared to the northeast part of the
domain. The normalized geographical distribution is consis-
tent between the 10 and 80 m levels. As could be expected,
the geographical distribution is smoother at 80 m.

Although 80 m wind speeds are not measured in many
locations compared to the availability of METAR station
observations, we used the long-term routine measurements
collected at the central site of the ARM Southern Great
Plains (SGP) Observatory in OK (lat: 36.6050° N; long:
−97.4850° W; alt: 318 m; Sisterson et al., 2016). At this lo-
cation routine radiosondes are launched nominally every 6 h
(Atmospheric Radiation Measurement (ARM) user facility:
ARM Best Estimate Data Products (ARMBEATM), 1994).
The time–height cross section of wind speeds by year is
presented in Fig. A3, with corresponding correlation coef-
ficient values for wind speed and wind power capacity be-

Wind Energ. Sci., 10, 2117–2136, 2025 https://doi.org/10.5194/wes-10-2117-2025



L. Bianco et al.: Evaluating the ability of the operational HRRRv3 and HRRRv4 2129

Figure A1. Total number of ramps (up ramps in upper panel and
down ramps in bottom panel) by METAR weather station for the
years 2020–2022. Red lines are relative to the 10 m wind power
capacity factor and blue lines are for the 80 m wind power capacity
factor.

tween 10 m and the levels above. Of course, this value de-
creases rapidly with height, but the correlation between the
10 m level and the next few levels is high (R = 0.94 for 10
vs. 80 m wind speed, and R =∼ 0.8 for 10 vs. 80 m wind
power capacity factor) for all 3 years.

Additionally, at this site we computed the correlation
between the model and the radiosonde-observed winds at
80 m for those 3 years, finding an improvement in R

from 0.85 in 2020 (HRRRv3) to 0.86 in 2021 and 2022
(HRRRv4). We also used high-frequency (10 Hz) observa-
tions of wind speed from a sonic anemometer (R3-50, man-
ufactured by Gill Instruments) located on a 60 m tower at
the same site (Atmospheric Radiation Measurement (ARM)
user facility: Carbon Dioxide Flux Measurement Systems
(CO2FLXWIND60M)). Sonic data were averaged at the top
of the hour (±5 min), providing a more complete dataset
compared to the radiosonde one. In this case we found an im-
provement in R from 0.78 in 2020 (HRRRv3) to 0.79 in 2021
(HRRRv4) and 0.84 in 2022 (HRRRv4) between 80 m model
and 60 m sonic wind observations. Furthermore, the compar-
ison with the 60 m sonic observations was repeated, dividing
the dataset into nighttime and daytime, similarly to what was
presented in Sect. 5.3. For daytime, correlation coefficient
values were found to be equal to 0.84 in 2020 (HRRRv3),
0.80 in 2021 (HRRRv4), and 0.87 in 2022 (HRRRv4). For
nighttime, correlation coefficient values were found to be
equal to 0.73 in 2020 (HRRRv3), 0.78 in 2021 (HRRRv4),
and 0.81 in 2022 (HRRRv4). Although this is at one site only,
this result aligns with the findings presented in Sect. 5.3 that
in stable conditions the correlation was much improved in
HRRRV4 relative to HRRRV3. This supports our specula-
tion that improvements of HRRRv4 compared to HRRRv3

to ramp skill at 10 m would also be found at hub height, al-
though to prove this statement with more certainty, we would
need a more appropriate dataset.
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Figure A2. Normalized number of up ramps (a, b) and down ramps (c, d) for the wind power capacity factor at 10 m (a, c) and at 80 m (b,
d).
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Figure A3. Time–height cross section of wind speeds by year (2020 in panel a, 2021 in panel c, and 2022 in panel e) at the SPG site.
Corresponding profiles of correlation coefficient values for wind speed between 10 m and the levels above are in the right panels (2020 in
panel b, 2021 in panel d, and 2022 in panel f). Note that during the 3 April–5 May 2020 period, the SGP site was shut down due to the
COVID-19 pandemic.

Appendix B

Interannual variability of wind speed in the study area has
to be considered a possible factor impacting the results of
this study. We looked at the two-dimensional wind speed
field output at 80 m a.g.l. of the HRRR model individually
for years 2020, 2021, and 2022 and for winter and summer
months, as presented in Fig. B1.

From this figure we do see that 80 m wind speeds are sim-
ilar in winter months between the years 2020 and 2021 but
are stronger in 2022, while they are stronger in summer 2020
compared to summer months of 2021 and 2022.

Nevertheless, if we look at the skill score by individual
years (Fig. B2), we notice that although there are some dif-
ferences in skill score between the years 2021 and 2022 (with
the same HRRRv4 model), the skill score is still improved
in both years with HRRRv4 (2021 and 2022) compared to
HRRRv3 (2020). This confirms that although interannual
variability can impact the score of the model (for example
for summer down ramps, Fig. B2c), HRRRv4 is still doing
better at capturing wind ramps than HRRRv3.
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Figure B1. Winter (DJF; a, b, c) and summer (JJA; d, e, f) geographical distribution of the wind speed at 80 m derived from 1 h forecasts of
the HRRR over 2020 (a, d), 2021 (b, e), and 2022 (c, f).
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Figure B2. Bar chart with model skill scores by year for 2020, 2021, and 2022, annually and seasonally, for all ramps (a), up ramps only (b),
and down ramps only (c).
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