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Abstract. Airborne wind energy systems (AWESs) leverage the generally less variable and higher wind speeds
at increased altitudes by utilizing kites, with significantly reduced material costs compared to conventional wind
turbines. Energy is commonly harnessed by flying crosswind trajectories, which allow the kite to achieve speeds
significantly higher than the ambient wind speed. However, the airborne nature of these systems demands active
control and makes them highly sensitive to changes in wind conditions, making accurate wind measurements es-
sential for steering the kite along its optimal trajectory. This paper presents an advanced sensor fusion technique
based on an iterated extended Kalman filter (EKF) for state and wind estimation for AWESs. By integrating
position, velocity, tether force, and reeling speed, this method provides accurate estimations of system dynam-
ics, including kite orientation and tether shape. The estimates of the wind speed and direction are compared to
lidar measurements, showing good agreement across various atmospheric conditions, with 10 min averaged root
mean square error (RMSE) values below 1 ms~! and 5°, respectively. The results demonstrate that this approach
can effectively capture the transient dynamics of atmospheric wind using sensors typically already present in
AWESs, making it suitable for supervisory control strategies and ultimately enhancing energy efficiency and
system reliability across diverse atmospheric conditions.

1 Introduction

Airborne wind energy systems (AWESs) harness wind en-
ergy with tethered aerial devices, substantially reducing ma-
terial usage compared to conventional wind turbines by em-
ploying one or more tethers and a flying apparatus instead of
towers and blades. This reduction has the potential to lower
the costs associated with wind energy production but also al-
lows for the exploitation of higher-altitude winds, which are
generally less variable and of a higher average speed than
those at ground level.

Despite these advantages, AWESs face significant chal-
lenges, particularly regarding system robustness against the
complexities of atmospheric wind dynamics. The motion of
the kite during crosswind flight is strongly influenced by the
wind, which largely dictates the flight speed and the tether
force. This dependency makes the system highly susceptible
to changes in wind speed and direction. For soft kites, the
low mass of the tensile structure allows for rapid adaptation

to changes in wind speed, making this type of kite particu-
larly sensitive to turbulence and gusts. Therefore, a detailed
understanding of wind dynamics at the operational altitudes
is crucial.

Above the well-studied surface layer, logarithmic wind
profiles may not accurately represent the variation in wind
speed with height, and phenomena such as wind veer
and low-level jets become increasingly significant (Kalverla
et al., 2017). As a result, it is crucial to adapt the kite’s
trajectory to these specific higher-altitude wind conditions,
which necessitates reliable wind measurements. This need
for accurate wind data can be met through remote sensing
devices such as lidar or sodar (Sommerfeld et al., 2019; Khan
and Tariq, 2018; Watson, 2023b), with lidar being more fre-
quently used except in cold, clear-air climates, where its per-
formance may be limited, or by using the kite itself as a sen-
SOf.
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Table 1. Summary of studies on sensor fusion for AWESs.

O. Cayon et al.: Kite as a sensor

Study Filter type Minimum required measurements Kite model  Tether model

Fagiano et al. (2014) EKF Position, acceleration, orientation, orientation Kinematic Straight and inelastic
rates

Polzin et al. (2017), EKF Position, orientation, orientation rates Kinematic Straight and inelastic

Wood et al. (2018)

Freter et al. (2020) Adaptive EKF Position, acceleration, tether force Kinematic  Straight and inelastic

Williams et al. (2008) Square-root UKF  Position, tether force and direction, tether Point mass  Straight and inelastic
length and reeling speed

Ranneberg (2013) Square-root UKF  Position, tether force, tether length, steering Point mass  Straight and inelastic
input

Schmidt et al. EKF Position, velocity, wind speed and direction Point mass  Straight and inelastic

(2017, 2020) (reference height), tether force, tether length
and reeling speed, steering input

Borobia et al. (2018), EKF Position, velocity, angular velocities, magnetic ~ Rigid body  Straight and inelastic

Borobia-Moreno et al. field, airspeed magnitude, tension at the

(2021) bridles, kite centre of mass

Current study Iterated EKF Position, velocity, tether force, tether reeling Point mass  Curved and elastic

speed

(Quasi-Static)

Using the aerial device as a sensor eliminates the need for
additional equipment beyond what is already used for kite
control and allows wind velocity information to be integrated
into a supervisory control strategy for the AWES. This inte-
gration enables the system to adjust the flight trajectory in re-
sponse to changing wind conditions, optimizing performance
and aiding in high-level decisions, such as whether to take off
or to land.

A common method for determining ambient wind con-
ditions at the kite involves mounting flow sensors on the
kite to measure the apparent wind speed and direction. Pitot
tubes are frequently used in varying configurations. Five-
hole probes and single-hole probes combined with two flow
vanes can measure the three-dimensional velocity vector of
the apparent wind (Elfert et al., 2024; Borobia-Moreno et al.,
2021; Oehler and Schmehl, 2019), allowing for the determi-
nation of ambient wind speed, provided the kite’s velocity is
known. Simpler setups with single-hole probes alone (Vlugt
et al., 2013; Borobia et al., 2018) or with one vane (Schel-
bergen, 2024) are also used but do not capture the full three-
dimensional velocity, limiting their capability.

However, this approach comes with significant challenges.
The accuracy of the measurements depends heavily on the
sensor’s position, mounting method, and regular mainte-
nance and recalibration. For soft kites, which undergo sub-
stantial deformation during flight along with vibrating bri-
dle lines and fluttering membranes, the collected data can
become excessively noisy and unreliable (Dunker, 2018;
Leuthold, 2015). These challenges, particularly for tensile,
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lightweight kite systems, highlight the need for more ad-
vanced approaches.

One effective solution is sensor fusion, which combines
data from multiple sensors integrated into the AWES to pro-
vide a more robust and consistent representation of the kite
state and wind characteristics. Sensor fusion relies on a time-
dependent model that represents the system’s dynamics. By
integrating sensor data within this model, the method en-
hances the reliability of the measured states and can also
serve to estimate quantities such as wind speed and direc-
tion. Depending on the model’s complexity, the estimated
state may encompass not only the kite’s position and veloc-
ity but also its aerodynamic characteristics and the tether sag,
resulting in a more comprehensive understanding of the sys-
tem’s dynamics. For clarity, the notation and symbols used
throughout this paper are summarized in Appendix A.

Numerous studies have investigated sensor fusion tech-
niques for AWE state and wind estimation (see Table 1).
For instance, Fagiano et al. (2014) proposed an extended
Kalman filter (EKF) to estimate the kinematics of a teth-
ered aircraft using a purely kinematic model and evaluat-
ing various sensor configurations, including satellite-based
global positioning system (GPS) and tether angle measure-
ments. Similarly, Polzin et al. (2017) and Wood et al. (2018)
explored configurations incorporating inertial measurement
units (IMUs), tether angles, and camera tracking, introducing
a novel kinematic model that accounts for tether dynamics
and sag through time delays and ground velocity differences.
This study also addressed kite steering delays by modelling
the yawing motion with a linear turn rate law. To further ad-
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dress tether sag, Freter et al. (2020) proposed an adaptive
Kalman filter with variable weights based on tether force,
combining data from load cells, tether angles, IMUs, and
camera tracking, which effectively reduced estimation errors
under low-tension conditions. However, these approaches do
not estimate the wind velocity, which requires the inclusion
of forces in the modelling to capture the wind impact on sys-
tem behaviour.

In Williams et al. (2008), an unscented Kalman filter
(UKF) was proposed as a state estimator for both the kite’s
state and wind conditions within a non-linear tracking con-
trol framework. The simulation results demonstrated that the
UKF performed well when assuming a straight tether and
was robust against noise. However, the wind velocity esti-
mates were found to be the most sensitive to noise.

Ranneberg (2013) used a UKF with a Lagrangian dynamic
model that incorporates the forces on the kite, assuming con-
stant aerodynamic coefficients, as well as rotational inertia
of the drum. The results were validated against simulation
data and experimental measurements, including pulsed lidar
measurements at various heights, demonstrating that measur-
ing the kite’s position and the tether force is sufficient for
estimating wind speed, although the vertical component of
the wind velocity was assumed to be zero. Schmidt et al.
(2017, 2020) proposed a similar approach using an EKF with
a Lagrangian dynamic model but without including drum in-
ertia. Their model adds measured wind speed and direction
at a reference altitude, which works well for their case study
of a kite flying at low altitudes but can introduce errors when
the kite flies at higher altitudes. Nevertheless, the model is
validated against experimental and simulation data, showing
the potential of the approach.

In Borobia et al. (2018); Borobia-Moreno et al. (2021), a
more complex model is employed to estimate the full state
of the kite, including the ambient wind conditions and aero-
dynamic forces and moments. However, this increased com-
plexity necessitates a significantly larger number of measure-
ments. These measurements include data from GPS and IMU
sensors, pitot tube, including a five-hole pitot tube, wind sen-
sors on the ground and several load cells installed in the bri-
dle line system of the kite.

A common limitation of existing methods is the assump-
tion of a straight and inelastic tether, which can introduce
errors when the tether force is low, and the real tether sags.
Additionally, soft kites with a suspended robotic control unit
are affected by the inertia of the suspended unit, impacting
orientation and dynamics (Roullier, 2020). The current study
addresses these limitations by employing a more comprehen-
sive model that accounts for both tether sag and kite control
unit (KCU) inertial forces, enabling accurate wind velocity
estimation without relying on direct airflow measurements at
the kite. Specifically, we employ an iterated EKF that models
the wing as a point mass and incorporates a quasi-static tether
model (Williams, 2017). To account for the inertial effects of
the KCU, an additional point mass is included between the
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tether and the wing, resulting in a two-point representation
of the kite (Schelbergen and Schmehl, 2024).

Validation against independent sensor data confirms the
accurate reconstruction of the kite state, while comparison
with lidar measurements demonstrates the model’s capabil-
ity to estimate ambient wind conditions. During the reel-out
phase, the 10 min averaged wind speed error remained below
1 ms~!, and the wind direction error below 5°. Although the
study focuses on soft kites, the methodology is equally ap-
plicable to rigid-wing devices.

The results are presented for two kite prototypes, the V3
and the V9, both being leading-edge inflatable kites oper-
ated by Kitepower B.V., with flattened wing areas of 25 and
60 m?, respectively. The V3 kite has been extensively stud-
ied in prior research and has served as a reference model
(Oehler and Schmehl, 2019; Viré et al., 2022; Cayon et al.,
2023; Poland and Schmehl, 2023; Schelbergen and Schmehl,
2024). In contrast, the VO kite, representing Kitepower’s cur-
rent commercial prototype, is primarily used in the present
study to showcase the method’s ability to predict wind veloc-
ities at the kite. This analysis is based on an unprecedented
dataset that combines high-quality AWES operational data
with high-resolution wind measurements from profiling lidar.
The AWES data include measurements of kite position, ve-
locity, orientation, and accelerations; tether tension, length,
and reeling speed; as well as airflow measurements from a
pitot tube and wind vanes, while the lidar data provide ver-
tical wind profiles with 20 m spatial resolution and tempo-
ral sampling at either 1 Hz or 1 min intervals, depending on
the dataset. Together, these datasets enable a comprehensive
analysis of wind—kite interactions across various atmospheric
conditions.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the AWE system, Sect. 3 dis-
cusses the experimental sensor setup, Sect. 4 details the filter
design and sensor calibration, Sect. 5 presents the results and
analysis, and Sect. 6 concludes with implications and future
research directions.

2 System overview

The main components of ground-generation soft kite AWESs
are the ground station, tether, and kite, which consists of
the wing, bridle system, and suspended kite control unit
(KCU). The kite flies in cyclic patterns to generate electric-
ity, alternating between traction and retraction phases. Dur-
ing the traction phase, the kite performs crosswind manoeu-
vres, reeling out the tether and driving a drum connected to
a generator. Once the tether reaches its maximum length, the
system reverses, operating the generator as a motor to reel in
the tether. During this phase, the kite is flown at a lower angle
of attack, producing less force and allowing for an efficient
reel-in.
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Figure 1. Illustration of system components and sensor setup. Adapted from Oehler and Schmehl (2019). The V3 kite geometry shows the
bridle point B below the KCU, unlike the V9 geometry, where the KCU is at the bridle point. All geometry data for the V3 kite are available

in open-access form from Poland and Schmehl (2024).

In Fig. 1, the key components of a soft kite for airborne
wind energy harvesting are shown alongside commonly used
sensors. The kite is controlled by the KCU, which connects
the bridle line system and the tether. The front bridle lines
transmit most of the aerodynamic force from the wing, while
the rear bridle lines are used to actuate the wing through the
KCU and the steering and depower tapes. The steering tape
deforms the wing asymmetrically by modifying the length
of the steering lines to initiate turns, while the depower tape
symmetrically adjusts the steering lines to pitch the wing rel-
ative to the tether. This pitch is quantified by the depower
angle g (see Fig. 1), explained in more detail below. Increas-
ing this depower angle directly influences the kite’s aerody-
namic performance, and it is mainly used to reel in the kite
efficiently.

The aerodynamics of the kite are generally characterized
by the angle of attack at the centre section of the wing, oy .
However, directly measuring this angle is challenging be-
cause it would require isolating the inflow at the kite from the
flow disturbances caused by its aerodynamics, which can be
difficult to achieve reliably in practice. Consequently, sensors
are more commonly installed on the bridle lines (see Fig. 3)
or on the tether below the KCU.

The bridle angle of attack «, is defined as the angle relative
to the plane perpendicular to the power lines (see Fig. 1) and
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is related to the angle at the wing by
Oy = Op — O, (D

where the depower angle, oq, is approximated as a linear
function of the depower input, up. This relationship includes
an initial offset, g o, corresponding to the powered kite state,

ag = o0 + Aogup, 2

where up ranges from O to 1, and Ac«q represents the change
in angle of attack from the fully powered to the depowered
state. The depower angle «g is typically determined experi-
mentally by manually adjusting the depower tape length to
achieve a balance between performance and controllability.
In previous works (Oehler and Schmehl, 2019; Schelbergen,
2024), the variation in this angle was estimated using a sim-
ple geometric model that relates the length of the depower
tape to the depower angle. However, with the integration of
the tether model into the EKF, this angle can now be esti-
mated directly from the measurements, as detailed in Sect. 5.
Finally, the bridle angle of attack can be translated to the
tether angle of attack, o, defined as the angle to the perpen-
dicular of the tether direction, by

o = op + Ao + O, 3)
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where Ag, defined as the angle between the tether and the
power lines, depends on the aerodynamic load distribution
between the front and rear bridle lines, and 6y is the kite
pitch with respect to the tether caused by the KCU weight
and inertia. Ag has been found to be relatively constant for a
set depower setting but is highly dependent on changes in the
depower tape length (Oehler and Schmehl, 2019).

3 Sensor setup

Measuring the state of AWESs presents significant chal-
lenges, particularly for soft kites, which, by their nature as
tensile membrane structures, experience substantial deforma-
tions during flight, along with vibrating components and high
accelerations during turning manoeuvres. Understanding the
accuracy and limitations of each sensor within its specific in-
stallation context is critical for developing an effective fusion
technique. This understanding enables the design of a sensor
fusion model relying on the most trustworthy sensors.

The following is a breakdown of the key sensors used in
the analysed datasets, along with a qualitative discussion of
their advantages, limitations, and considerations for accurate
measurements.

— Load cells. The force exerted by the tether is measured
using a load cell installed on one of the pulleys guid-
ing the tether at the exit point of the drum (see Fig. 2).
The measured force is projected onto the tether direc-
tion using the known pulley geometry and the mea-
sured elevation angle of the outgoing tether. This setup
can yield accurate results, provided it is correctly cali-
brated (Hummel et al., 2019). One could also consider
installing load cells in the kite’s bridle lines to mea-
sure the force distribution (Oehler et al., 2018; Borobia-
Moreno et al., 2021). However, this approach signifi-
cantly increases setup times and also the risks of failures
and large inaccuracies in the measurements.

— Tether length. The length of the tether is measured
through the reeling mechanism of the kite, where an in-
cremental angular encoder on the drum determines the
rotational speed. From this, the deployed tether length
is calculated (Vlugt et al., 2013). This method allows
for precise measurements of the reeling speed and the
tether length, particularly if the initial offset of the tether
length is correctly identified and accounted for or, in the
case of the current model, if the tether length offset is
also included in the filter.

— Tether angles. The elevation and azimuth angles of the
tether can be measured at the ground station using mag-
netic angular encoders. When combined with the tether
length, these measurements can be used to estimate
the kite position (Peschel, 2013). The assumption of
a straight tether generally holds during reel-out oper-
ations when the tether is under high tension, resulting
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in relatively accurate position estimates (Fagiano et al.,
2014). However, the tether generally sags during reel-in
due to reduced tension, leading to potential inaccuracies
unless the sag is taken into account.

GPS. These sensors typically provide an accuracy of 1—
2m, which can be improved to centimetre-level accu-
racy with the use of real-time kinetic (RTK) positioning
(PX4,2025). Moreover, these measurements are not sig-
nificantly affected by the deformation of the soft kite, as
the displacement at the sensor mounting point is only a
few centimetres. This makes GPS a reliable source of
position and velocity information. However, GPS sig-
nals can suffer from issues such as signal loss, particu-
larly during high-acceleration manoeuvers (Vlugt et al.,
2013).

— IMU. The placement of an IMU sensor on one of the

inflatable tubes (see Fig. 3) of the kite has several im-
plications. The sensor data are affected by the in-flight
deformations of the wing, which are particularly no-
ticeable when transitioning from powered to depowered
states and during turns. These measurements of struc-
tural deformation are useful for assessing specific as-
pects of the wing deformation but can induce errors if
used for trajectory estimations. Furthermore, the high
centripetal accelerations of the kite during turns can lead
to increased noise and sensor drift (Hesse et al., 2018).

Wind vanes. In the analysed setups, wind vanes were
mounted in the bridle line system, where determining
their orientation relative to the wing is challenging due
to deformation of both the wing and the bridle lines.
Recent wind tunnel calibration tests showed a mean ab-
solute error of 2-3°, providing an estimate of the best
achievable accuracy under controlled conditions for this
setup. However, in flight, additional noise is introduced
by vibrations in the bridle lines, which can further af-
fect the measurements (Oehler and Schmehl, 2019). An
alternative is to mount the vanes below the KCU, which
mitigates most of these issues. Ideally, the vanes should
be integrated with an IMU to allow for accurate orien-
tation measurements relative to the ground. During de-
velopment phases, booms mounted to the leading edge
of the kite have also been employed (Borobia-Moreno
et al., 2021), but this approach is generally unsuitable
for commercial applications due to the fragility of the
installation.

Pitot tube. Although pitot tubes typically achieve good
accuracy, they require regular maintenance and calibra-
tion, and external factors like ice, insects, or pollution
can cause clogging (Ezzeddine et al., 2019). Further-
more, when used to measure wind speed, small errors
propagate into larger errors due to the wind’s small con-
tribution to the total apparent speed. Recent wind tunnel
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Figure 2. The V9 kite in flight: view from the ground station (left) and close-up showing the suspended control unit (right). Photos courtesy

of Kitepower B.V.

Figure 3. Fully instrumented V3.25 kite before launch.
GPS +IMU units are mounted in the inflatable struts (high-
lighted by red and green circles). A pitot tube and a wind vane
are installed in the bridle lines (white circle). Photo courtesy of
Kitepower B.V.

tests showed that the current setup, once correctly cal-
ibrated, can achieve an accuracy within 5 % for angles
of attack up to 30°, but performance degrades at higher
angles. Finally, the mounting position is critical; if the
sensor is not mounted at the centre of rotation of the
kite, it will measure velocity induced by the kite yaw
rate, further amplifying inaccuracies.

Overall, the sensors that are least susceptible to the intrin-
sic deformations of the soft kite and the high accelerations
of the system — and thus are more reliable — are the GPS
(for position and velocity), the load cell (for tether force),
and the tether reel-out encoder (for tether length and speed).
These sensors can maintain their accuracy despite the flexi-
ble nature of the kite and are therefore used as the foundation
of the sensor fusion model. This results in a minimal sensor
setup sufficient for estimating kite motion. However, when
the KCU is included in the model, an additional acceleration
measurement — either of the KCU or the wing — is required
to resolve its inertial effects. In this study, due to data avail-
ability, acceleration was obtained by numerically differenti-
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ating velocity measurements from the GPS. Further measure-
ments, such as tether angles or airflow data, are optional and
can potentially enhance the accuracy of the estimations.

4 Filter design

In this section, a filter is designed to estimate the state of a
tethered flying system by integrating a dynamic model and
an observation model in an EKF. All vectors are expressed
in the local east—north—up (ENU) coordinate frame, with the
exception of the Euler angles, which are computed in the
north—east—-down (NED) frame to avoid discontinuities and
jumps in their representation. The dynamic model simulates
the kite translational motion governed by aerodynamic, grav-
itational, and elastic tether forces. The tether dynamics are
represented using a quasi-static lumped mass approach pro-
posed by Williams (2017), expanded to include the KCU’s
inertial and gravitational effects (Schelbergen et al., 2024).
The observation model is constructed based on the availabil-
ity of reliable measurements. As a minimum, the EKF re-
quires the kite’s position and velocity, tether force, and reel-
out speed. If the KCU is included in the model, a measure-
ment of the wing or KCU acceleration is also required. Ad-
ditional optional measurements (e.g. tether angles or airflow)
can be incorporated to refine the estimates.

4.1 Dynamic model

The dynamic model represents the kite wing as a point mass
(my) following Newton’s second law. Its acceleration results
from the sum of the tether force at the kite F x, aerodynamic
force Fx, and weight Fg . The components of the aerody-
namic force are expressed as a function of the kite apparent
velocity v, and the aerodynamic coefficients (Cr, Cp, Cs),
which are assumed to be time-invariant,

FL = 3pAcCLl|valeL,
Fox =\ Fp=3pAcCp|val’ep, 4)
Fs = 1pAcCs|va|es,
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Figure 4. Schematic representation of the tether model and kite forces, as represented by the dynamic model used in the EKF. Adapted from

Schelbergen and Schmehl (2024).

where p is the air density; Ay is the projected area of the wing
in the plane defined by the two central struts; Cp, Cp, and
Cs are the lift, drag, and side force coefficients, respectively;
and er, ep, and eg are unit vectors in the directions of the lift
force, drag force, and side force, respectively. The drag force
acts in the direction of v,, the lift force acts in the opposite
direction of the tether force projected in the perpendicular
plane to v,, and the side force acts orthogonally to both. The
apparent velocity is a function of the kite velocity vk and the
wind velocity vy, which is also assumed to be time-invariant,

V) = Vy — Vk. (®)]

Although the dynamic model assumes constant wind ve-
locity and time-invariant aerodynamic coefficients, these
quantities are treated as estimated states in the EKF. Their
variability over time is captured by introducing appropriate
process noise in the filter. In this sense, the coefficients and
wind velocity are not fixed but are allowed to evolve dur-
ing the estimation process to best fit the measured dynamics.
The wind velocity can be accounted for using two different
approaches: firstly, assuming it is time-invariant and not de-
pendent on height, and secondly, using a logarithmic relation
with height for its horizontal component. The latter can be
done by means of the friction velocity u, and wind direc-
tion ¢y, instead of the horizontal wind components such that
the height-dependent horizontal wind speed vy p is given by
(Watson, 2023a),

Uy Z

Vw,h = — log—, (6)
K 20
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where z is the height above the ground, ¥ ~ 0.4 is the von
Karmén constant, and zo is the surface roughness length.
Even though this approach generally improves estimations
by incorporating physical knowledge of the wind profile, it
can lead to poorer estimations compared to modelling it as
height-independent if the actual wind profile deviates from
the assumed logarithmic model.

The tether force at the kite is determined by assuming
a shape derived from a quasi-static force equilibrium, de-
tailed in Williams (2017), with the addition of accounting
for the KCU and its localized mass, representing the kite by
two separate point masses (Schelbergen and Schmehl, 2024).
The tether model uses a lumped mass approach with point
masses connected by spring elements (see Fig. 4). The shape
of the tether is calculated based on the tether force at the
ground F g; the position ry; velocity vk and acceleration ay
of the kite wing; the wind velocity, the azimuth ¢q, and ele-
vation By of the first tether segment; and the total deployed
tether length /. All of these are either incorporated into the
dynamic model or directly measured and used as inputs.

The tether force at the wing is calculated using a shooting
method. In this approach, the direction of each subsequent
tether segment is determined by the sum of the elastic, drag,
gravitational, and inertial forces. The method requires an ini-
tial estimate of the tether length as well as the magnitude and
orientation of the tether force at the ground. Inertial forces
for each segment are determined by their centripetal acceler-
ation, with the segment lengths /; adding up to the total tether
length, including the bridle segment.

Wind Energ. Sci., 10, 2161-2188, 2025
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Figure 5. The angular velocity during straight flight, wgc (orange),
and during turns, @ (blue) for a kite linked by a straight and inelastic
tether. Adapted from Schelbergen and Schmehl (2024).

To compute these inertial forces, the velocities v; and ac-
celerations a; of the discrete point masses along the tether
are estimated under the assumption that they all rotate with a
fixed angular velocity @ (Williams, 2017), behaving like par-
ticles of a rigid body (see Fig. 5). The velocity at the tether
attachment point B particle can be represented assuming a
purely rotational motion about a point, the instantaneous cen-
tre of rotation (Meriam et al., 2018), which is unique for each
tether particle.

VB = X I¢B, @)

where r p is the vector from B to its instantaneous centre of
rotation, which is perpendicular to @. The acceleration can
then be estimated by differentiating the velocity,

d d d d
Ezwz_wxrcyB_i_wxﬁ’ (8)

@B =0 ar ar ar

which can be expressed as

agp=a Xrcp+m X vp. )

Here, « =dw/d¢ is the angular acceleration. The two
terms of the acceleration represent the tangential acceleration
a; =« X r. g and the centripetal acceleration a, = ® X vp.

If the acceleration and velocity of the tether attachment
point B at the kite are known, we can compute the angular
velocity, instantaneous centre of rotation, and angular accel-
eration as follows, assuming the tangential acceleration to be
in the direction of the kinematic velocity:

VB X ap
lvgl?

@ X VB

_ reB Xag
ol

: 10
Iresll® 1o

reB =

On the straight flight path segments, the kite moves on a
great circle trajectory, and @y, is perpendicular to the tether,
resulting in the centre of rotation being located at the ground
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station (Schelbergen and Schmehl, 2024). However, during
turns, the centre of rotation aligns with @, and at each point
along the tether, the centre of rotation will lie in the plane
perpendicular to the angular velocity vector (see Fig. 5).
Given the angular velocity @ and acceleration &, the veloc-
ity and acceleration at an arbitrary point 2 on the rigid body
can be determined relative to a reference point 1 as follows:

V=01 +wXroi, (11)
a)=ai+ouxry1+wx(®xroy), (12)

where r,_; is the position vector from point 2 to 1. The ve-
locity at the ground tether attachment point is assumed to be
zero by neglecting the reel-in or reel-out motion. While this
reeling motion can induce non-negligible velocities, particu-
larly in the lower tether segments, we consider its effect neg-
ligible for the computation of tether drag, which primarily
depends on the relative motion of the tether segments through
the air. Consequently, the velocities and accelerations along
the tether, relative to the ground point, can be written as

vVi=w@xrj, (13)

aj=axrj+ox(@xr;). (14)

In practice, assuming the kite—tether assembly to be a rigid
body can lead to inaccuracies. Firstly, the kite can rotate
freely around B!, and secondly, the tether deforms and sags.
As aresult, the angular velocity vector w is no longer aligned
with the ideal rotation axis and does not pass through the
ground station.

Initial attempts to model the assembly as a single rigid
body yielded limited success, leading to the decision to treat
the kite and tether as two independent rigid bodies. This ap-
proach significantly improved the estimations.

Since the kinematic measurements are obtained at the kite
wing, the angular velocity of the kite, wy, is calculated using
the accelerations and velocities at the wing,

Uk X @npk

WK X Vg
W= ———>— =
vk

Fek Xarg
’ rC,k - =

Irexl?

: 15)
llwk 12

Subsequently, the velocities and accelerations are trans-
lated to the bridle point B, representing the KCU, using
Eq. (11).

Regarding the tether, since the position at B is not mea-
sured, the kite position is used to estimate its angular velocity
using Eq. (13), under the assumption that it performs a great
circular rotation around the ground station (Williams, 2017),

rx X vk
W= ——. (16)
T

n this work, we intentionally collocate the bridle point with
the KCU for modelling simplicity. However, this was not the case
for the V3 kite, as shown in Figs. 1 and 4, where the bridle point is
slightly lower than the KCU.
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This assumption introduces inaccuracies, particularly in
the acceleration values of each tether segment. However,
since the point masses of the tether are relatively small,
this does not significantly impact the overall accuracy of
the model, as shown in Williams (2017). Assuming a con-
stant angular velocity (a ~ 0), the velocities and accelera-
tions along the tether are calculated as (Williams, 2017)

Vi =@ XTrj, (17)

a; =X (0 Xrj). (18)
The tangential velocity at the bridle point is then given by
V; = @¢ X FB. (19)

This tangential velocity vector is projected into the hor-
izontal and vertical planes, yielding vy and vg, to estimate
the rate of change in the tether orientation angles.

The aerodynamic force acting on the tether is estimated
based on the cross-flow principle, where the flow compo-
nents parallel and perpendicular to the body are treated inde-
pendently (Hoerner, 1965; Bootle, 1971), which was found
to have a good relation with test data for sub-critical flows
(Regrit & 3.5 x 10°), where the Reynolds number is formed
using the tether diameter as the characteristic length. The
lift fy ; and drag fp, ; forces acting on each tether segment
can then be estimated as follows (Dunker, 2018):

1
—_— 1 2 . . 2 . 1 .
fI,j__IO(C S Ol]COSOl] 7TCHCOS Ol]SII’lOl])

x Ljdwy jev. ), (20)

1
foj= 2P (CLsin3ozj +nC||cos3aj)

X ljdtvijeD,j, (21)

where C is the drag coefficient in the direction perpendicu-
lar to the tether, C) is the skin friction drag coefficient (along
the tether), «; is angle of attack of the tether segment (which
is 90° when the flow is perpendicular to the tether), /; is the
length of the tether segment, and 4 is the tether diameter. The
direction of the drag force aligns with the apparent velocity
of the segment, while the lift is directed perpendicular to the
drag and lies in the plane defined by the apparent velocity
and the tether direction, where e ; and ep_; are unit vectors
in the direction of these forces.

Similarly, the aerodynamic forces acting on the KCU are
estimated by simplifying its geometry to that of a cylinder
and applying the cross-flow principle, using experimentally
derived coefficients for cylinders with different aspect ratios
in the normal and tangential directions (Blevins, 1984), as-
suming the KCU is pitched 90° relative to the tether. This is
justified as the KCU, though containing a triangular mecha-
tronic core, is padded such that its external shape is approx-
imately cylindrical. However, since the KCU operates in a
supercritical flow regime, the cross-flow principle may not
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provide an accurate approximation. A more suitable model
for this regime is beyond the scope of the current project and
will be considered in future work. Despite this, the contri-
bution of the KCU drag to the overall system is very small
compared to the other forces acting on the KCU and the sys-
tem, so any inaccuracy here will not have a significant effect.
This is further illustrated by the analysis presented in Sect. 5.
The EKF state vector comprises the kite wing position
and velocity, aerodynamic coefficients, wind velocity, tether
length, and azimuth and elevation of the first tether segment.
The tether length is determined by the reel-out speed (v),
while the orientation of the first tether segment depends on
its angular velocity relative to the ground station, which can
be approximated with the tangential velocity and radial dis-
tance of the tether attachment point. The tether force at the
ground Fi, is measured using a load cell and given as an
input. With these considerations, the dynamics of the model
can be written as a function of the state vector (x) and the
input vector (u),
x = (rg, v, v, CL, Cp, Cs, I, Bo, o), u = (v, Frg). (22)
The full system of ordinary differential equations (ODEs)
to be solved is

S, u)

i‘k = Vk

i)k — FITkJrFy:i(k{»Fng '

('i}W =0) or ity = Q, ow =0, i)w,z =0)
—{cL=0 ¢p=0, Cs5=0 (23)

[ = Ut

s g

Po =

b0 = 7

Additionally, it is possible to estimate a bias or offset §
in any of the measurements that are directly modelled, such
as the tether length and angles, by adding them as a time-
invariant variable (§ = 0).

This model forms the basis for the EKF design, captur-
ing the essential dynamics of the kite and tether system. The
model can be expanded to fly-gen systems by accounting for
an additional thrust force acting on the kite, which can be
modelled as a function of the control inputs and the kite ve-
locity. When added to Eq. (23), the thrust can be an input or
a state variable, depending on the EKF design.

4.2 Observation model

The minimum measurements required are the position and
velocity of the kite wing. An additional observation is re-
quired to ensure that the position of the wing calculated with
the tether model, ri , matches the estimated position of the
kite wing, r¢. This ensures an agreement between the posi-
tion of the kite (Eq. 23) and the shape of the tether (defined
by the tether length and the orientation of the first tether seg-
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ment). Therefore, the observation model vector is given by
h(x,u)

rk,m = Trk + rg

Vk,m = Vk + Ny,

0= (rk — rk,t)

—optional—

= 1 Vam = |[rx — vk|| + 8y, + My, (24)
In=1+8+mnm

Bo,m =600 + g, + ng,

$0.m = ¢o + 8¢y + Ng

Om =& + 8y + Mo,

where the subscript m refers to the measured quantities, n;
represents the Gaussian-distributed measurement noise, and
8; is the measurement offset for each variable i.

Additionally, several other measurements can be incorpo-
rated into the EKF to enhance its accuracy, such as the tether
length, the orientation of the tether measured at the ground,
the apparent wind speed, and the angle of attack, each poten-
tially subject to an offset. However, it is important to recog-
nize that poorly calibrated or faulty equipment can introduce
significant errors in the estimation process.

4.2.1 Sensor offset correction

The EKF is designed to correct sensor biases, such as those in
the tether length and angle measurements, by incorporating
their offset as a state within the filter. This allows the filter to
estimate and subtract the offset from sensor readings.

However, if the measurement is not directly modelled as a
state variable, the filter may fail to estimate its offset accu-
rately, requiring alternative methods. This problem is partic-
ularly relevant for airflow sensors like pitot tubes and wind
vanes. In such cases, a correction procedure is advised by
initializing the filter without using the biased sensors. The
estimated states are then used to calibrate the sensors after
the filter has converged, provided the filter has been correctly
pre-tuned to the system at hand.

Some measurements, such as the Euler angles from the
IMU, are not directly modelled in the filter, and their off-
sets are corrected using the orientation of the bridle seg-
ment, which closely follows the measured orientation of the
wing. However, if the IMU is positioned at the wing, the sen-
sor will also measure the deformations due to the actuation.
Larger deformations around the central strut of the wing are
observed during reel-in and can be estimated based on the
linear relationship between the variation in pitch and the de-
power setting up,, which is directly linked to the length of the
depower tape. By comparing the EKF-estimated pitch with
the measured pitch 6y, it is possible to infer the pitch sen-
sor offset §p and the depower angle og. This comparison al-
lows the extraction of the kite’s rigid-body pitch, 6, from the
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measured sensor data, correcting for offset and deformation
to match the orientation of the bridle segment in the tether
model,

Ok = Om — 89 — g (25)

The yaw angle, however, can only be estimated directly by
incorporating the yaw rate into the filter model. Nevertheless,
the anhedral shape of the kite tends to align with the apparent
wind, enabling an offset correction based on this tendency.
The good agreement between estimations and measurements,
along with the offsets for the Euler angles mentioned earlier,
is presented in Sect. 5.

4.3 Extended Kalman filter

In this section, the process followed by the iterated EKF to
correct the measured states and predict the unknowns is de-
scribed. This is illustrated in the flowchart in Fig. 6, where
the hatted symbols denote the predicted states, and the super-
script * represents the nominal state around which the EKF
is linearized. In the context of the iterated EKF, the nomi-
nal state corresponds to the current best estimate of the true
state at each iteration, and it is updated during the measure-
ment update step to improve the accuracy of the linearization.
The algorithm follows the standard setup of an iterated EKF
(Gibbs, 2011) with a slight modification. After the one-step-
ahead prediction, where the dynamic model is propagated to
the next time step, the Jacobians of the observation and dy-
namic model vectors are calculated. In this step, the tether
force at the kite, obtained with the tether model, is differenti-
ated only with respect to the tether length and the first tether
segment orientation, whilst the rest of the states it depends
on are taken from the last predicted state, given as input in
the Jacobian calculation. There are several reasons for this
choice; first, the tether model (Williams, 2017), in its orig-
inal formulation, solves an optimization problem for these
three variables, while all the other variables are assumed to
be known. Second, and more importantly, the introduction of
the wind and kite velocity within the tether model introduces
so much non-linearity that the performance of the Kalman fil-
ter is degraded. Therefore, the exact dependency of the func-
tion f, which defines the ODE of the system, on these states
in the tether model is not accounted for when propagating the
covariance matrices.

As shown in the remaining steps of the flowchart in Fig. 6,
the iterated EKF follows a standard procedure to update its
gain and state, as well as the covariance matrix of the state
estimation error.

The EKF implementation was benchmarked for perfor-
mance on a standard laptop (see Appendix C2 for hardware
and software specifications). As detailed in Appendix C1, the
filter runs over 50 times faster than real time, with low CPU
and memory usage, demonstrating its suitability for real-time
or embedded applications.
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1. One-step ahead prediction
a a 17 A~ A~
Rit1i =Ko+ [T (Rig,wit)dt - X" =R, 0" =win o=x"u"

2. Calculate Jacobians and discretize state transition matrix:
F. (o) = 2 f(x(t),u(t),x",1)

= q>i+1’i(.)

3. Covariance matrix of state prediction error:
Pit1i(e) = ®is1,i(o)Pii® 1 i(0) +Q

4. Calculate Jacobian of measurement equations:
H, (o) = %h(x(t),u(t),x*,t)

5. Kalman gain calculation:
Kiy1() = Pij1,i(¢)HT (o) [Ha(o)Pit1,:(¢)HT (¢) + Rija]

6. Measurement update:
Rit1,it1 = Rit1,i + Kiy1(0) [2i41 —h(e) — Ha(o) (Ritr: —x7)]

[ES]

7. Check if converged: No
" =Ripaipall o

= X =Riy1i41

8. Covariance matrix of state estimation error:
Pit1,iv1(0)=[In — Kit1(e)Hz(0)|Piy1,i(e)

Figure 6. Iterated extended Kalman filter process flowchart. In the case of a non-iterated EKF, the process continues directly from step 7 to

step 8, bypassing the iteration loop.

Tuning

One of the most crucial and complex aspects of a well-
performing Kalman filter is tuning, which can be done by
means of the state and measurement noise covariance matri-
ces Q and R. For simplicity, these are defined as diagonal ma-
trices, with the diagonal elements representing the expected
variance of the state and measurement noise, assuming a
Gaussian-distributed noise with zero mean. These matrices
were found to be system-dependent, meaning their optimal
values can vary between different systems or kites. However,
for the same kite, once calibrated, these coefficients maintain
good performance even under varying environmental condi-
tions.

The tuning of the EKF was performed manually, requir-
ing an initial understanding of the magnitude and time de-
pendence of the modelled parameters and a good knowl-
edge of the accuracy of each sensor. There are, however, a
few aspects that can be checked to ensure proper calibration.
The first is to ensure that the wind speed and direction es-
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timates do not show any pattern-related variations, such as
periodic changes due to the figure-eight pattern flown by the
kite. Moreover, the filter estimates for position and veloc-
ity should closely align with the measurements. Finally, the
aerodynamic coefficients should remain within the expected
values of the flying wing. For a better understanding of the
accuracy of the EKF estimates, analysing the time history of
the filter performance parameters can be helpful. The nor-
malized innovation squared (NIS) metric is commonly used
for filter tuning in the absence of ground truth measurements
(Bar-Shalom et al., 2002). It quantifies the consistency be-
tween the predicted measurements and the actual measure-
ments, relative to the expected uncertainty.

NIS = v/ S v, (26)

where v; is the measurement residual and S; the associated
innovation covariance matrix.

As shown in Fig. 7, the performance decreases during
turns and reel-in, which may indicate either that the measure-
ments degrade during these phases or that the dynamic model
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Figure 7. Normalized innovation squared (NIS) metric for two
power generation cycles of the V9 kite, recorded on 27 November
2023.

cannot capture the relevant dynamics in these sections of the
flight. Since position and velocity in the analysed datasets
come from GPS + IMU-fused measurements, we believe the
former to be the case, particularly during reel-in, as further
discussed in the results section. For an optimally tuned filter,
this metric should follow a chi-squared distribution; how-
ever, achieving this level of tuning is outside the scope of
this work. For the leading-edge inflatable V3 kite, the stan-
dard deviations of the process and measurement noise terms
detailed in Appendix B2 result in reasonable estimates.

5 Results

The datasets used in this study were acquired during three
test flights conducted by Kitepower in the frame of two test
campaigns. The first campaign took place in 2019 at the
former naval air base Valkenburg, the Netherlands, using
the 25 m? V3.25B kite developed by Kitepower on the ba-
sis of the TU Delft V3 kite (Poland and Schmehl, 2024).
The selected dataset was published in Schelbergen et al.
(2024) and analysed in Roullier (2020) and Schelbergen and
Schmehl (2024). It includes data from two sensor boxes with
GPS 4 IMU mounted on the two central struts of the wing,
an airflow sensor comprising a pitot tube and a single wind
vane measuring the angle of attack, a load cell on the ground,
and tether length and reeling speed sensors.

The second campaign took place from 2023 to 2024 in
Bangor Erris, Ireland, using the 60 m? V9 kite developed
by Kitepower. This site in Northern Ireland is known for
its consistently strong winds, predominantly from the south-
west. The two selected flights of that campaign (Cayon
et al.,, 2024a, b) include additional sensors used to study
different measurement configurations. On the 2024 flight,
two GPS +IMU units were mounted on the central struts
of the wing, while on the other, one of the units was in-
stead mounted on the KCU. Measurement data were com-
plemented by profiling lidar readings recorded using a Wind-
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Table 2. Overview of EKF models with corresponding sensor se-
tups and wind model types.

Model Additional measurements Wind model
EKFO - Constant
EKF 1 Tether length Constant
EKF2 - Logarithmic
EKF3  Apparent wind speed Constant
EKF 4  Zero vertical wind velocity ~ Constant
EKF5 Tether length and angles Constant

cube v2 (Vaisala), which is used to validate the wind estima-
tions of the EKF.

In the datasets where two GPS + IMU units were installed
on the central struts (i.e. the 2019 V3.25B flight and the 2024
VO flight), the kite position and velocity were computed as
the average of the two sensors. On the other V9 flight, only
one GPS + IMU unit (mounted on the wing) was used.

This section evaluates various sensor setups and corre-
sponding EKF configurations, as summarized in Table 2.
Each model builds upon a baseline set of required measure-
ments, which, as discussed in Sect. 3, includes the kite’s po-
sition and velocity, tether force, reel-out speed, and the ac-
celeration of the kite wing (to account for the inertial effects
of the KCU). The additional measurements listed in Table 2,
such as tether angles or apparent wind, are used to enhance
estimation accuracy and assess the sensitivity of the filter to
different sensor configurations.

The position and velocity data used in this study come
from a GPS 4 IMU-fused dataset processed with the embed-
ded EKF of a Pixhawk sensor using PX4 autopilot. Unfortu-
nately, only the filtered output of this onboard estimator was
logged during the test flights, and raw GPS data were not
recorded. It is acknowledged that using pre-filtered data in-
troduces dynamics that may affect filter stability and consis-
tency, particularly under tethered flight conditions for which
the Pixhawk estimator was not designed.

5.1 Kite kinematics

One of the primary functions of the EKF is to enhance the
accuracy of existing measurements, such as the kite position
and velocity. By integrating additional information, the EKF
refines data from standalone kinematic sensors like GPS.
In Fig. 8, portions of two flights from the two campaigns
are depicted in terms of azimuth, elevation, and radial dis-
tance. The azimuth is shown relative to the mean wind direc-
tion, with zero indicating alignment with the wind. Overall,
there is good agreement between the EKF estimations and
the measurements throughout the flights. However, the high-
est discrepancies occur during the reel-in phase, when the
kite is depowered, and to a lesser extent during turns. A sig-
nificant factor contributing to these discrepancies is that the
proprietary EKF of the Pixhawk relies on a model tailored to
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Figure 8. Comparison of estimated and measured kite trajectories. (a) V3 kite on 8 October 2019. (b) V9 kite on 27 November 2023. The
trajectories are shown in terms of azimuth, elevation angle, and radial distance.

drones, which does not account for the constrained tethered
flight dynamics of kites. This limitation likely contributes to
inconsistencies in sensor readings, such as the mismatch be-
tween radial distance and tether length during reel-in, where
the radial distance shows unphysical values several metres
longer than the actual tether length. On the other hand, when
the tether length is incorporated as an additional measure-
ment, our EKF estimation aligns well with the tether length,
correcting the position measurements to be consistent with
the physical constraints of the system.

Figure 9 shows the kite and apparent wind speeds over two
full flight cycles of the V3 kite. The kite is observed to speed
up during turning manoeuvres and slow down while climb-
ing along the straight segments of the figure-eight trajec-
tory. This increase in speed is primarily driven by the kite’s
weight, as the reduced aerodynamic efficiency during turn-
ing, combined with the position further from the centre of the
wind window, would otherwise result in a reduction in speed.
Two EKF configurations are compared: EKF 3, which incor-
porates apparent wind speed as a measurement, and EKF 4,
which instead imposes a constraint of a zero-vertical-wind-
velocity component without using apparent wind measure-
ments. While EKF 3 provides the best agreement with pitot
tube data, EKF 4 yields more consistent wind vector esti-
mates than other configurations that similarly exclude ap-
parent wind measurements but do not constrain the verti-
cal component. This highlights the value of imposing phys-
ical constraints when measurement data are limited. Appar-
ent wind speed estimates from both EKFs align well with
pitot tube measurements after applying an identified offset of
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Table 3. Root mean square errors (RMSE) of pitch, roll, and yaw
for two kite models.

Orientation RMSE V3 (8 October 2019) V9 (27 November 2023)

©) ©)
Pitch 3.44 3.07
Roll 3.90 291
Yaw (X || va) 3.83 4.65
Yaw (X || vk) 14.66 11.73

0.855 ms~!. The apparent wind speed remains below the kite
speed during turns, as the kite moves partially with the wind,
and the apparent wind speed remains elevated during reel-in
despite lower kite speeds, due to the kite flying into the wind.

In Fig. 10, the Euler angles estimated by the PX4 onboard
EKF (based on IMU measurements) are compared with the
orientation of the bridle segment, defined by a pitch and a
roll. The third Euler angle, the yaw, is not modelled by the
EKF and has been computed by aligning the kite reference
frame either with the apparent wind or the kinematic velocity
directions. As summarized in Fig. 3, the results show a strong
agreement between the tether model and the orientation mea-
surements from the IMU. This level of consistency suggests
that, for soft kites, a quasi-static two-point mass model — rep-
resenting both the wing and the suspended KCU — can accu-
rately capture the orientation of the kite.

Furthermore, although yaw is not directly modelled, there
is a notable alignment between the estimated and measured
angles when the kite is aligned with the apparent wind di-
rection. Conversely, the yaw estimation error increases when

Wind Energ. Sci., 10, 2161-2188, 2025




2174
Kite speed (EKF 3)

Apparent wind speed (EKF 3)

\,

w M
N

\

Speed (ms™!)

8350 8400 8450

Kite speed (EKF 4)
Apparent wind speed (EKF 4)

" AL W v i
"'\‘wf"j"l Visalr U v

O. Cayon et al.: Kite as a sensor

—— Kite speed (GPS)
---- Apparent wind speed (Pitot)

Z>

1 A A
AR A RS

8500 8550

Time (s)

Figure 9. Comparison of the estimated and measured kite speed and apparent wind speed during the flight on 8 October 2019 using the
V3 kite. The comparison is done for a configuration with (EKF 3) and without (EKF 4) apparent wind speed measurements.
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Figure 10. Comparison of estimated and measured Euler angles, with measurement biases removed using EKF estimations. (a) V3 kite
during the flight on 8 October 2019. (b) V9 kite during the flight on 27 November 2023. Note that the two IMU curves are nearly overlapping
and may appear indistinguishable in the plot. In the yaw angle plots, Xi || V4 indicates that the body-fixed x axis of the kite (i.e. the heading)
is aligned with the apparent wind velocity, while Xy || vk corresponds to alignment with the kite’s velocity vector.

aligned with the kite kinematic velocity. This behaviour sug-
gests that the anhedral shape of the kite promotes a natural
alignment with the local inflow. This is further evidenced
by the sideslip angle measurements, available only in the
VO dataset, which show a standard deviation of approxi-
mately 2.5° around the mean, with peak values reaching up
to 5°during turns.

By modelling the tether shape, which includes the KCU,
the kite deformation at the IMU can be estimated by com-
paring the predicted orientation of the bridle segment from
the EKF with the measured orientations at the wing. This ap-
proach allows for an approximate assessment of wing defor-
mation during flight and helps isolate the rigid-body orienta-
tion. Evidence of this deformation is visible during changes
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in the depower setting and in turning manoeuvres. Depower-
induced deformation is evident in Fig. 10b, as indicated by
the pitch offset observed during reel-in between the IMU on
the central strut and both the EKF estimate and the mea-
surement at the KCU. A similar behaviour is observed in
Fig. 10a, where the measured pitch deviates from the esti-
mated value during reel-in. This information can be used to
translate the measured angle of attack in the bridle to the an-
gle of attack of the wing, defined with respect to the central
section of the wing (see Eq. 1).

Regarding turning deformation, this effect is most pro-
nounced in the V3 kite (see Fig. 10a), which corresponds to
a kite whose structure exhibited greater overall deformation.
Such deformation may be undesirable if the goal is to main-

https://doi.org/10.5194/wes-10-2161-2025



O. Cayon et al.: Kite as a sensor

6000
—
Z.
<
© 4000
=
2
g
2P 2000
=
i
0 I I =
o . ] % $
o ¥ & Sl S
g N ¥ S 24
\\}Q\ & B 4&"0 R
<° o < 3
X
&

2175

& & & & N
S & N o &
S < < & &
S A NS S A
© g 2 9 Y
A & & O &
¥ e ~ =
Jox <
& <{

Figure 11. Mean, maximum, and minimum values of the different force contributions acting on the airborne subsystem during the flight on
8 October 2019 using the V3 kite. These forces were computed based on the estimated states obtained from the EKF described in Sect. 4.
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Figure 12. Variation in tether slack and force during two power generation cycles from the flight on 8 October 2019 using the V3 kite. The
plot shows the slack in metres (left y axis) and the tether force in newtons (right y axis).

tain aerodynamic performance. However, this clear identifi-
cation of turning deformation, which is more pronounced in
one strut than the other, depending on the turning direction,
provides valuable insight into the aero-structural deforma-
tions of the wing (Schelbergen and Schmehl, 2024).

5.2 System dynamics

Modelling the various components of the kite and tether sys-
tem allows for the isolation of individual force components,
enabling an assessment of their relative significance. Fig-
ure 11 illustrates the different forces acting on the V3 kite
system.

As expected, the lift force generated by the wing is the
dominant contribution, primarily responsible for pulling the
tether. It is followed by the wing drag force, which exhibits
considerable variability, peaking during turns and decreasing
during the reel-in phases. The parasitic drag of the tether and
KCU can be seen to account for a relatively small portion of
the total drag. The side force, though relatively low, plays a
crucial role in balancing the forces during turns by providing
the necessary lateral force to counteract the centripetal ac-
celeration of the wing. The primary force component of the
KCU is its inertia, which can be interpreted as an external
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force on the tether. In this particular system configuration,
where the KCU was oversized relative to the wing, its iner-
tia could reach up to 40 % of the tether force during turns,
exerting a greater influence than its weight due to the high
accelerations during turns.

Another novelty is that the current EKF can effectively
estimate tether slack, defined as the difference between the
tether length (i.e. the unstretched, deployed length) and the
radial distance between the kite and the ground attachment
point. As shown in Fig. 12, which presents the slack and
ground tether force for two power generation cycles, there
is a clear relationship between the two. As expected, the
tether experiences the most slack during the reel-in phases,
when the kite is depowered, and the tether forces are lowest.
Note that small negative slack values may occur due to elas-
tic elongation of the tether under tension during the reel-out
phase. Additionally, a consistent peak in tether slack is ob-
served during turns, partly due to the reduced speed at the
top of the figure-eight pattern (i.e. lower tether force). This
effect is further amplified by the inertia of the KCU, which
causes the kite to rotate relative to the tether. This misalign-
ment between the aerodynamic forces and the tether force
might lead the kite to dive into the sphere, causing the tether
to sag.

Wind Energ. Sci., 10, 2161-2188, 2025
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5.2.1 Aerodynamic identification

To accurately estimate the aerodynamic performance of the
kite, it is crucial to precisely estimate both the orientation
of the tether and the wind speed and direction. The latter
is particularly critical for determining the direction of the
drag force and obtaining accurate estimates of the drag co-
efficient. Linking the instantaneous aerodynamic coefficients
to the angle of attack at the wing oy, adds another layer of
complexity, as this angle is currently measured at the bridle.
This section aims to improve the accuracy of these estimates
by integrating deformation estimates from the EKF to cal-
culate the angle of attack at the wing, thereby enhancing the
prediction of the wing aerodynamic coefficients as a function
of the angle of attack.

Alternatively, the angle of attack can be calculated using
the orientation of the wing measured by the IMU and the esti-
mated apparent wind velocity. However, the accuracy of this
method is limited by the time resolution quality of the wind
velocity estimates, making the measured angle of attack bet-
ter at capturing temporal variations. Nevertheless, this angle
is used to find «p g, which is subtracted from the measured
angle at the bridle (see Egs. 1 and 2).

In Fig. 8a, the measured trajectory of two power genera-
tion cycles is presented alongside the EKF estimates, with
the azimuth angle centred on the mean wind direction. Dur-
ing this flight segment, the trajectory was slightly misaligned
with the wind direction by approximately 10°, according to
the EKF predictions.

In Fig. 13, the aerodynamic coefficients and angles of at-
tack are plotted for the selected flight segment. The lift and
drag coefficients remain relatively constant throughout the
reel-out phase, with spikes during turns corresponding to de-
creased lift and increased drag. This behaviour is consis-
tent with observations reported in previous studies, such as
Oechler and Schmehl (2019) and Roullier (2020), where the
increase in drag during turning manoeuvres was attributed to
steering-induced deformation of the wing. Additionally, the
side of the figure-eight pattern that is more misaligned with
the wind direction shows a higher increase in drag coeffi-
cient and a smaller decrease in lift, while on the other side,
the drag peaks are smaller, and the decrease in lift is higher.
The increase in drag coefficient on the misaligned side of the
figure-eight pattern could be attributed to a higher sideslip
angle, although relating this directly to the lift coefficient is
less straightforward. The observed changes in lift might be
linked to variations in the kite’s trim angle, which could be
influenced by shifts in aerodynamic polars with sideslip, al-
though this relationship warrants further investigation. The
parasitic drag of the tether, bridles, and KCU contributes a
significant portion of the total drag, approximately 30 % dur-
ing reel-out and up to 50 % during reel-in. As for the angles
of attack, the measured angle at the bridle lines remains fairly
constant throughout the flight, suggesting that the kite main-
tains pitch stability around a certain trim angle (Thedens and
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Figure 13. Aerodynamic coefficients and angle of attack of the
V3 kite on 8 October 2019 during two power generation cycles. The
background colours indicate the flight phase of the kite; the legend
is provided in Fig. 12.

Schmehl, 2023; Cayon et al., 2023). The angle measured at
the bridle lines can be translated to the wing angle of at-
tack using the depower-induced deformations identified in
Fig. 10a.

The wing polars using this estimated angle are presented
in Fig. 14 as mean values, with shaded areas indicating the
99 % confidence interval. The angle of attack shown corre-
sponds to the wing angle of attack, obtained by translating
the measured angle of attack at the bridles to the wing ref-
erence frame, accounting for an offset aq o and the depower
angle «q (see Eqgs. 1 and 2). As inferred from the angle of at-
tack and aerodynamic coefficient estimates shown in Fig. 13,
the kite exhibits relatively constant behaviour for a fixed de-
power setting, with standard deviations around the mean of
1.91 and 0.84° during reel-out and reel-in, respectively. This
limited variability constrains the range of angles of attack ex-
plored during the flight. Despite this constraint, portions of
the polar curves can still be estimated. However, for a com-
plete aerodynamic characterization of the kite, tailored test
flights should be conducted, where the kite is forced to dy-
namically change the angle of attack to explore the wider
range of conditions. The experimentally derived polars are
compared with findings from previous studies employing
different levels of fidelity. The Reynolds-averaged Navier—
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Figure 14. Estimated aerodynamic polars of the V3 kite from the flight on 8 October 2019 using the reconstructed wing angle of attack. The
angle of attack is obtained by translating the measured angle at the bridle lines to the wing reference frame. Mean values are shown, with
shaded areas indicating the 99 % confidence interval. Results are compared to previous studies.

Stokes (RANS) simulations by Viré et al. (2022); Lebesque
(2020) were conducted using the CAD model of the V3 kite
at a Reynolds number of 3 x 10°, whereas the results from
the vortex step method (VSM) incorporate an aero-structural
solver that accounts for kite deformation caused by actuation
inputs (Cayon et al., 2023; Poland and Schmehl, 2023). Ad-
ditionally, the estimations are compared with an experimen-
tal study of the same dataset that used a simpler tether model
(Roullier, 2020). In this study, the wind speed at the kite was
extrapolated from ground measurements using a logarithmic
wind profile, and the angle of attack was estimated based on
geometric relations rather than experimentally identified de-
formations. The Reynolds number during this flight ranged
from 2.3 x 10° to 4.5 x 10°, based on the apparent airspeed
and a chord length of 2.6 m.

Compared to the RANS simulations of the CAD wing
shape, a similar lift slope is observed between the mean an-
gles of attack in reel-in and reel-out states, consistent with the
VSM results (see Fig. 14). However, the EKF results show a
much smaller variation in lift coefficient C1, with respect to
angle of attack around these mean values, indicating a flatter
lift curve than predicted by both RANS and VSM, particu-
larly below the reel-in and above the reel-out mean angles
of attack. This decrease in lift slope around the mean angles
of attack can be attributed to several factors. First, the aero-
dynamic performance of the kite is significantly influenced
by steering-induced deformations, which are not captured
in the rigid-wing simulations and may lead to altered po-
lars. Second, the angle-of-attack measurements are affected
by limited sensor accuracy and by vibrations in the wind
vanes, as discussed in Sect. 3, especially when the pitot tube
shadows the vane, introducing noise that smooths the curve
around the trim angles. Third, RANS simulations indicate
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that the lift coefficient decreases with increasing sideslip an-
gle (Lebesque, 2020), a phenomenon observed during flight,
particularly in turning manoeuvres.

When comparing these results to the experimental anal-
ysis by Roullier (2020), the derived polars exhibit a closer
resemblance to the simulations, largely due to improvements
in the estimation of both angle of attack and wind velocity.
Additionally, by modelling the drag contributions from para-
sitic elements in more detail, the wing’s aerodynamic perfor-
mance can be more accurately isolated. This results in lower
estimated drag coefficients and higher lift coefficients for the
wing itself.

5.2.2 Turn dynamics

To steer the kite, a lateral force is generated by asymmetri-
cally deforming the wing, controlled by the steering input ug
via actuation of the steering tape. This deformation creates a
lift difference between the two sides of the wing, producing
a net lateral force that steers the kite and a moment that in-
duces yaw. Therefore, the turning behaviour can be broadly
characterized by the side force coefficient Cs and the yaw
rate

For soft kites, where turns are predominantly induced by
aerodynamic forces at the wing tips, the yaw rate can be de-
scribed by a simple relationship dependent on steering in-
put us and the apparent wind speed v, (Fagiano and Novara,
2014; Erhard and Strauch, 2012). This relationship suggests
equilibrium of the aerodynamic moment during turns and is
expressed as

U = giva(us(t — d(1)) — us o), 27)

where gy is the steering gain parameter, ug o is an offset ob-
served in the side force coefficient estimates (Fechner, 2016),
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Figure 15. Side force coefficient, yaw rate, and steering input of
the V3 kite on 8 October 2019 during two power generation cycles.
Linear fits are shown for the side force coefficient and yaw rate to
highlight their relation to the steering input.

and d(t) is the time delay between the steering input and the
kite response (Elfert et al., 2024).

A time delay of approximately 0.1s is observed when
cross-correlating the yaw rate with the steering input, while
the delay for the side force coefficient is around 0.8 s relative
to us. Understanding these delays is crucial for improving the
kite responsiveness and steering precision. Further investiga-
tion is needed to determine whether these delays originate
from the filter dynamics or the physical response of the kite.

In Fig. 15, the kite turn dynamics are depicted in terms of
yaw rate and side force coefficient. The identified yaw rate
closely matches the measured values, particularly when the
offset in the steering input is accounted for. The largest dis-
crepancies occur during straight flight sections and reel-in
phases, where the kite is minimally steered. Nevertheless,
as shown in Fig. 16, the yaw rate of the kite is well repre-
sented across all flight conditions by a simple turn rate law.
For the side force coefficient, a linear relationship is fitted
between the steering input and side force, providing accu-
rate estimates during turns. However, during straight paths, a
notable mismatch arises, where the side force appears to be
consistently underpredicted, indicating that the same linear
fit might not be suitable for all flight regimes.
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Figure 16. Measured yaw rate and identified turn rates of the
V3 kite on 8 October 2019 during two power generation cycles.
Identified turn rates are shown with and without offset correction.

This is further illustrated in Fig. 17, which shows the side
force as a function of us. The data highlight distinct be-
haviours during turns and straight flight, with changes in
side force due to the steering being more pronounced during
straight flight. This phenomenon can be attributed to aero-
dynamic damping caused by the wing’s yaw motion, which
results in the outer side of the kite moving at a higher ve-
locity relative to the inner side. Consequently, the force gen-
erated by the turn opposes the manoeuvre, altering the rate
of change in the side force coefficient Cs with respect to the
steering input us. Beyond the direct effects of steering input
on turn dynamics, it is also essential to consider how other
components, such as the KCU, influence the overall system
behaviour. By modelling the kite and KCU separately, it is
possible to assess the effects of KCU inertia on the manoeu-
vres and performance of the kite system. In Fig. 18, the esti-
mated angles between the tether and the kite, defined as the
pitch and roll differences between the final tether segment
and the bridle segment, are shown for two power genera-
tion cycles. It is important to note that in the flight shown,
the KCU was significantly oversized compared to the kite,
with its weight reaching twice that of the wing itself. As a
result, the behaviour observed is exaggerated compared to
what would be expected in an optimized system. Neverthe-
less, this exaggerated scenario provides clearer insights into
the effects of the KCU on the system. During reel-out, the
pitch angle remains relatively low, while the roll angle oscil-
lates between positive and negative values, depending on the
direction of the kite. During turns, where the accelerations
are highest, a peak is observed in both the roll and pitch an-
gles caused by the centrifugal force acting on the KCU. On
the straight path segments of the figure-eight manoeuvres,
the roll angle has a lower value, primarily compensating for
the weight of the KCU. However, when the kite is reeled in,
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Figure 17. Side force coefficient estimated by the EKF for the
V3 kite on 8 October 2019 during two power generation cycles,
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Figure 18. Estimated angle between tether and kite for the V3 kite
during two power generation cycles. The background colours indi-
cate the flight phase of the kite. The legend can be found in Fig. 12.

due to the orientation change toward the ground station, the
weight of the KCU is compensated mainly by the pitch angle.

This misalignment of the kite with respect to the tether
means that a portion of the aerodynamic force generated by
the kite is not transmitted as tether tension but is instead used
to compensate for the inertial forces at the KCU. In this ex-
aggerated scenario, these losses can reach up to 6 % during
turns, highlighting the significant impact of the KCU mass
on the system performance (Roullier, 2020).

5.3 Wind estimations

This section presents results from two selected flights from
the recent flight campaign in Ireland. The 2023 flight ex-
hibits a typical logarithmic wind profile, while the 2024 flight
displays a transient phenomenon characterized by a sudden
wind gust and a rapid change in wind direction. Estimates re-
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lying on a logarithmic law were obtained assuming a surface
roughness length zg of 0.1 m.

For the 2023 flight, Fig. 19 shows a comparison between
the wind speed and direction profiles and the results of sev-
eral EKF model configurations with different sensor mea-
surements as inputs. Ground wind measurements from a cup
anemometer and wind vanes were also available for that
flight, with the wind speed extrapolated to the kite height
using a logarithmic wind profile (see Eq. 6). Likewise, li-
dar data collected at different fixed heights were interpolated
to the kite altitude, with shaded areas indicating the range
between minimum and maximum values. The lidar data con-
sist of 1 min averages, with the minimum and maximum val-
ues showing variability within each averaging period. The re-
sults, detailed in Table 4, show good agreement with the lidar
for all EKF configurations for both wind speed and direction
estimates. For this flight, incorporating the tether length as
a measurement (EKF 1) does not lead to significant changes
in the wind estimates. By modelling wind speed as logarith-
mically dependent on height (EKF 2), it is possible to tune
wind speed and direction separately, allowing for indepen-
dent control over their fluctuations. In this case, the approach
resulted in slightly more accurate wind direction estimates
compared to the other configurations.

The highest fluctuations in wind direction are observed
when the apparent wind speed is included as a measurement
(EKF 3). However, it is challenging to determine whether
these fluctuations are physical or the result of errors in the
pitot tube readings, especially when compared against the li-
dar’s 1 min averaged data. A poorly calibrated tube or its po-
sition away from the centre of rotation of the kite might cause
these fluctuations. For this flight, an estimated bias of ap-
proximately 2ms™! in the pitot tube readings was identified
and corrected using the methodology described in Sect. 4.2.

Despite the wind direction fluctuations, including appar-
ent wind speed (EKF 3) yields the most accurate wind speed
estimates, maintaining their accuracy even during the reel-
in phase. In contrast, other configurations show increased
RMSE and mean bias in this phase, resulting in a consistent
underestimation of wind speed. This degradation has been
attributed to two main factors: first, a decrease in GPS data
quality, as discussed in Sect. 5.1, and second, a miscalibra-
tion of the tether force measurement system, where a small
offset in the elevation angle was reported. This offset has a
greater impact at high elevation angles, which are more com-
mon during reel-in.

Regarding vertical wind velocity, lidar measurements in-
dicate an average speed close to zero, which aligns with the
EKF estimates. Among the configurations, EKF 3 shows a
slightly lower average vertical wind velocity.

Finally, a comparison with ground-level wind measure-
ments reveals a substantial wind veer, which the EKF effec-
tively captures. Although the extrapolation of wind speed to
the kite height provides velocities of a similar magnitude,
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Figure 19. Test flight on 27 November 2023. Time series comparison of wind estimates from different EKF configurations, including
a minimal sensor setup and three variants with additional inputs, against lidar observations and ground-based measurements. The plots
show horizontal and vertical wind velocity components, as well as horizontal wind direction. Lidar data are available at 1 min resolution,
interpolated to kite altitude, with the mean and range (minimum-maximum) shown in grey. Ground-based wind speed measurements are
extrapolated to kite height using a logarithmic wind profile.

Table 4. The root mean square error (RMSE) and mean bias in estimated wind direction ¢w and wind speed vy during reel-out and reel-in
phases for four of the EKF configurations compared to lidar measurements. Lidar data were recorded at fixed heights and matched to flight
data using altitude bins of &£ 10 m. The reel-out and reel-in phases are representative of the typical flight altitudes during these periods. Results
are based on flight data from 27 November 2023. Negative biases indicate underestimation relative to lidar data. The EKF configurations
with the best agreement in terms of direction and wind speed for both the reel-out and reel-in phases are highlighted in bold.

Configuration EKF 0 \ EKF 1 \ EKF 2 \ EKF 3

RMSE |bias ¢ (°) vw ms™h) | Pw(®) vw s~ | pw(®) vw ms™h) | pw(®) vw (ms™1)
Reel-out 2.18|—1.82 076]0.12 | 221]—1.84 0.75]0.16 | 1.86|—1.54 0.71|-044 | 1.89|—1.58 0.5]0.12
Reel-in 4861-377 1.99]-195 | 506|—3.99 203|—199 | 2.98[-2.58 1.58|—1.53 | 341|-3.03 029/0.15

these ground measurements cannot accurately capture wind In contrast to the typical wind profile of the 2023 flight,

speed variations at altitude.

The wind speed profile in Fig. 20 further confirms that in-
corporating apparent wind speed (EKF 3) provides the most
accurate estimates. At the same time, all EKF configurations
yield similarly accurate wind direction estimates, closely fol-
lowing the lidar measurements. The largest deviations from
the lidar data occur at altitudes above 200 m, corresponding
to the reel-in phase, as previously discussed in relation to Ta-
ble 4.

Wind Energ. Sci., 10, 2161-2188, 2025

the 2024 flight, shown in Fig. 21, featured a wind gust start-
ing around 13:40 UTC+1, accompanied by a shift in wind di-
rection that remained fairly constant until the gust subsided.
During this flight, lidar data were available at a higher res-
olution of 1s, with measurements presented at three differ-
ent heights. Additionally, measurements of the tether angles
at the winch outlet were included in the model EKF 5. It is
important to note that the IMU readings from the Pixhawk
during this flight struggled to keep up with the high accelera-
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Figure 20. Test flight on 27 November 2023. Wind profile comparison of horizontal wind speed and direction estimated by the EKF using a
minimal sensor configuration and three enhanced variants with additional inputs compared to lidar observations. Wind profiles are averaged

over 10 min intervals.
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Figure 21. Test flight from 5 June 2024. Time series comparison of wind estimates from different EKF configurations, including a minimal
sensor setup and three variants with additional inputs, against lidar observations. The plots show horizontal and vertical wind velocity
components, as well as horizontal wind direction. Lidar data are available at 1s resolution and are shown at three heights representative of

the kite’s flight envelope.

tions experienced during turns, resulting in clamped acceler-
ation values and degraded measurements of the kite kinemat-
ics. This problem affected the EKF performance and led to
non-physical peaks in the estimated wind velocity. Although
the addition of extra measurements helped to mitigate some
of these peaks — such as the one observed around 13:47 —
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most configurations did not show significant improvements
in overall accuracy.

These limitations are reflected in the estimation results,
presented in Table 5. Incorporating a constraint of zero ver-
tical wind velocity (EKF 4), however, improved the wind
speed estimates, which were otherwise consistently under-
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Table 5. The root mean square error (RMSE) and mean bias in estimated wind direction ¢w and wind speed vy during reel-out and reel-in
phases for four EKF configurations compared to lidar measurements. Lidar data were recorded at fixed heights and matched to flight data
using altitude bins of £ 10 m. The reel-out and reel-in phases are representative of the typical flight altitudes during these periods. Results
are based on flight data from 5 June 2024. Negative biases indicate underestimation relative to lidar data. The EKF configurations with the
best agreement in terms of direction and wind speed for both the reel-out and reel-in phases are highlighted in bold.

Configuration EKF 0 \ EKF 2 \ EKF 4 \ EKF 5
RMSE|Bias  ¢w(°) vw (ms™h) [ gu(®) vw (ms™!) | gu(®) vw (ms™) [ gu(®) vw (ms~h)
Reel-out 301 -218 1.54]—-138 | 3.18| =22 1.70 | —=1.53 | 3.50| —2.58 0.60]0.02 3.64 =277 143|-1.22
Reel-in 6.06| —5.53 2.19|—2.05 | 480 —3.88 2.06|—190 | 599|546 1.53|—1.32 | 6.18| =554 1.96|—1.84
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Figure 22. Test flight from 5 June 2024. Wind profile comparison of horizontal wind speed and direction estimated by the EKF using a
minimal sensor configuration and three enhanced variants with additional inputs compared to lidar observations. Wind profiles are averaged

over 5 min intervals.

estimated, while also reducing the overestimation of the ver-
tical wind velocity component relative to the lidar measure-
ments. This effect is particularly evident in Fig. 21 around
13:45, where a wind gust is partially misinterpreted as an in-
crease in vertical wind velocity by all configurations except
EKF 4.

Finally, and similarly to the 2023 flight, the estimates tend
to degrade during the reel-in phase. This can be attributed
to the same factors discussed previously, including degraded
GPS quality and issues with the calibration of the tether force
measurement system.

A more detailed analysis of the shape of the wind profile
during the wind gust event is shown in Fig. 22. By incorpo-
rating an artificial zero vertical wind velocity measurement
(EKF 4), the time response of the wind estimates improves.
In contrast, other configurations show a slower time response
for horizontal wind speed and instead exhibit an increase in
vertical wind velocity magnitude to match the same apparent
wind speed. Furthermore, around 13:55 UTC+1, there is a lo-
calized increase in wind speed at higher altitudes that none
of the models can effectively capture. Apparent wind speed
measurements might have been more effective at capturing
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these transient phenomena, but unfortunately, they were un-
available for this flight.

Regarding wind direction, all configurations demonstrate a
good time response and are able to track changes throughout
the flight. Among them, the configuration using a logarithmic
wind profile (EKF 2) once again provides the most accurate
estimates. The higher temporal resolution of the lidar data
also allows for a more detailed comparison, confirming that
the observed fluctuations in wind velocity are well captured
by the models.

Overall, the 2024 flight highlights the importance of sen-
sor reliability and the potential of constrained models like
EKF 4 to improve robustness under dynamic wind condi-
tions.

5.4 Turbulence measurements

Since the EKF estimates wind characteristics based on mea-
surements that are not directly related to the inflow, accurate
estimates of the variability in wind speed are highly depen-
dent on the correct tuning of the filter. To verify that the rapid
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Figure 23. Power spectral density of the wind speed during the test
flight on 8 October 2019. The reference —5/3 Kolmogorov slope
is shown for comparison, indicating the expected inertial subrange
behaviour in atmospheric turbulence.

changes estimated are physical, one can examine the turbu-
lence estimates, which quantify these variations.

A key aspect to investigate is the power density spectrum
of the wind speed, as shown in Fig. 23. The sampling fre-
quency of the measurements was 0.1 s, corresponding to fre-
quencies resolved of up to 5 Hz. It is observed that the energy
cascade follows the Kolmogorov slope within the range of
~(0.01-0.3 Hz, with higher frequencies damped, likely due
to the time response of the EKF. Additionally, a peak is ob-
served below 0.01 Hz, corresponding to the cycle timescale
for the analysed flight. This peak coincides with a rapid
change in wind speed, attributed to the significant variation
in kite height experienced during reel-in. Another parame-
ter assessed in the study is the turbulence intensity, defined
as the standard deviation of the wind speed divided by its
mean value. This parameter is commonly used in conven-
tional wind energy assessments, particularly when assessing
turbine fatigue loads. Turbulence intensity is also measured
by the profiling lidar, providing an additional validation of
the EKF. However, it is important to note that the quantities
measured by the lidar and the EKF are not directly equiva-
lent.

The lidar measures turbulence intensity over an averaged
volume at a fixed height, with the area determined by the
laser cone angle. In contrast, the turbulence intensity derived
from the EKF is calculated over a range of heights within
4 10 m of the lidar measurement to obtain comparable val-
ues. It is calculated as the 1 min standard deviation divided
by the mean.

With these considerations in mind, turbulence intensity
estimates from both the EKF and lidar are compared in
Fig. 24 for the two analysed flights. The comparison reveals
good agreement in magnitude, and the temporal behaviour
of the EKF closely matches that of the lidar. While these ini-
tial comparisons are promising, a more detailed analysis is
needed to fully assess the accuracy of these measurements.
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Figure 24. Turbulence intensity at a height of 140 m for two differ-
ent flights of the VO kite. (a) Flight on 27 November 2023. (b) Flight
on 12 March 2024. Turbulence intensity is calculated over 1 min in-
tervals.

6 Discussion and conclusions

This study presents a sensor fusion technique for tethered fly-
ing systems to estimate the state of the system and the wind
conditions at the kite. The system state includes the kite’s po-
sition, velocity, aerodynamic performance, and tether shape.
The sensor fusion technique consists of an iterated extended
Kalman filter (EKF), modelling the kite as a point mass
and the tether as a system of point masses linked by spring
damper elements. The tether shape is assumed to be quasi-
static and includes the kite control unit (KCU) as a point
mass, linked to the kite by an additional spring damper ele-
ment representing the bridle line system. By integrating data
from multiple sensors, such as position, velocity, tether force,
and reeling speed, the EKF model can accurately estimate
system dynamics and wind conditions without the need of
direct airflow measurements, provided the filter is appropri-
ately tuned to the specific system.

The proposed EKF effectively estimates average wind pro-
files, particularly those that follow a conventional logarith-
mic slope. Its performance is less accurate in scenarios with
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significant deviations, such as sudden wind gusts, where the
filter requires a few minutes to adapt to rapid changes in wind
speed. Notably, the filter adapts faster to changes in wind
direction, indicating greater sensitivity to directional varia-
tions. To improve the time resolution in wind estimations, di-
rect airflow measurements should be included, such as from
a well-calibrated and well-maintained pitot tube.

The accuracy of the estimations depends on the quality
and reliability of the input measurements. While the EKF can
compensate for minor inaccuracies and correct some biases,
problems, such as improperly calibrated sensors, signal loss,
or clamped acceleration signals, can degrade performance.
This was observed on the 2024 flight, where acceleration
measurements saturated during high-speed turns, contribut-
ing to a reduced estimation accuracy.

Sensor noise and filter tuning are areas that deserve fur-
ther attention. While the paper acknowledges the poten-
tial inaccuracies stemming from incorrect tuning and noise
modelling, it does not discuss strategies to mitigate these
problems in-depth. For the proposed EKF to be more ro-
bust for a specific system, it can be beneficial to incorpo-
rate a more comprehensive noise modelling. Implementing
advanced calibration techniques, such as adaptive filtering
methods for real-time sensor noise adjustments, could en-
hance the accuracy and reliability of state estimations.

The proposed approach also demonstrates the ability to es-
timate tether and kite orientations, which closely align with
the measurements at the kite. This capability enables the es-
timation of pitch changes induced by deformation around
the central struts of the wing, typically referred to as the
depower angle. This information can be used to estimate
the wing angle of attack based on angle-of-attack measure-
ments in the bridle line system. The kite was aerodynami-
cally characterized for the range of flight conditions avail-
able using this newly estimated angle, showing an improve-
ment with respect to previous analyses. However, for a com-
plete aerodynamic characterization, tailored test flights must
be conducted to capture the aerodynamic behaviour of the
kite across different conditions.

This study explored several sensor setups, demonstrating
that a single airborne sensor measuring the kite position and
velocity, combined with ground-based force and tether length
sensors, is sufficient to obtain reasonable estimates, as sup-
ported by validation against lidar data. While modelling the
wind profile as logarithmic does not necessarily improve the
estimates, it allows for independent tuning of the wind di-
rection and the magnitude of the process noise, which can be
useful for supervisory control applications that require damp-
ing of high-frequency variations. Furthermore, including a
soft constraint on the vertical wind velocity component — im-
plemented as a pseudo-measurement centred at zero — was
shown to improve the filter’s time response during transient
events (e.g. wind gusts) by reducing the misinterpretation of
horizontal wind changes as vertical components.
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For applications requiring high-time-resolution wind esti-
mation, installing well-calibrated flow sensors on the kite is
recommended. In the absence of direct inflow measurements,
the wind must be inferred indirectly from forces and dynam-
ics, resulting in lower time resolution. Additionally, the EKF
implementation was benchmarked on a standard laptop and
shown to run over 50 times faster than real time with mod-
est CPU and memory usage (see Appendix C1). While fur-
ther optimization would be required for embedded onboard
deployment, these results indicate that real-time implemen-
tation is feasible.

Overall, the EKF has proven to be a robust method for
wind and state estimation for AWESs, demonstrating suffi-
cient accuracy for mean wind speed and direction estimation
for power generation cycles. Across the evaluated flights, av-
erage RMSE values for wind speed estimation ranged be-
tween 0.3 and 2.2ms~!, with biases below 0.2ms™! in
the best-performing configurations. Directional RMSEs typ-
ically remained below 5°, including during transient wind
events. However, its responsiveness to rapid changes in wind
conditions is limited by the quality and availability of sen-
sor data. Future work should focus on optimizing sensor se-
tups and conducting targeted system identification test flights
to capture dynamic states beyond normal operational limits,
ensuring the kite can be characterized fully. Ultimately, this
study highlights that the kite can be effectively used as a sen-
sor, providing valuable insights into system dynamics and
wind conditions.

Appendix A: Nomenclature

Symbol Description

Kite and tether model variables

r Position in the ENU frame (m)

v Velocity in the ENU frame (m s

a Acceleration in the ENU frame (ms~2)

Fix Tether force at the kite (N)

F, Tether force at the ground station (N)

Fax Aerodynamic force on the kite (N)

Fgx Gravitational force on the kite (N)

v, Apparent wind velocity (ms™!)

Vy Ambient wind velocity (m s7h

In Tether length (m)

Bo Elevation angle of first tether segment
)

bo Azimuth angle of first tether segment (°)

bk Roll Euler angle in NED frame (°)

Ok Pitch Euler angle in NED frame (°)
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Yk Yaw Euler angle in NED frame (°)

1& Yaw angle rate (° s7h

Aerodynamic parameters

CL Lift coefficient

Cp Drag coefficient

Cs Side force coefficient

Ax Projected wing area (m?)

0 Air density (kgm™)

o Angle of attack at the bridle (°)

y Angle of attack at the wing (°)

ag Depower angle (°)

Up Depower input (0-1)

AQ Angle between tether and power lines
)

Tether model parameters

Y Aerodynamic drag on tether segment j
M)

S, Aerodynamic lift on tether segment j
™)

d Tether diameter (m)

(of} Crosswise drag coefficient of the tether

Cy Axial drag coefficient of the tether

o Local angle of attack of tether

segment j (°)
C1 keus Cjkcu  Drag coefficients of the KCU (-)
Filter and control variables

x State vector of the EKF

u Input vector of the EKF

z Measurement vector of the EKF

| State estimation error covariance matrix

Q Process noise covariance matrix

R Measurement noise covariance matrix

K Kalman gain matrix

1) Sensor bias

n Measurement noise

U Steering input

gk Steering gain

d(r) Time delay between steering input and
response (s)

Us,0 Steering input offset

Other

z Height above ground (m)

20 Surface roughness length (m)

u* Friction velocity (ms™!)

dw Wind direction (°)

Vg, Vertical wind velocity component
(ms™")

TI Turbulence intensity

K von Kdrman constant (= 0.4)

Appendix B: System specifications and tuning
parameters

This appendix provides details on the AWES configuration
and the EKF tuning parameters used in this study.
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B1 System description

This section provides the key physical specifications of the
kite, the KCU, and the tether used in the airborne wind en-
ergy system.

Table B1. Kite specifications (model V3).

Parameter Value  Unit

Model name V3 -

Mass 15 kg
Area 1975 m?
Span 10 m

Table B2. Bridle and kite control unit (KCU) parameters.

Parameter Value  Unit
KCU length 1 m
KCU diameter 048 m

C keu 0.69 -
Cll.kecu 0.83 -
Mass 27.6 kg
Distance to kite 11.5 m
Total bridle length 9% m
Bridle line diameter  0.0025 m

Table B3. Tether parameters.

Parameter Value Unit
Material Dyneema-SK78 -
Density (o) 970 kgm™3
Young’s modulus (E) 132 GPa
Diameter 0.01 m

Cy 1.1 -

C I 0.01 —

Number of elements 10 -

B2 Tuning parameters for EKF

This section lists the standard deviations used in the EKF, for
both sensor measurements and model process noise.

Appendix C: Kalman filter performance
This section presents performance metrics of the imple-

mented Kalman filter and details the computational environ-
ment used for testing and validation.
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Table B4. Measurement standard deviations used in the EKF.

Parameter Value Unit
Position (r¢) 5 m
Velocity (vg) 2 ms~!
Tether length (/) 0.5 m
Tether elevation (Bg) 3 °
Tether azimuth (¢g) 3 °
Position (tether model) 1x107° m
Zero vertical wind velocity (v4 =0) 2 ms ™!

Apparent airspeed (v,) 1 ms
Bridle angle of attack () 4 °

Table B5. Model standard deviations used in the EKF.

Parameter Value  Unit
Position (r¢) 25 m
Velocity (vg) 1 ms!
Wind velocity (vw) 0.1 ms~!
Friction velocity (i) 0.002 ms~!
Wind direction (¢w) 02 °
Vertical wind velocity component (v5,) 001 ms~!
Lift coefficient (CL) 0.01 -
Drag coefficient (Cp) 0.003 -
Side force coefficient (Cg) 0.01 -
Tether elevation (Bg) 5 °
Tether azimuth (¢q) 5 °
Tether length (/) 0.1 m
Table C1. Kalman filter performance metrics.

Metric Value  Unit

Average iteration time ~ 0.0025 s

CPU usage 13 %

Real-time performance 50  xreal time

Peak memory usage 169.54 MB

Table C2. Computational environment specifications.

Component Specification

CPU 12th Gen Intel Core 17-1265U
(10 cores, 12 threads)

RAM 16 GB

Windows 10 64-bit
Python 3.10, NumPy 1.24,
CasADi 3.6.0

Operating system
Software environment

Code and data availability. The code used in this study is
available at https://github.com/ocayon/EKF-AWE (last access: 8
July 2025) and has been archived for reproducibility at Zenodo:
https://doi.org/10.5281/zenodo.15269632 (Cayon, 2025). The
datasets can be found on different data repositories: (1) flight
data 8 October 2019, https://doi.org/10.4121/19376174.V1
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(Schelbergen et al., 2024); (2) flight data 27 Novem-
ber 2023, https://doi.org/10.5281/zenodo.14237421
(Cayon et al, 2024a); (3) flight data 5 June 2024,
https://doi.org/10.5281/zenodo.14238586 (Cayon et al., 2024b).
The flights from 2023 and 2024 are under a 1-year embargo and

will be public in November 2025.

Author contributions. Conceptualization: OC and RS; method-
ology: OC; software: OC; investigation: OC; writing — original draft
preparation: OC; writing —review and editing: OC, RS, and SW; su-
pervision: RS and SW; funding acquisition: RS and SW. All authors
have read and agreed to the published version of the manuscript.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Wind Energy Science. The peer-review
process was guided by an independent editor. Roland Schmehl is
a co-founder of and advisor for the start-up company Kitepower
B.V., which is commercially developing a 100 kW kite power sys-
tem and provided their test facilities and staff for performing the
in situ measurements described in this article. All authors were fi-
nancially supported by the European Union’s Meridional project,
which also provided funding for Kitepower B.V.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors also gratefully acknowledge
Kitepower B.V. for providing valuable validation data. We acknowl-
edge the use of OpenAI’s ChatGPT and Grammarly for assistance
in refining the writing style of this paper.

Financial support. This research has been supported by the
EU HORIZON EUROPE Climate, Energy and Mobility (grant
no. 101084216).

Review statement. This paper was edited by Etienne Cheynet
and reviewed by two anonymous referees.

References

Bar-Shalom, Y., Li, X., and Kirubarajan, T.: Estimation
with Applications to Tracking and Navigation: The-
ory, Algorithms and Software, John Wiley & Sons Inc.,
https://doi.org/10.1002/0471221279.ch11, 2002.

Blevins, R. D.: Applied fluid dynamics handbook, Van Nostrand
Reinhold Co., New York, NY, ISBN 978-1575241821, 1984.

https://doi.org/10.5194/wes-10-2161-2025


https://github.com/ocayon/EKF-AWE
https://doi.org/10.5281/zenodo.15269632
https://doi.org/10.4121/19376174.V1
https://doi.org/10.5281/zenodo.14237421
https://doi.org/10.5281/zenodo.14238586
https://doi.org/10.1002/0471221279.ch11

O. Cayon et al.: Kite as a sensor

Bootle, W. J.: Forces on an inclined circular cylinder in supercritical
flow, AIAAJ., 9, 514-516, https://doi.org/10.2514/3.6213, 1971.

Borobia, R., Sanchez-Arriaga, G., Serino, A., and Schmehl,
R.: Flight-Path Reconstruction and Flight Test of Four-Line
Power Kites, J. Guid. Control Dynam., 41, 2604-2614,
https://doi.org/10.2514/1.G003581, 2018.

Borobia-Moreno, R., Ramiro-Rebollo, D., Schmehl, R., and
Séanchez-Arriaga, G.: Identification of kite aerodynamic charac-
teristics using the estimation before modeling technique, Wind
Energy, 24, 596-608, https://doi.org/10.1002/we.2591, 2021.

Cayon, O.: Extended Kalman Filter for Airborne Wind En-
ergy Systems (AWES) (v1.2.0-paper), Zenodo [code],
https://doi.org/10.5281/zenodo.15269632, 2025.

Cayon, O., Gaunaa, M., and Schmehl, R.: Fast Aero-Structural
Model of a Leading-Edge Inflatable Kite, Energies, 16, 3061,
https://doi.org/10.3390/en16073061, 2023.

Cayon, O., Schmehl, R., Luca, A., and Peschel, J.: Kitepower
flight data acquired on 27 November 2023, Zenodo [data set],
https://doi.org/10.5281/zenodo.14237421, 2024a.

Cayon, O., Schmehl, R., Luca, A., and Peschel, J.: Kitepower
flight data acquired on 5 June 2024, Zenodo [data set],
https://doi.org/10.5281/zenodo.14238586, 2024b.

Dunker, S.: Tether and Bridle Line Drag in Airborne Wind En-
ergy Applications, in: Airborne Wind Energy: Advances in Tech-
nology Development and Research, edited by: Schmehl, R.,
Springer, Singapore, 29-56, https://doi.org/10.1007/978-981-10-
1947-0_2,2018.

Elfert, C., Gohlich, D., and Schmehl, R.: Measurement of the
turning behaviour of tethered membrane wings using auto-
mated flight manoeuvres, Wind Energ. Sci., 9, 2261-2282,
https://doi.org/10.5194/wes-9-2261-2024, 2024.

Erhard, M. and Strauch, H.: Control of Towing Kites for
Seagoing Vessels, IEEE T. Contr. Syst. T., 21, 1629-1640,
https://doi.org/10.1109/TCST.2012.2221093, 2012.

Ezzeddine, W., Schutz, J., and Rezg, N.: Pitot sensor
air flow measurement accuracy: Causal modelling and
failure risk analysis, Flow Meas. Instrum., 65, 7-15,
https://doi.org/10.1016/j.flowmeasinst.2018.10.021, 2019.

Fagiano, L. and Novara, C.: Automatic crosswind flight of
tethered wings for airborne wind energy: a direct data-
driven approach, IFAC Proceedings Volumes, 47, 4927-4932,
https://doi.org/10.3182/20140824-6-ZA-1003.01896, 2014.

Fagiano, L., Huynh, K., Bamieh, B., and Khammash, M.: On sensor
fusion for airborne wind energy systems, IEEE T. Contr. Syst. T.,
22, 930-943, https://doi.org/10.1109/TCST.2013.2269865,
2014.

Fechner, U.: A Methodology for the Design of Kite-Power
Control Systems, PhD dissertation, Delft University of Tech-
nology, https://doi.org/10.4233/uuid:85efaf4c-9dce-4111-bc91-
7171b9da4b77, 2016.

Freter, J. H., Seel, T., Elfert, C., and Gohlich, D.: Mo-
tion Estimation for Tethered Airfoils with Tether Sag,
in: 2020 IEEE International Conference on Multisen-
sor Fusion and Integration for Intelligent Systems (MFI),
Karlsruhe, Germany, 14-16 September 2020, 114-120,
https://doi.org/10.1109/MFI49285.2020.9235235, 2020.

Gibbs, B. P: Advanced kalman filtering, least-squares and
modeling: a practical handbook, Wiley, Hoboken, N. J.,
https://doi.org/10.1002/9780470890042, 2011.

https://doi.org/10.5194/wes-10-2161-2025

2187

Hesse, H., Polzin, M., Wood, T. A., and Smith, R. S.: Visual Mo-
tion Tracking and Sensor Fusion for Kite Power Systems, in: Air-
borne Wind Energy, edited by: Schmehl, R., Springer, Singapore,
413-438, https://doi.org/10.1007/978-981-10-1947-0_17, 2018.

Hoerner, S. F.: Fluid-dynamic Drag: Practical Information on Aero-
dynamic Drag and Hydrodynamic Resistance, Hoerner Fluid Dy-
namics, 1965.

Hummel, J., Gohlich, D., and Schmehl, R.: Automatic mea-
surement and characterization of the dynamic properties
of tethered membrane wings, Wind Energ. Sci., 4, 41-55,
https://doi.org/10.5194/wes-4-41-2019, 2019.

Kalverla, P. C., Steeneveld, G.-J., Ronda, R. J., and Holtslag, A.
A. M.: An observational climatology of anomalous wind events
at offshore meteomast [Jmuiden (North Sea), J. Wind Eng. Ind.
Aerod., 165, 86-99, https://doi.org/10.1016/j.jweia.2017.03.008,
2017.

Khan, K. S. and Tariq, M.: Wind resource assessment us-
ing SODAR and meteorological mast — A case study
of Pakistan, Renew. Sust. Energ. Rev.,, 81, 2443-2449,
https://doi.org/10.1016/j.rser.2017.06.050, 2018.

Kitepower, B. V.: Kitepower — Airborne Wind Energy, Kitepower,
https://thekitepower.com/ (last access: 8 July 2025), 2024.

Lebesque, G. H. M.: Steady-state RANS simulation of a leading
edge inflatable wing with chordwise struts, Master’s dissertation,
TU Delft, 2020.

Leuthold, R.: Multiple-Wake Vortex Lattice Method for Membrane-
Wing Kites, Master’s dissertation, Delft University of Technol-
ogy, https://doi.org/10.13140/RG.2.2.30811.41765, 2015.

Meriam, J. L., Kraige, L. G., and Bolton, J. N.: Engineering Me-
chanics: Dynamics, 9th edn., John Wiley & Sons, ISBN 978-1-
119-39098-5, 2018.

Oehler, J. and Schmehl, R.: Aerodynamic characterization of a soft
kite by in situ flow measurement, Wind Energ. Sci., 4, 1-21,
https://doi.org/10.5194/wes-4-1-2019, 2019.

Oehler, J., Marc, V. R., and Schmehl, R.: Experimental inves-
tigation of soft kite performance during turning maneuvers,
J. Phys. Conf. Ser., 1037, 052004, https://doi.org/10.1088/1742-
6596/1037/5/052004, 2018.

Peschel, J.: A Cost-Effective Kite State Estimator for Reliable
Automatic Control of Kites, Master’s dissertation, TU Berlin,
https://doi.org/10.5281/zenodo.7864661, 2013.

Poland, J. and Schmehl, R.: Modelling Aero-Structural De-
formation of Flexible Membrane Kites, Energies, 16, 5264,
https://doi.org/10.3390/en16145264, 2023.

Poland, J. and Schmehl, R.: TUDELFT_V3_KITE, GitHub
[data set], https://github.com/awegroup/TUDELFT_V3_LEI
KITE (last access: 8 July 2025), 2024.

Polzin, M., Wood, T. A., Hesse, H., and Smith, R. S.:
State Estimation for Kite Power Systems with Delayed Sen-
sor Measurements, IFAC-PapersOnLine, 50, 11959-11964,
https://doi.org/10.1016/j.ifacol.2017.08.1176, 2017.

PX4: Using the ECL EKF — PX4 Guide, PX4 Autopilot, https://
docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
(last access: 8 July 2025), 2024.

PX4: Global Navigation Satellite Systems (GNSS) - PX4
Guide (main), PX4 Autopilot, https://docs.px4.io/main/en/gps_
compass/ (last access: 8 July 2025), 2025.

Wind Energ. Sci., 10, 2161-2188, 2025



https://doi.org/10.2514/3.6213
https://doi.org/10.2514/1.G003581
https://doi.org/10.1002/we.2591
https://doi.org/10.5281/zenodo.15269632
https://doi.org/10.3390/en16073061
https://doi.org/10.5281/zenodo.14237421
https://doi.org/10.5281/zenodo.14238586
https://doi.org/10.1007/978-981-10-1947-0_2
https://doi.org/10.1007/978-981-10-1947-0_2
https://doi.org/10.5194/wes-9-2261-2024
https://doi.org/10.1109/TCST.2012.2221093
https://doi.org/10.1016/j.flowmeasinst.2018.10.021
https://doi.org/10.3182/20140824-6-ZA-1003.01896
https://doi.org/10.1109/TCST.2013.2269865
https://doi.org/10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77
https://doi.org/10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77
https://doi.org/10.1109/MFI49285.2020.9235235
https://doi.org/10.1002/9780470890042
https://doi.org/10.1007/978-981-10-1947-0_17
https://doi.org/10.5194/wes-4-41-2019
https://doi.org/10.1016/j.jweia.2017.03.008
https://doi.org/10.1016/j.rser.2017.06.050
https://thekitepower.com/
https://doi.org/10.13140/RG.2.2.30811.41765
https://doi.org/10.5194/wes-4-1-2019
https://doi.org/10.1088/1742-6596/1037/5/052004
https://doi.org/10.1088/1742-6596/1037/5/052004
https://doi.org/10.5281/zenodo.7864661
https://doi.org/10.3390/en16145264
https://github.com/awegroup/TUDELFT_V3_LEI_KITE
https://github.com/awegroup/TUDELFT_V3_LEI_KITE
https://doi.org/10.1016/j.ifacol.2017.08.1176
https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/main/en/gps_compass/
https://docs.px4.io/main/en/gps_compass/

2188

Ranneberg, M.: Sensor Setups for State and Wind Estimation for
Airborne Wind Energy Converters, CoRR, abs/1309.1029, arXiv,
arXiv:1309.1029, 2013.

Roullier, A.: Experimental analysis of a kite system’s dynam-
ics, Master’s dissertation, Delft University of Technology,
https://doi.org/10.5281/zenodo.7752407, 2020.

Schelbergen, M.: Power to the airborne wind energy perfor-
mance model, PhD dissertation, Delft University of Tech-
nology, https://doi.org/10.4233/uuid:353d390a-9b79-4411-9847-
136a6b880e12, 2024.

Schelbergen, M. and Schmehl, R.: Swinging motion of a Kkite
with suspended control unit flying turning manoeuvres, Wind
Energ. Sci., 9, 1323-1344, https://doi.org/10.5194/wes-9-1323-
2024, 2024.

Schelbergen, M., Schmehl, R., Buchholz, B., Breuer, J., and
Peschel, J.: Kite power flight data acquired on 8 Oc-
tober 2019, 4TU.Centre for Research Data [data set],
https://doi.org/10.4121/19376174.V1, 2024.

Schmidt, E., De Lellis, M., Saraiva, R., and Trofino, A.:
State Estimation of a Tethered Airfoil for Monitoring, Con-
trol and Optimization, IFAC-PapersOnLine, 50, 13246-13251,
https://doi.org/10.1016/j.ifacol.2017.08.1960, 2017.

Schmidt, E., Oliveira, M. D. L. C. D., Silva, R. S. D.,
Fagiano, L., and Neto, A. T.. In-Flight Estimation of
the Aerodynamics of Tethered Wings for Airborne
Wind Energy, IEEE T. Contr. Syst. T.,, 28, 1309-1322,
https://doi.org/10.1109/TCST.2019.2907663, 2020.

Sommerfeld, M., Crawford, C., Monahan, A., and Bastigkeit, I.:
LiDAR-based characterization of mid-altitude wind conditions
for airborne wind energy systems, Wind Energy, 22, 1101-1120,
https://doi.org/10.1002/we.2343, 2019.

Thedens, P. and Schmehl, R.: An Aero-Structural Model
for Ram-Air Kite Simulations, Energies, 16, 2603,
https://doi.org/10.3390/en16062603, 2023.

Wind Energ. Sci., 10, 2161-2188, 2025

O. Cayon et al.: Kite as a sensor

Vaisala: Wind Energy, WindCube, Vaisala, https://www.vaisala.
com/en/products/wind-energy-windcube (last access: 8 July
2025), 2020.

Viré, A., Lebesque, G., Folkersma, M., and Schmehl, R.: Effect of
Chordwise Struts and Misaligned Flow on the Aerodynamic Per-
formance of a Leading-Edge Inflatable Wing, Energies, 15, 1450,
https://doi.org/10.3390/en15041450, 2022.

Vlugt, R. v. d., Peschel, J., and Schmehl, R.: Design and Exper-
imental Characterization of a Pumping Kite Power System, in:
Airborne Wind Energy, edited by Ahrens, U., Diehl, M., and
Schmehl, R., Springer Berlin Heidelberg, Berlin, Heidelberg,
403-425, https://doi.org/10.1007/978-3-642-39965-7_23, 2013.

Watson, S.: The Atmospheric Boundary Layer, in: Handbook of
Wind Resource Assessment, John Wiley & Sons, Ltd, 11-32,
https://doi.org/10.1002/9781119055402.ch2, 2023a.

Watson, S.: Handbook of Wind Resource Assessment, John Wiley
& Sons, Ltd., https://doi.org/10.1002/9781119055402, 2023b.
Williams, P.: Cable Modeling Approximations for Rapid
Simulation, J. Guid. Control Dynam., 40, 1779-1788,

https://doi.org/10.2514/1.G002354, 2017.

Williams, P., Lansdorp, B., and Ockels, W.: Nonlinear Control and
Estimation of a Tethered Kite in Changing Wind Conditions,
J. Guid. Control Dynam., 31, 3, https://doi.org/10.2514/1.31604,
2008.

Wood, T. A., Hesse, H., Polzin, M., Ahbe, E., and Smith, R. S.:
Modeling, Identification, Estimation and Adaptation for the Con-
trol of Power-Generating Kites, IFAC-PapersOnLine, 51, 981—
989, https://doi.org/10.1016/j.ifacol.2018.09.066, 2018.

https://doi.org/10.5194/wes-10-2161-2025


https://arxiv.org/abs/1309.1029
https://doi.org/10.5281/zenodo.7752407
https://doi.org/10.4233/uuid:353d390a-9b79-44f1-9847-136a6b880e12
https://doi.org/10.4233/uuid:353d390a-9b79-44f1-9847-136a6b880e12
https://doi.org/10.5194/wes-9-1323-2024
https://doi.org/10.5194/wes-9-1323-2024
https://doi.org/10.4121/19376174.V1
https://doi.org/10.1016/j.ifacol.2017.08.1960
https://doi.org/10.1109/TCST.2019.2907663
https://doi.org/10.1002/we.2343
https://doi.org/10.3390/en16062603
https://www.vaisala.com/en/products/wind-energy-windcube
https://www.vaisala.com/en/products/wind-energy-windcube
https://doi.org/10.3390/en15041450
https://doi.org/10.1007/978-3-642-39965-7_23
https://doi.org/10.1002/9781119055402.ch2
https://doi.org/10.1002/9781119055402
https://doi.org/10.2514/1.G002354
https://doi.org/10.2514/1.31604
https://doi.org/10.1016/j.ifacol.2018.09.066

	Abstract
	Introduction
	System overview
	Sensor setup
	Filter design
	Dynamic model
	Observation model
	Sensor offset correction

	Extended Kalman filter

	Results
	Kite kinematics
	System dynamics
	Aerodynamic identification
	Turn dynamics

	Wind estimations
	Turbulence measurements

	Discussion and conclusions
	Appendix A: Nomenclature
	Appendix B: System specifications and tuning parameters
	Appendix B1: System description
	Appendix B2: Tuning parameters for EKF

	Appendix C: Kalman filter performance
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

