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Abstract. Wind farm control optimizes wind turbines collectively, implying that some turbines operate sub-
optimally to benefit others, resulting in a farm-level performance increase. This study presents a novel control
strategy to optimize wind farm performance by synchronizing the wake dynamics of multiple turbines using
an extended Kalman filter (EKF)-based phase estimator in a Helix control framework. The proposed method
influences downstream turbine wake dynamics by accurately estimating the phase shift of the upstream periodic
Helix wake and applying it to its downstream control actions with additional phase offsets. The estimator inte-
grates a dynamic blade element momentum model to improve wind speed estimation accuracy under dynamic
conditions. The results, validated through turbulent large-eddy simulations in a three-turbine array, demonstrate
that the EKF-based estimator reliably tracks the phase of the incoming Helix wake, with slight offsets attributed
to model discrepancies. When integrated with the closed-loop synchronization controller, significant power en-
hancement with respect to the single-turbine Helix can be attained (up to+10 % on the third turbine), depending
on the chosen phase offset. Flow analysis reveals that the optimal phase offset sustains the natural Helix oscil-
lation throughout the array, whereas the worst phase offset creates destructive interference with the incoming
wake, which appears to negatively impact wake recovery.

1 Introduction

Optimizing wind farm layout is an important aspect of wind
farm design (Manwell et al., 2010). Specifically, the spac-
ing between wind turbines, typically ranging from 3 to 7 ro-
tor diameters, has a strong influence on power production
and turbine fatigue life due to the presence of wake inter-
actions between turbines. When the wind direction aligns
with the turbine array, downstream turbines can experience
a performance drop of up to 20 % in some large offshore
wind farms (Barthelmie et al., 2009). However, increasing
the spacing between turbines requires more offshore sea and
cabling, reducing the energy density and increasing the cost
of the power production site. Therefore, a site-specific trade-
off is often made, balancing cost optimization with accepted
losses due to wake effects.

To mitigate these losses in existing and future wind farms,
researchers are exploring innovative control solutions to re-
cover the “lost” energy. One prominent method is wake steer-

ing, which involves intentionally misaligning the upstream
turbine’s rotor to redirect the wake away from downstream
turbines (Fleming et al., 2014). While promising, this tech-
nique only slightly reduces the wake intensity and may still
impact other turbines further downstream in the farm. Also, if
the wake is not deflected enough, it can still partially impinge
on downstream turbines, which can cause load increases. Re-
cent advancements in optimizing farm layouts using control
co-design with wake steering have shown potential for fur-
ther enhancing production (Baricchio et al., 2024; Stanley
et al., 2023).

Another category of wind farm control approaches fo-
cuses on wake mixing, which aims to enhance the mixing of
the wake with the surrounding free-stream flow. The earliest
method, dynamic induction control (DIC), involves dynam-
ically varying the turbine thrust, by adjusting either torque
or pitch, to create a pulsating wake that mixes more rapidly
with the free stream (Goit and Meyers, 2015; Frederik et al.,
2020b). This approach has demonstrated moderate power
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gains (up to 4.6 % on T2 in two-turbine setups with 2.5°
pitch amplitude) (Frederik and van Wingerden, 2022), al-
beit with substantially increased tower load variations, up to
104 % higher tower damage equivalent loads (DELs) com-
pared to baseline operation under low-turbulence-intensity
conditions (Frederik and van Wingerden, 2022).

A later method involves rotating the thrust vector across
the rotor disk, creating a helical wake shape (Frederik et al.,
2020a). Compared to DIC, the Helix approach results in
lower tower load variations and higher power gains, gar-
nering considerable attention (Frederik and van Wingerden,
2022; van Vondelen et al., 2023a). For instance, the counter-
clockwise Helix implementation achieved a 12.1 % increase
on T2 with 2.5° pitch amplitude while increasing tower loads
by only 11 % under similar conditions. On downstream tur-
bines (which are impinged by a Helix or DIC wake while op-
erating at baseline control), Helix was also shown to induce
5 %–10 % lower fatigue loads than DIC. One major challenge
remains the pitching frequency of the actuators. While simi-
lar to that of individual pitch control (IPC), DIC has signif-
icantly lower pitch variations, limiting damage to the pitch
bearings significantly. Nevertheless, these findings demon-
strate a more favorable trade-off between performance and
structural loading for Helix wake mixing.

Most studies have applied the Helix approach to an up-
stream turbine, maintaining baseline control for the down-
stream turbines. However, in multi-turbine arrays, applying
the Helix approach to multiple turbines could potentially en-
hance overall power production further. For instance, Korb
et al. (2023) explored a three-turbine setup with the two up-
stream turbines employing Helix and the downstream tur-
bine employing baseline control. They found that the power
output depends on the phase shift between the two Helix
wakes, though they did not propose a method for achiev-
ing this phase difference. Similar results were found in a
three-turbine wind tunnel experiment with DIC (van Vonde-
len et al., 2024c). However, both studies also observe power
losses at certain phase shifts, highlighting the importance of
optimizing the synchronization.

While Korb et al. (2023) and van Vondelen et al. (2024c)
have shown that phase differences between periodic wakes
in a multi-turbine setup can influence power production, a
robust synchronization method remains lacking. Moreover,
even without active control, wake deficits naturally recover
through entrainment and wake-to-wake interactions: large-
eddy simulations indicate that by the fourth to sixth turbine
row, the average velocity deficit has already recovered sub-
stantially (Stevens et al., 2015). Consequently, dynamic wake
mixing strategies yield their greatest benefit in the first two
to three rows, where the deficit is strongest. Extending phase-
synchronized Helix control to these upstream rows is there-
fore essential to maximize farm-level performance. Hence, it
is important to address this research gap.

To establish the concept of synchronized Helix wake mix-
ing, van Vondelen et al. (2023) suggested synchronizing tur-

bines by estimating the phase of the incoming Helix wake
on the downstream turbine from the blade loads using a lin-
ear Kalman filter, allowing for downstream control actions
that incorporate the Helix’s phase and any desired phase off-
set. While promising, this technique may only provide ac-
curate phase estimates near the system model’s linearization
point, and phase estimates may deteriorate when the turbine’s
state goes far from this region. Recognizing its potential, the
approach has been patented despite the need for further im-
provements (van Vondelen et al., 2023b).

A more versatile approach is proposed in van Vondelen
et al. (2024b), where an output feedback controller is de-
signed for the downstream turbine to maintain a magnitude
reference on the periodic load caused by the impingement
of the Helix wake, essentially amplifying the Helix while
preserving phase. This method allows for robust amplitude
control of the periodic wake and thus gives direct control
of the magnitude of the load. Being output-only, it cannot
apply an out-of-phase control action, as the blade is both
the sensor and the actuator. It is not possible to discern the
phase of the load effect of the incoming wake from the to-
tal load, which also contains the effect of an out-of-phase
control action. This in-phase synchronization approach has
demonstrated a 6 % power improvement on the third turbine,
beyond the power increase of the baseline Helix effect. How-
ever, according to Korb et al. (2023), better performance may
be achieved with an out-of-phase shift, suggesting further
potential for power gains through out-of-phase synchroniza-
tion.

As such, this study proposes an extended Kalman fil-
ter (EKF)-based phase synchronization method, building on
the initial concept from van Vondelen et al. (2023). The novel
controller employs an EKF and is capable of handling non-
linearities addressing the limitations of the linear Kalman
filter used in van Vondelen et al. (2023). Also, it utilizes a
dynamic blade element momentum (dynBEM) model in the
EKF as suggested by Coquelet et al. (2024b), which should
provide a more robust model of the simulated turbine while
performing dynamic pitch actions compared to regular BEM.
The main contributions of this study are as follows:

1. Extending the EKF-based estimator for Helix phase de-
tection. We extend the EKF-based wind speed estimator
incorporating dynBEM (Coquelet et al., 2024b) to track
Helix flow oscillations regardless of dynamic pitching.
By inclusion of a parametric model, including several
coordinate transformations, and tuning of the internal
models, the estimator is able to isolate the wake’s phase
from blade load signals – thus enabling synchronized
Helix control.

2. Development of a synchronized Helix wake mixing con-
trol framework. The EKF-based estimator for Helix
phase detection is integrated into a closed-loop control
framework for synchronized Helix wake mixing control
on downstream wind turbines.
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3. Application to multi-turbine Helix control. The pro-
posed synchronized Helix wake mixing method is ap-
plied to a three-turbine array, demonstrating significant
power gains while systematically exploring the impact
of phase offsets on power production and structural
loads.

4. Comprehensive validation framework. High-fidelity
large-eddy simulations coupled with OpenFAST pro-
vide a detailed validation of the proposed method, offer-
ing insights into optimal configurations and real-world
applicability.

5. Insights into wake dynamics and interference mecha-
nisms. The study provides novel insights into how con-
structive and destructive wake interference influences
wake recovery by examining wake centerlines and ve-
locity deficits across the simulation domain.

This work covers a broad range of topics: estimation, con-
trol design, high-fidelity simulation, and flow analysis. These
components are integrated to address a central objective: en-
abling synchronized wake mixing control in a realistic wind
farm environment using only local turbine measurements.
Each component contributes to this goal. The estimator infers
the phase of upstream Helix wake motion, the controller syn-
chronizes the actuation of downstream turbines, high-fidelity
simulations provide a realistic testing environment, and fa-
tigue and flow analyses assess the resulting impact on tur-
bine performance and wake development. Together, these el-
ements provide a comprehensive evaluation of the proposed
approach. To help navigate the scope of this work, an outline
is provided below.

Section 2 introduces the estimation and control frame-
work. It describes the baseline Helix control approach,
presents the extended Kalman filter (EKF) for estimating
the upstream wake phase from turbine blade loads, outlines
the wake parameterization and the dynBEM-based internal
model, explains the noise tuning strategy, and introduces the
synchronization controller design.

Section 3 describes the high-fidelity simulation setup, in-
cluding the inflow conditions, turbine model, and control im-
plementation. The section also defines the evaluation cases
and performance metrics.

Section 4 presents the results. First, the EKF estimator
is validated against the ground truth. Then, the closed-loop
control performance is analyzed in terms of power produc-
tion and structural loading. Finally, flow visualizations and
velocity deficit analyses are used to interpret the underlying
physical mechanisms of synchronization.

Section 5 compares the results of this work with earlier
studies and discusses the limitations compared to our ap-
proach.

Section 6 concludes this work and presents possible future
research directions.

2 Estimation and control methods

This section presents the estimation and control methods that
form the foundation of the proposed phase synchronization
method. It covers the fundamentals of the Helix approach for
wake mixing control and introduces the extended Kalman fil-
ter as the tool for estimating the wake phase shift and en-
abling synchronized control actions. Furthermore, the pa-
rameterization of the Helix wake required for detection is
provided, along with the phase synchronization controller de-
sign. Lastly, specific tuning methodology is discussed, for
both the dynBEM and estimator.

2.1 The Helix approach

The Helix approach is an open-loop control strategy that en-
hances the power output of downstream wind turbines by ap-
plying periodic signals to the upstream wind turbine’s blades
(see Fig. 1 for an illustration).

Typically, the actuation commands are provided as tilt and
yaw commands in the “fixed” coordinate frame. Using the
so-called backward multi-blade coordinate (MBC) transfor-
mation (Bir, 2008), the Helix tilt and yaw commands (βtilt
and βyaw) are converted into effective pitch commands for
each blade (βi , where i = 1,2,3):[
β1
β2
β3

]
=

[
1 cos(ψ1+ψo) sin(ψ1+ψo)
1 cos(ψ2+ψo) sin(ψ2+ψo)
1 cos(ψ3+ψo) sin(ψ3+ψo)

]
︸ ︷︷ ︸

T −1
cm (ψ(t)+ψo)

[
βcol
βtilt
βyaw

]
, (1)

where ψi is the azimuthal position of blade i (see Fig. 2 for
definition) and ψo is an azimuth offset accounting for un-
modeled actuator delays and blade flexibility, which is re-
quired to fully decouple the tilt and yaw channels (Mulders
et al., 2019; van Vondelen et al., 2024a). The pitch angle sign
convention is the following: increasing the pitch angle corre-
sponds to pitching to feather and reduces the force intensity
on the blade, while decreasing the pitch angle value corre-
sponds to pitching to stall and increases the force intensity
on the blade. The collective pitch, βcol, is excluded hereafter
as it is regulated by the collective pitch controller, which ad-
justs the pitch angle of all blades in response to rotor speed
feedback, optimizing wind turbine performance by maintain-
ing consistent power output and rotor speed.

Although multi-sine approaches have also been explored
(see Huang et al., 2023), here we consider the pure sine ap-
proach, so the Helix control commands for tilt and yaw are
defined as follows:[
βtilt
βyaw

]
=

[
Asin(ωet)

Asin(ωet ±π/2)

]
. (2)

The excitation frequency ωe = 2πfe is governed by the
dimensionless Strouhal number, St , calculated as

St =
feD

U∞
, (3)
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Figure 1. Visualization of the Helix approach (right) and the baseline case (left) in a two-turbine setup during full wake overlap, based on
data from a large-eddy simulation study in purely laminar inflow by (Frederik et al., 2020a). The image, adapted from (Meyers et al., 2022),
shows the velocity magnitude in light blue and the isosurface of velocity in dark blue. The x axis indicates the turbine spacing normalized
by the rotor diameter D. For further simulation details, please refer to the referenced works.

where D is the rotor diameter, and U∞ denotes the free-
stream wind velocity. Previous studies recommend Strouhal
numbers between 0.2 and 0.4 for optimal performance (Goit
and Meyers, 2015; Frederik et al., 2020a). The amplitude A
is typically limited to a maximum of a few degrees due to
practical constraints like pitch rate limitations.

The out-of-plane bending moments (M1,M2, andM3) can
similarly be analyzed in the fixed frame. Here we use the
forward MBC transformation to obtainMcol,Mtilt, andMyaw:[
Mcol
Mtilt
Myaw

]
=

2
3

[
1/2 1/2 1/2

cos(ψ1) cos(ψ2) cos(ψ3)
sin(ψ1) sin(ψ2) sin(ψ3)

]
︸ ︷︷ ︸

Tcm(ψ(t))

[
M1
M2
M3

]
. (4)

The sign convention is provided in Fig. 2: positive tilt mo-
ment corresponds to an overload on the top part of the rotor,
while positive yaw moment corresponds to an overload on
the right part of the rotor.

Note that Eqs. (1) and (4) can be used to go back and forth
between the fixed and rotating domain for any blade-effective
signal.

There are two variants of the Helix approach: clock-
wise (CW) and counterclockwise (CCW) rotation. The CW
variant is implemented by setting −π/2 in βyaw, while the
CCW variant uses +π/2. Although both variants maintain
the same actuation frequency in the fixed frame, the effec-

Figure 2. Graphic representation of blade azimuth ψi and associ-
ated sign convention for fixed-frame moments Mtilt and Myaw.

tive frequency experienced by the pitch actuator differs when
these commands are translated to the rotating frame, yielding

βi = βcol+ cos(ψi +ψo)βtilt+ sin(ψi +ψo)βyaw, (5)

which leads to the Helix frequency in the rotating frame be-
ing the sum or difference of the rotor’s rotational frequency
ωr and the excitation frequency ωe, depending on whether
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the rotation is CCW or CW, respectively:

βi = βcol+ cos(ωrt +ψ
0
i +ψo)βtilt

+ sin(ωrt +ψ
0
i +ψo)βyaw, (6)

= Acos(ωrt +ψ
0
i +ψo) sin(ωet)

+Asin(ωrt +ψ
0
i +ψo) sin(ωet ±π/2)

= Asin[(ωr±ωe)t +ψ0
i +ψo], (7)

where ψ0
i is the azimuthal position of blade i = 1,2,3 at t =

0. Note that ωe/ωr = St/TSR, and choosing St ≤ 0.4 for a
typical tip speed ratio (TSR) TSR≈ 6 ensures ωe/ωr ≤ 0.21
and thus stays far from any low-frequency aliasing. Typ-
ically, the CCW Helix variant yields greater energy gains
for the downstream turbine (Frederik et al., 2020a; Taschner
et al., 2023), while the CW Helix is preferred for its reduced
impact on pitch bearing wear (van Vondelen et al., 2023a), at-
tributed to the lower effective actuation frequency of ωr−ωe.

The employment of the Helix approach induces periodic
loading, affecting the fatigue life of the turbine perform-
ing the actuation (van Vondelen et al., 2023a). This periodic
loading also extends to downstream turbines, as observed by
Frederik and van Wingerden (2022), which directly results
from interaction with the periodic structure in the wake in-
duced by the upstream turbine (see Fig. 1). Manipulating
this periodic structure in the wake by actuating the Helix
approach on the downstream turbine in an in-phase/out-of-
phase synchronized fashion could potentially enhance wake
mixing and, thereby, power production downstream even
more (van Vondelen et al., 2024b; Korb et al., 2023). Phase
estimation in Helix wake mixing can be understood as an im-
plicit wind speed estimation, as the wake’s periodic structure
is influenced by variations in incoming flow. To achieve this,
we estimate the incoming wind speed and extract phase in-
formation of the periodic wind speed component using an es-
timator. One way to estimate this phase shift is through state
estimation techniques, such as the extended Kalman filter,
which we introduce below.

2.2 Estimation using the extended Kalman filter

The EKF is an extension of the Kalman filter and is tailored
for nonlinear systems. It approximates the nonlinear state and
measurement models through linearization, enabling state es-
timation. The EKF is widely used to estimate states in sys-
tems where the relationships between variables are nonlinear,
providing a means to manage the associated uncertainties ef-
fectively. This section describes how the EKF is leveraged in
this work (see, e.g., Chui and Chen, 2017, for extensive EKF
theory). First, we have a nonlinear system description:

xk+1 = f (xk,uk)+wk, (8)
yk = h(xk,uk)+ vk, (9)

where xk is the state vector, uk is the control input vector, yk
is the measurement vector, wk is the process noise vector, and

vk is the measurement noise vector. The functions f (·) and
h(·) are the state and measurement functions, respectively.
Let us now tailor this general representation for our appli-
cation. A distinction can be made between controllable and
uncontrollable inputs:

uk =

[
uc
k

uu
k

]
, (10)

where uc
k is the input vector containing controllable inputs,

which are the pitch control inputs in our case, and uu
k is the

input vector containing uncontrollable inputs, which is the
incoming periodic Helix wake impinging on the downstream
turbine. The goal is to estimate the unknown uncontrollable
input vector uu

k by treating it as the state to be estimated. This
can be achieved by assuming the following model represen-
tation (see, e.g., Verhaegen and Verdult, 2007):

uu
k+1 = uu

k +wu
k, (11)

commonly known as the random walk model. Note that this
model can only be assumed for biases or slowly varying
states, which is a reasonable assumption in our application
as we estimate constant parameters that define a sinusoid
(treated in Sect. 2.3). In the case of a periodic state, an un-
damped oscillator may be a more suitable model (van Von-
delen et al., 2023). The state-space system becomes[
xk+1
uu
k+1

]
︸ ︷︷ ︸

x
aug
k+1

=

[
f (xk, uu

k, uc
k)+wk

uu
k +wu

k

]
, (12)

yk = h(uu
k,u

c
k)+ vk. (13)

Using an EKF, it is now possible to estimate the uncontrol-
lable input vector uu

k . The measurement function h(uu
k,u

c
k) is

chosen to be the dynBEM model which computes the blade
out-of-plane loads based on blade-effective wind speeds
(BEWSs), rotor velocity, and pitch angle in the rotating
(blade) coordinate frame. It represents a nonlinear measure-
ment mapping dependent on both the controllable and uncon-
trollable inputs. In practice, h(·) first uses the estimated am-
plitude and phase to generate the fixed-frame periodic wind
perturbations,

Utilt = Ahelix sin(ωet+ϕtilt), Uyaw = Ahelix cos(ωet+ϕyaw),

and then maps these through the backward MBC transform
and dynBEM to predict blade loads, thereby embedding both
the oscillatory wake model and the turbine dynamics into the
measurement. Note that the actual system state equation is
unknown, and dynBEM does not depend on it; the dynamics
are modeled according to the engineering model of Snel and
Schepers (1995). Since we are only interested in estimating
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uu
k , we can formulate the EKF problem as follows:

ûu
k+1 = ûu

k +Kkek, (14)
ek = yk −h(ûu

k,u
c
k), (15)

where ˆ(·) denotes an estimate, Kk is the Kalman gain, and ek
is the innovation signal vector.

BEWS represents the local wind speed experienced by
each blade as it rotates through the wake-affected flow field.
Unlike freestream wind speed, BEWS accounts for variations
due to wake dynamics, turbulence, and aerodynamic interac-
tions.

Next to the above-mentioned turbine signals, dynBEM re-
quires system parameters such as the rotor radius, hub radius,
and airfoils (see Coquelet et al., 2024b, for additional details
on using dynBEM in a wind speed estimator).

To calculate the Kalman gain, it is assumed that estimates
of the covariance matrices of wk and vk are available:

E

[[
wk

vk

][
wT
k vTk

]]
=

[
Q ST

S R

]
� 0, (16)

where Q and R are the covariance matrices of wk and vk ,
respectively, S is their cross-covariance, and the matrix is as-
sumed to be positive semi-definite.

The state transition matrix Fk is the identity matrix based
on the definition of the state equation (Eq. 14), simplifying
the covariance propagation. Additionally, the process noise
wk and measurement noise vk are assumed to be uncorre-
lated, allowing the cross-covariance term S to be neglected.
This assumption is valid given the independent nature of the
noise sources in the system.

The Kalman gain is then obtained by first propagating the
Riccati difference equation:

Pk+1 = Pk +Q−KkPkHu
k

T
, (17)

where Pk is the covariance matrix estimate, and Hu
k is the

Jacobian of the measurement function h with respect to uu.
Note that we do not have a differentiable nonlinear expres-

sion for the measurement function (Eq. 13). As such, the Ja-
cobian Hu

k is approximated by central differences, given that
h(·) is a nonlinear function:

Hu
k ≈

h(ûu
k + dn/2,uc

k)−h(ûu
k − dn/2,uc

k)
dn

, (18)

where dn is a small deviation from the operating point. The
choice of dn requires balancing truncation and round-off er-
rors. Typically, dn should be small relative to uk , often in
the range of 10−5 to 10−2

×uk , ensuring numerical accuracy
without excessive sensitivity to floating-point precision. The
chosen value in our setup is dn= 1× 10−5 rad. This value
was selected empirically based on implementation testing. It
offered the most stable and accurate performance among the
values tried. Given that the control input amplitude is approx-
imately 0.07 rad (4°), this perturbation corresponds to about

0.014 % of the signal magnitude – small enough to remain in
the linear regime while avoiding round-off errors.

Finally, the Kalman gain is calculated as

Kk = PkHu
k

T(R+Hu
kPkHu

k
T)−1. (19)

The Kalman gain Kk and error covariance Pk generally
converge to steady-state values under constant wind condi-
tions. However, in realistic wind farm environments, wind
speed variations and turbulence influence the uncertainty in
phase estimation, requiring Kk to adapt dynamically. The
EKF inherently provides some adaptivity by updating state
estimates in real time, but further improvements can be
achieved by tuning the process noise Q and measurement
noise R based on observed wind conditions, which is dis-
cussed in Sect. 2.5. The next section presents the parameter-
ization of the Helix wake used in the EKF.

2.3 State vector: Helix wake representation

As described in Sect. 2.1, the Helix wake is generated by pe-
riodic control actions applied to an upstream turbine (T1).
While the fluid dynamics phenomena relating the actuation
and the shape of the wake remain an active area of re-
search (Coquelet et al., 2024a; Korb et al., 2023), a con-
sensus is that the Helix wake propagates following a helical
shape (see Fig. 1). From a downstream turbine (T2) perspec-
tive, this implies that the incoming wind field consists of a
wake deficit that is misaligned from the rotor center and ro-
tates around it over time. This can be modeled as wind speed
changes in the tilt and yaw directions. To capture this be-
havior, the wake is then represented as a Utilt and Uyaw sine-
like perturbation. The frequency of these perturbations is as-
sumed equal to that of the periodic control input applied at
the upstream turbine.

This assumption on the frequency content is supported by
Fig. 3, which shows Ucol, Utilt, and Uyaw extracted from the
velocity field at 5D behind a single turbine for a Helix and
a baseline case. How Utilt and Uyaw are retrieved from the
slice of velocity is presented in Sect. 3.3.1. A clear peak
at the Helix frequency can be observed, further suggesting
that the Helix-induced wake structure, while subject to turbu-
lent mixing, retains a coherent oscillatory pattern as it travels
through the wind farm (van Vondelen et al., 2024b; Frederik
and van Wingerden, 2022).

The model for the wind speed U at a downstream turbine
T2 is then expressed asUcol
Utilt
Uyaw

=
 Acol
Ahelix sin(ωet +ϕtilt)
Ahelix cos(ωet +ϕyaw)

 , (20)

where Acol represents the collective wind speed component,
and Ahelix is the amplitude of the periodic components of the
Helix wake. The collective amplitude Acol therefore repre-
sents the mean wind speed over the rotor swept area. The
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Figure 3. Power spectral density comparison at 5D downstream
from a turbine using baseline control (blue) and Helix control (red).
The Helix wake shows a distinct peak at the excitation frequency
fe (black line), confirming the periodic nature of the wake. This
periodicity is required for phase estimation and synchronization in
downstream turbines.

sign convention and physical meaning of Utilt and Uyaw are
similar to those of the rotor moments: a positive Utilt corre-
sponds to an overspeed on the top part of the rotor (naturally
causing a positive tilt moment if no individual pitch control
(IPC) command is applied on T2), while positive Uyaw cor-
responds to an overspeed in the right part of the rotor (nat-
urally causing a positive tilt moment if no IPC command is
applied on T2). The parameters ϕtilt and ϕyaw represent the
phase shifts between the tilt and yaw actuation on T1 and the
tilt and yaw wind speed perturbation of the wake impinging
on T2 (see Fig. 6). If the wake propagated as a perfect helix,
these parameters would be identical. As distortion happens
as the wake propagates downstream, an additional degree of
freedom is given to the model by considering distinct values
for these offsets in the tilt and yaw direction. These phase
shifts are the main parameters of interest as they influence

the alignment of the wake structures with downstream tur-
bines.

The purpose of the estimator is then to estimate the param-
eters of the model described by Eq. (20), and the following
state vector is employed:

uuk =


Acol
Ahelix
ϕtilt
ϕyaw

 . (21)

This state vector captures both the amplitude and phase infor-
mation necessary to describe the wind speed components at
the downstream turbine. Given that these parameters are typ-
ically constant under steady operating conditions, they are
modeled as random walks in the estimation process. This
approach allows for capturing slow variations in the wake
characteristics due to changing environmental conditions or
turbine dynamics.

By directly estimating the phase shifts ϕ̂tilt and ϕ̂yaw from
the observed wind speed data, the model provides the nec-
essary information for downstream synchronization control.
The next section presents how we tune the EKF internal
model, i.e., the measurement function.

2.4 EKF internal model specifications and tuning

In the estimation procedure, the state vector uuk is used by
the EKF internal model through the measurement function
h (see Eq. 13). As mentioned in Sect. 2.2, this work relies
on the BEM theory (Coquelet et al., 2024b), which computes
the blade out-of-plane loads based on BEWS, rotor velocity,
and pitch angle in the rotating (blade) coordinate frame. The
state vector therefore needs to be adapted to fit the required
inputs of the BEM, i.e., BEWS. The state vector is used in
Eq. (20) to provide the vector of wind speed perturbation in
the rotor frame, consisting of Ucol, Utilt, and Uyaw. This vec-
tor is then mapped onto the rotating frame using the back-
ward MBC transform defined in Eq. (1), eventually leading
to BEWSs that are usable by the BEM model (see Fig. 7 for
the illustration of the flow of information in the estimation
process).

Wind turbine models like the BEM can capture the essen-
tial dynamics of the system; however, delays can still occur
due to factors like actuator response time, induced velocities
reaction time, or blade flexibility. To treat these delays, this
work combines two approaches given in the literature.

On the one hand, the pitch response delays are accounted
for using an optimal azimuth offset to be used in the back-
ward MBC transform (Eq. 1) (Mulders et al., 2019). This
ensures that the pitch angle fed to BEM is the actual blade
pitch angle and not the pitch command. Identifying the op-
timal azimuthal offset is typically done using the relative
gain array (RGA) of a linearized system model and can de-
pend on the simulation tool, as the delays reflect unmodeled
dynamics. van Vondelen et al. (2024a) proposed a method
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Figure 4. Blade root moment comparison with and without optimal
azimuth offset φoff using the static BEM and dynamic BEM mod-
els, highlighting the improved match of the dynBEM model with
azimuth offset to LES data.

for directly identifying the optimal azimuth offset within the
simulation environment through system identification. Using
that methodology, we identified the optimal azimuth offset
of φoff = 17° for our scenario. Note that this offset is highly
model-dependent and should be determined for each specific
wind turbine model and/or configuration.

On the other hand, we account for the aerodynamic de-
lays appearing between the pitch angle changes and the blade
forces response using a dynamic version of the BEM. It was
indeed shown in Coquelet et al. (2024b) that dynamic effects
appear in the local inductions computed at the blade due to
the Helix pitch. Those are not modeled by the standard BEM
model as the BEM theory considers steady operation.

Figure 4 demonstrates the effect of these two corrections
of this optimal azimuth offset on the blade root moments
computed using the BEM and compared to a reference large-
eddy simulation (LES) consisting of an upstream turbine op-
erating the Helix in a laminar inflow. The figure compares

– the standard BEM output when the pitch values are the
actual pitch angles (Eq. 1 with optimal azimuth offset),

– the dynBEM output when the pitch values are identical
to the pitch commands (Eq. 1 with no azimuth offset),
and

– the dynBEM output when the pitch values are the actual
pitch angles following the actuator response (Eq. 1 with
optimal azimuth offset).

The figure shows that incorporating the optimal azimuth off-
set significantly improves the alignment between the model
output and actual measurements. Additionally, the dynBEM
model, which can be tuned with a single parameter, shows
a closer match to the LES data compared to the static BEM
model, indicating its superior ability to capture dynamic ef-
fects. The next section describes the tuning of the noise co-
variance matrices.

Figure 5. Power spectrum analysis of Mtilt: determining the mea-
surement noise covariance matrix (R). The Helix frequency is high-
lighted with a red dashed line, and the cutoff frequency ωc is de-
noted by the black line.

2.5 EKF noise parameter tuning

The EKF relies on accurately defined process noise (Q) and
measurement noise (R) covariance matrices, which are of-
ten challenging to estimate accurately. This section presents
methodologies for tuning these matrices, starting with esti-
mating the R matrix.

The process begins by selecting a frequency band of in-
terest for the system’s dynamics, treating frequencies outside
this band as noise components (see Fig. 5). The filter was
configured to isolate the Helix control frequency while sup-
pressing higher-frequency dynamics such as the 0.3 Hz com-
ponent which are not used in the estimator and may introduce
bias. We employ a high-pass filter on the signal to isolate
these parts, extracting the high-frequency components. The
variance of this filtered output is then adopted as the entries
of the R matrix.

The estimation of the Q matrix involves more nuanced
steps. Initially, the Helix wind speed component is deter-
mined from the ground truth wind speed data (details on the
ground truth provided in Sects. 3.3 and 10) using a low-pass
filter. This ensures that only the frequencies contributing sig-
nificantly to the signal’s behavior are considered. After filter-
ing, the amplitude and phase shift of the wind speed are com-
puted, forming the basis for the Q matrix selection. Specifi-
cally, the Q matrix is set as the variance of the derivative of
these filtered signals, providing a measure of process noise.
In real-world conditions, actual wind speed measurements
and similar post-processing could provide an initial value for
the Q matrix.

After the initial estimates, the Q matrix requires further re-
finement to enhance the EKF’s performance. This is achieved
through iterative tuning, where the matrix is scaled by a con-
stant factor based on the observed performance of the filter
in simulation trials. This iterative process continues until the
EKF’s performance aligns with the desired accuracy and reli-
ability criteria. The pseudo-code in Algorithm 1 summarizes
the tuning process.
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To enhance the accuracy and robustness of the proposed
EKF-based synchronization method, real-time calibration
can be a suitable addition. This approach involves dynam-
ically adjusting the estimator’s parameters to respond to
changing environmental conditions and operational dynam-
ics (Mehra, 1970). One critical aspect of real-time calibra-
tion is the adaptive adjustment of the process noise (Q) and
measurement noise (R) covariance matrices within the EKF.
These matrices, initially set during offline tuning according
to Algorithm 1, may not fully capture the complexities of
real-world conditions, where wind speeds, turbulence, and
atmospheric stability can vary significantly. By continuously
monitoring the estimator’s performance, particularly through
the innovation sequence (the difference between predicted
and actual measurements, Eq. 15), the system can detect
when the current noise assumptions are inadequate. For in-
stance, during periods of high turbulence, increasing the pro-
cess noise covariance can account for greater uncertainty in
wind speed estimates, leading to more accurate control ac-
tions. However, this is out of the scope of the current work.
The next section presents the phase synchronization con-
troller.

2.6 Phase synchronization controller design

The synchronization controller is designed to align the con-
trol actions of downstream turbines with the phase of the
incoming wake generated by upstream turbines. It utilizes
phase estimates provided by the EKF, which tracks the phase
shifts ϕ̂tilt and ϕ̂yaw of the incoming wake as described in
the previous section. Based on these estimates, the controller
adjusts the tilt and yaw control signals of the downstream
turbines. The control signals are expressed as[
βtilt
βyaw

]
=

[
AT2 sin(ωet + ϕ̂tilt+ϕoff)

AT2 sin(ωet ±π/2+ ϕ̂yaw+ϕoff)

]
, (22)

where AT2 is the downstream turbine’s amplitude, ωe is the
excitation frequency, and ϕoff is an additional phase shift that
can be applied to modify the alignment of the upstream and
downstream Helix wakes. Note that the amplitude can differ
from the upstream amplitude, and all pitch commands are
fed through ROSCO’s (Abbas et al., 2022) pitch rate limiter
to prevent actuator saturation. A graphical representation of
the synchronization is provided in Fig. 6. The phase offset is
defined such that

– ϕoff = 0 indicates that the pitch is in phase with the
wind speed perturbation (see Eq. 20): the blade pitch
increases as a blade travels through the area of higher
wind speed, and hence the blade forces are locally re-
duced compared to a case where IPC is not active;

– ϕoff = 180° indicates that the pitch is out of phase with
the wind speed perturbation (see Eq. 20): the blade pitch
decreases as a blade travels through the area of higher

wind speed, and hence the blade forces are locally in-
creased compared to a case where IPC is not active.

The adjusted control signals are then implemented by the
downstream turbine’s pitch system (Eq. 1), which alters the
rotor’s tilt and yaw to create a controlled wake. The overall
process is focused on achieving a precise phase offset be-
tween the downstream turbine’s control actions and the in-
coming wake, using the EKF-derived phase information to
inform these adjustments. A schematic of the entire frame-
work, including the proposed estimator and control strategy,
is given in Fig. 7. The next section will present the frame-
work used for evaluating the proposed method.

3 High-fidelity simulation framework

This section outlines the simulation framework and con-
figurations employed to evaluate the performance of the
novel synchronization controller using the high-fidelity sim-
ulation tools OpenFAST (Jonkman et al., 2024) and AMR-
Wind (Brazell et al., 2021). These tools are integrated to sim-
ulate complex wake interactions between wind turbines un-
der realistic atmospheric conditions.

3.1 Large-eddy simulation environment

The large-eddy simulations are performed with the AMR-
Wind software, which is well suited for the study of wind
farms in atmospheric boundary layer flows Brazell et al.
(2021). The simulation employs a convective boundary layer
(CNBL) setup that includes Coriolis effects to replicate a sta-
ble stratified atmosphere interacting with the wind turbines.
This setup is similar to the one used in Taschner et al. (2023)
and identical to the one used in van Vondelen et al. (2024b).

The precursor simulation is performed with a domain of
dimensions 5360m in the x direction, 3200m in the y direc-
tion, and 1600m in the z direction. An isotropic grid size of
10m is used, complying with CNBL requirements (Wurps
et al., 2020). Periodic boundary conditions allow the flow to
evolve over 16 h, achieving a quasi-stationary turbulent at-
mospheric boundary layer (ABL) state (Zilitinkevich et al.,
2007), where the wind speed at hub height Uhub of the first
turbine is forced to be 10.5 m s−1 and the turbulence intensity
TIhub is around 5%.

The vertical profile of the streamwise velocity, along with
the lateral veer and turbulence intensity, is shown in Fig. 8.
These inflow characteristics result in veered and vertically
sheared wakes, contributing to a more realistic simulation en-
vironment.

After this initial phase, y–z planes at the inflow bound-
ary (x = 0m) are sampled for 45 min at a frequency of 1 Hz
to serve as inflow conditions for turbine simulations. For
these simulations, the domain and boundary conditions re-
main identical to those used in the precursor run. The turbine
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Algorithm 1 Tuning the EKF covariance matrices.

1: Input: Raw signal data from the wind turbine
2: Output: Optimized Q and R matrices for the EKF
3: Step 1: Estimate measurement noise covariance (R)

1. Identify the frequency band of interest in the signal (around ωe in our case).
2. Apply a high-pass filter to isolate high-frequency noise (see Fig. 5).
3. Compute the variance of the filtered signal.
4. Set the R matrix to this computed variance.

4: Step 2: Estimate process noise covariance (Q)
1. Apply a low-pass filter to the ground truth wind speed signal to isolate the Helix component.
2. Calculate the amplitude and phase shift of the filtered signal.
3. Compute the variance of the derivative of these filtered signals.
4. Set the Q matrix to this computed variance.

5: Step 3: Fine-tune Q matrix
1. Initialize the EKF with the estimated Q matrix.
2. while EKF performance is unsatisfactory do

(a) Scale the Q matrix by a constant factor.
(b) Re-run the EKF and assess performance against validation data.
(c) Adjust the scaling factor as necessary.

3. end while

Figure 6. Graphical representation of the phase synchronization controller. The control action on T2 is based on the estimated phase shift of
the incoming Helix wake ϕ̂tilt and ϕ̂yaw, as well as a user-defined phase offset ϕoff. Note that in this figure the CCW Helix is illustrated.

blades are modeled using the actuator line method (ALM)
coupled with OpenFAST.

The ALM setup includes 60 actuator points per blade and
72 points for the tower. Turbines are operating around a tip
speed ratio of 9.3. The OpenFAST simulations are restarted
from a converged precursor checkpoint and advanced syn-
chronously with the LES, using a fixed time step of 0.05s.
Inflow planes extracted at 1 Hz ensure that the dominant He-
lix excitation is well resolved.

The turbines, which are modeled by OpenFAST (see next
section), are placed within the domain at coordinates (x =
1200m, y = 1600m) for turbine 1 (T1), (x = 2400m, y =
1600m) for turbine 2 (T2), and (x = 3600m, y = 1600m)
for turbine 3 (T3). This corresponds to a 5D spacing, where
D represents the rotor diameter (see Table 1), from the inflow

and between the turbines, and also sufficient space for wake
development behind the third turbine.

To facilitate higher-resolution flow analysis around the
wind turbines, a mesh refinement to 5m is implemented.
This refinement covers a static box area starting 4.5D up-
stream of the first turbine, with dimensions of 5040m in the
x direction, 960m in the y direction, and 600m in the z di-
rection. The upstream extension ensures accurate resolution
of incoming turbulence and shear from the inflow boundary,
providing well-resolved conditions at the rotor plane for syn-
chronization analysis.

Coriolis effects are included via the CNBL setup, using a
latitude of 52.6°, corresponding to a Coriolis frequency of
approximately 1.3× 10−4 s−1.
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Figure 7. Schematic of the synchronized Helix wake mixing control framework illustrating the flow of information. The figure illustrates
the integration of the wind turbine, EKF, dynBEM, and synchronization controller. Note that the model outputs are distinguished from
the system outputs with an apostrophe. Ui , where i = 1,2,3, represents the blade-effective wind speeds after transforming to the rotating
reference frame.

Figure 8. Time-averaged inflow characteristics at a sampling plane 2D upstream, extracted over a duration of 2100s. (Left) Normalized
streamwise velocity profile u/uhub, indicating the vertical shear of the inflow. (Middle) Lateral veer angle in degrees, relative to the hub
height, highlighting directional shear across the rotor span. (Right) Turbulence intensity (TI) profile computed from the standard deviation
of the streamwise velocity, characterizing inflow unsteadiness relevant for load analysis. The dashed lines indicate the top and bottom of the
rotor.

Table 1. Specifications of the IEA 15 MW reference turbine used
in the simulations.

Characteristic Value

Hub height 150 m
Rotor diameter 240 m
Rated power 15 MW
Rated wind speed 10.59 m s−1

Cut-in wind speed 3 m s−1

Cut-out wind speed 25 m s−1

Minimum rotor speed 5 rpm
Maximum rotor speed 7.56 rpm

3.2 Wind turbine simulation tool

The turbine is modeled by the OpenFAST solver, which
serves as a comprehensive multi-fidelity simulation tool by
integrating various modules focused on structural dynamics,
aerodynamics, and control systems. The simulation setup for
this study employs the International Energy Agency’s (IEA)
15 MW fixed-bottom reference wind turbine (specifics in Ta-
ble 1) (Gaertner et al., 2020). The proposed method is im-
plemented in an external Python script that computes pitch
control setpoints in real time. These setpoints are then trans-
mitted to ROSCO (Abbas et al., 2022) during runtime via Ze-
roMQ, a lightweight messaging library for high-performance
asynchronous communication (Hintjens, 2013).

In the LES-coupled simulation environment, the turbine
blades are represented via the actuator line method (ALM),
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where each blade segment exerts dynamic forces on the sur-
rounding air, thereby influencing local flow properties such
as velocity and turbulence (Sørensen and Shen, 2002). The
interaction between OpenFAST’s fine temporal resolution
and the coarser LES grid in AMR-Wind necessitates sophis-
ticated interpolation techniques and phase adjustments to en-
sure accurate and timely controller responses.

3.3 Simulation cases

This section introduces the simulation cases designed to val-
idate the proposed estimator and evaluate the control strat-
egy. It starts by detailing the methodology for obtaining the
ground truth, followed by an overview of the synchronization
cases, including a summary of the simulation setups and the
performance metrics used for evaluation.

3.3.1 Ground truth for estimator validation

A ground truth is required for validating wind estimates
from the proposed controller. The ground truth is generated
through an LES involving only the first turbine (T1) in the
array, capturing wind conditions unaffected by downstream
turbines. This scenario establishes a baseline for comparing
wind speed estimates derived from T2’s blade loads.

Wind velocity data are sampled 5D downstream of T1,
aligning with the location of T2 in synchronization cases.
The sampling process involves

– sampling n lines originating from the rotor center
across the flow field located at azimuthal positions
ψL,1, . . .,ψL,n (see Fig. 9);

– averaging wind speed along these lines over time to ob-
tain line-effective wind speeds UL,1, . . .,UL,n; and

– mapping the line-effective wind speeds to the fixed
frame to obtain Ucol, Utilt, and Uyaw using the MBC
transform generalized for n lines proposed in Moens
et al. (2022):

[
Ucol
Utilt
Uyaw

]GT

=
2
n

 1/2 . . . 1/2
cos(ψL,1) . . . cos

(
ψL,n

)
sin(ψL,1) . . . sin

(
ψL,n

)

UL,1

.

.

.
UL,n

 . (23)

The number of lines is set to n= 36 in this case. A band-
pass filter is applied to the fixed-frame wind speeds to isolate
the Helix component. The resulting tilt and yaw wind signals
are narrow-band and spatially averaged, leading to clean har-
monic components. Applying the Hilbert transform to these
filtered signals yields a smooth and consistent phase trace,
suitable as a ground truth reference. A pseudo-code showing
the full procedure is given in Algorithm 2. These processed
data serve as a benchmark for validating the estimator in sim-
ulations with multiple turbines, facilitating the tuning of the
EKF. Note that this band-pass filter is not applied to the sig-
nals shown in Fig. 3.

Figure 9. Sampling methodology for estimating blade-effective
wind speeds from the LES flow field. The average wind speed on 36
lines is mapped to the tilt and yaw axes to derive the effective wind
speed at 5D downstream in the fixed coordinate frame.

3.3.2 Synchronization cases

The synchronization cases evaluate the performance of the
EKF-based phase synchronization control strategy. The sim-
ulations consist of three turbines (T1, T2, and T3) arranged
linearly with 5D spacing. Realistic inflow conditions are
generated using a precursor LES (see Sect. 3).

Control strategies for the turbines are as follows:

– T1. Operates under Helix control in all cases.

– T2. Applies either baseline control or synchronized
phase control depending on the scenario.

– T3. Always operates under baseline control to isolate
the impact of upstream control strategies.

The primary objective is to explore the influence of differ-
ent phase shift offsets (ϕoff) in T2’s control on downstream
power production and structural loads.

3.3.3 Cases summary

Ten distinct simulation cases are defined, as summarized in
Table 2:

1. T1 only (Helix). T1 employs Helix control, with T2 and
T3 absent. This serves as the baseline for wake devel-
opment and ground truth sampling (see Sect. 3.3.1).

2. BL Helix. T2 and T3 apply baseline control, while T1
operates with Helix control. This case serves as a refer-
ence for the synchronization evaluations.

3. Synchronization cases (ϕoff = 0–270°). T2 applies syn-
chronized Helix control with phase shifts of 0,90,180,
and 270°.

Wind Energ. Sci., 10, 2411–2433, 2025 https://doi.org/10.5194/wes-10-2411-2025



A. A. W. van Vondelen et al.: Synchronized Helix wake mixing control 2423

Table 2. Overview of simulation cases. The final four cases are ad-
ditional to determine the optimal phase offset.

Case T1 T2 T3

T1 only (Helix) Helix – –
BL Helix Helix BL BL
ϕoff = 0° Helix Sync+ 0° BL
ϕoff = 90° Helix Sync+ 90° BL
ϕoff = 180° Helix Sync+ 180° BL
ϕoff = 270° Helix Sync+ 270° BL

ϕoff = 120° Helix Sync+ 120° BL
ϕoff = 150° Helix Sync+ 150° BL
ϕoff = 210° Helix Sync+ 210° BL
ϕoff = 330° Helix Sync+ 330° BL

4. Additional phase shifts. Further cases with phase shifts
of 120,150,210, and 330° refine the optimal phase off-
set analysis.

Each case has a total simulation time of 2700 s, where dur-
ing the first 600 s T2 operates using BL control such that the
Helix wake from T1 can propagate through the domain. At
t = 600s, the synchronization controller is activated on T2.

Simulations were executed on the Dutch national high-
performance computing system Snellius (SURF, 2024), uti-
lizing 512 cores and consuming 24k CPU hours per simula-
tion.

3.3.4 Quantities of interest

The performance metrics for evaluating the synchronization
strategies are listed below.

Estimator performance metrics

– Root mean square error (RMSE). Evaluates the devi-
ation between estimated and ground truth phase shifts
for tilt and yaw components, indicating estimation ac-
curacy.

– Phase coherence. Measures the correlation between es-
timated and true phase shifts at the Helix frequency, pro-
viding insight into estimator reliability.

– Phase error. Quantifies the average deviation in degrees
between estimated and ground truth phase shifts to as-
sess tracking precision.

Turbine performance metrics

– Power production. Power output from T2 and T3 to as-
sess the influence of phase synchronization on energy
production.

– Structural loads. Damage equivalent loads (DELs) on
T2 and T3, calculated using rain flow counting, to eval-
uate effects on fatigue life. For this, we use NREL’s
MLife toolbox (Hayman, 2012).

Flow analyses

– Wake centerlines. Extracted using Gaussian convolution
on phase-averaged velocity fields to analyze wake de-
flection and mixing patterns.

– Velocity deficits. Quantified as the reduction in veloc-
ity relative to free-stream conditions, providing insights
into wake recovery and energy availability.

These metrics collectively offer a comprehensive assess-
ment of the trade-offs and effectiveness of the synchroniza-
tion control strategies.

4 Results

This section presents the results of this study. First, the re-
sults of the proposed estimator after validation against the
ground truth are presented. Then, we investigate the closed-
loop results and the effect on power production and loads
for the synchronized test cases. Lastly, flow analysis is per-
formed, investigating wake centerlines and velocity deficits
on phase-averaged data.

4.1 Estimator validation using ground truth

This section provides a preliminary validation of the estima-
tor by verifying that it is able to capture the parameters of
the incoming Helix wake parameters when T2 is operating
with baseline control, i.e., where the closed-loop control on
T2 is not applied yet. To do so, we present in Fig. 10 the
wind speeds and Helix phases computed by the estimator of
the second turbine in the BL Helix case. We compare these
estimates with the ground truth as defined in Sect. 3.3.1.

Regarding the collective wind speed estimates Ucol, two
comments arise. The estimator is able to capture the vari-
ations of mean wind speed but does it with a bias. This
discrepancy is mostly attributed to differences between the
ALM used in the simulations and the BEM used in the esti-
mator (Coquelet et al., 2024b). The ALM tends to compute
higher loads than the BEM for similar conditions, especially
at relatively coarse grid resolutions as those employed here.

When it comes to the tilt and yaw wind speed components,
a transient can be observed for the signals to converge to the
ground truth (the estimation process starts at t = 600s). From
1000s, the estimation aligns with the ground truth, even if the
amplitudes of the estimated tilt and yaw components tend
to be smaller than those of the ground truth. This can be a
consequence of the band-pass-filtering process applied dur-
ing the analysis or of the use of the same amplitude factor
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Algorithm 2 Ground truth wind estimation from LES.

1: Input: LES velocity field with only T1 present; sampling distance 5D behind T1.
2: Output: Fixed-frame wind signals Ucol(t), Utilt(t), Uyaw(t)
3: Step 1: Define sampling geometry

1. Set the number of sampling lines n.
2. Define azimuthal angles ψL,1, . . .,ψL,n uniformly around the rotor disk center of T2.
3. For each ψL,i , define a line extending radially outward from the rotor center at 5D downstream (see Fig. 9).

4: Step 2: Compute line-averaged velocities
1. For each time step t and each line i = 1 to n:

(a) Sample the LES wind velocity Uline,i (t, s) along the spatial coordinate s.
(b) Average along s to obtain UL,i (t)=means (Uline,i (t, s)).

5: Step 3: Apply generalized Coleman transform
1. For each time step t , compute

Ucol(t)←
1
n

n∑
i=1

UL,i (t),

Utilt(t)←
2
n

n∑
i=1

UL,i (t)cos(ψL,i ),

Uyaw(t)←
2
n

n∑
i=1

UL,i (t) sin(ψL,i ).

2. Store the resulting signals as the time series ground truth.
6: Step 4: Isolate Helix component

1. Apply a band-pass filter to Utilt(t) and Uyaw(t) (cutoff chosen ≈ 0.15 Hz to capture the Helix frequency).
2. Retain Ucol(t) unfiltered.

7: Return Ucol(t), Utilt(t), Uyaw(t)

Ahelix for tilt and yaw wind speed, limiting flexibility in cap-
turing asymmetries in wake dynamics. Allowing independent
scaling factors could improve phase and amplitude accuracy,
although, in our case, better results were obtained with a sin-
gle amplitude factor.

Eventually, the main variables of interest in this case are
the estimated phase shifts ϕtilt and ϕyaw. Indeed, these are the
values that will be used in the controlled cases. The ground
truth values of these signals are obtained from the tilt and
yaw wind speed signals using Hilbert transforms. After the
estimation transient, the estimates show a consistent trend
over time and with the ground truth (quantification is pro-
vided in the next section).

These first observations of the estimator’s outputs when T2
is operating with baseline control are promising. However,
the question remains: can the estimator maintain this perfor-
mance when T2 is dynamically pitching? To address this, we
integrate the estimator into a closed-loop control framework
and quantitatively evaluate whether it consistently captures
the phase trends under dynamic pitching conditions.

4.2 Estimator performance analysis

The goal of this analysis is to quantitatively validate the es-
timator’s performance when integrated within a closed-loop
control system under dynamically varying conditions using
the estimator performance metrics defined in Sect. 3.3.4.

This section presents the estimator’s performance across syn-
chronization scenarios characterized by distinct phase offsets
(ϕoff). The aim is to confirm that the estimator accurately
tracks incoming wake phase shifts (ϕtilt and ϕyaw) and re-
mains effective regardless of dynamic control actions.

Figure 11 shows the results from the estimator across all
four closed-loop synchronized scenarios. A qualitative ob-
servation shows that the estimator closely follows the phase
trends, regardless of the downstream control actions. How-
ever, some deviations are apparent, particularly for the tilt
phase estimate, where more time is required to converge to
the correct phase shift after activating the synchronization
controller at t = 600s, and larger differences between the es-
timates can be found compared to the yaw phase estimate.
Despite these anomalies, the estimator performs well overall,
maintaining close alignment with the expected phase shifts
according to the ground truth.

To quantify the estimator’s reliability, Table 3 summa-
rizes the relevant frequency-domain and phase-domain met-
rics across different phase offsets. Phase error indicates the
estimator’s ability to align with the timing of the ground
truth oscillations. High coherence values (close to 1) sug-
gest a strong correlation between estimated and true signals,
reinforcing estimation reliability. The root mean square error
(RMSE) metric evaluates the estimator’s capacity to track the
phase over time.
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Figure 10. Validation of wind speed estimator against ground truth
data. Estimation results on T2 for the BL Helix case. The ground
truth signal is smoother due to spatial averaging and narrow-band
filtering before applying the Hilbert transform. The EKF estimate
is reconstructed from noisy blade load data at three locations and
therefore exhibits greater variability.

Table 3. Frequency-domain and EKF phase metrics for different
orientations at f0.

Metric 0° 90° 180° 270°

Frequency-domain metrics

Ucol phase error [deg] 2.95 3.35 7.75 4.98
Ucol coherence 0.87 0.82 0.83 0.89
Utilt phase error [deg] −16.85 −6.58 16.83 5.03
Utilt coherence 0.65 0.77 0.94 0.96
Uyaw phase error [deg] 0.07 12.36 13.50 8.00
Uyaw coherence 0.88 0.88 0.94 0.91

Phase metrics (EKF estimates)

ϕtilt RMSE [deg] 82.37 68.99 39.33 30.72
ϕyaw RMSE [deg] 44.78 46.11 34.33 27.75

Figure 11. Validation of wind speed estimator in closed-loop sce-
narios. Estimation results on T2 for synchronization cases with dif-
ferent ϕoff.

The observed RMSE values for tilt phase estimates, be-
tween 30 and 82°, indicate a notable bias in the phase es-
timation. The bias in yaw phase estimates is much more
constant, between 28 and 45°, indicating stronger estimator
consistency. However, it is important to note that the pro-
posed synchronization control strategy relies predominantly
on maintaining a consistent relative phase offset between tur-
bines, rather than achieving absolute phase accuracy. As the
bias remains relatively constant across scenarios for the yaw
phase, its impact on control effectiveness is limited. The con-
sistency allows the controller to reliably synchronize down-
stream actions relative to the incoming wake phase, ensuring
effective wake mixing. For the tilt phase, less consistency im-
plies that the synchronization effect may be less predictable
between the different cases, although this is not directly ap-
parent from the results. This is further supported by the ob-
served correlation between applied phase offsets and power
production changes (discussed later on), suggesting that the
estimator, despite its bias, still captures the essential phase
dynamics required for successful synchronization.
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An interesting comparison can be made between coher-
ence and phase error across the different offset cases. In the
180° case, coherence values are among the highest of all
channels, while the corresponding phase errors, especially
for the tilt and yaw components, are also relatively large. This
suggests that the estimator accurately captures the dominant
frequency content but demonstrates a systematic phase off-
set. Such biases may arise from discrepancies between the in-
ternal dynBEM model and the true wake dynamics observed
in the LES input or limitations of the ground truth computa-
tion methodology. In contrast, the 270° case combines high
coherence with low phase error and RMSE values, indicat-
ing both accurate and stable tracking. The 0 and 90° cases,
by comparison, exhibit lower coherence and higher RMSE,
suggesting reduced estimator robustness and increased sen-
sitivity to model mismatch in those configurations.

Further sensitivity studies may be required to analyze the
effects of the biases on the controller performance. Nonethe-
less, future improvements could focus on systematic bias
correction. For instance, calibrating the estimator using con-
trolled field experiments or enhancing the dynBEM model
to better match observed wake dynamics could reduce this
bias. Alternatively, adaptive filtering techniques that account
for model-structure uncertainties may further improve phase
accuracy.

Overall, these results confirm that the estimator performs
robustly across the phase offsets, with coherence levels above
0.8 for most components indicating strong reliability. How-
ever, discrepancies in tilt component estimates, particularly
in RMSE, suggest potential improvement areas. These de-
viations may originate from model inaccuracies within the
estimator but could also be due to uncertainties in the ground
truth calculations.

4.3 Closed-loop synchronization analysis

To understand the effect of synchronization on the turbine
operation, we examine the correlations between the esti-
mated incoming wake, the pitch action that is performed, and
the impact of the loads. Figure 12 presents these signals for
the tilt axis. It first shows the control signals generated for
the downstream turbine based on the estimated phase and the
applied additional phase shift, following Eq. (22). The con-
trol signals are evenly spaced in accordance with the intended
phase shifts, indicating that the control system effectively im-
plements the intended phase adjustments. This regular spac-
ing also confirms that the estimator’s phase outputs are being
correctly interpreted by the control system and that the phase
shifts are accurately applied to the downstream control ac-
tions. Figure 12 then shows the impact of the pitch action
on the moments. Note that the moments have been low-pass
filtered with a passband frequency 0.01Hz for clarity. In the
BL Helix case, T2 does not perform the Helix control, and
its pitch angles remain constant during operation. The mo-
ments are therefore the direct reflection of the local changes

in wind speed. When the incoming Utilt shows a local max-
imum (as at t = 1275s for example), the tilt moment Mtilt
also reaches a local maximum. When synchronization is ap-
plied, the effect of the pitch interacts with that of the local
changes in wind speed. We here highlight two characteristic
interactions:

– ϕoff = 180°. The pitch acts in opposition of phase with
the incoming wind, as described in Sect. 2.6. When the
wind speed perturbation Utilt reaches a maximum, the
pitch angle βtilt reaches a minimum. From the aero-
dynamic perspective, this means that the angles of at-
tack increase, and so do the moments. This is con-
firmed when looking at the signal of the tilt moment
Mtilt, whose peak appears at the same location as in the
Helix BL case (black curve) but with a higher ampli-
tude. This amplification reflects a constructive interfer-
ence between the control action and the oscillations in
incoming wind speeds induced by the Helix wake.

– ϕoff = 0°. The pitch acts in phase with the incoming
wind. When the wind speed perturbation Utilt reaches
a maximum, the pitch angle βtilt also reaches a maxi-
mum. This implies a decrease in local angles of attack
and hence in moments. There is, therefore, a compet-
ing effect: the blade passes through a high-wind-speed
region but reduces its angle of attack. In this case, the
pitch angle is rather important (4°) and the control ef-
fect takes over the incoming wind effect. Looking at the
time series of the moment, one can observe that the tilt
moment signal is in this case in opposition of phase with
that of the BL Helix case (black curve). There is there-
fore a destructive interference between the control ac-
tion and the incoming Helix wake.

Figure 13 examines the frequency content of the tilt mo-
ments displayed in Fig. 12, focusing on the frequency band
around the Helix frequency peak. The 180° phase shift case
shows the largest magnitude at the Helix frequency. This re-
sult indicates a stronger resonant effect when the control sig-
nals are phase-shifted by 180°, which could be linked to the
synchronization of the downstream turbine’s response with
the periodic wake structure. Such resonance may lead to both
beneficial and adverse effects, enhancing power production
but potentially increasing fatigue loads. The next section will
further investigate the performance differences between the
different synchronization cases from a power and load per-
spective.

4.4 Closed-loop performance analysis

The effect of these phase-shifted control strategies on overall
power production is shown in Fig. 14. Note that the power
differences shown are with respect to the BL Helix case (see
Table 2). Hence, the reported power increases are on top
of the power increases already generated by implementing
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Figure 12. Tilt wind speed estimate Utilt, synchronized pitch βtilt,
and resulting momentMtilt of the downstream turbine under various
phase-shifted control strategies.

the Helix on the upstream turbine. In addition to the relative
power increases plotted by black crosses, a Gaussian process
(GP) regression fit that captures the trend between these data
points and provides confidence intervals is plotted (see, e.g.,
Rasmussen, 2004). This approach not only interpolates be-
tween the measured phase shifts but also quantifies the pre-
dictive uncertainty, illustrating the potential power gains at
unmeasured offsets1. It appears that, from this figure, the op-
timal offset is at 150°, which yields a power gain of around
10 % on the third turbine (middle plot). Collectively, this
amounts to a power increase of around 5 % (right plot), since
a small loss of 1 %–2 % (left plot) on T2 can be observed.
This illustrates a core principle of wake mixing control: the
upstream turbine (here, T2) may incur a small power loss to
improve the inflow to a downstream turbine (T3), resulting
in a net farm-level gain. Such upstream sacrifices are typ-
ical of coordinated wind farm flow control (Meyers et al.,
2022). Interestingly, the best-performing case also sees the
lowest power loss on T2, while the worst-performing cases

1GP configuration: zero-mean prior; squared-exponential co-
variance (GPML’s covSEiso, Rasmussen and Nickisch, 2010);
hyperparameters (length-scale and signal and noise variances) op-
timized via marginal likelihood maximization (gradient descent);
shaded band denotes the 95 % predictive confidence interval.

(270 and 330°) exhibit significant power losses for both T2
and T3 – over 6 % overall, suggesting that implementing a
Helix without synchronization on T2 could lead to consider-
able power losses. Overall, the results highlight that the syn-
chronized Helix wake mixing approach exhibits both optimal
and suboptimal regions of power production governed by the
phase shift relative to the incoming Helix wake.

It is worth noting that extending synchronization to T3
would change its role from passive beneficiary to active con-
tributor. By doing so, T3 would likely experience a small
power loss, as it would then act to enhance the inflow to a
hypothetical fourth turbine. Hence, further actuation down-
stream is only beneficial if additional turbines can exploit the
modified wake.

Figure 15 provides an overview of the load impacts across
different turbine components due to the various phase-shifted
control strategies. The results reveal that the loads on the sec-
ond turbine generally increase for all phase shifts, except a
notable tower base load reduction in both fore–aft and side–
side is observed for the best-performing 150° case. For the
third turbine, increased loads are primarily observed in cases
with power gains. This is driven by enhanced wake mix-
ing, which amplifies wake meandering at T2, causing greater
wind speed fluctuations at T3; this is further highlighted in
Sect. 4.5. Such variations increase cyclic loading and fatigue,
leading to higher DELs. These results stress the trade-off be-
tween power production and structural loading, where certain
phase shifts that improve power output might simultaneously
increase the fatigue build-up on the turbines, potentially af-
fecting their lifespan.

This analysis exposes the complex interactions between
phase-shifted control actions, wake dynamics, and turbine
performance. While some phase alignments, like the 120
and 150° shift, offer significant improvements in power out-
put, they also come with potential drawbacks in terms of in-
creased loads.

4.5 Flow analysis

This final analysis aims to understand the impact of the syn-
chronized controller on T2’s wake, further highlighting its
effect on T3’s performances.

Horizontal velocity slices were extracted at hub height.
These velocity fields were phase-averaged over 21 full He-
lix cycles (approximately 100 s per cycle), with each cycle
divided into 36 equidistant phases. This approach reveals the
periodic characteristics of the Helix wake while averaging
out transient fluctuations.

The wake centerline was estimated from these phase-
averaged velocity deficit fields using a Gaussian convolu-
tion method (Coudou et al., 2018). The convolution was ap-
plied to the streamwise velocity component ux to enhance
the identification of coherent wake structures. The Gaussian
kernel effectively amplifies regions of high-velocity gradi-
ents along the lateral direction, allowing for a robust iden-
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Figure 13. Frequency content analysis of tilt moments around the Helix frequency. The 180° case exhibits higher magnitudes at the Helix
frequency, indicating enhanced resonance.

Figure 14. Effect of phase offsets in the synchronization controller on power production of downstream turbines. The data points show
the relative power change, while the Gaussian process confidence interval shows uncertainty at untested phase offsets. Note that the power
differences shown are with respect to the BL Helix case (see Table 2). Hence, the power increases are on top of the power increases already
generated by implementing the Helix on the upstream turbine.

tification of wake boundaries. The wake trajectory was then
determined by locating the lateral position of the maximum
convolution response at each streamwise location.

Figure 16a illustrates the phase-averaged horizontal veloc-
ity deficit fields for the 150° phase shift case, which yielded
the highest collective power gain. Figure 16b shows the
phase-averaged horizontal velocity deficit fields for the 330°
phase shift case, which, together with the 270° case, was the
worst-performing in terms of power gain. Here, we choose
to compare 150 and 330° since they are 180° apart. Fig-
ure 16c overlays the wake centerlines from Fig. 16a–b with
the wake centerlines from the cases T1 only (Helix) and BL
Helix. This highlights that the wake displacement is higher
behind T2 for the 150° scenario, with the wake exhibiting a
more sustained structure thanks to constructive interference
created at the rotor. The amplitude of the 330° case appears
more flattened after T2, we identify this as the result of the
destructive interference with the incoming wake. Sustaining
rather than going against the Helix oscillation on T2 there-

fore leads to enhanced displacement of T2, which contributes
to the higher power produced by T3 in the 150° case.

Lastly, in Fig. 17, we examine the velocity deficits across
the wake’s width at several instances behind T2. To ob-
tain these results, the wake centers have been recentered to
zero using the wake centerline. This enables us to separate
the effects of wake displacement and wake deficit reduction
when it comes to the increased power on T3. This figure
shows that the in-phase control (ϕoff = 150°) not only en-
hances the lateral/vertical displacement of the downstream
wake but also reduces the intensity of the wake deficit. This
150° case enhances the combined effects of the Helix: it pro-
motes wake deficit recovery through mixing, but also en-
hances lateral wake displacement, which could be assimi-
lated to forced/enhanced meandering. These combined ef-
fects explain the higher power leveraged at T3.
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Figure 15. Effect of phase offsets in the synchronization controller on damage-equivalent loads for both T2 and T3. The data points show
the relative DEL change, while the Gaussian process confidence interval shows the uncertainty of the DEL change at untested phase offsets.
CI denotes confidence interval. Note that the load differences shown are with respect to the BL Helix scenario (see Table 2).

5 Discussion

This study presents a significant advancement in phase syn-
chronization strategies for wind farm optimization, address-
ing research gaps identified in prior research by Korb et al.
(2023) and van Vondelen et al. (2024b).

– Dynamic phase synchronization.

- Korb et al. (2023) demonstrated that specific phase
alignments between turbines could improve power
recovery. However, their approach, which relied on
geometric phase shifts, is sensitive to wind speed
and turbine spacing, limiting practical applicability.

- Our EKF-based synchronization method addresses
this gap by dynamically estimating the upstream
wake phase and adjusting downstream turbine con-
trols accordingly. The approach is robust to chang-
ing wind conditions and turbine configurations.

- The results indicate that a 150° phase shift between
the incoming wake and the turbine action achieved

a substantial 10 % increase in power output at the
third turbine (T3), with an additional overall power
gain of 5 % over the baseline achieved by imple-
menting the Helix.

– Balancing power gains and structural loads.

- While power gains were accompanied by increased
structural loads, particularly on T2, this trade-
off provides valuable insights for optimizing load-
mitigation control strategies in future applications.

- Understanding the relationship between phase
alignment, power gains, and structural loads en-
ables more informed control decisions, ensuring
long-term turbine integrity while maximizing en-
ergy production.

– Enhanced performance over previous studies.

- Compared to the +6 % power gain reported by van
Vondelen et al. (2024b) using in-phase synchro-
nization, our method (+10 % on T3) demonstrates
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Figure 16. Comparison of phase-averaged horizontal velocity fields at hub height for different phase shift cases. Te is the Helix period
and t indicates the time instance at which the snapshot is taken. (a) 150° phase shift case. The wake centerline (red line) exhibits sustained
periodicity and constructive interference, improving wake mixing and downstream power production. (b) 330° phase shift case. The wake
trajectory (red line) displays flattened oscillations and destructive interference, reducing wake mixing and downstream performance. (c) Wake
trajectory comparison between the best-performing (150°) and worst-performing (330°) cases, alongside the baseline Helix wake trajectory.
The y axis has been scaled to better visualize the differences.

Figure 17. Velocity deficits across several flow slices downstream of T2 for the best (150°) and worst (330°) phase-shift cases. The best-
performing case shows reduced deficits near the wake centerline, suggesting improved wake recovery.

superior performance by leveraging optimized out-
of-phase alignments.

- Although this approach introduces additional com-
plexity in phase estimation and control, it offers
greater potential for enhancing wind farm effi-
ciency.

– Insights from flow dynamics.

- Flow analysis reveals that constructive interference
(e.g., 150° phase offset) sustains the natural Helix
wake oscillation, enhancing wake recovery and im-
proving downstream power generation.

- Conversely, destructive interference (e.g., 330° off-
set) disrupts wake recovery, reducing downstream
energy yield. This highlights the importance of
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aligning control strategies with the natural dynam-
ics of the wake.

The main challenge for practical implementation lies in
accurately parameterizing wake dynamics and ensuring ro-
bust phase detection under high-turbulence and gust condi-
tions. While the proposed EKF-based method demonstrates
reliable performance in controlled scenarios, increased tur-
bulence could make identifying consistent phase trends more
difficult, complicating synchronization. Enhancing model fi-
delity and integrating adaptive estimation techniques may be
necessary to ensure robustness in variable conditions. Wind
tunnel and field testing will be critical to confirm real-world
applicability.

Overall, the proposed EKF-based synchronization method
demonstrates promise for real-world applications, offering a
robust and adaptable approach to enhance wind farm perfor-
mance. Future research could focus on further refining load-
mitigation control strategies and expanding the methodology
to larger wind farm configurations.

6 Conclusion

This study proposed and evaluated an extended-Kalman-
filter-based phase synchronization method to enhance down-
stream turbine performance in wind farms through coordi-
nated wake control. By addressing the limitations of linear
Kalman filters and incorporating a dynamic blade element
momentum model, the approach demonstrated improved ac-
curacy in estimating wake phases and collective wind speeds,
which are necessary for synchronized control strategies.

The results of this study performed in the CNBL with
Uhub = 10.5 m s−1 and TIhub = 5% showed that the optimal
phase shift yields a significant net power gain of approxi-
mately 10 % at turbine 3 and 5 % collectively across turbine 2
and turbine 3 while sustaining the natural Helix oscillation to
enhance wake recovery. The findings also reveal a trade-off
between power gains and increased structural loads, particu-
larly on turbine 2. This suggests the need for a careful bal-
ance between energy production and turbine fatigue build-up
in wind farm control.

Future efforts could enhance the estimator to address
model discrepancies and robustness, explore adaptive ap-
proaches to mitigate structural loads while maintaining high
power yields, and expand on testing scenarios including dif-
ferent wind farm layouts.
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