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Abstract. Peaks in electricity demand are critical times when it is important to understand the contribution of
wind energy to the supply of electricity. In southeast Australia, peaks in electricity demand may be caused by
unusually hot or cold periods that correspond to increased cooling and heating loads, respectively. These peaks
in demand tend to be centred in the morning and early-evening hours as a result of consumption patterns and
behind-the-meter solar generation during the middle of the day.

In this study, we examine the characteristics of the southeast Australian wind energy resource on days when
the electricity demand is above the 80th percentile for heating and cooling days, respectively. We use a 29-year
dataset of reanalysis over Australia. To correct for changes to the electricity system and consumption patterns in
this period, a random forest model is fitted that relates the meteorological conditions to the electricity demand
during a recent 4-year period.

We find positive wind generation capacity factors over many offshore parts of the region during both high-
demand hot days and high-demand cold days. Over land, areas of complex topography show positive capacity
factor anomalies on high-demand cold days, while other areas show negative capacity factor anomalies. Reverse
patterns are found on high-demand hot days. It is shown that high-demand hot days are associated with a blocking
high in the Tasman Sea, while high-demand cold days can be split into cold, wet, and windy outbreaks and high-
pressure systems associated with light winds. On high-demand hot days, the peak in the diurnal cycle of wind
in the offshore declared development area in southeast Australia is aligned with the peak in electricity demand,
while high-demand cold days show little systematic diurnal variability.

tems or blocking highs to the east leading to strong northerly

Spatial and temporal variability of wind power in the mid-
latitudes is caused by both synoptic and local-scale atmo-
spheric phenomena. On a synoptic-scale, the near surface
wind variability follows the passage of cyclonic and anti-
cyclonic pressure anomalies. In southeast Australia, which is
a favourable area for offshore and onshore wind energy de-
velopment, the near-surface wind field is strongly modulated
by weather systems such as cold fronts, low-pressure sys-

winds. For example, in southeast Australia, cold fronts can
be defined as a shift in wind direction from the northwest
to southwest quadrants (Simmonds et al., 2012), while heat
waves are often associated with strong northerly winds (e.g.
Pezza et al., 2012; Wei et al., 2023). Pichault et al. (2021)
showed that around 46 % of ramp events at a SE Australia
wind farm were due to frontal or post-frontal activity.
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Local processes also influence variation in wind power on
shorter timescales. These processes are important because
electricity demand also has a significant diurnal cycle, with a
consistent “duck-curve” shape (Simshauser and Wild, 2025;
Restel and Say, 2025) arising from the combination of peak
electricity usage in the morning and early evening, together
with peak behind-the-meter solar production during the mid-
dle of the day. For example, Huang et al. (2023) used com-
mercial aircraft measurements to examine the diurnal cy-
cle of the boundary layer wind on heat-wave and non-heat-
wave days in Melbourne, Australia. They found systemati-
cally higher wind speeds from the early hours of the morn-
ing until midday on heat-wave days relative to non-heat-wave
days, which they attribute to momentum transfer to the sur-
face associated with the nocturnal low-level jet. This em-
phasises that the variation in wind power is a combination
of synoptic-scale processes and local-scale processes, some
of which will exhibit a pronounced diurnal cycle. Numer-
ous other studies have found a systematic diurnal variation
in wind speed in coastal areas, including Xia et al. (2022),
who found a maximum in wind speed during the afternoon
and night at an offshore site on the east coast of the US,
and Brown et al. (2017), who found a diurnal variation in
wind speed and direction linked to the land—sea breeze cir-
culation over coastal areas of the Northern Territory, Aus-
tralia. The Australian Energy Council estimates that 40 %
of Australia’s residential energy usage is from air heating
and cooling (AEC, 2022). While some of this heating comes
from gas, passive solar or wood fires, the majority comes
from electricity. This means that the same meteorological
drivers that influence the near-surface wind speed and wind
power availability can also influence the electricity demand.
For example, Ashcroft et al. (2009) defined cold events in
Melbourne in the lowest 0.4 % of maximum temperatures
and showed that these events are associated with south to
southwesterly geostrophic flow. These days had an average
temperature of 7.8 °C in July and an average temperature of
16.8 °C in January, indicating that they all would have been
high-heating-demand days. These events simultaneously in-
fluence both the electricity demand and the wind energy sup-
ply.

The coupling of both wind energy generation and electric-
ity demand to the weather raises the possibility of system-
atic patterns of supply on the highest (or peak) demand days.
High-demand summer days are strongly influenced by air-
conditioning loads (AEMO, 2024), while high-demand win-
ter days are strongly influenced by heating loads (AEMO,
2025). For example, Liu and Bai (2023) found that on heat-
wave days in China, there was a greater diurnal cycle of
wind power in many parts of China, with systematic below-
average wind power during the morning hours and above-
average wind power during the night. Similarly, they found
above-average wind power during cold-wave conditions in
all regions of China. The temperature is not the only me-
teorological parameter that may influence human decisions
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around air-conditioning and heating. For example, the ERAS5
HEAT dataset uses air temperature, humidity and radiation to
derive a thermal comfort index (Napoli et al., 2021). These
studies demonstrate the complex interplay between energy
consumption and diverse meteorological parameters.

Recently, several studies have addressed the variability of
the wind energy generation in Australia, with particular ref-
erence to the multi-scale nature of the variability. Richardson
et al. (2023) examined periods of solar and wind drought rel-
ative to the climate modes of the El Nifio—Southern Oscilla-
tion (ENSO), the Indian Ocean Dipole (I0D) and the South-
ern Annular Mode (SAM). They also found that periods
of solar drought coincide with positive or negative anoma-
lies of temperature at 2 m above the ground, although they
noted that cloudy solar-drought periods tended to be associ-
ated with cooler summertime temperatures and warmer win-
tertime temperatures, thus partly ameliorating the deficit in
generation. Gunn et al. (2023) proposed an optimal layout
of wind farms that could maximise the supply of wind en-
ergy but noted persistent variations due to ENSO. Vincent
and Dowdy (2024) examined the wind energy resource over
SE Australia according to its diurnal, seasonal and interan-
nual variability. Notably, they found variations in the wind
resource with ENSO, as well as distinct regional variation in
the timing and amplitude of the diurnal cycle of wind speed.

The purpose of this study is to examine the wind resource
across SE Australia on the highest-electricity-demand days
in the region. Moreover, the synoptic patterns and diurnal
variability on these days are examined in an attempt to under-
stand the meteorological processes driving both wind gener-
ation and electricity demand. We use a moderately high res-
olution reanalysis over Australia with a horizontal grid spac-
ing of 12km, which will partially resolve local-scale varia-
tions in wind speed associated with topographic and coastal
processes. We consider the ambient meteorology as the only
predictor of high demand, rather than non-meteorological
factors such as large public events or holiday periods. We
account for technical changes to the electricity system by fit-
ting a model that relates the demand profile of the 2015-2018
period to the meteorological conditions of the past 29 years
(i.e. 1990-2018). In this way, we construct a consistent 29-
year dataset of high-demand hot and cold days for which the
average wind energy capacity factor (using a single represen-
tative wind turbine) and its synoptic patterns are examined.
These high-demand hot and cold days are then categorised
into high-wind-energy or low-wind-energy days in an Aus-
tralian Government offshore declared area (which is likely to
be the site of Australia’s first offshore wind farms) for further
analysis.

In this paper, we describe the datasets used and the estima-
tion method to determine high-demand hot and cold days in
Sect. 2. In Sect. 3 we present the average wind capacity fac-
tors and synoptic conditions on high-demand hot and cold
days, followed by the synoptic patterns associated with high
or low wind resources on these days. We then present the di-
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urnal cycle of wind capacity factors specific to the offshore
declared area and electricity demand on hot and cold high-
demand days. Concluding remarks are given in Sect. 4.

2 Methods and data

2.1 Overview of methods

The structure of the data analysis is summarised in Fig. 1.

2.2 Reanalysis data

The wind speed data used in this study are from the Bu-
reau’s Atmospheric high-resolution Regional Reanalysis for
Australia (BARRA) (Su et al., 2021), produced by the Aus-
tralian Bureau of Meteorology. The data cover the time pe-
riod 1990-2018 and are on a 12km grid. The instantaneous
wind components at the end of each time step from the re-
analysis data were vertically interpolated to a height of 100 m
above ground level using log-linear interpolation in height,
using the model levels closest to 100 m, which had an av-
erage height of 76 and 109 m above ground level over the
region of interest. This same dataset was used in Vincent
and Dowdy (2024) to characterise the diurnal and interan-
nual variability in wind speed over SE Australia. The same
ACCESS model that drives the BARRA reanalysis, but with
a horizontal grid spacing of 4 km, was used to examine the
land—sea breeze circulation in northern Australia in Brown
et al. (2017). They compared the land—sea breeze anomalies
with those from scatterometer observations and found rea-
sonable agreement, albeit with some errors in the direction
of the perturbations around areas of complex coastline. Er-
rors in the fine-scale structure of the sea breeze are likely
present in the data that we use here too, although we note that
the Gippsland offshore wind energy declared area is adjacent
to a relatively straight coastline with the complex topography
set back from the coast.

2.3 Electricity demand data

Hourly electricity demand data for the state of Victoria were
sourced from OpenElectricity (2025). We note that rooftop
solar generation is an implicit part of the electricity demand
data as it is recorded as negative demand after being first
consumed behind the meter. This results in an observable re-
duction in daytime electricity demand at the system level.
This means that the high-demand days studied here are days
where there was still a high demand after rooftop solar en-
ergy had been consumed, and therefore these are days when
it would be critical for an energy source other than rooftop
solar to make a large contribution to electricity generation.
These days are arguably the days when wind energy has the
biggest role to play in achieving net-zero emissions, because
this demand is currently being met mostly by non-renewable
energy generation.
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2.4 Capacity factor estimations

Wind turbine capacity factors were estimated from wind
speed data at 100 m from the BARRA reanalysis using a typi-
cal power curve with a cut-in wind speed of 3.8 ms~!, a rated
capacity of 11 ms~! and a cut-out wind speed of 25 ms™!
(Fig. 2) as a representative wind turbine. This is similar to
the specifications of other offshore turbines, for example,
Siemens Gamesa SG 14-222 DD and MHI Vestas Offshore
V164-8.8 MW (Wind Turbine Models, 2025; Ohlendorf and
Schill, 2020). The wind speed that is used to calculate the
capacity factor is an instantaneous wind speed but pertains
to a grid point of spatial area 12 x 12km. It was shown in
Brown et al. (2024) that convective gusts are severely un-
derrepresented in a similar version of BARRA to that used
here, and we acknowledge that future studies must focus on
convection-permitting models and the sub-hourly timescales
to properly resolve wind farm cut-out scenarios. Wake ef-
fects were not included in this calculation, due to the coarse-
resolution data used and single turbine assumption, and for
the purpose of this study, density effects were not included.

2.5 Estimating high-demand hot days and high-demand
cold days

As shown in Fig. 1, high-demand hot days and high-demand
cold days are estimated based on actual electricity consump-
tion during the years 2015-2018 in the Victorian electric-
ity grid (which has its largest electricity demand in the Mel-
bourne metropolitan area). This choice of years is motivated
by this being a recent period but prior to the COVID19 pan-
demic (when consumption patterns changed in unexpected
ways). The following steps are used to identify likely days
from the period 1990-2018 that would likely have been high-
demand days, given consumption patterns similar to those in
the 2015-2018 period.

2.5.1 Classification of days as high-demand hot days or
high-demand cold days

All days in the 2015-2018 period were classified as cooling
degree days or heating degree days, following the definitions
of the Australian Energy Market Operator (AEMO, 2023) for
Victoria. The cooling degree index (CDI) and heating de-
gree index (HDI) are calculated according to Egs. (1) and
(2), using average meteorological values from BARRA from
a subset of the Melbourne metropolitan area (Fig. 5). Using
this approach, days with an average temperature greater than
18 °C will have a positive CDI value, indicating increasing
air-conditioning usage, and days with an average temperature
less than 16.5 °C will have a positive HDI value, indicating
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Figure 1. Research structure overview.

The set of days in the period 2015-2018 was subset into
days with a positive CDI or positive HDI. Respectively, these
are the days that are likely to be dominated by either air-
conditioning or heating loads, and as such these two sets of
days are treated separately in this study. For the purpose of
this study, we consider days where the electricity demand
was in the top 20 % of all electricity demand days as high-
demand days. We therefore construct two sets of days: high-
demand hot days indicating significant air-conditioning us-
age (hereafter Hot80 days) and high-demand cold days in-
dicating significant heating usage (hereafter Cold80 days)
(Vincent et al., 2025).

100% -
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Capacity factor
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Figure 2. Wind turbine power curve.
2.5.2 Linear regression and random forest models of

high-demand days: model selection

increasing heating demand. -
& & We tested two classes of models for predicting whether a

given day would be a high-demand day or would not be a
high-demand day: a multiple linear regression (LR) model
and a random forest (RF) model. In both cases, the inputs to
the models were meteorological variables from the BARRA
reanalysis averaged over the Melbourne basin area: heat-

CDI = max(0, T — 18), (1)
HDI = max(16.5— T, 0), 2)

where T is the daily average temperature from 09:00 p.m.

local solar time (LST) the night before to 09:00 p.m.LST on
the current day.

Wind Energ. Sci., 10, 2435-2447, 2025

ing degree index (HDI), cooling degree index (CDI), max-
imum temperature (Tmax), average temperature (Tav), wind
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speed (WS), wind chill factor (WC) calculated following Os-
czevski and Bluestein (2005), daily average relative humid-
ity (RH), incoming shortwave radiation (SWD), and a binary
variable indicating whether it was a weekday or weekend
day (DOW). We also include the temperature on the previous
day (Tmaxjag1) as a predictor. For each of the high-demand
hot days and high-demand cold days, half the days were ran-
domly chosen as a training dataset, and the other half were
assigned to a testing dataset using a fixed random seed for
reproducibility. For the multiple linear regression model, the
output was a continuous variable, which was converted to a
binary variable based on the criteria of whether it exceeded
the 80th percentile of demand or not, while the random for-
est model directly predicted a binary outcome. In both cases,
models were evaluated using the false-alarm rate (FAR) and
probability of detection (POD) (Wilks, 2011).

For the linear regression model, every possible combina-
tion of predictors was tested, and the best performing mod-
els were selected. The predictors for the best performing
model for high-demand hot days were CDI (p = 1.3x 107°),
Tmax (p = 0.48), Tav (p = 0.041), RH (p =0.12), WS (p =
0.093) and DOW (p = 4.6 x 10~8), where all predictors were
significant at the 5 % level except for RH and Tmax, while
the predictors for the best performing model for high-demand
cold days were HDI (p =3.3 x 107%), Tmax (p =0.0022),
RH (p =0.0042), Tmaxiae; (p =1.96 x 10~%) and DOW
(p = 0), where all predictors were significant at the 5 % level,
noting that there are more HDI days (952) than CDI days
(384), which contributes to the lower p values.

The random forest model was run 100 times using all pre-
dictors. For each model realisation, the predictors were ar-
ranged in order of importance, and only the variables com-
prising the cumulative top 80 % in importance were retained.
Although there was some variation in the order of the most
important predictors, the same set of most important predic-
tors were selected in all 100 realisations in the case of the
Hot80 models and in 68 % of the 100 realisations in the case
of the Cold80 models. For the Hot80 days, the predictors se-
lected and their average importance were Tav (29 %), CDI
(26 %), Tmax (22 %) and RH (10 %), while for the Cold80
days, the predictors selected and their average importance
were WC (20 %), Tav (19 %), Tmax (17 %), HDI (14 %),
Tmaxy,g; (12 %) and DOW (11 %). The model was then re-
trained using only these predictors.

The POD and FAR of the selected multiple linear regres-
sion models and random forest models for the Hot80 and
Cold80 days are shown in Table 1, indicating a better per-
formance of the RF models relative to the LR models. This
is particularly evident for the Cold80 models, where the dis-
tinct synoptic patterns leading to cold high-demand days, as
discussed further in Sect. 3.4, mean that a linear model does
not perform well.

https://doi.org/10.5194/wes-10-2435-2025
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Table 1. POD and FAR scores for the fitted LR and RF models for
the Cold80 and Hot80 days.

Hot80 LR Cold80 LR  Hot80 RF  Cold80 RF
POD 0.79 0.49 0.79 0.74
FAR 0.04 0.04 0.04 0.08

2.5.3 Model prediction for the 29-year period

The chosen RF model was applied to the full dataset from
1990-2018 to identify Hot80 and Cold80 days. To ensure
consistency of the RF model, the random forest was refitted
1000 times, with the same set of predictors but different ran-
dom seeds. Only days that were identified as high-demand
days in at least half of these 1000 runs were included in the
set of high-demand days for the subsequent days. There were
51 (288) days that appeared in more than zero but less than
500 of the 1000 realisations for the Hot80 (Cold80) days.
This left a total of 439 Hot80 days and 1363 Cold80 days in
the 29-year period for further analysis.

The distributions of maximum daily temperature, wind
speed and relative humidity of the Hot80 and Cold80 days
for the training dataset (based on actual demand), the testing
dataset (based on predicted demand from the RF model) and
the 1990-2018 period (based on predicted demand from the
RF model) are shown in Figs. 3 and 4. The histograms in-
dicate similar sets of meteorological conditions on both the
actual and predicted sets of high-demand days for both hot
and cold days. The Hot80 days tend to have low relative hu-
midity and moderate wind speed, while the Cold80 days tend
to have high relative humidity and little dependence on wind
speed.

2.6 The Gippsland offshore area

Recently, the Australian Government announced priority ar-
eas for the development of offshore wind (Department of Cli-
mate Change, Energy, the Environment and Water, The Aus-
tralian Government, 2024). One of these areas is located in
the Gippsland region of southeast Australia, and significant
progress has already been made in preparation for offshore
wind energy in this region. We therefore chose to focus on the
role that this region could play in meeting Victoria’s energy
needs on high-demand days. For the purpose of this study,
the wind resource has been analysed in a simplified polygon
corresponding to the intersection of the Gippsland priority
area with the grid points of the BARRA reanalysis (Fig. 5).

Wind Energ. Sci., 10, 2435-2447, 2025
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(middle row) and the full 29-year dataset for Hot80 days. The data in the top row are based on actual high-demand days, while the data in
the second and third rows are based on the modelled high-demand days from the RF model.
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3 Results

3.1 Average wind capacity factors over southeast
Australia

The average wind capacity factors over southeast Australia
are shown in Fig. 5, based on the BARRA reanalysis data in-
terpolated to 100 m. The average capacity factors are calcu-
lated by applying the wind turbine power curve (Fig. 2) to all
wind speed data and then averaging over the 29-year dataset.
As expected, higher capacity factors are found over the ocean
and over flat terrain inland. Lower capacity factors are found
over areas of elevated topography to the southeast of the land
region. As discussed in Vincent and Dowdy (2024), this is
broadly consistent with higher-resolution analyses but lacks
the enhanced wind speeds at the highest peaks of the topog-
raphy, e.g. Davis et al. (2023).

3.2 Capacity factor anomalies on Victorian
high-demand hot and cold days

In Fig. 6, the average capacity factor anomalies are shown
for Hot80 and Cold80 days. Statistically significant positive
anomalies are found over most areas of the coastal ocean re-
gions for both Hot80 and Cold80 days, indicating favourable
conditions for offshore wind on these days. Over regions of
elevated topography, negative capacity factor anomalies are
found on Hot80 days, while positive capacity factor anoma-
lies are found on Cold80 days. Inland, over flatter terrain, the
opposite is found, although the anomalies are generally small
in magnitude on the Cold80 days.

3.3 Synoptic patterns on high-demand heating and
cooling days

In this section, we examine the synoptic patterns associated
with the capacity factor anomalies on Hot80 and Cold80 days
(Fig. 7). This result suggests that, on average, Hot80 days
are associated with a blocking high in the Tasman Sea, with
northerly flow impacting much of eastern Australia. In con-
trast, the Cold80 days, on average, have a high-pressure sys-
tem located over central Australia, with southwesterly flow
impacting much of southeastern Australia. These results are
typical of summertime and wintertime synoptic patterns in
southeast Australia, but we note that no constraints were
placed on the time of year when the Hot80 and Cold80 days
occurred.

3.4 Synoptic patterns associated with high-wind and
low-wind conditions in the Gippsland offshore wind
energy development region on high-demand days

We now examine whether there are Hot80 or Cold80 days for
which offshore wind energy in the Gippsland region could
play a particularly favourable or unfavourable role in con-
tributing to the electricity system. This is achieved by di-

https://doi.org/10.5194/wes-10-2435-2025

viding the Hot80 days into a subset of days with high av-
erage wind speed in the Gippsland offshore region (Fig. 5)
(i.e. average capacity factor > 0.9) and a subset of days with
low average wind speed in the Gippsland offshore declared
area (i.e. average capacity factor < (0.3). The same process
was followed for the Cold80 days, yielding four sets of
days: Cold80 high-wind days, Cold80 low-wind days, Hot80
high-wind days and Hot80 low-wind days (Vincent et al.,
2025). The average synoptic patterns for these four classes
are shown in Figs. 8 and 9.

For the Hot80 days, Fig. 8 indicates that both the high-
and low-wind cases have a similar synoptic pattern. In both
cases, there is a high-pressure system in the Tasman Sea and
northerly flow over southeastern Australia. This synoptic pat-
tern is suggestive of both adiabatic warming associated with
the high-pressure system and warm air advection associated
with the northerly flow. The primary difference between the
high-wind and low-wind cases is the strength of the trough
approaching from the west, which in the high-wind case
leads to a tightening of the isobars around the Gippsland re-
gion, while the low-wind case has a more zonal flow to the
west and lighter winds throughout the Gippsland region.

For the Cold80 days, Fig. 9 indicates a completely differ-
ent synoptic pattern for the high- and low-wind cases. The
high-wind case (Fig. 9a) shows a cold front over southeast
Australia, with strong southwesterly flow over all of south-
east Australia. This indicates a likelihood of a favourable
wind resource over a large portion of southeast Australia and
not just over the Gippsland area. This synoptic type is likely
to be associated with cold, wet and windy conditions. While
not the focus of this study, it is noted that these conditions
are probably associated with cloudy skies and a poor solar
resource, indicating a positive role of onshore and offshore
wind energy in the region.

The Cold80 low-wind case (Fig. 9b) indicates a high-
pressure system over southeast Australia, suggestive of light
winds throughout southeast Australia. Given that these days
have already been identified as cold days, they are likely to be
wintertime high-pressure systems when the subtropical ridge
moves over the Australian continent and may be associated
clear skies, strong radiative cooling, low temperatures and
light wind at nighttime and in the early morning, as well as
possibly sunny conditions later in the day. While these days
are not suggestive of a good wind resource in the region, they
may have a favourable contribution from solar energy in the
wintertime sunny afternoons. The results in Fig. 9 suggest
that there are at least two main profiles of cold days that im-
pact the wind resource in Gippsland. These days will have a
completely different profile of both demand and supply.

3.5 The diurnal cycle of supply and demand on
high-demand days in the Gippsland offshore region

Figures 8 and 9 indicate the possibility not only of differ-
ent synoptic-scale processes but different mesoscale and di-
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urnal processes influencing the wind resource. While these
processes are not examined in detail here, we investigate the
diurnal cycle of both capacity factor and electricity demand
over the Gippsland offshore region for the four sets of days
identified in Sect. 3.3.

Figure 10 shows the average diurnal cycle of capacity fac-
tor at the Gippsland offshore declared area on the high-wind,
low-wind, Hot80 and Cold80 days. The most obvious result
is that there is almost no diurnal cycle on the Cold80 days and
a pronounced diurnal cycle on the Hot80 days with a peak at
around 08:00 p.m. local time. It is also seen that the Hot80 di-
urnal cycle is curtailed on the high-wind days, which is likely
partly due to the shape of the power curve and partly due
to the fact that mesoscale processes such as sea breezes and
low-level jets are sensitive to the background wind speed. We
also note that the start and end points of these diurnal cycles
do not precisely match up. This is because each composite
diurnal cycle is constructed from a unique set of days that
may climatologically be preceded or followed by a calmer or
more windy day. We note that these diurnal cycles are based
on the BARRA reanalysis with a horizontal grid spacing of
12km. While this dataset has been shown to have a physi-
cally plausible representation of the diurnal cycle (Vincent
and Dowdy, 2024), it will not capture all the mesoscale diur-
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nal wind variations, particularly those associated with fine-
scale variations in complex topography.

The diurnal cycle of electricity demand (Fig. 11) indi-
cates a double demand peak on both Hot80 and Cold80 days,
with a morning peak at around 07:00-08:00 a.m.LST and
an early-evening peak at around 05:00-07:00 p.m. LST Note
that these demand data are partly offset by rooftop solar be-
fore these data are collected and that hot days are generally
likely to also be sunnier and have a larger solar resource than
cold days (albeit with some penalty for heat-related impacts
on solar panel performance that are considered a secondary
effect here). There is a bigger dip in the middle of the day
on the Cold80 days, likely because cold mornings tend to
warm up during the middle of the day, while hot days get
progressively hotter during the day. We also note that the
early-evening demand peak is larger relative to the morning
peak on Hot80 days than Cold80 days and that the early-
evening peak on Hot80 days is partially aligned with the
peak in capacity factor on these days. There is only a mi-
nor difference between the demand profile on high-wind and
low-wind Hot80 and Cold80 days, and the differences are
not statistically significant. We do note, however, less spread
during the middle of the day on Hot80 low-wind days rela-
tive to Hot80 high-wind days, indicating more predictability
at these times. Understanding the meteorological parameters

Wind Energ. Sci., 10, 2435-2447, 2025




2444

days
o S S|
A .

Cold80 (high-wind)

1032

1022

1012

MSLP (hPa)

1002
992

982

Figure 9. As for Fig. 8 but for Cold80 days.

—— Low-wind Hot80 days
-4~ High-wind Hot80 days
- All Hot80 days

(a)
L0 1 1{-; ITITIII =55+ i

0.8
061 | Nl B L

0.4

Capacity Factor

0.2

My A

C. L. Vincent et al.: SE Australian wind resource on peak demand days

Cold80 (low-wind) days

1032

1022

1012

MSLP (hPa)

1002

992

982

—— Low-wind Cold80 days

-4~ High-wind Cold80 days
+— All Cold80 days
(b)

LOTIT s i eI I e L

0.8 1

0.4

Myt

Capacity Factor

0.2

0.0 " . ; y
0 5 10 15 20
Time [LST]

0.0 T - ,
0 5 10 15 20
Time [LST]
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high-wind and low-wind days. Error bars show the 33rd and 67th percentile capacity factor for each hour.

associated with the spread in these demand profiles is a crit-
ical step for linking renewable electricity generation and de-
mand on these days.

4 Discussion and conclusions

The average wind resource in SE Australia is significantly
different on high-demand hot days and high-demand cold
days. The results presented here suggest decreased capacity
factors over eastern Victoria and SE NSW on high-demand
hot days, as well as increased capacity factors over west-
ern Victoria. An almost opposite pattern is found on high-
demand cold days. This suggests the possibility of strategic
placement of wind farms to target these highest-electricity-
demand days in summer and winter.

The average synoptic pattern on high-demand hot days
consists of a high-pressure system in the Tasman Sea, di-
recting warm northerly flow over SE Australia. This pat-
tern can lead to favourable wind conditions over SE Aus-

Wind Energ. Sci., 10, 2435-2447, 2025

tralia and the Gippsland offshore area. As well as the tight-
ening of the isobars due to the approaching cold front on the
high-wind, high-demand hot days, there is potential for some
localised scale interactions that could influence the coastal
wind resource in this region. For example, we note the more
northerly location of the high-pressure system in the Tasman
Sea under the low-wind cases, which directs northwesterly
flow over the Bass Strait region, while the southerly displace-
ment of the high-pressure system in the high-wind cases di-
rects northerly flow over the Bass Strait region. Understand-
ing the role of topography and possible channelling of the
flow through the Bass Strait under different synoptic condi-
tions might be important for understanding the wind vari-
ability in this region in the current and future climate. For
example, a minor change in the climatological position of the
Tasman Sea high could result in different local flows through
the Bass Strait region. Moreover, localised wind phenomena
such as sea breezes and low-level jets are likely to manifest
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Figure 11. Average diurnal demand across Victoria for (a) Hot80 days and (b) Cold80 days for low-wind and high-wind days. Error bars

show the 33rd and 67th percentile of demand for each hour.

as a scale interaction between the large-scale synoptic condi-
tions and the locally experienced winds.

The average synoptic pattern on high-demand cold days
can be split into two groups, depending on the strength of
the wind in the Gippsland region. These two patterns relate
to a cold air outbreak (Cold80 high-wind cases) and a high-
pressure system over Victoria (Cold80 low-wind cases), re-
spectively. The two scenarios lead to completely different
wind patterns, with the former providing an excellent wind
resource and the latter being associated with light winds.

The timing of the diurnal cycle of the wind capacity fac-
tor in the offshore Gippsland area is partly aligned with the
diurnal cycle of electricity demand in high-demand hot days.
This suggests that even if there is low-wind on high-demand
hot days, the supply of wind energy in this offshore area
still increases in line with the significant rise in early-evening
electricity demand. As shown in Vincent and Dowdy (2024),
the peak timing of the diurnal cycle of wind in SE Australia
varies between offshore, coastal, mountainous and inland re-
gions, which raises the importance of strategic placement of
wind farms to help balance the daily cycle of electricity de-
mand. Our results further suggest that on high-demand cold
days there is very little systematic diurnal cycle of the wind
capacity factor in the offshore Gippsland area. This means
that the wind capacity factor in this area remains relatively
stable across high-demand cold days and does not align with
the diurnal variations of the electricity demand.

The results presented in this work show that there are
meteorological drivers of both supply and demand on high-
demand days and that these two factors must be examined
together. While the variation manifests mostly in the wind
resource, its co-variability with the variation in demand also
needs to be understood. The most concerning days for the fu-
ture electricity system are the days with high electricity de-
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mand and low electricity supply — for example, high-demand
hot days with low wind speeds, noting that the synoptic pat-
tern for this case is also suggestive of light winds in many
other parts of the country. We also note that while certain sce-
narios may be associated with a favourable wind resource,
this resource may be undermined by the co-occurrence of
hazards — for example, the high-demand hot days are similar
to the synoptic setup for heat-wave conditions (e.g. Hender-
son et al., 2024)) or when combined with an approaching
cold front, fire weather risk (e.g. Reeder et al., 2015) in SE
Australia. Similarly the high-demand cold days are likely to
overlap with hazards associated with cold, wet and windy
conditions (e.g. Ashcroft et al., 2009). Building a robust fu-
ture renewable electricity system requires a granular exam-
ination of multiple scenarios that influence supply and de-
mand as well as other energy-related risk factors. This in-
cludes those scenarios brought about by localised meteo-
rological phenomena, particularly around complex terrain,
which requires higher-resolution modelling than that used in
this study. Furthermore, the single turbine assumption that
underpins the capacity factor calculation could be improved
by further incorporating common wind farm configurations
and design typologies.

Data availability. The atmospheric reanalysis data used
in this study are from the Bureau’s Atmospheric high-
resolution Regional Reanalysis for Australia (BARRA)
(https://doi.org/10.4225/41/5993927b50f53, The Australian Bureau
of Meteorology, 2025). The data are available in Australia from the
Australian National Computing Infrastructure. Readers are referred
to Su et al. (2021) for information. Hourly electricity demand for
Victoria is freely available from https://openelectricity.org.au/ (last
access: 13 October 2025). Lists of the modelled high-demand
heating and cooling days (the Cold80 and Hot80 days) and the
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high-wind and low-wind instances of these days can be accessed at
https://doi.org/10.5281/zenodo.15493355 (Vincent et al., 2025).
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