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Abstract. As offshore wind systems become more complex, the risk of human error or equipment malfunction
increases during experimental testing. This study investigates a lab-scale incident involving a 1 : 50 scale 5 MW
wind turbine, where a generator failure led to rotor overspeed and a blade–tower strike. To improve early fault
detection, we propose a data-driven method based on multivariate long short-term memory (LSTM) models.
High-frequency measurements are projected onto principal components, and anomalies are identified using re-
construction error and its time derivative. Two models are trained on different healthy datasets and tested using
single- and multi-principal component (1PC and MPC) variations. Results show that combining both error and
error derivative improves detection accuracy. The 1PC model detects faults faster, has a higher recall rate, and
achieves a 43 % improvement in anomaly detection accuracy, while the MPC model yields higher precision. This
approach provides a simple and effective tool for early anomaly detection in lab-scale experiments, helping to
reduce the risk of future failures during the testing of new technologies.

1 Introduction

Model-scale laboratory testing is a necessity for early de-
velopment of grid-scale on- and offshore wind energy tech-
nologies, and recent industry trends have driven increased
demand for such testing (Mehlan and Nejad, 2025; Soares-
Ramos et al., 2020). In the case of offshore wind energy
projects, operation and maintenance costs can amount to a
third of a project’s life-cycle cost, often quantified as the
levelized cost of energy (LCOE). Small-scale validation and
testing improve the maturity of new technologies (Mehlan
and Nejad, 2025; Leahy et al., 2016; Wang et al., 2022).

To meet this demand, lab-scale turbine systems are de-
signed to match the performance of full-scale offshore com-
mercial wind plants, enabling accurate coupling between
wind turbine aerodynamics and the hydrodynamic forces on
the substructure (Fowler et al., 2023; Kimball et al., 2014;
Cao et al., 2023). Due to the low Reynolds number at lab
scale, thin airfoil sections are used for the model turbine
blades, such as the SD7032, to achieve full-scale rotor perfor-
mance. However, this increases blade flexibility and reduces
structural strength. Additionally, because of strict mass con-
straints – particularly for floating configurations – system re-
dundancy that accommodates equipment malfunctions is typ-
ically not included in the design (Parker, 2022). As a result,
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lab-scale turbines are highly sensitive systems that require
careful handling by operators to ensure safe and reliable op-
eration throughout a test campaign.

In experimental testing campaigns, particularly when test-
ing novel control algorithms, the likelihood of fault events
increases, and their impacts can be severe. These faults may
arise from operator errors, incorrect control commands, or
instrumentation malfunctions (Peng et al., 2023). Such inci-
dents can result in costly equipment damage, violations of
laboratory safety standards, and substantial project delays.
Therefore, efforts to develop efficient methods of detecting
operational faults are critical to improving the testing pro-
cess (Leahy et al., 2016; Lu et al., 2024).

In many condition-monitoring applications, anomaly de-
tection is performed using dedicated sensors. For instance,
vibration-based techniques, often evaluated using the root
mean square (RMS) of velocity or acceleration signals, are
widely used for drivetrain fault detection and are assessed
against standards such as ISO 10816-21 (ISO, 2025). How-
ever, deploying additional instrumentation is not always fea-
sible or cost-effective. Nejad et al. (2018) demonstrated that
angular velocity measurements already available within ex-
isting control systems can be repurposed for fault detec-
tion, thereby eliminating the need for supplementary sen-
sors. Similarly, Dameshghi and Refan (2019) proposed a di-
agnostic approach for gearbox faults based on supervisory
control and data acquisition (SCADA) information multi-
sensor fusion, avoiding the need for additional data collection
systems. These approaches illustrate the potential of multi-
sensor anomaly detection methods that leverage existing sys-
tem measurements.

To mitigate these issues, dimensionality reduction tech-
niques, such as principal component analysis (PCA), are
often employed during pre-processing to retain the most
informative features while reducing data redundancy. For
instance, Dibaj et al. (2022) applied PCA to multi-point
raw vibration data as a means of compressing the dataset
prior to classification, thereby improving computational effi-
ciency without sacrificing key diagnostic information. These
reduced-dimensional signals were then input to a convolu-
tional neural network (CNN) for automated fault classifi-
cation and pattern recognition. Similarly, adaptive filtering
techniques, including linear and non-linear Kalman filters,
have been used to enhance fault detection capabilities in dy-
namic environments, though their implementation can be-
come increasingly complex for large-scale systems (Zhou
and Zhu, 2023; Le and Matunaga, 2014; Ammerman et al.,
2024). Overall, data-driven models, when combined with
feature extraction or filtering techniques, provide a robust
framework for detecting changes in system state and iden-
tifying early signs of failure or adverse environmental condi-
tions (Dibaj et al., 2022; Alkarem et al., 2024, 2023).

These and similar methods can also be applied to lab-scale
models, with the additional caveat that computational effi-
ciency is even more critical. Due to time scaling and typi-

cally higher frequencies of motion at lab scale, fault detec-
tion strategies on models must be able to operate quickly and
with minimal overhead. To meet this need, pre-trained data-
driven approaches offer significant performance benefits over
non-linear physics-based models.

The case study in this work comes from a fault incident
which occurred during a standard scale model characteriza-
tion test, wherein the turbine generator disengaged during an
experiment, causing the turbine to spin out of control and
one of the blades to strike the tower. The resulting damages
caused significant delays in the campaign. Using this incident
as a real example of the need for online fault detection and
mitigation strategies, a data-driven approach was applied to
develop an efficient online monitoring system which can de-
tect failures or anomalous behavior before significant system
effects are realized, increasing reaction time for operators or
enabling automated shutdown procedures to take place.

2 Methodology

2.1 Experimental setup

The experimental data for this study come from a wind tur-
bine characterization test performed on a scale model at the
Harold Alfond Ocean Engineering Laboratory at the Univer-
sity of Maine’s Advanced Structures and Composites Center.
The layout of the experiment is shown in Fig. 1a, illustrat-
ing the arrangement of the wind machine and turbine model.
During the experiments, the turbine was controlled and mon-
itored by one or two test operators stationed on the side of
the basin, via a data acquisition system (DAQ) based on the
National Instruments cRIO platform. Figure 1b shows the in-
stalled experimental turbine before testing began. To prop-
erly characterize the turbine’s aerodynamic performance, it
was installed in a fixed configuration within the wind field.
Cross-bracing was installed to keep the turbine tower and
mounting surface rigid during the test to target rotor perfor-
mance only.

To fully characterize the rotor, experiments were per-
formed at various wind speed/RPM pairs. Each experiment
used a previously generated set point file to cycle through
blade pitch set points. Figure 2 shows blade pitch and rotor
thrust from one of the experiments. Results from these tests
were then used to form rotor performance surfaces for future
experiment design.

2.2 Failure incident

During one of the characterization runs, an operator mistak-
enly triggered an emergency stop on the turbine generator.
As a result, the rotor began accelerating unrestricted until a
blade strike occurred with the tower. Plots of rotor speed and
thrust load during the incident are shown in Fig. 3, with a
vertical line indicating when the blade struck the tower.
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Figure 1. (a) Basin layout for scaled turbine characterization experiment and (b) photograph of the experimental test turbine installed in the
basin.

Figure 2. (a) Scheduled blade pitch and (b) measured rotor thrust for sample characterization experiment run.

2.3 Predictive model description

Detecting early signs of anomalies in testing campaigns can
be beneficial. It can either provide data upon which operators
can act on with informative decisions and/or be automated to
abort the test if certain thresholds are exceeded. However,
signaling the possibility of an anomaly requires real-time
processing of incoming measurement data, which can be best
achieved using deep machine learning algorithms. Such al-
gorithms indeed make it possible for predictive models to be
trained on certain healthy data and provide predictions of the
systems’ states during similar runs.

Accidents with lab equipment can be costly and labor-
intensive and can cause delays. To mitigate such incidents,
we propose an early anomaly detection model to improve re-
sponse times and reduce human error. To this effect, a multi-
step, multivariate long short-term memory (LSTM) model –
a type of recurrent neural network (RNN) designated to ad-

dressing the vanishing gradient issue that traditionally pre-
vents models from capturing long-term dependencies – was
developed and trained on data from healthy aerodynamic
characterization tests with similar wind speeds. When an
anomaly occurs, the error between the predicted signal and
the measured signal increases, which can be used to inform
the operator of such an incident. The model parameters were
initially estimated intuitively, but these could be further re-
fined for enhanced predictive accuracy.

2.4 Anomaly detection over the span of multiple
channels

In complex systems such as offshore wind testing, there are
numerous measurements and data channels, which can be
used to understand the overall behavior of the system. How-
ever, for anomaly detection purposes, it can be overwhelming
and computationally expensive to manually and in real time
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Figure 3. Blade strike incident: (a) angular velocity in RPM and (b) rotor thrust force. The dashed line represents the blade strike instance.

search the data space for deviation in measured data. The
operator might not have sufficient time to abort the test be-
fore the anomaly becomes too consequential. Additionally,
an anomaly might not be detectable based on any single data
channel to comprehend the full state of the system. There-
fore, the predictive model must be based on multiple data
channels related to the test being conducted while providing
the operator with a single, concise anomaly detection capa-
bility based on the most relevant information. To accomplish
that, principal component analysis (PCA) was carried out.
A PCA creates combinations of variables that explain the
largest amount of variance in the data.

Before performing the analysis, the raw data recorded by
the data acquisition system were pre-processed to remove
idle measurements and non-numeric entries. Data channels
collected comprise wind speed, the angular velocity of the
rotor, azimuth angle, all blade pitch angles, generator torque,
rotor torque, and forces and moments at the base of the tower.
We assume the digital twin has access to only some of these
channels (i.e., angular velocity, θ̇ ; rotor torque,Q; and tower
base forces and moments, Fx,Fy,Fz,Mx,My,Mz) to sim-
ulate cases where some measurements can be restricted by
turbine manufacturers and validate the model’s operability
under restrictive data access. Figure 4a illustrates the corre-
lation matrix between the channels of interest.

Data are then standardized to ensure all channels (features)
in the training dataset have a mean value, µ, of 0 and a stan-
dard deviation, σ , of 1:

xi =
xi −µi

σi
, i = 1, . . .,N, (1)

where N is the number of channels included in the model.
All subsequent testing datasets (whether healthy or anoma-
lous) are standardized using these scaler parameters. This
ensures that the resulting transformed values might reflect
deviations from the training dataset, allowing the model to
identify anomalous behavior.

Following standardization, the covariance matrix of the
variables was computed and then diagonalized through eigen
decomposition, yielding a set of orthogonal transformed vari-
ables – i.e., the principal components (PCs) – ordered by the
amount of total variance they explain. Based on this ranked
structure, a subset of components can be selected to reduce
the dimensionality of the problem while preserving as much
of the original variance as possible. For instance, the first five
PCs and channel loads/contributions are illustrated in Fig. 4b.

The PCs were then used to train the LSTM models that
would later be used for prediction. As new data are acquired,
they are transformed/projected onto the same PCs that were
used in training the models. For the purpose of anomaly de-
tection, the mean absolute error (MAE) is computed between
measurements and predictions from the LSTM models, and
the error derivative is calculated to estimate rapid fluctua-
tions in the quality of the predictions. The choice of MAE
as the reconstruction error metric was made to reduce model
sensitivity to transient spikes or noise, which may not cor-
respond to true anomalies. An anomaly alert is reported to
the operator when certain anomalous conditions are met. In
this research, we investigate conditions when both the error
and its derivative crossed certain thresholds. This procedure
is illustrated in Fig. 5 and is explained in Sect. 2.6.

2.5 Principal component selection

The two models developed vary in their projected principal
component selection. The projected PC results from train-
ing data are presented in Fig. 6. The first model compresses
the data by retaining only the first PC; it is therefore named
“1PC”. The second model selects the group of (M) PCs that
cumulatively explain 90 % of the total variance, thus only
neglecting the remaining 10 %; this model is hence called
“MPC”.
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Figure 4. Data pre-processing: (a) correlation matrix between available channels used in the models and (b) covariance loadings of the first
five principal components.

Figure 5. Flowchart describing the data stream, data pre-processing, LSTM model training, and its use for anomaly detection.

2.6 Error and error derivative threshold selection for
single/multiple PCs

The histograms of error metrics between the trained model
and the training data for the 1PC and MPC models are shown
in Fig. 7 for the 1PC model and in Fig. 8 for the MPC model.
Inspired by the work of Dibaj et al. (2024), the thresholds
were selected to be the highest values in the histogram for the
training data error. However, in the case of multiple principal
components being used, the weighted average of maximum
errors (and error derivatives) of all principal components was
computed. The per-PC thresholds are weighted by the ex-
plained variance ratio of the corresponding principal compo-
nent shown in Fig. 6. These threshold values were used to
assess the accuracy of the predictive model against measured
data during the testing/anomaly detection stage.

2.7 Performance metrics

The overall accuracy of the model(s) was measured by a sin-
gle score that combines precision and recall in its calcula-
tion (Miele et al., 2022; Wang et al., 2019). Precision, P ,
illustrates the proportion of anomalies detected that are true,
while recall, R, indicates which proportion of true anomalies
are detected. They can be computed as

P =
T +

T ++F+
, R =

T +

T ++F−
, (2)

where T + represents the count of true positives (the identi-
fied anomalies are true), F+ is the count of false positives
(i.e., for which the identified anomalies are not true), and F−

is the false negatives (i.e., the unidentified true anomalies).
These contribute to an overall FI score that ranges between

https://doi.org/10.5194/wes-10-2475-2025 Wind Energ. Sci., 10, 2475–2488, 2025



2480 Y. R. Alkarem et al.: Anomaly detection in lab-scaled offshore wind experiments

Figure 6. Explained variance ratio and cumulative of all principal
components.

0 and 1, with 1 being a perfectly precise model, and is ex-
pressed as

FI= 2×
P ×R

P +R
. (3)

3 Problem statement

Three datasets, D1, D2, and D3, were gathered during the
test campaign. While wind speeds were kept constant (vari-
ation < 1 %), the rotor angular velocity for D2 was slightly
lower by 12 % and higher by 51 % for D3 relative to D1. The
angular velocity and the resulting thrust force variations are
illustrated in Fig. 9. The blade pitch varied the same way for
these cases based on the pre-generated set points. The ac-
tual anomaly and blade strike occurred near the end of D3,
which was truncated to < 200 s, while D1 and D2 each span
1000 s. In addition, three altered variants of D2 were gener-
ated to introduce a synthetic anomaly for further evaluation
of the developed models: D(a1)

2 , D(a2)
2 , and D(a3)

2 . The syn-
thetic anomaly was imposed by modifying the tower base
fore–aft bending moment, My , through a time-varying am-
plification factor. This factor was applied starting from an
arbitrary onset time (225 s), increased linearly to a maximum
value by 250 s, and then reduced back to unity by 275 s. The
variants amplify the signal by 0.25 %, 0.5 %, and 1.00 % per
1t for D(a1)

2 , D(a2)
2 , and D(a3)

2 , respectively. Table 1 summa-
rizes the model setup and intervals of datasets utilized dur-
ing training, validation, anomaly criterion threshold selec-
tion, and testing tasks.

Channels used in training the models include angular ve-
locity, rotor torque, and tower base forces and moments. For
most of the analyses presented in this paper, model M1 was
employed. This model is trained on a previously available

healthy dataset, D1, and serves as the primary reference. The
rationale for this approach is based on the practical constraint
that datasets containing anomalies rarely have a correspond-
ing healthy segment recorded immediately beforehand. As
such, training a model in real time using only the healthy
portion of a dataset that later exhibits an anomaly is typically
infeasible. Nonetheless, for comparative purposes, we also
evaluate model M3, which is trained on the healthy portion
of dataset D3, under the hypothetical assumption that similar
data had been recorded under identical conditions in advance.

Models M1 and M3 were configured with identical train-
ing hyperparameters, except for the number of training
epochs. Both models utilize a prediction horizon of a single
time step and a look-back to prediction ratio of n/m= 10,
corresponding to an input sequence length of 10 time steps.
The network architecture consists of a single hidden layer
with 100 neurons, trained using a batch duration of 60 s, a
learning rate of 0.001, and no dropout regularization. Model
M1 was trained for 60 epochs, whereas model M3 required
an extended training schedule of 1000 epochs. This increase
was motivated by the significantly shorter duration of train-
ing data available for M3, which span only from 70 to 119 s
due to the presence of an anomaly later in the dataset, as de-
tailed in Table 1.

Three combinations of anomaly detection criteria were
investigated. The symbols E and 1E refer to threshold-
exceeding conditions based on the model prediction error and
its time derivative, respectively. The detection logic tested in-
cludes the following:

1. 1E. The derivative of the error must exceed a threshold.

2. 1E ∨E. Either the error or its derivative must exceed
its threshold.

3. 1E∧E. Both the error and its derivative must simulta-
neously exceed their respective thresholds.

4 Results

4.1 Model performance during healthy conditions

The performance of the M1 model, in terms of the nor-
malized error and error derivative relative to their respective
threshold values, when tested against measured data during
healthy operations (D2), is shown in Fig. 10. When using
the lead principal component (i.e., 1PC variation of the M1
model), the error values were consistent throughout the test.
The MPC variation experienced a slight decline in error val-
ues as time progressed. As desired, both model variations ex-
hibited no predicted anomalies based on any of the exceeding
threshold criteria discussed.

4.2 Performance under synthetic anomaly realizations

Model M1 was tested on the synthetically altered variations
of D2 – datasets D(a1)

2 , D(a2)
2 , and D(a3)

2 – using both 1PC and
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Figure 7. 1PC histograms of the (a) error and (b) error derivative, generated by comparing the model with the training data, and the maximum
error/error derivative as the selected threshold.

Table 1. Dataset usage by models M1 and M3 for different tasks. Time intervals are in seconds.

Model Task Dataset(s) Interval

M1

Training D1 [100, 450]
Validation D1 (450, 675]
Error threshold D1 [100, 1000]
Testing D2, D(a1,a2,a3)

2 , D3 [100, 1000], [100, 350], (135, 190]

M3

Training D3 [70, 119]
Validation D3 (119, 135]
Error threshold D3 [70, 135]
Testing D3 (135, 190]

MPC variations. The results are presented in Fig. 11, where
the first row (Fig. 11a–c) shows the 1PC model responses,
and the second row (Fig. 11d–f) presents the MPC model
responses. The anomaly criterion selected for this analysis is
the joint condition (1E ∧E).

The 1PC variation demonstrates overall enhanced cover-
age (highlighted in blue) and reduced detection delay rela-
tive to the onset of the ground-truth anomaly (highlighted in
red). This is particularly evident in Fig. 12, which compares
detection delays for 1PC and MPC under various anomaly
scenarios. Although the MPC model includes more principal
components, this added information can dilute the influence
of specific anomalous channels, especially when the anomaly
is strongly represented in the leading component but has min-
imal contributions in subsequent components. Conversely, if
an anomaly were introduced in a channel with weak or near-
zero loading in PC1, its detection would likely require the
inclusion of additional components. Thus, while MPC offers
broader coverage across the feature space, it may also dis-

tribute the reconstruction error in a way that reduces sensi-
tivity to certain localized anomalies. Additionally, detection
performance generally improved with increasing severity of
the synthetically introduced anomaly. This is indicated in
Fig. 12, which shows detection delay in seconds between the
synthetically introduced anomaly and the predicted anomaly
by the models. The figure also shows a sensitivity analysis
of the models to the time step at which the data are sam-
pled. Small time steps (high sampling frequency) can reduce
anomaly detection delay but at the expense of computational
cost.

4.3 Pre-strike anomaly detection

During a high-rotor-angular-velocity test, D3, an unexpected
anomaly caused the rotor to accelerate rapidly. The resulting
increase in thrust forces caused significant blade deflection,
and within 4 s, one of the blades struck the tower, leading to
severe damage, as shown in Fig. 13.
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Figure 8. MPC histograms of the (a) error and (b) error derivative for the first five PCs, generated by comparing the model with the training
data, and the maximum error/error derivative per PC and the weighted average threshold.

Figure 9. Three experimental datasets and their variations in (a) angular velocities and (b) thrust forces.
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Figure 10. Error and error derivative curves between measured data and the M1 model during healthy D2 testing dataset conditions when
(a) a single or (b) multiple principal components are used.

Figure 11. Anomaly detection based on 1E∧E criterion during synthetically altered dataset variations in D2 and the M1 model detection
response, with (a) 1PC – D(a1)

2 , (b) 1PC – D(a2)
2 , (c) 1PC – D(a3)

2 , (d) MPC – D(a1)
2 , (e) MPC – D(a2)

2 , and (f) MPC – D(a3)
2 variations.

Models M1 and M3 were evaluated using both 1PC and
MPC variations. The normalized error and error derivative,
each scaled by their respective threshold values, are pre-
sented in Fig. 14. Anomalies are identified based on the joint
exceedance of both criteria (1E ∧E). As shown in the fig-
ure, the predicted anomaly region (blue) aligns well with the
ground-truth anomaly (red), demonstrating the efficacy of the
detection method. Additionally, anomaly conditions are de-
tected prior to the blade strike, suggesting that such models

could be used as preventive measures against consequential
incidents.

For all models, the error derivative remains below the
threshold prior to the anomaly, indicating that system be-
havior was consistent with healthy operation. However, the
1PC variation in model M1 shows threshold violations in
the error metric, E, before the onset of the actual anomaly.
This can be attributed to a mismatch in operating conditions:
M1 was trained on dataset D1, where the turbine operated at
significantly lower angular velocity, as illustrated earlier in
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Figure 12. Anomaly detection delay in seconds for M1 (both 1PC
and MPC variations) when tested during various altered D2 datasets
for two time step realizations.

Figure 13. Blade damage after blade–tower collision due to high
thrust forces.

Fig. 9a. This discrepancy introduces errors when applied to
data from D3, which exhibits 51 % higher angular velocity.

Notably, this premature threshold crossing is not observed
in the MPC variation of M1. By incorporating multiple prin-
cipal components, the MPC approach distributes the recon-
struction error across several components, thereby diluting
the influence of a mismatch from a single channel. This is
further supported by the principal component contribution
analysis in Fig. 4b, which shows that angular velocity θ̇ is
the dominant contributor to the leading principal component.
Consequently, in the 1PC case, discrepancies in angular ve-
locity have a large impact on the error.

Despite the error in M1 1PC exceeding the threshold prior
to the anomaly, the error derivative 1E remains within ac-
ceptable bounds, ensuring no false positive detection. When
model M3, trained on the healthy segment of dataset D3, is
used instead, the predicted anomaly coincides precisely with
the true event. This underscores the importance of matching
operating conditions between training and deployment for re-
liable anomaly detection.

5 Discussion

Table 2 summarizes the anomaly detection performance of
model M1 with its 1PC and MPC variations, evaluated
on the healthy dataset, D2; synthetically altered anomaly
datasets {D(a1)

2 ,D(a2)
2 ,D(a3)

2 }; and the blade–tower strike
dataset, D3. From these results, the following key observa-
tions can be made:

– The 1PC variation generally yields higher F1 scores
compared to the MPC variation (43 % enhancement un-
der 1E ∧E criterion).

– The combined threshold criterion 1E ∧E provides
the most consistent and reliable detection performance
across datasets.

– While the 1PC model achieves higher recall (R), the
MPC model tends to produce higher precision (P ).

Importantly, both model variations produce no false pos-
itive detections under healthy conditions (D2), regardless of
the threshold criterion employed. The 1PC model typically
reacts more rapidly to actual anomalies, as it is not con-
strained by the averaging of reconstruction errors across mul-
tiple principal components. This responsiveness contributes
to its higher recall scores. However, this same sensitivity can
lead to over-detection, which reduces precision. In contrast,
the MPC model’s error aggregation results in more conser-
vative detection behavior, improving its precision at the ex-
pense of some detection latency.

Figure 15 presents the relative percentages of true posi-
tives, false negatives, false positives, and true negatives for
model M1 across the same set of testing datasets. In the hor-
izontal bar charts, darker shades correspond to the presence
of anomalies in the data – hence their absence in the healthy
dataset D2. The sign of each classification outcome indicates
whether the model successfully detected an anomaly (posi-
tive) or failed to do so (negative). Color is used to convey
prediction quality and context: green denotes correct clas-
sifications, while red indicates incorrect ones. This visual
encoding effectively communicates both the correctness of
model predictions and the operational context in which they
occur, thereby emphasizing the model’s ability to distinguish
between healthy and anomalous system states.

The error derivative appears to be the dominant criterion
for accurate anomaly detection. As shown in Fig. 15, the
combined threshold criterion 1E ∧E results in fewer incor-
rect classifications (i.e., reduced red regions), whereas more
flexible criteria – where either the error or its derivative alone
exceeds the threshold – lead to increased misclassifications.
Notably, the reconstruction error E serves as a useful indica-
tor for identifying deviations due to previously unseen oper-
ating conditions. In contrast, the error derivative 1E is par-
ticularly effective in capturing abrupt transitions between the
reconstructed and measured signals, making it well suited for
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Figure 14. Anomaly detection based on the 1E ∧E criterion during the D3 anomaly dataset and model detection response of the (a) M1
– 1PC variation, (b) M1 – MPC variation, (c) M3 – 1PC variation, and (d) M3 – MPC variation.

detecting sudden-onset anomalies such as the one present in
this paper.

As for the incident dataset, D3, since the turbine operated
under different conditions than those in the training dataset
for the M1 model, the error was high. Therefore, using the
error derivative as an additional criterion helps with detecting
true positives. This is an important aspect of a good anomaly
detection model because most of the time the anomaly will
most likely occur under conditions that have not been seen
before.

It is ultimately up to the developer/operator to gather a cer-
tain number of anomaly points before activating an alerting
system or before acting upon it to limit disturbance to the
main testing campaign. The system could also be developed
such that the model can trace back to which of the channels
contributed to the anomaly based on the correlation matrix
calculated during PC analysis.

6 Conclusions

This study demonstrates the feasibility and effectiveness of
a multivariate long short-term memory (LSTM)-based re-
construction model for early anomaly detection in scaled
wind turbine experiments. By leveraging principal compo-
nent projections of healthy operational data, the model en-
ables robust monitoring through the reconstruction error and
its derivative. Various detection criteria were evaluated, in-
cluding threshold exceedance of the error E, its time deriva-
tive 1E, and their logical combination. Two models were
trained on distinct datasets, each evaluated using both sin-
gle and multiple principal component (1PC and MPC) varia-
tions.

The results indicate that the criterion combining both the
error and the error derivative (1E ∧E) yields the most con-
sistent and accurate anomaly detection performance across
test cases. The 1PC model offers superior responsiveness and
recall, making it well suited for identifying abrupt anoma-
lies, though at the expense of precision. In contrast, the MPC
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Table 2. Anomaly detection performance for models tested on datasets D2, D(a1)
2 , D(a2)

2 , D(a3)
2 , and D3, under different detection criteria:

1E, 1E ∨E, and 1E ∧E. n/a= not applicable.

Criterion Dataset
1PC MPC

T+ F− F+ T− P R FI T+ F− F+ T− P R FI

1E

D2 0 0 0 1800 n/a n/a n/a 0 0 0 1800 n/a n/a n/a
D(a1)

2 75 26 30 369 0.74 0.71 0.73 18 36 17 382 0.82 0.18 0.29
D(a2)

2 92 9 36 363 0.91 0.72 0.80 70 31 18 381 0.80 0.69 0.74
D(a3)

2 95 6 38 361 0.94 0.71 0.81 88 13 32 367 0.73 0.87 0.80
D3 49 2 4 125 0.96 0.93 0.94 30 21 0 129 1.00 0.59 0.74

1E ∨E

D2 0 0 0 1800 n/a n/a n/a 0 0 0 1800 n/a n/a n/a
D(a1)

2 90 11 30 369 0.89 0.75 0.81 64 37 8 391 0.89 0.63 0.74
D(a2)

2 95 6 36 363 0.94 0.73 0.82 81 20 18 381 0.82 0.80 0.81
D(a3)

2 97 4 38 361 0.96 0.72 0.82 90 11 32 367 0.74 0.89 0.81
D3 51 0 129 0 1.00 0.28 0.44 51 0 121 8 0.30 1.00 0.46

1E ∧E

D2 0 0 0 1800 n/a n/a n/a 0 0 0 1800 n/a n/a n/a
D(a1)

2 65 36 21 378 0.64 0.76 0.70 18 83 1 398 0.95 0.18 0.30
D(a2)

2 87 17 28 371 0.83 0.75 0.79 65 36 17 382 0.79 0.64 0.71
D(a3)

2 89 12 32 367 0.88 0.74 0.80 81 20 25 374 0.76 0.80 0.78
D3 49 2 4 125 0.96 0.93 0.94 30 21 0 129 1.00 0.59 0.74

Figure 15. Percentage of true positive, false negative, false positive, and true negative occurrences when testing the M1 model for the
various testing datasets.

model exhibits greater robustness to false alarms due to its
conservative aggregation of the reconstruction error. Impor-
tantly, both model variations demonstrated zero false posi-
tives when applied to healthy test data, underscoring their
reliability for real-time deployment.

This work serves as a proof of concept that simple, inter-
pretable, and computationally efficient techniques can be de-
ployed to enhance safety and operational awareness during
laboratory-scale wind turbine testing. The approach holds
promise for extension to ocean-based and full-scale wind en-
ergy systems, where early anomaly detection is critical for
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preventing equipment failure and improving system reliabil-
ity during experimental campaigns and operational phases.
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