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Abstract. In the last few years, the dynamical characterization of the power output of a wind turbine by means
of a Langevin equation has been well established. For this approach, temporally highly resolved measurements of
wind speed and power output are used to obtain the drift and diffusion coefficients of the energy conversion pro-
cess. These coefficients fully determine a Langevin stochastic differential equation with Gaussian white noise.
We show that the dynamics of the power output of a wind turbine have a hidden dependency on the turbine’s dif-
ferent operational states. Here, we use an approach based on clustering Pearson correlation matrices for different
observables on a moving time window to identify different operational states. We have identified five operational
states in total, for example, the state of rated power. Those different operational states distinguish non-stationary
behavior in the mutual dependencies and represent different turbine control settings. As a next step, we condition
our Langevin analysis on these different states to reveal distinctly different behaviors of the power conversion
process for each operational state. Moreover, in our new representation, hysteresis effects which have typically
appeared in the Langevin dynamics of wind turbines seem to be resolved. We assign these typically observed
hysteresis effects clearly to the change of the wind energy system between our estimated different operational

states.

1 Introduction

Wind turbines have become a significant source of renewable
energy due to their environmentally friendly nature and po-
tential to generate electricity (Ackermann and Soder, 2002;
Hannan et al., 2023). Analyzing their energy conversion pro-
cess (Yaramasu et al., 2015) can be challenging due to the
intricate nature influenced by various factors, including wind
speed, turbulence, and mechanical wear. Nonetheless, a pre-
cise understanding of the dynamics of wind turbines is criti-
cal to simulate and consequently optimize their energy output
and detect malfunctions (Wichter et al., 2011).

Recently, the Langevin equation approach has been used
to study the dynamics of wind turbines (Tabar, 2019; Miicke

et al., 2015; Milan et al., 2010; Raischel et al., 2013; Lind
et al., 2017). To capture the dynamics of the energy conver-
sion process using this approach, highly resolved temporal
measurements of wind speed and power output are employed
to determine the drift and diffusion coefficients. These co-
efficients characterize both the deterministic and stochastic
behaviors of the system. However, this approach assumes a
quasi-stationary system and does not consider the potential
impact of different operational states.

We employ k-means clustering, an established unsuper-
vised machine method to a set of Pearson correlation ma-
trices. This type of approach was first put forward in Miin-
nix et al. (2012) for financial correlation matrices and is now
also used in other fields, such as traffic science (Wang et al.,
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2021, 2022, 2023). The method was further shaped and ex-
tended in Heckens et al. (2020), Pharasi et al. (2020), Pha-
rasi et al. (2021), and Heckens and Guhr (2022). Here, we
employ recent progress on clustering structures for correla-
tion matrices of wind turbines (Bette et al., 2023; Jungblut
et al., 2025). By analyzing different observables over a mov-
ing time window, they identified various operational states,
which distinguish non-stationary behavior in the mutual de-
pendencies and represent different turbine control settings.
The dynamics of these operational states have been studied
in Bette et al. (2023), utilizing a Langevin ansatz to compre-
hend the deterministic behavior, enhancing the comprehen-
sion of the transition between these states.

This study employs the method of Bette et al. (2023) to
identify and distinguish various operational states of the wind
turbine, which are then used to condition the Langevin anal-
ysis. The analysis reveals unique behavior patterns in the
power conversion process corresponding to each operational
state and thus also successfully resolves hysteresis effects
commonly observed in the power conversion process of wind
turbines (Miicke et al., 2015; Lin et al., 2023).

2 Hysteresis effects in the power conversion
process of wind turbines

Hysteresis effects are a significant phenomenon observed in
the operational dynamics of wind turbines, particularly evi-
dent in high-frequency Supervisory Control and Data Acqui-
sition (SCADA) data during the power conversion process.
These effects arise primarily from two interrelated factors:
the switching of operational states and the stochastic nature
of wind.

In order to ensure the safe operation of wind turbines, con-
trol strategies are implemented which actively regulate the
power output and trigger different operating states depending
on the most recent history of the same wind speed. To avoid
instability in the view of rapid fluctuations, robust control
strategies induce delayed switching between a finite number
of operating states.

The switching of operational states, which occurs in re-
sponse to varying wind conditions, leads to a nonlinear re-
sponse in turbine performance. For instance, when wind
speed fluctuates, turbines may transition between modes
such as cut-in, rated, and cut-out states. This switching can
result in distinct performance paths during wind acceleration
and deceleration. Consequently, the system exhibits hystere-
sis, where the output power does not return along the same
trajectory when wind conditions reverse, leading to discrep-
ancies in expected versus actual power generation.

In our analysis, we specifically condition the dynamics on
the operational state rather than examining the transitions be-
tween them. This approach is crucial, as it reveals that the
dynamics of the power conversion process are intrinsically
linked to the operational state in which the turbine is func-
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tioning. Without conditioning on operational states, the anal-
ysis of the dynamics of the power conversion process yields a
mixed average of dynamics across different states, effectively
diluting the unique characteristics associated with each oper-
ational condition. By separating the data according to oper-
ational states, we can derive the distinct dynamics pertinent
to each state. This granularity enables us to identify multi-
ple stable fixed points at various wind speeds, corresponding
to different operational states. Importantly, this methodology
clarifies the hysteresis effects induced by the switching of op-
erational states. By isolating each state, we can observe how
these stable fixed points shift in response to changes in wind
conditions, thereby resolving the complexities of hysteresis
that may otherwise obscure our understanding.

The random fluctuations of the wind can trigger noise-
induced transitions, causing the system to shift from one sta-
ble state to another, even when the drift term indicates stabil-
ity in the original state.

3 Dataset

The data utilized in this study are sourced from the SCADA
system of a Vestas V90 turbine located in the Thanet off-
shore wind farm. These measurements were recorded at ap-
proximately 5 s intervals throughout the year 2017. To ensure
consistent time stamps and a stable frequency, the data were
aggregated by averaging over 10 s intervals. It is important to
note that if no measurements were obtained within the orig-
inal 5 s interval, the aggregated dataset may contain missing
data during the corresponding 10s interval. In this study we
rescaled the ActivePower and the WindSpeed values.

The dataset under analysis comprises six variables, namely
the following:

ActivePower — generated active power;

CurrentL1 — generated current (chosen from one of the
three phases due to no deviations in the data);

RotorRPM - rotations per minute of the rotor;

GeneratorRPM — rotations per minute of the high-speed
shaft at the generator;

BladePitchAngle — blade pitch angle of the blades;

WindSpeed — wind speed.

Our expectation for the V90 turbine is a shift in control
strategy as the wind speed changes. This shift includes tran-
sitioning from a low wind speed regime with variable rota-
tion speed and increasing power to an intermediate regime
with constant rotation and increasing power and finally to a
rated region with constant rotation and constant power. The
selection of the above six variables allows us to effectively
track these operational state changes.
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4 Correlation matrix states

In order to track the operational state of a turbine, we employ
a method presented in Bette et al. (2023). Pearson correla-
tion matrices are calculated for moving windows with non-
overlapping time intervals called epochs to obtain a time se-
ries of correlation matrices. These are clustered to find struc-
turally different operational states and thereby a time series
S(t), which offers us the current operational state.

For this calculation we use all variables presented in
Sect. 3. Each of these variables is represented by a time se-
ries X;(t), where [ =1,...,6 represents the different vari-
ables,and t = 1, ..., Tyq is the time variable. To capture non-
stationarity we separate the whole time series into disjoint
intervals A of length T = 30 min.

The 30min time span represents a compromise. The
choice of T depends on the specific system being analyzed,
as it must balance two competing factors: accuracy and sta-
tistical uncertainty. A larger T improves statistical reliability
by averaging over more data points, reducing noise. How-
ever, longer time windows can obscure short-term dynam-
ics and fail to capture rapid changes in the system. Con-
versely, smaller T values provide higher temporal resolution
but may introduce greater statistical uncertainty due to fewer
data points. In our approach, we select T based on a trade-off
that best captures the system’s dynamics while maintaining
a reasonable level of statistical accuracy. Given that exter-
nal factors, such as wind, can change on timescales ranging
from minutes to hours, shorter epochs are required to cap-
ture the non-stationarity. Such trade-offs are common when
working with time series of correlation matrices. ¢ represents
the starting time of an interval A.

Next, we normalize each time series in every interval to
zero mean and a standard deviation of 1 by

m@)=(Xe<t'<e+T), I=1,..,L, texr (1)

01(0) = (X&) — i t)Ple < ' < £+ 7) o
[=1,..,L, tex

Gl(t):w I=1,...K, 3)

oy(t)

with ©;(¢) and oy(¢) being the mean value and the standard
deviation of variable / in the interval A with a starting time
e. By arranging the variable time series in each epoch in a
L x T data matrix,

" Gi(e) Gi(e+T—-1) 7
G = | Gi(e) Gele+T—1) |- “4)
[Gi(e) ... Gre+T—1)
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Figure 1. Visualization of the data and the operational states: scat-
ter plot with color-coded markers based on the operational state and
contour lines based on the density (see Appendix A) to show the
borders of each operational state.

We calculate the correlation matrix in the interval A:
1
Co)=7GMG G . (5)

Here, GT(1) denotes the transpose of G(A). Each matrix el-
ement C;;(1) is the Pearson correlation coefficient between
the variables i and j in the interval A.

We apply hierarchical k-means clustering to find recurring
states in our system. The algorithm is a divisive clustering
that splits by applying standard k-means with k = 2. In each
step, the cluster with the largest internal distance to its own
center is split. Hence, we must define a distance d(A, \) be-
tween the correlation matrices for intervals A and A’

d(, ) = Z(Cij(?») = Cij(W)? = [IC) = CA)| . (6)
iJ

The center of cluster s is calculated as the element-wise
mean a-j () =(Cij(M)IS(A) = 5)). S(2) is the function which
results in the cluster s for any time stamp ¢ assigned by the
algorithm to the interval A that contains . A more detailed
description of the clustering procedure is found in Bette et al.
(2023).

We visualize the different states of the power output for
our dataset in Fig. 1.

An open question is the possible existence of operational
states of complete wind farms, which could be investigated
following a similar methodology. The results could poten-
tially support the operation of wind farms, namely wind farm
control.

While we focused on linear correlations in this study,
which offer a simple and effective first-order approach, we
acknowledge that the system’s nonlinearity may suggest
the potential for more advanced methods. Techniques such
as mutual information or Granger causality could provide
deeper insights into the relationships between variables.
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5 Estimation of the Kramers—Moyal coefficients

In the context of stochastic differential equations, the en-
semble dynamics of a stochastic process can be described
using the Kramers—Moyal coefficients. The first coefficient
represents the drift, which indicates the average tendency of
the system to move in a certain direction. This drift reflects
trends that would be considered the backbone in a determin-
istic model approach. The second coefficient corresponds to
the diffusion, capturing the variance of the random fluctua-
tions or noise in the system. This diffusion coefficient quan-
tifies how much the possible states of the process can spread
out over time due to these random influences.

We start with the traditional approach to model the power
conversion process,

P(O)luy=u = DS (P(1),u)++/ DL (P(1),u)-T(0),  (7)

of a wind turbine in terms of a stationary Langevin equation
(Risken, 1996; Wichter et al., 2011; Raischel et al., 2013;
Tabar, 2019). Here, the power output P(¢) is modeled as a
1-dimensional stationary stochastic process for a fixed wind
speed . We assume a Gaussian-distributed, delta-correlated
noise ['(#) with zero mean and a variance of 2.

Analytically, the nth order conditional moments of the
power output,

M (P, u, ©) = (Ar PO P(ty=P uty=u> (8)

can be derived with expectation value of the increments to
the power of n A; P(t)" = (P(t +t) — P(t))" over the time
step 7 at the specific state (P, u) (Risken, 1996; Tabar, 2019).

With the nth conditional moments, the nth Kramers—
Moyal coefficient,

M (P,u,7)

(n) :
Dy’ (P,u) = lim
P ( ) T—0 n'-t

, C))

can be calculated (Risken, 1996; Tabar, 2019).

We consider a 2-dimensional dataset (P, u) with N data
points with a uniform sampling interval ty = 1/ f;. Further-
more, we define t,, = m - t5, where m € N. With this defi-
nition, we can calculate the increments of the power output
over a time lag 1, with

A, Pi=Py—P. (10)

To estimate the nth conditional moment M]()")(P,u, Tm),
we employ the Nadaraya—Watson estimator with a 2-
dimensional kernel K, ;(x,y)=k,(x)-kp(y) (Nadaraya,
1964; Epanechnikov, 1969; Silverman, 1986). This kernel
can be represented as the product of two 1-dimensional ker-
nels. For the first conditional moment, we can calculate the
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weighted average of the power output increments using
A N—m
M (Pou,t) =Y " (A, P!
Ka (B2 4t (1

N—m Pi—P uj—u ’
Zj:l Ka,h( hp Iy

These weights in our specific case are determined by the
states P and u, as well as the kernel functions k,(x) and
kp(x), along with the bandwidths for power output (kp) and
wind speed (hy).

There are plenty of different kernel functions which are
useful for different scenarios.

The Epanechnikov, Gaussian, and rectangular kernels are
three commonly used kernel functions in non-parametric es-
timation and smoothing techniques (Epanechnikov, 1969).
Each of these kernels has distinct properties that impact their
use and the resulting estimation or smoothing outcomes. We
summarize the three most commonly used kernels in Table 1.

The choice between these kernels depends on the spe-
cific characteristics of the data and the desired properties of
the estimation or smoothing procedure (Wied and Weil3bach,
2012). The Epanechnikov kernel,

2

X)=
E 0. x| > 1,

(12)
is often favored when robustness and efficiency are important
and when a localized smoothing effect is desired. The Gaus-
sian kernel is popular for its smoothness and computational
efficiency. The rectangular kernel is suitable when simplicity
and computational efficiency are prioritized, but it may not
handle outliers or extreme values as the other kernels. In this
study, we use a Epanechnikov kernel function (Eq. 12).

At least as important as the kernel function is the related
bandwidth (Nadaraya, 1965; Jones et al., 1996; Scott, 2010;
Silverman, 1986). For the analysis of large structures (macro-
scale structures), large bandwidths should be used. How-
ever, with larger bandwidths, the small structures (micro-
scale structures) are no longer visible. For a more compre-
hensive understanding of bandwidth selection for estimating
Kramers—Moyal coefficients, we recommend consulting the
study (Wiedemann et al., 2024). As for this study, 2- and 3-
dimensional estimation is necessary; a rigorously optimized
bandwidth such as in Wiedemann et al. (2024) is unfortu-
nately not applicable. We therefore used the bandwidths ac-
cording to the IEC 61400-12-1 (IEC, 2005). The bandwidth
hy for the wind speed is Ims~!, and the bandwidth for
the power hp is 100 kW. These bandwidths should be ad-
justed based on the given dataset (larger bandwidths for a
smaller dataset, smaller bandwidths for a larger dataset). For
the dataset we used, we found that these bandwidths, in con-
junction with the Epanechnikov kernel, yield fully reliable
results.

https://doi.org/10.5194/wes-10-2489-2025
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Table 1. Description of different kernel functions.
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Name Shape Kernel function k(x) with bandwidth &
o . L, if|x[<h
Rectangular Constant value within a fixed interval that .
drops abruptly to zero outside that interval 0, iflx|>n
Gaussian Bell-shaped curve, characterized by a exp (—0.5 . (%)2>
smooth and continuous decline in values
away from the center
2 . 1
1—(5)", iflx|<+¢
Epanechnikov Flat and symmetric shape resembling a { (h) ) el < }1’
parabola, with its maximum value at the (0> if [x] > 7

center that transitions to zero outside that

interval

We assume that the nth conditional moments M (”)(P, Uu,T)
are linear for small time steps 7. We can estimate the
Kramers—Moyal coefficients,

1 & mmp
Z ( 7u’7:m)’ (13)

bl(an)(Ps I/i) =

M n!'-1,

m=1
by averaging the nth conditional moments divided by the
used (small) time step 7, times n factorial (Tabar, 2019). It
can also make sense to give smaller m values higher weight.
We employed M =3 for this particular dataset, yielding
meaningful outcomes.
We can determine the fixed points Py(u) of the system
(Wichter et al., 2011). These fixed points correspond to val-
ues of P at which the drift term becomes zero:

DY (Py,u)y=0, (14)

indicating an equilibrium state.

Furthermore, in order to assess the stability of these fixed
points, we examine the derivative of the drift at the fixed
point. If the derivative is negative, it signifies that the fixed
point is stable:

diP Py, u) < 0. (15)
The derivative of the drift at the fixed point plays a crucial

role in understanding the stability of the fixed point as well

as providing valuable insights into the mean reversal time.

When studying the stability of a fixed point, we are inter-
ested in how the system responds to small perturbations of its
equilibrium state. The derivative of the drift provides infor-
mation about the local behavior of the system near the fixed
point.

As said before, if the derivative of the drift evaluated at the
fixed point is negative, it indicates that the fixed point is sta-
ble. In this case, any small disturbances from the equilibrium
will eventually dampen out, and the system will return to its
steady state. On the other hand, if the derivative is positive,
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the fixed point is unstable, and even the slightest perturba-
tions will cause the system to diverge from the equilibrium.
Additionally, the derivative of the drift defines the mean re-
versal time of a system.

We make the assumption that the operational states S(z)
of the wind turbine can only take discrete values, specifi-
cally S(r) €[1,2,3,4,5] (which is related to the five iden-
tified clusters). Furthermore, we consider that both the drift
and diffusion coefficients depend on the turbine’s operational
state. By incorporating this additional condition, we can re-
formulate the Langevin equation for the power conversion
process using

d 1
P(Olutry=u.5t)=s =D (P(0),u, S)

+/DP(P@),u,S) - T().

The numerical approach can be derived in a similar man-
ner as before. The only distinction is that we employ a 3-
dimensional kernel K, p (x, y, 2) = kq(x) - kp(y) - ko(2). Due
to the discrete values of the operational state, we can utilize
a dedicated Boolean kernel function.

(16)

kBom(x):{l x=0 17)
0 x#0

We use
A N7
My (Pu, S, Ty =) " (A, P
Ka ool (B2, 5522, 51 = 5) (18)

’ N—m Pi—P uj—u
Zj:] Ka,b,bool (T’ “hy ? Sj -5

to estimate the nth conditional moment at a specific state (P,
u, S). With these conditional moments, we are able to obtain
the Kramers—Moyal coefficients in a similar manner to that
shown above.

Wind Energ. Sci., 10, 2489-2497, 2025




2494

Without separation State 1
a 1.0 |||||-;~ Q
° |“W' -
2os s 2 " "
3 il 3 ol positive
3 il 3 kil
0.0 rescaled u rescaled u
State 2 State 3
a 1.0 Q.
ks N ki =
© 0.5 ol © 0 =
9] il o} o
$ .l':l'l g
= 0.0 — =
rescaled u rescaled u
State 4 State 5
a 1.0 Il"n;;- a 5
2 Al i 5 )
© 0.5 .iIIlII < negative
o o
o 13
O'%.O 0.5 1.0 0.0 0.5 1.0
rescaled u rescaled u

Figure 2. This figure illustrates the drift maps of the power con-
version process, categorized by turbine states. The drift values are
depicted using a color-coded scheme, with a corresponding color
bar provided on the right-hand side for reference.

6 Stochastic analysis of the power conversion
process

In this section, we elucidate the outcomes of our investiga-
tion into the wind turbine power conversion process using
the Kramers—Moyal coefficients, considering scenarios both
with and without separation per operational state. Our pri-
mary focus centers on analyzing the drift and diffusion values
governing the power output of a wind turbine. To deepen our
understanding, we extend the analysis to include the compu-
tation of fixed points, their associated stability, and the dif-
fusion values at these fixed points, revealing the nuanced dy-
namics intrinsic to diverse operational states.

The calculated drift values of the power output, as depicted
in Fig. 2, reveal a familiar pattern observed in prior studies
without operational state separation (Wichter et al., 2011;
Miicke et al., 2015; Milan et al., 2010). The top-left plot il-
lustrates typical behavior in the power conversion process.
Significant differences emerge when comparing drift maps
for distinct operational states. Notably, a clear contrast is ev-
ident when analyzing state 2 against state 4, particularly at
rescaled wind speeds (u) of approximately 0.4 —0.5. Similar
variations are observed when comparing state 4 and state 5.

To deepen the analysis, we calculate stable fixed points
and their derivatives. Figure 3 depicts stable fixed points per
wind speed, highlighting disparities, particularly in regions
characterized by rescaled u values around 0.4 — 0.6 across
different operational states. Multiple stable fixed points are
identified for a given wind speed, with states 1 and 2 display-
ing relative similarity. In contrast, significant differences are
observed in other states, confirming the presence of hystere-
sis effects within the system dynamics (Miicke et al., 2015;
Lin et al., 2023). The absence of multiple fixed points per
wind speed without operational state separation is attributed
to the choice of a relatively high bandwidth during the esti-
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Figure 3. Rescaled stable fixed points Py of the power output in
relation to the rescaled wind speed. The fixed points are categorized
based on the operational states, with each state distinguished by a
distinct color.

mation process for Kramers—Moyal coefficients. This, cou-
pled with the use of a kernel function and the distribution of
operational states, may have led to a more aggregated repre-
sentation of the system dynamics.

We further explore the stability of these fixed points
through the derivatives if the drift at the fixed points. Figure 4
illustrates the derivatives of the drift at stable fixed points per
wind speed. Negative values signify stable fixed points, with
larger absolute values indicating a shorter mean reversal time
towards the fixed point. Comparing derivatives for different
operational states reveals similarities for states 1, 2, 3, and
4 across rescaled u values of approximately 0.0 — 0.6. How-
ever, a significant change occurs for state 4 around u ~ 0.6,
aligning it with state 5. Notably, at u ~ 0.5—0.6, clear differ-
ences emerge, with values for state 5 consistently lower than
those for other states.

We extend our analysis from the deterministic parts of the
behavior the calculation of the diffusion coefficients. The
results are presented in Fig. 5. Without operational state
separation, diffusion values are generally smaller near fixed
points than towards the edges. Small diffusion values are ob-
served at rated wind speeds (# > 0.5) and lower power values
(P < 0.4). Differences between the diffusion values for dif-
ferent states are identified across various wind speeds, with
states 1 and 2 exhibiting similarities, particularly around u
between 0.4 and 0.6.

In dynamical systems, the presence of a diffusion term can
significantly impact the location of stable fixed points iden-
tified through the drift term. While the drift term typically
defines the deterministic dynamics of the system, the diffu-
sion term accounts for random fluctuations and noise, which
can induce transitions between these fixed points.

When noise is introduced, it may alter the effective land-
scape of the system, potentially shifting the positions of sta-
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Figure 4. Derivative of the drift at the stable fixed points of the
power output in relation to the rescaled wind speed. The derivatives
are categorized based on the operational states, with each state dis-
tinguished by a distinct color.
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Figure 5. Diffusion maps of the power conversion process, cate-
gorized by turbine states. The diffusion values are depicted using
a color-coded scheme, with a corresponding color bar provided on
the right-hand side for reference.

ble fixed points. This phenomenon can lead to noise-induced
transitions, where the system, under the influence of stochas-
tic perturbations, may escape from one stable state and tran-
sition to another, even if the drift term suggests stability in
the original state.

Further analysis involves the calculation of diffusion val-
ues at the stable fixed points conditioned on wind speeds,
visualized in Fig. 6. Notably, here, we compare the diffusion
values for the same wind speeds but different power values.
States 1 and 2 exhibit similarity, while significant differences
are observed across all other states, especially for u between
0.4 and 0.6. The diffusion values for state 5 are smaller than
those for other states at # smaller than 0.6.

The diffusion analysis further underscores distinctions in
the behavior of state 5 compared to other states, particularly
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Figure 6. Diffusion values at the fixed points of the power out-
put in relation to the Rescaled wind speed. The diffusion values are
categorized based on the operational states, with each state distin-
guished by a distinct color.

at wind speeds below 0.6. The smaller diffusion values for
state 5, coupled with the reduced derivatives at the fixed
points, contribute to diminished fluctuations around these
stable fixed points of the power time series of state 5 in com-
parison to other states at wind speeds below 0.6. In contrast,
state 2 exhibits higher diffusion values at the fixed points for
wind speeds between 0.4 and 0.55 than the other states. Hav-
ing high diffusion values at the fixed points and similarities
in derivative values with states 3 and 5 results in higher fluc-
tuations for these wind speeds when compared to all other
states.

7 Conclusions

In this study, we successfully applied a method to estimate
the dynamics of the power conversion process while taking
into account different operational states, identified using a
correlation matrix algorithm (Bette et al., 2023) to take non-
stationarity into account. Our analysis revealed distinct dy-
namics associated with each operational state in the power
conversion process, emphasizing the significant influence of
these states on the overall behavior of the system.

We successfully resolved hysteresis effects within the
power conversion process. When separating per operational
state, distinct fixed points per wind speed are visible. With-
out accounting for states, these are averaged out into one
fixed point per wind speed. The presented analysis also al-
lows us to identify differences in the dynamic behavior of
states. State 5, representing rated power production, dis-
played a much more stable behavior, with fewer fluctuations
than other states. This even remained true for wind speed val-
ues where state 5 overlaps with other states.

The results clearly show that it is possible to enhance
existing methods by considering the operational states de-
scribed. The analysis concept does not need to change much
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but rather only takes the automatically detected operational
state as a distinction parameter for multiple subanalyses with
the original method.

Appendix A: Operational state contour lines
To represent the distribution of operational states visually, we
utilize kernel density estimation given by

N

[ (wo, Py, So) =Zi:

. P, — Py u; —ug S _s (AD
hP ’ I,th » M1 0 M

1 Kgauss,gauss,bool

Contour lines are then generated using the formula:

1, p(uo, Py, So) = po.

A2
0, else (A2)

f(uo, Po, So) = {

Here, py is a predefined threshold (set at 20).
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