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Abstract. Offshore wind turbines are crucial for sustainable energy production but face significant challenges
in operational reliability and maintenance costs. In particular, the scalability and practicality of failure detection
systems are a key challenge in large-scale wind farms. This paper presents a scalable, comprehensive approach to
failure prediction based on the normal behavior modeling (NBM) framework that integrates three components: a
cloud-based pipeline, an undercomplete autoencoder for temperature-based anomaly detection, and a time-aware
anomaly filtering method. The pipeline enables dynamic scaling and streamlined deployment across multiple
wind farms. The autoencoder was trained exclusively on healthy 10 min SCADA data and produces detailed
anomaly scores that serve as the input for our filtering technique. It was trained on 4 years of data from a
large offshore wind farm in the Dutch-Belgian zone and achieved unhealthy-healthy (UHH) ratios of up to
1.69 and 1.21 for the generator and gearbox models, respectively. The filtering method refines the raw anomaly
scores by comparing turbine signals to a windowed fleet median. By aggregating scores via sliding windows and
employing robust distance metrics, the method reduces the volume of anomaly scores by up to 65 % without
sacrificing predictive accuracy. This selective filtering effectively minimizes noise and non-relevant anomalies,

enhancing the efficiency of maintenance analysis.

1 Introduction

Global initiatives to mitigate climate change and the need
for sustainable energy production are driving the increasing
focus on renewable energy sources (Gielen et al., 2019). Oft-
shore wind turbines, in particular, play an essential role in
this transition due to their ability to harness the strong and
relatively consistent wind resources available at sea. How-
ever, the operational reliability of these turbines is crucial for
maintaining the economic viability of wind farms (Dao et al.,
2019). Unplanned maintenance and downtime contribute sig-
nificantly to overall operating costs for offshore wind farms,
accounting for up to 30 % of the levelized cost of energy

(LCoE) (Stehly et al., 2020). Consequently, improving main-
tenance strategies is essential for reducing costs and enhanc-
ing the economic sustainability of offshore wind energy.
Advancements in turbine design and the increasing avail-
ability of sensor data have made condition monitoring sys-
tems an effective component of offshore wind turbine main-
tenance (Helsen, 2021). Supervisory control and data acqui-
sition (SCADA) systems, in particular, enable the continu-
ous monitoring of turbine performance, facilitating the early
detection of faults. This proactive approach enables predic-
tive maintenance, allowing operators to implement strategies
that reduce the likelihood of catastrophic failures, optimize
maintenance schedules, and minimize associated costs. One
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prominent approach in this domain is normal behavior mod-
eling (NBM), which uses historical data to establish models
of expected system behavior and flags deviations from the
predicted behavior as potential anomalies (Chesterman et al.,
2023).

However, the scalability and practicality of failure de-
tection systems remain key challenges in large-scale wind
farms. As more offshore wind farms come online to support
the growing demand for renewable energy (Diaz and Soares,
2020), the sensor data generated by monitoring systems in-
crease proportionally. Processing these data efficiently is cru-
cial to ensuring timely and accurate fault detection. An an-
swer to this issue is the development of scalable and mod-
ular systems, which are particularly advantageous, as they
enable seamless integration of new turbines and data streams
while maintaining adaptability through hyperparameter op-
timization or manual configuration changes. Such systems
can also enable continuous improvement in predictive mod-
els through methods such as fine-tuning and transfer learn-
ing. However, the question of how to process the growing
amount of data is not the only issue. The increase in input
data inherently leads to a proportional growth in the volume
of results. In the context of failure prediction using normal
behavior modeling (NBM), this results in the generation of
a prediction for each relevant signal and each turbine. Given
the many turbine components that need to be examined reg-
ularly to facilitate predictive maintenance practices, analyz-
ing the resulting large number of predictions is challenging.
This underscores the necessity for automated postprocessing
and filtering mechanisms to reduce noise and systematically
highlight meaningful and useful observations.

This paper investigates an approach that compiles mul-
tiple predictions of anomaly detection methodologies and
combines them into more reliable outcomes. Specifically, we
propose a scalable methodology that integrates state-of-the-
art SCADA-based anomaly detection using temperature sig-
nals with a statistical approach to filter the resulting anomaly
scores to decrease false positives. We start by introducing a
temperature-based NBM anomaly detector utilizing an au-
toencoder model trained on 10 min SCADA data. We then
develop a robust and scalable pipeline capable of using this
detector to process multiple wind farms with diverse param-
eterizations, enabling extensive performance evaluation. Fi-
nally, we propose a computationally efficient, time-aware fil-
tering technique that employs the fleet median as a refer-
ence point to remove non-relevant anomalies, enabling bet-
ter, faster, and more automated alarming.

We start with an implementation of the NBM frame-
work; we chose this method due to its widespread use and
proven capability (Chesterman et al., 2023). For the model,
we used an autoencoder trained exclusively on healthy data.
To give the model more robustness against anomalous data
(unhealthy data) that might not have been filtered from the
healthy data during preprocessing, an undercomplete archi-
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tecture (which means that the latent space is of a lower di-
mensionality than the input/output space) is used.

With this anomaly detector as a base, we turn toward the
scalability problem in training, utilization, and fine-tuning.
Our answer to this issue is a scalable pipeline that can quasi-
automatically manage our autoencoder-based NBM or any
other NBM, as long as it adheres to the general NBM frame-
work. This pipeline architecture supports cloud-based im-
plementation, facilitating ease of deployment and dynamic
scaling to ensure optimal performance under diverse opera-
tional conditions. This helps during training and inference,
enabling us to easily change configurations, experiment with
different models and parameters for different farms and ma-
chines, and run automatic hyperparameter optimization. As it
is cloud based, horizontal scaling is straightforward, allowing
additional instances of the entire pipeline to be deployed as
needed. We used this pipeline to train and process data from
two farms, investigating different models and parameters.

Finally, we examine the output of the NBM. Our
autoencoder-based NBM was applied to 10 min SCADA data
collected over approximately 4 years from a large wind farm
in the Dutch-Belgian offshore zone, which has experienced
several gearbox and generator failures. This resulted in a sub-
stantial number of anomaly scores: with 16 predicted signals
per turbine, we generated over 320 time series with hourly
resolution, each spanning four years. Since most anomalies
are irrelevant when predicting generator or gearbox failures
(due to model noise, natural weather-related variations, or
their lack of association with the component failures of in-
terest), we desire the ability to remove these non-relevant
anomalies to facilitate and enhance analysis. To do this, we
make the assumption that at any given time, most turbines in
the fleet exhibit normal behavior. To define this, we use the
raw anomaly scores to construct a windowed, multidimen-
sional fleet median per signal as a representation of normal
behavior. We infer from this that turbines whose signal re-
mains close to this fleet median for a certain time window
can be considered to exhibit normal behavior, allowing us
to discard the corresponding anomaly scores for that time
window. We evaluate several combinations of distance cal-
culations and thresholding techniques and find that we can
filter out up to 65 % of the raw anomaly scores while the
adjusted scores still retain equivalent predictive power. This
significantly accelerates both manual and automated analy-
sis, thereby improving the efficiency of alarming. In addi-
tion, since this method is purely subtractive, the likelihood
of a false positive is, at worst, the same as with the original
anomaly scores.

In summary, this work aims to enhance our ability to per-
form failure prediction at scale by developing a scalable
pipeline for NBM failure detection and implementing effi-
cient anomaly score filtering techniques, which improves the
operational reliability and operating costs of offshore wind
farms and ultimately contributes to the broader goal of sus-
tainable and cost-effective renewable energy production.
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The organization of this paper is as follows. We briefly ex-
amine some related work in the following section (Sect. 2);
in the subsequent Methodology section (Sect. 3), we begin
with the anomaly detector (Sect. 3.1) by first introducing the
general NBM framework followed by a description of our
autoencoder-based implementation. After this, we present
the scalable pipeline (Sect. 3.2) before describing the various
methods employed in the filtering of anomalies (Sect. 3.3).
In the Results section (Sect. 4), we show the performance of
our autoencoder-based NBM (Sect. 4.3) and anomaly filter-
ing method (Sect. 4.4). Finally, we present our conclusions
and discuss potential future directions in Sect. 5.

2 Related work

The growing need to optimize the operational reliability of
offshore wind turbines has led to significant advancements in
predictive maintenance, condition monitoring, and anomaly
detection. Early work in this area focused on supervisory
control and data acquisition (SCADA) systems (Yang et al.,
2013), which allow for continuous monitoring of turbine per-
formance and the early detection of failures. SCADA-based
condition monitoring has been a fast-growing field (Tautz-
Weinert and Watson, 2017b; Maldonado-Correa et al., 2020),
and failure prediction, specifically, has developed several ap-
proaches (Black et al., 2021).

One of the most prominent approaches is normal behav-
ior modeling, where models of expected system behavior are
created using historical data, and deviations from this be-
havior are labeled as potential anomalies. Even within this
category, a glut of techniques is currently being investigated
(Chesterman et al., 2023). NBM has shown promising results
in various studies related to wind turbine monitoring. For in-
stance, NBM with artificial neural networks has been demon-
strated to achieve notably high accuracy in detecting devia-
tion from the nominal power curve (Ciulla et al., 2019). Sim-
ilarly, work by Wei et al. (2019) highlights the role of NBM
in enhancing turbine health monitoring by using a combina-
tion of SCADA data and advanced machine learning mod-
els. Machine learning models like autoencoders have proven
particularly suitable for failure prediction in wind turbines
(Lee et al., 2024; Liu et al., 2023; Miele et al., 2022; Chen
et al., 2021; Renstrom et al., 2020; Beretta et al., 2020). Im-
plementing solutions for handling the vast pool of data gen-
erated by sensor networks and SCADA systems comes with
several challenges, like gathering a substantial amount of
data of often disparate origin into a combined, usable dataset
(Helsen et al., 2016). Said data need to fulfill certain re-
quirements, i.a., volume, velocity, and variety (Nabati and
Thoben, 2017). But such systems can be quite successful, as
shown by Canizo et al. (2017), who created a robust big data
processing framework, predicting the status of 100 wind tur-
bines with 80 % accuracy based on historical data. However,
their work primarily focused on a static deployment of the
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big data failure prediction system for a single farm, whereas
our approach additionally enables rapid prototyping and flex-
ible configuration adjustments.

With regard to our postprocessing method, the idea that
the increased amount of data from more turbines can also
be leveraged directly for failure detection or enhancement
thereof is known. This is usually done by comparing data
from a single turbine to some central tendency of the fleet.
Hendrickx et al. (2020b) cluster raw sensor data from a fleet
of machines using a distance measure based on the amount of
warping in dynamic time warping, while Li and Wu (2020)
also use raw sensor data to generate a vector containing the
difference with the fleet median for every turbine, after which
they use a vector autoregressive model and VAR control
charts to detect anomalous behavior. Similarly, filtering the
anomaly scores is also known, as shown by Li et al. (2020),
who extracted and clustered known false positive anomaly
sequences to calculate exemplars, which they then used as a
measuring stick for other anomaly sequences. However, they
do not use the fleet’s central tendency in their method. The
novelty of our postprocessing method lies in its general, un-
complicated, and efficient filtering technique, which utilizes
the anomaly scores themselves as input and then also lever-
ages the fleet’s central tendency (in this case, the median) to
detect and discard non-relevant anomalies. It is specifically
aimed at streamlining the processing of anomaly scores, al-
lowing for faster analysis and improving the accuracy and
effectiveness of the automated alerting system.

3 Methodology

In this section, we briefly discuss the general characteristics
of the normal behavior modeling framework. Then, we intro-
duce an implementation that uses SCADA temperature sig-
nals to drive an autoencoder model to obtain an anomaly
score. After this, we detail how we created and deployed
a scalable pipeline to manage and deploy any NBM imple-
mentation for failure detection. Finally, we present a versa-
tile method to filter out failure-unrelated anomalies from the
excess of anomaly scores produced by large-scale anomaly
detection.

3.1 Anomaly detection
3.1.1  The normal behavior model framework

The normal behavior model (NBM) framework is widely uti-
lized in wind turbine condition monitoring and focuses ex-
plicitly on predictive maintenance. Such an NBM is trained
on historical sensor data and subsequently attempts to pre-
dict specific signals given several essential signals like, e.g.,
active power and wind speed. The error in its prediction is
analyzed, and if it is deemed significant, it will be classified
as an anomaly. There are myriad ways to implement this,

Wind Energ. Sci., 10, 2615-2637, 2025




2618

but most normal behavior models will use a roughly similar
structure.

An NBM needs a sizable collection of historical data from
sensors installed on one or more wind turbines. These sensors
monitor various operational parameters, including tempera-
ture, vibration, power output, and wind speed. These data
then generally need some level of preprocessing based on
their properties and the specific requirements of the NBM.
Typically, noise and absurd outliers are removed; missing
values are handled; and the data may be scaled, normalized,
or even transformed. This process tends to be crucial for the
robustness and accuracy of the model.

Then, the cleaned data are split and used to train the ML
model that attempts to predict signal values observed dur-
ing normal and healthy operational conditions. There are
many possible algorithms for this, which can generally be
sorted into three categories: statistical models, shallow ma-
chine learning, and deep learning. In many cases, an ensem-
ble of multiple models will be used.

Once trained, the model’s predictions can be used to cal-
culate the prediction error, i.e., the difference between the
observed and predicted values. Again, there are several meth-
ods for this, like statistical and machine learning, each with
its own benefits and drawbacks (Chesterman et al., 2023).

3.1.2 Data preprocessing

The data that are used in this paper come from real opera-
tional wind farms. This means that their observations are not
labeled as healthy or unhealthy. In principle, an autoencoder
model does not need healthy training data. Undercomplete
autoencoders can learn by themselves what the most relevant
dimensions of the problem are. In the case of anomaly detec-
tion, this means that they can, in principle, learn the normal
behavior. Nevertheless, it might improve the performance of
the model if only healthy data are given during the training
phase.

The procedure to select healthy data is based on two data
sources: first, a failure list created by the wind turbine oper-
ator containing several major failures and, second, a list of
forced shutdowns extracted from the status logs of the wind
turbine. All data that precede the major failures by less than 4
(WF1) or 6 months (WF2) or follow them by less than 180d
are considered to be unhealthy. For the forced shutdowns, all
data that precede or follow such a shutdown by less than 6 h
are also considered unhealthy.

To train and test the autoencoders properly, the data are di-
vided into three datasets, i.e., a training, validation, and test-
ing dataset. The training dataset consists of the first (chrono-
logically) 3000 healthy observations for each wind turbine.
This guarantees that the training dataset has an equal amount
of healthy data for each wind farm. The validation dataset
consists of the next 2500 healthy observations for each wind
turbine. These two datasets are used during the hyperparam-
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eter tuning. The remaining data are assigned to the testing
dataset.

The autoencoder uses data that are aggregated to the 1 h
level as input. The decision to aggregate is based on several
considerations. First, the failures that are the focus of this re-
search are issues that form relatively slowly over time (sev-
eral days to several months). This does not require data that
have a 10 min resolution. Second, by aggregating the data,
the amount of noise can be reduced. Third, the aggregated
dataset is smaller in size, and processing it requires less com-
putational power.

Data analysis showed that the data contain a small but not
negligible number of measurement errors. These errors are
often quite obvious. Strongly negative component tempera-
tures (lower than the ambient temperature) are impossible to
explain physically and can be assumed to be measurement
or sensor errors. A second way the measurement errors show
themselves is as unrealistically high temperature readings.
These have the value 205 °C, which seems to be a maximum
or default value. Both the extremely low and the suspiciously
high values are replaced by missing values. This is done by
defining upper and lower bounds for each signal.

Missing values are removed instead of imputed. The anal-
ysis of the missingness indicated that the missing data are
most likely missing completely at random (MCAR) or miss-
ing at random (MAR). This means that the probability that
removing the observations with missing values introduces
bias is small.

X — min(Xerain)

Xnorm = - (D
max(Xerain) — MIiN(Xgrain)

As a final step, the data are normalized (which is not the same
as standardizing). This is done by calculating the minimum
and maximum of each signal on (only) the training dataset.
The min is subtracted from the signal value, and the differ-
ence is divided by the difference between the maximum and
the minimum of the signal (see Eq. 1).

3.1.3 The autoencoder-based NBM

To model the normal behavior of a wind turbine, many su-
pervised and unsupervised statistical, machine learning, and
deep learning algorithms can be used (Tautz-Weinert and
Watson, 2017a; Black et al., 2021; Chesterman et al., 2023).
All these algorithms have advantages and disadvantages. Sta-
tistical algorithms tend to be more data-efficient and less
computationally heavy than deep learning algorithms, but the
latter are in general much more capable modelers of non-
linear relations. Which algorithm to choose depends on the
properties of the problem that is being modeled. The com-
plexity of the problem, the data availability, and the computa-
tional limits are all factors that need to be taken into account.

In the course of several years of research that focused
specifically on the wind turbine context, which was pub-
lished in Chesterman et al. (2023) and Chesterman (2024),
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Figure 1. NBM framework overview, as shown in Chesterman et al. (2023).

experiments were carried out with different statistical, ma-
chine learning, and deep learning algorithms. Although sta-
tistical and shallow ML learning solutions are less compu-
tationally demanding, the autoencoder algorithm was iden-
tified as the most suited for the problem at hand. This has
several reasons. First, the modeling accuracy of the autoen-
coders on the wind turbine data is in general superior to that
of the other tried methods. Second, the fact that extensive hy-
perparameter tuning indicates that a shallow configuration of
the autoencoders is optimal keeps the computational demand
of training the algorithms low. Third, the fact that autoen-
coders can practically be used out of the box in multi-input
multi-output (MIMO) settings gives them an extra compu-
tational advantage. These advantages tipped the balance in
their favor, even though they also have disadvantages. Table 1
in Sect. 4.2 shows the computational efficiency that can be
achieved with a well-tuned autoencoder and a careful, min-
imal selection of data compared to training an ensemble of
statistical models.

Autoencoders are deep learning algorithms that consist of
two parts, i.e., an encoder (a function f) and a decoder (a
function g). The goal of the encoder is to map the origi-
nal data to a latent space with lower (undercomplete autoen-
coder) or higher (overcomplete autoencoder) dimensionality
(h = f(x)). The decoder uses this representation (%) to recre-
ate x. The autoencoder is given a set of inputs, x, and its
goal is to reproduce x as well as possible. This is done by
minimizing a loss function L(x, g(f(x))). The loss function
penalizes g(f(x)) for being different from x. An example of
such a function is the mean squared error (MSE) (Goodfel-
low et al., 2016). If anomaly detection is the goal, undercom-
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plete autoencoders are particularly useful because they tend
to ignore rare events like anomalies. The reconstruction error
L, which is the difference between the observed and recon-
structed values, can then be searched for abnormal deviations
or patterns.

The autoencoder is set up as a MIMO model. This implies
that the normal behavior of several signals is modeled at the
same time. Figure 2 gives a schematic representation of how
this is done. The autoencoder has a number of neurons in its
input layer that is equal to the number of input signals. The
output layer has the same number of neurons. This means
that in a single run, the normal behavior for all the signals is
predicted. This is a considerable advantage since it reduces
the runtime of the algorithm. The reconstruction error is then
the difference between the original signal values and the pre-
dicted values.

To determine the optimal values for the different hyper-
parameters, i.e., the number of neurons per layer, number of
hidden layers, activation functions, and learning rate of the
model, the Keras Hyperband tuner is used. The search space
is however limited to undercomplete autoencoders only.

3.2 A cloud-based, scalable pipeline for anomaly
detection

This section details the development of a scalable pipeline
designed to efficiently deploy various anomaly detection
models and facilitate continuous, pseudo-real-time analysis
for predictive maintenance. By leveraging a robust anomaly
detector as a foundation, this pipeline addresses scalability
challenges in training and fine-tuning, allowing for seamless
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Figure 2. Schematic representation of an undercomplete autoencoder.

management of autoencoder-based NBM models and other
models within the general NBM framework. Its cloud-based
architecture supports dynamic scaling and easy deployment.
It enables experimentation with different configurations and
makes it easier to tailor models to specific operational condi-
tions, leading to more reliable turbine operation analysis.

The standard pipeline architecture (Fig. 3) comprises four
core modules: data cleaning, data preprocessing, anomaly
detection, and failure diagnosis, mirroring the standard NBM
framework. These containerized modules are configured into
a modular pipeline that supports dynamic orchestration,
which enables horizontal scaling and allows it to handle
spiking or custom computational demands during training
or inference. This has been accomplished through technolo-
gies such as Docker and Kubernetes, which are used for au-
tomatic container deployment and resource allocation. The
pipeline can also interface with distributed storage solutions,
like Hadoop, to efficiently store and manage the data it re-
quires and produces. The pipeline can be run locally, as pure
prototype code, or on a local docker, supporting efficient pro-
totyping in various environments. It provides functionality to
automatically package module code and upload a container
image to a repository, from where it can be deployed on cloud
resources.
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The cloud-based design and containerization allow indi-
vidual modules, or even the entire pipeline, to be scaled in-
dependently, enabling rapid adaptation to varying data loads
or model requirements (for example, deploying a differently
configured pipeline instance for a new wind farm that re-
quires one or more custom data preprocessing modules). Dy-
namic scaling is further supported by the architecture’s abil-
ity to allocate additional computational resources for paral-
lel processing at the request of individual modules, allowing
machine learning models to leverage distributed computing
when appropriate and/or possible. However, the model im-
plementation must be adapted to leverage this feature of the
pipeline framework.

The pipeline’s modularity encourages adaptability, allow-
ing individual components to be easily replaced or upgraded
without affecting the overall system. This facilitates fast pro-
totyping experimentation with different preprocessing meth-
ods, anomaly detection algorithms, and failure diagnosis ap-
proaches. Module instances can be shared; two different
anomaly detector implementations could share the same data
cleaning and failure diagnosis module instances. The flexi-
bility also remains once the pipeline is deployed, and adding
or removing extra modules is straightforward, e.g., enabling
the addition of a root-cause finder module. Such an architec-
ture also aids hyperparameter optimization, targeting com-
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Figure 3. Scalable pipeline architecture as deployed by us.

ponents separately or the pipeline as a whole and exploring
the parameter space in a distributed fashion to take advantage
of dynamic resource allocation. All these features enable the
system to adapt dynamically to the specific challenges of dif-
ferent wind farms or turbine models.

Another benefit of the cloud-based architecture is that it
allows for online learning and fine-tuning, running contin-
uously and ingesting fresh data, processing them efficiently
without reprocessing older data wherever possible, and up-
dating the predictive model it uses for inferencing. This can
ensure that the predictions remain accurate and effective de-
spite evolving operational conditions. Moreover, this archi-
tecture is robust and provides high availability and fault tol-
erance, reducing downtime and improving reliability — im-
portant considerations for real-world deployments.

In summary, the scalable, cloud-based pipeline leverages
modularity, containerization, and dynamic resource alloca-
tion to efficiently manage the training, inference, and fine-
tuning of implementations of the NBM framework. Its adapt-
ability to varying workloads, support of online learning, and
ease of component integration make it an effective solution
to streamline anomaly detection in offshore wind turbines.
By combining robustness, flexibility, and efficiency, this ar-
chitecture provides a reliable foundation for advancing op-
erational monitoring and decision-making in real-world de-
ployments.

3.3 Filtering anomalies

In this section, we detail and explain the functioning of our
anomaly filtering method and integrated submethods, which
we compare in Sect. 4.4. This filtering method aims to signif-
icantly accelerate both manual and automated analyses by re-
moving irrelevant (to the failures we wish to predict) anoma-
lies without impacting the predictive accuracy of the signals,
thereby improving the effectiveness of alarming. This section
starts by laying out the intuition before describing the trivial
one-dimensional implementation, which we then extend to
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the multidimensional case. After this, we present the distance
calculation and thresholding methods before explaining our
validation method.

Anomaly detectors typically detect substantially more
anomalies than those only related to failure. They suffer from
noise, false positives, false negatives, and non-relevant detec-
tions. These issues may have several causes, such as detector
accuracy, edge cases, and poorly reported maintenance. This
is not a significant problem for a limited number of machines,
but analyzing the results for multiple large fleets becomes
time-consuming. Employing robust postprocessing methods
to reduce noise and enable better and faster alarming imme-
diately provides added value.

Moreover, anomaly detection at scale for wind turbines
means monitoring a fleet, enabling us to leverage fleet-level
knowledge as an additional factor in detecting anomalies.
This can sometimes be explicitly incorporated during the
anomaly detection itself (Hendrickx et al., 2020b). Addition-
ally, various implementations of anomaly detection use the
fleet median when preprocessing the data for normalization
purposes (Chesterman et al., 2023). However, this can be
problematic with some anomaly detection methods.

Since anomaly scores generally have an inbuilt sever-
ity, where higher scores represent more severe anomalies,
a straightforward approach to filtering would be to discard
low-level anomalies while retaining only the severe ones.
However, this strategy risks overlooking significant patterns,
such as an increasing frequency of lower-level anomalies,
which might indicate the gradual onset of more serious issues
and lend more weight to newly appeared higher-level anoma-
lies. Such trends could be valuable in informing swifter
alarming mechanisms.

Our method addresses this by filtering the anomaly scores
based on the entire fleet’s information while incorporating a
temporal aspect to at least partially capture these evolving
patterns. Since this takes place after the actual anomaly de-
tection and uses the produced anomaly scores, the method
is agnostic towards the anomaly detection method used. Fur-
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thermore, since this method is purely subtractive, the like-
lihood of a false positive is, at worst, the same as with the
original anomaly scores.

The core assumption of the method is that if the fleet is
large enough, the median anomaly score of the fleet repre-
sents healthy, non-anomalous behavior. In other words, we
assume that at any one time, most turbines exhibit healthy
behavior, an assumption that has been made before in re-
lated work (Chesterman et al., 2021; Hendrickx et al., 2020a;
Beretta et al., 2020). If the fleet size is so insufficient that this
assumption does not hold, this filtering method will not be
effective. However, this assumption is supported by the fact
that even in offshore wind farms, which experience signifi-
cantly higher failure rates than onshore installations (Carroll
et al., 2016), fleet availability for observed offshore farms
remains above 80 %, as noted by Pfaffel et al. (2017), en-
suring that sufficient turbines remain operational to maintain
reliable central tendency measurements. When working with
smaller fleets where there is a risk that this assumption does
not hold at all times, it could still be possible to employ this
method together with rule-based safeguards similar to what
was done by Chesterman et al. (2023).

This method also implicitly assumes that the anomaly
scores already account for operational particularities unique
to different turbines, like downstream-positioned turbines in-
fluenced by the wake of other turbines. These environmen-
tal and operational variations can have a significant impact
on turbine behavior, which has driven innovative new tech-
niques to take these factors into account (Lin et al., 2022).

If these assumptions hold, it means that anomaly scores
close to the median have a higher chance of being false pos-
itives, and scores far from the median have a higher chance
of being true positives. The method adds weight to persis-
tent deviations by accounting for temporal patterns, even if
initially subtle. Incidentally, this also corrects for some false
positives caused by fleet anomalies, i.e., anomalies caused
by temporary situations affecting most of the fleet, such as
extreme weather events or seasonal variations in the case of
wind turbines.

3.3.1 Distance to fleet median

First, we must define the distance 6 between the anomaly
score Anom(7}’) for the signal s of a single turbine T
and the fleet median of the anomaly scores for that signal
Mdn(Anom(F;’)) at a single timestamp ¢. The most straight-
forward distance metric is the difference.

F =T} (). T;50),....T;1)}) )
8; = |Anom(7,) — Mdn(Anom(F}"))| 3)

We first define our fleet values for a specific signal and time
step in Eq. (2), after which we subtract the median of the
anomaly scores of the fleet from our turbine score (Eq. 3).
This is easy to calculate but intuitively flawed in several
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ways. For example, it does not account for potential time lag
across the fleet or localized outliers.

3.3.2 Windowing

We can mitigate this issue by using a rolling window
and aggregating the scores somehow, e.g., by defining
RollAvgAnom(x, ¢, w) as the rolling average of the anomaly
scores at time ¢ over signal s with window size w (Eq. 4) and
then again taking the difference (Eq. 5).

1+(w/2)
RollAvgAnom(s, t, w) = — Z Anom(s(i)) “)
W= =w/2)
8; = |RollAvgAnom(T*, ¢, w)
— Mdn(RollAvgAnom(F*, 1, w))| &)

This is a better representation to use, but it is still limited
and very dependent on the chosen w. A large window might
smooth a localized but severe anomaly too much, while a
small window might not capture a string of severe but slightly
spread-out anomalies.

3.3.3 Multidimensional distances

To account for this, we shift our metric from calculat-
ing the difference between singletons to the difference be-
tween tuples of size n, where each element is the result of
RollAvgAnom (RAA) at the same ¢ with a different interval
w. This gives us a solid way to incorporate time in our com-
parison. If we then first define said tuple a (Eq. 6), we can
calculate the difference again.

al = (RAA(T},1,1D),RAA(TS ,t,2D),
...RAA(T} ,1,nD)) (6)

8 = |al —Mdn(al) (7

We can then also adjust it based on the specific format of our
anomaly scores. In our case, at any timestamp, the anomaly
score may be one of these values: [-3,—-2,—1,0,1,2,3].
With the current n-tuple construction, we lose some nuance
by throwing each “level” together, and since we also have
negative anomalies, we risk averaging out important outliers.
If, instead, we separate them, we can construct an expanded
tuple of size w - [, with w being the number of windows and
[ being the number of levels we want to include:

a’l = a,T[73] EBa,Tlle D .. .a,T[m] (8)
8 = |aiT —Mdn(a;")|. 9)
Not only does this allow us to calculate the difference for
separate levels, but it also enables us to exclude irrelevant

scores. For example, we may only be interested in positive
anomalies; if we construct our tuples this way, it is trivial
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Figure 4. To construct the tuples, the anomaly scores are first split by level, and then for each level, subtuples are constructed for each
timestamp through multiple differently sized sliding windows. These subtuples are then joined together to form the final tuple.

not to include those scores when calculating the difference.
Moreover, note that the manner in which we construct the tu-
ple creates implicit assumptions about the relative difference
between anomaly levels; we chose to sum the anomalies to
aggregate them. This inherently equates one level 3 anomaly
to three level 1 anomalies. Depending on the method of out-
lier detection used to produce the anomalies, it may be better
to weigh the levels differently and/or use different aggrega-
tion methods.

3.3.4 Distance calculation

Now that we have constructed our tuples, we must calculate
the distance between a signal and the signal fleet median.
Note that the signal fleet median is calculated by constructing
the tuples for each timestamp for every wind turbine and then
taking the median component-wise. We used the component-
wise median as an uncomplicated starting point and found
that it performed very well, leading us to keep using it in-
stead of the computationally more expensive geometric me-
dian. However, using the geometric median might be a po-
tential improvement. There are several methods to calculate
distances between two tuples. We examined four specifically:
Euclidean distance as a baseline, maximum distance, Man-
hattan distance, and, finally, Mahalanobis distance as a more
sophisticated metric.

We chose Euclidean distance as it is the most commonly
used distance metric and is easy to calculate. It measures
the linear distance between two points in a multidimensional
space. However, since it assumes that all dimensions are
equally important, we expected a lackluster performance in
this case since we suspected that different dimensions have
different levels of importance.

https://doi.org/10.5194/wes-10-2615-2025

The maximum distance takes the maximum difference be-
tween the corresponding coordinates of two tuples. We chose
this to determine the impact of the most significant differ-
ence in any dimension on the calculated distance. Manhattan
distance is included to account for the high dimensionality
and potential difference in importance of each dimension; as
such, we suspected that it might be more suitable in this case.

Finally, we used the Mahalanobis distance, a more so-
phisticated method that considers the correlations between
dimensions. In contrast to the other distance calculations,
the Mahalanobis distance determines the distance between
a point and a distribution. Therefore, instead of calculating
the fleet median of the signal tuples, we use every tuple in
the fleet at a single timestamp as the distribution. Though it
is more costly to calculate, we chose this method because it
is unitless and scale-invariant, which means it considers the
variance and covariance of the dataset. We hoped this would
provide a more accurate distance measure in the presence of
correlated variables.

3.3.5 Thresholds

Now that we have several distance measures that we can use
to compare a single wind turbine to the central tendency of
the whole fleet, we encounter the problem of determining
precisely what these distances mean. As our method aims
to be a simple, cost-effective postprocessing technique, we
kept things simple and examined three different ways to set a
threshold to detect the outliers that would indicate true posi-
tives.

Therefore, after we calculate a distance 6 for every times-
tamp ¢, we need to choose a threshold t to categorize anoma-
lies at ¢ so that an anomaly score a,, for which §; > 1, is
deemed significant. The most straightforward way to obtain
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a value for 7 is by calculating the nth percentile for a healthy
subset of all distances. Such a subset can be obtained rela-
tively easily by using maintenance reports to discard all wind
turbines with known failures and ranking the remainder by
the number and severity of detected anomalies. Then, we can
use the calculated percentile as a constant threshold; in our
results, we calculated and used this for the 95th percentile
(const95%).

Another method that can be used to set a threshold is cal-
culating the nth percentile (P,) for every ¢ across all turbines
T so that

T = P,((8T1, 872, ... 10

This produces a threshold that varies with every timestamp
and can be straightforwardly tuned by changing the desired
percentile based on how conservative you want to be (Leys
et al., 2013). In our results, we calculated and used this for
the 95th percentile (Var95%). Similarly, we also used a modi-
fied median absolute deviation (MAD) to set another variable
threshold. Thus, for every ¢ across all turbines 7 and median
Mdn, with

MAD = Mdn (| X; — Mdn(X,)|) (11)

being the formula for the MAD and &, already being a mea-
sure of the absolute distance to the median, we defined the
threshold 7 as shown in Eq. (12), substituting | X; —Mdn(X;)|
and approximating the SD with b = 1.4826 (Rousseeuw and
Croux, 1993).

t =n-(b-Mdn({871,812,...})) 12)

In our results, we calculated and used this for n =3
(MAD x 3).

3.3.6 Validation

It is difficult to determine whether an outlier is significant,
so to validate our method and show that it mainly filters out
non-significant scores, we took two approaches. First, we
employed a heuristic to choose healthy and unhealthy zones
in our dataset, which is similar to the method employed by
Chesterman et al. (2023); second, we empirically analyzed
several failure cases and looked at how well our method pre-
dicted them based on the available anomaly scores.

Healthy and unhealthy zones

To show that our method does not filter out a significant num-
ber of failure-predicting anomalies, we attempt to show that
it is statistically grounded. To do this, we are forced to make
some assumptions. First, we assume that we can find healthy
and unhealthy periods in our data. Data are healthy if they do
not exhibit abnormal behavior caused by a damaged compo-
nent and unhealthy if the reverse is true. Second, we assume
that a certain period preceding a known failure is unhealthy.
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We used these assumptions to define healthy and unhealthy
zones of near-equal size, compared the observed anomalies,
and calculated the distances to the fleet median in each zone.

Before marking the healthy zones, we also introduced a
buffer period after the end of a failure, as signals tend to be
quite erratic during that time. Since we examined multiple
relatively recent failures, we could not choose the year after
failure as a healthy zone as done in Chesterman et al. (2021).
Instead, we chose a period preceding an unhealthy zone as
the healthy zone, adding a small buffer zone in between. This
healthy zone is equal in size to the unhealthy zone and does
not override another buffer or unhealthy zone.

We expected and confirmed that we would find more,
and more severe, anomalies in unhealthy zones compared to
healthy ones. Then, we examined the calculated distances in
those zones and established the same relation, showing that
we chose zones correctly and that our distance calculation
accurately reflects the detected anomalies.

Empirical validation

However, comparing the distribution of anomalies across
these zones before and after filtering provides limited insight
into how much of a signal’s predictive power is preserved.
Consequently, to validate our method further, we also exam-
ined the impact of filtering on several signals known to pre-
dict a generator or gearbox failure accurately. We assumed
that, if the filtered anomaly scores demonstrate a significant
decrease in predictive accuracy compared to the unfiltered
scores, the method would be critically flawed.

4 Results

In this section, we present our results, describe the data we
used, and explain how we generated the anomaly scores. We
discuss the performance of the undercomplete autoencoder
before moving on to our proposed anomaly filtering method.
We show our validation plots and then compare and discuss
the various submethod combinations.

4.1 Turbine data

All results were obtained using 10 min supervisory control
and data acquisition (SCADA) data, an industrial control sys-
tem widely used to manage and monitor critical infrastruc-
ture, including offshore wind turbines. These data were col-
lected over approximately 4 years from a large (> 20 tur-
bines) wind farm in the Dutch-Belgian offshore zone. All
turbines are rated for more than 8 MW. We used a subset of
the available signals, focusing mainly on the temperature sig-
nals of the generator (GEN) and the gearbox (GBX), along
with more standard signals such as wind speed, power, and
rotor speed. We used partially human-written maintenance
logs and reports documenting eight gearbox failures and five
generator failures. The failure types for all generator failures

https://doi.org/10.5194/wes-10-2615-2025



I. Vervlimmeren et al.: Scalable failure prediction and anomaly filtering for offshore wind turbines

are short circuits due to mechanical causes, and the gearbox
failures are caused by the bearing; more information cannot
be disclosed due to confidentiality agreements. These records
informed our selection of training data and helped to validate
our results.

4.2 Framework

In this section, we present the deployment results of the
scalable pipeline framework, demonstrating its performance
across two offshore wind farms and evaluating its operational
characteristics in both initial deployment and continuous-
operation modes. We examine the framework’s scalability
through parallel fleet deployment and analyze the available
runtime performance metrics. The scalable pipeline frame-
work was successfully deployed across two distinct offshore
wind farms in the Dutch—Belgian offshore zone, each com-
prising more than 20 turbines with approximately 4 years of
operational data.

A typical deployment begins with local prototype develop-
ment and testing, progressing through automated container-
ization to full cloud deployment. We adapted an existing im-
plementation of NBM anomaly detection to make use of the
pipeline framework. Once the prototype code achieved satis-
factory performance on local infrastructure, we generated the
necessary configuration files and directed the framework to
initiate the deployment sequence. This started a local process
that leveraged Docker containerization technology to pack-
age pipeline modules as images, which were then uploaded
to a remote Docker repository. This approach ensured con-
sistent deployment environments and simplified the scaling
process across different wind farm configurations. After up-
loading the containerized modules, the framework interfaced
with a remote Kubernetes cluster to initiate the overwatch
pod, which assumed responsibility for the further execution
of the pipeline. It created the required storage directories on
the Hadoop HDFS infrastructure and orchestrated module
execution according to the specified configuration.

The framework’s scalability was validated through paral-
lel deployment across two offshore wind farms, rather than
intra-farm scaling (parallelization within a single deploy-
ment), due to the preexisting pipeline implementation con-
straints. While the original NBM implementation was not
specifically designed to leverage the framework’s full dis-
tributed processing capabilities, the parallel deployment pro-
vided valuable insights into the system’s horizontal scal-
ing potential. This parallel scaling approach demonstrated
that the framework can effectively manage multiple indepen-
dent wind farm instances simultaneously, with each deploy-
ment maintaining isolated data processing pipelines while
sharing the underlying cloud infrastructure. Note also that
the farms selected for deployment are sufficiently similar in
their characteristics to allow for a meaningful comparative
analysis, making the parallel deployment results represen-
tative of what could be achieved in intra-farm scaling sce-
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narios. As can be seen in Table 1, deploying the framework
for training for both farms in parallel took approximately
26.5h. If run in series, the required time would be around
46 h roughly. Whether this timesaving can be achieved or
exceeded through intra-farm scaling depends on the chosen
anomaly detection model and implementation. In this spe-
cific case, it would be possible to make significant gains by
training each sub-model from the ensemble in parallel.

Table 1 shows the time and core hours for three deploy-
ments of the pipeline framework using an ensemble of statis-
tical models for anomaly detection. Two deployments were
started simultaneously for farms A and B. Farm A is the same
farm described in Sect. 4.1, and farm B is another farm in
the Dutch—Belgian offshore zone with approximately double
the number of turbines. The third deployment is for farm A
in continuous mode, where the deployed pipeline will ingest
new data every day and use the pre-trained models gener-
ated during the training deployment to calculate the results
for the new data and update the preexisting results. This is
the reason for the drastically lower core h for the anomaly
detection. Similarly, the preprocessor and failure diagnosis
for the continuous deployment take longer than for the train-
ing deployment since they need to update the original results,
causing more overhead due to file accessing.

4.3 Autoencoder

The autoencoders can accurately model the normal behavior
of the wind turbines. To this end, the mean absolute recon-
struction error (MARE) (which is the average of the abso-
lute values of the reconstruction errors) of the different rel-
evant temperature signals is calculated on healthy data that
have not been used for hyperparameter tuning. The gener-
ator model achieves an average generator signal MARE of
0.40 °C, with a maximum of 0.78 °C. For the gearbox model,
the average signal MARE is 0.39 °C, with a maximum of
0.49°C.

Figures 5, 6, and 7 show the evolution of the reconstruction
error for three different wind turbines just before the occur-
rence of a major generator failure. The reconstruction error
in the figures is calculated as the difference between the pre-
dicted and the observed temperatures of the signals. If the ob-
served temperature is higher than the temperature predicted
by the NBM, then the reconstruction error is positive. If the
opposite is the case, the reconstruction error is negative. By
defining the reconstruction error like this, it becomes clearer
when the temperatures of the wind turbine components are
above expected and when they are below. The former case is
interesting because it can be indicative of component dam-
age; the latter can point to model imperfections, which can
then be analyzed further.

In Figs. 5 and 7, it is clear that the temperatures of the
generator phases behave out of the ordinary, already several
months before the failure. The observed phase temperatures
are substantially higher than predicted. For the wind turbine
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Table 1. Computational cost breakdown for each pipeline module showing wall time (WT) and core hours (core h). Core hours are rounded
up to 1 decimal place. Processor types and clocks are reported in Table Al. Note that the total wall time includes cluster management
overhead and that the core h values for the data cleaner, preprocessor, and failure diagnosis are pessimistic estimates since these modules do
not always use all the available cores. RAM was never a bottleneck and is not shown. Trains A and B are deployments for farms A and B,
where the shallow ML models are trained before generating the error scores.

Run Data cleaner ‘ Preprocessor ‘ Anomaly detection ‘ Failure diagnosis ~ Total wall time  Assigned resources
WT  Coreh | WT Coreh | WT Coreh | WT Core h

Train A 2 min 2.1 | 3min 3.1 | 19:25:00 1203.8 | 11s 0.2 19:31:25 62 cores

Train B 8 min 9.6 | 19min 22.8 | 25:59:36  1870.8 | 11s 0.2 26:28:29 72 cores

Cont. A? 1 min 1 | 6min 6.2 | 14min 14.5 | 2min 2.1 00:43:19 62 cores

Autoencoder® - - | - — | 00:12:04 4 | - - — 20 cores

@ Continuous mode, showing one iteration where the pipeline pulls and processes new data generated during 1 d and updates the existing results. b Addition of the autoencoder model
from Sect. 3.1.3 for comparison. Metrics shown are for 200 epochs; a normal training run goes for 250 epochs with early stopping. This module was not run using the framework and

was run without parameter tuning. With parameter tuning, a training run takes on average less than 5 h.

in Fig. 6, the evolution is somewhat less clear. Just before the
failure, there is a peak in the reconstruction error. In this case,
the problem is only detected a couple of days in advance.

The reconstruction error is the basis for the anomaly detec-
tion. To be suitable, it must be small during healthy periods
and large just before the failures. An interesting metric for
this is the unhealthy—healthy (UHH) ratio. It calculates the
ratio of the MAREs on unhealthy and healthy data. A use-
ful NBM has a UHH ratio that is substantially larger than 1,
which means that its MARE on unhealthy data is larger than
that on healthy data.

For the generator model, the average of the UHH ratios
of the generator temperature signals is 1.40, with a maxi-
mum value of 1.69. For the gearbox model, the average of
the UHH ratios of the gearbox temperature signals is 1.08,
with a maximum value of 1.21. The relatively low average
UHH ratio is not necessarily a problem. It is possible that of
the five gearbox temperature signals, only one signal really
captures the problem. For this reason, the maximum UHH
ratios are more relevant.

4.4 Farm-wide anomaly filtering

In this section, we present our analysis of the filtering tech-
nique we developed. We validate this method by showing
how it primarily removes anomalies that are unrelated to an
upcoming failure while keeping the significant anomalies.
Furthermore, we empirically evaluate the results of apply-
ing different distance calculation methods and thresholds.
We examine its performance on a specific generator fail-
ure case and, more generally, on a whole fleet. Note that
the anomaly scores used in this section were generated by
the autoencoder-based NBM (Sect. 3.1.3) and are the same
as those evaluated in Sect. 4.3. Note that the fleet size was
large enough with few enough failures that the fleet me-
dian was not affected by turbine downtime. Furthermore,
the autoencoder-based NBM mostly accounts for significant
turbine-specific particularities, such as position-based wake
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influence, since it uses signals like rotor speed, active power,
and wind speed as predictors. This means that the results al-
ready account for the significant position-based quirks of the
turbines.

4.4.1 Validation
Zones

We looked at data from all turbines with a known generator
or gearbox failure to validate our method. We chose zones
as explained in Sect. 3.3.6. Concretely, we marked the 210d
preceding a failure as unhealthy and the 210d before that
unhealthy period as healthy, with a 60d buffer in between.
Also note that we maintained a 60 d buffer after the end of a
failure, as signals tend to be very unstable during that time.
We also defined a healthy-turbine zone by choosing the three
healthiest turbines. This was done by ranking all turbines by
the number of level 3 anomalies and picking the three lowest.

Looking at the sample data for all signals of turbines with
known generator or gearbox failures in Fig. 8a, we see that,
as we expected, the number of anomalies is significantly
higher in the unhealthy zone compared to the healthy zone,
suggesting that our healthy and unhealthy zones are well cho-
sen.

We also note that the anomaly count in the healthy zone
is slightly higher than in the healthy-turbine zone, represent-
ing the presence of non-relevant anomalies (for predicting
the failure of our chosen components). Though we chose the
zones manually in this case, it might also be possible to auto-
matically select the unhealthy and healthy zones based on a
comparison between the healthy and healthy-turbine zones.
This would allow us to calculate a threshold (see Sect. 3.3.5)
instead of manually choosing it.

In Fig. 8b, we examine the distribution of anomalies per
zone. Again, as we expected, the unhealthy zone has a much
larger proportion of higher-level anomalies than the healthy
zone, placing the median much higher. The distributions of
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Figure 5. The reconstruction error for a generator phase temperature signal of a wind turbine that experienced a generator failure some time

after month 9 (calculated from the start of the figure).
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Figure 6. The reconstruction error for a generator phase temperature signal of a wind turbine that experienced a generator failure some time

after month 4 (calculated from the start of the figure).

the healthy zone and the healthy turbines are nearly identical,
though the average in the healthy zone is slightly higher.

If we look at the distribution of calculated distances in
Fig. 10, we observe a similar division between zones for
each distance metric, showing that our tuple construction and
distance calculation methods accurately reflect the original
anomaly scores.

If we then compare Fig. 8 with Fig. 9, which shows the
same plots but for the filtered anomaly scores, we can see
that the unhealthy zone is far less affected compared to the
healthy and healthy-turbine zones. This aligns with our ex-
pectations, as we would indeed expect the healthy zone to
contain few relevant anomalies. Furthermore, since we antic-
ipate that the healthy-turbine zone would have virtually no
relevant anomalies, given that this zone was sampled from
turbines with no failures, the notably low anomaly count we
can see is fully consistent with this expectation. A better
breakdown of the removed anomaly scores can be seen in
Fig. 15.

Figures 8 and 10 take into account the anomaly scores of
all signals. However, the distribution of individual signals
can differ greatly, as can be seen in Fig. 11. This is caused by
the fact that not all signals predict an oncoming failure and
that failures may be characterized by different combinations
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of anomaly severities, as discussed in Sect. 3.3. This empha-
sizes the importance of having a large enough fleet so that
the quirks are normalized and the median becomes reliable.

Failure cases

Figure 12 shows the effect of filtering the original anoma-
lies of a composite signal. The original scores show a notice-
able increase as the failure approaches. The filtered anoma-
lies still clearly predict and emphasize the coming failure,
while much of the noise has been removed. Fleet-wide, we
can identify 30 occasions where a (singular) signal can be
said to accurately and significantly (however minorly) pre-
dict an oncoming failure. Of those occasions, there are at
least 22 where the filtered anomaly scores maintain the same
predictive accuracy as the original scores. Note that the eight
signals for which this is not true show only marginal failure
prediction in the unfiltered anomaly scores. Note that filter-
ing out so many anomalies leads to a compression of the x
axis, with the remaining (averaged by day) values being, on
average, lower than the original anomaly scores.
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Figure 7. The reconstruction error for a generator phase temperature signal of a wind turbine (not the same wind turbine as in Fig. 5) that
experienced a generator failure some time after month 9 (calculated from the start of the figure).

120k |Anomaly score]|
1
100k m >
H 3 -
80k 5
-
>
60k ©
£
(]
C
40k <
|
P
20k ]
0 Unhealthy Healthy Healthy turbine Unhealthy Healthy Healthy turbine

(a) Absolute Anomaly Levels

(b) Anomaly distribution

Figure 8. (a) Bar plot showing the count of absolute anomaly levels from equally long random samples taken from healthy, unhealthy, and
healthy-turbine zones. (b) Violin plot showing the distribution of the absolute anomaly scores in healthy, unhealthy, and healthy-turbine
zones for all scores from all turbines with known generator or gearbox failures.

4.4.2 Submethod comparisons
Tuple construction

How one constructs the tuples affects the calculated dis-
tances. Some knowledge of the meaning of the different
anomaly levels is required. If you are only interested in fail-
ures that you are certain are mainly predicted by positive
anomalies, you may want to ignore all negative anomalies.
However, note that an increase in the arity of the tuples re-
sults in a reduced sensitivity for the overall distance towards
each individual component of the tuples, as the contribu-
tion of each individual term becomes less significant rel-
ative to the calculated distance. As such, if the predictive
power of a specific signal mainly relies on a single com-
ponent, e.g., the 5D window of level 3 anomalies, then in-
creasing the arity will decrease the impact of that compo-
nent and, thus, its predictive power. This can be counteracted
by adding weights to the tuple elements. However, if you do
not have accurate information about the relative importance
of each element, experimentation may be required to deter-
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mine adequate weights. We did not apply weights for the re-
sults shown here, as this method is intended to be straightfor-
ward and robust. We evaluated its effectiveness with mini-
mal adjustments, only tuning the window sizes, and included
anomaly levels to a limited extent.

In Table 2, we compare the adjusted anomaly scores gen-
erated using tuples with and without including level 1 (1
and —1) anomalies. The thresholds used are explained in
Sect. 3.3.5. We see that including the less severe anomalies
caused fewer anomalies to be filtered out. On average, con-
structing the tuples with all available anomaly levels caused
1.748 % £ 2.025 % fewer anomalies to be removed in the un-
healthy zone and 3.591 % % 2.216 % in the healthy zone.

Examining the differences empirically, we found that the
observed results could vary noticeably in a few cases. Ex-
cluding level 1 anomalies notably increased the visibility of
failure-predicting scores for some turbines. This is likely due
to the decreased arity and the fact that these specific failures
have many high-level (2 and 3) anomalies. However, as ex-
pected, other failure predictions that are more characterized

https://doi.org/10.5194/wes-10-2615-2025
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Tuples were constructed using window sizes 1D, 5D, 10D, and 20D and all anomaly levels (-3, ..., 3).

by a large number of low-level anomalies saw a decrease in
visibility when the low levels were left out of the tuples used.

Contrast distances

Figure 13 illustrates the effect of different methods used to
calculate the distance to the median for our turbine. The
visible differences are minimal in this case, though Maha-
lanobis does filter noticeably more aggressively. Looking
more generally, we find that, as can be expected, distances in
the unhealthy zone are drastically higher than in the healthy
zone for Euclidean, Manhattan, maximum, and Mahalanobis
(Fig. 10). Using Euclidean and Manhattan generally pro-

https://doi.org/10.5194/wes-10-2615-2025

duces similar results, while maximum behaves as if it has
a much lower arity and is occasionally less sensitive. Ma-
halanobis is the odd one out. Though still generally similar,
it is sometimes more and sometimes less sensitive than the
others. We suspect this is due to its disproportionate sensi-
tivity to more severe anomaly levels. Weighting the anomaly
scores as discussed earlier may make it more stable.

Contrast thresholds

Figure 14 illustrates the effect of different threshold choices
as explained in Sect. 3.3.5: Var95% is the strictest, filter-
ing out most anomalies, and const95% is the loosest overall.

Wind Energ. Sci., 10, 2615-2637, 2025
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Figure 12. Original anomaly scores and filtered anomaly scores aggregated with a rolling average per day. The filtering was done with
tuples constructed out of all levels (—3 to 3), using Manhattan distance and the Var95% threshold. The striped black line marks the start of

the generator failure.

However, const95% seems to fluctuate; sometimes it is strin-
gent and other times not. This is likely a result of being a con-
stant threshold, which sometimes results in the removal of
significant predictive data, as seen in the figure; const95% fil-
ters out too much, removing all failure-predicting anomalies.
MAD x 3 removes fewer anomalies overall than Var95% but
places too much focus on the failure-predicting anomalies.
These observations generally hold when we examine all
the results, as shown in Fig. 15; refer to Table B1 for a full
breakdown. Of the three thresholds examined, we can say
that the simple Var95% avoids the inconsistency of const95%
while removing more anomaly scores overall compared to
MAD x 3 but removing fewer relevant scores, thus main-
taining a higher prediction accuracy. It is unexpected that

Wind Energ. Sci., 10, 2615-2637, 2025

MAD x 3, which is nominally a more severe threshold, filters
fewer anomaly scores overall. Examining Table B1 shows
us that the lower scores (=2, ..., +2) are the most affected,
while Var95% scarcely filters out more (—3, 4+3) scores com-
pared to MAD x 3. This less strict thresholding of MAD x3
is most likely due to our modified MAD x 3 no longer cor-
responding to 1 - SD and consequently being less severe than
the 95th percentile.

4.5 Discussion

Our analysis of the anomaly filtering technique resulted in
several insights regarding methodological choices, which
have implications for the practical application of our method.
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Table 2. Comparison of the effect of tuple dimension size for all distance methods and thresholds, including absolute total value
(3" |Anomaly score|) and the percentage difference compared to the original scores.

Variable 95 % threshold ‘ Constant 95 % threshold ‘ Variable MAD x 3 threshold

Tuple  Unhealthy Healthy ‘ Unhealthy Healthy ‘ Unhealthy Healthy

Orig. scores 106 452 16980 | 106452 16980 | 106452 16980

—3223 85036.0 4751.0 97368.0 10998.0 92577.0 7556.0

. —20.12% —72.02% —853% —3523% | —13.03% —55.50 %
Euclidean

—321123 85746.0 5557.0 98 085.0 10904.0 91336.0 6917.0

—1945% —67.27% —7.86% —3578% | —14.20% —59.26 %

—3223 85756.0 4669.0 98231.0 11575.0 94 108.0 8298.0

—19.44% —72.50 % —-772% —31.83% | —11.60% —51.13 %
Manhattan

—321123 86692.0 5557.0 99 164.0 11589.0 92111.0 7555.0

—18.56% —67.27% —685% —-31.75% | —13.47% —55.51%

—3223 84 845.0 4470.0 97 125.0 11026.0 92210.0 7495.0

. —20.30% —73.67% —876% —35.06% | —13.38% —55.86 %
Maximum

—321123 85142.0 5389.0 97209.0 10364.0 90877.0 6894.0

—20.02% —68.26 % —868% —3896% | —14.63% —59.40 %

—3223 83517.0 6304.0 81565.0 7196.0 85230.0 7818.0

. —21.54% —62.87% | —2338% —57.62% | —19.94% —53.96 %

Mahalanobis
—321123 84337.0 5785.0 88 828.0 8550.0 90917.0 7739.0
—20.77% —6593% | —16.56% —49.65% | —14.59 % —54.42 %

From our comparisons, we can conclude that the choice of
distance metric and thresholding strategy plays a crucial role
in balancing noise reduction with the preservation of predic-
tive signals. Our aim was to minimize any fine-tuning since
this filtering method is designed to be straightforward and ro-
bust, so we expressly examined the base capabilities of each
approach. This resulted in the Manhattan method emerging
as the most effective distance calculation, providing robust
performance in filtering out non-relevant anomalies. In con-
trast, while the Mahalanobis method shows potential, the re-
sults suggest that it requires more fine-tuning to achieve con-
sistent sensitivity, especially given its variable response to
severe anomaly levels.

Regarding thresholding, the constant-threshold approach
is outperformed by dynamic thresholds. Among the dynamic
strategies, the 95th percentile approach (Var95%) is particu-
larly noteworthy. Although it removes a slightly higher num-
ber of anomalies overall compared to the MAD x 3 method,
even in the unhealthy zones, the increased removal mainly
affects lower-severity anomalies. Coupled with the Var95%
threshold being more sensitive to the underlying distribution
at each time step, meaning that it adapts better to fluctuations
in the data (e.g., a temporary abundance of outliers), it results
in Var95% being better at preserving the anomalies most crit-
ical for failure prediction while still filtering out the largest
number of anomalies.

https://doi.org/10.5194/wes-10-2615-2025

Our anomaly filtering method offers several practical ben-
efits that contribute to more efficient and effective operations.
It is relatively computationally lightweight, scaling approx-
imately log-linearly with the number of turbines and multi-
plicatively with the dimensionality, i.e., the number of time
windows and the number of anomaly levels considered. By
reducing the volume of raw anomaly scores by up to 65 %,
the technique significantly diminishes noise (also including
non-relevant anomalies in that term) and enhances data visu-
alization, making it easier for operators to identify events of
interest at a glance. This noise reduction also simplifies the
implementation of automatic alarming. With only the most
significant anomalies remaining, the threshold-setting pro-
cess becomes more straightforward. This ability to obtain a
rapid initial overview of the system’s state with considerably
less effort is particularly advantageous in large-scale opera-
tions where one needs to consider extensive amounts of data
for analysis. This also makes detecting and reacting to sig-
nificant anomalous events easier and faster.

Additionally, the filtering method’s reliance on the fleet
median naturally filters out farm-wide anomalies like sea-
sonal variation and extreme weather. Furthermore, because
the method only removes anomalies, the risk of false posi-
tives is kept at the same level as the original anomaly scores.
Finally, while there exists a potential loss of true positives,
we found that it is mitigated by the fact that multiple signals
predict any GEN or GBX failure. This provides redundancy,

Wind Energ. Sci., 10, 2615-2637, 2025
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Figure 13. Filtered anomaly scores aggregated with a rolling average per day. The filtering was done with tuples constructed from all levels
(—3 to 3), using the Var95% threshold. The striped black line marks the start of the generator failure.

as the chance that filtering causes all these signals to lose
their relevant anomalies is minimal. In our experiments, af-
ter filtering, all failures were still predicted by at least one or
two signals for the GBX and GEN failures, respectively.

5 Conclusions

In this study, we examined solutions to address the need
for scalable and effective anomaly detection in offshore
wind turbines. Such solutions enhance operational reliabil-
ity and reduce maintenance costs, which is particularly im-
portant given the increasing demand for renewable energy
and offshore wind farms. We deployed a scalable, cloud-
based pipeline suitable for packaging an implementation of
the NBM framework to perform failure detection across mul-
tiple offshore farms. We further introduced and evaluated
an autoencoder-based NBM implementation, as well as a
statistical filtering technique to systematically remove non-
relevant anomalies, thus improving efficiency when analyz-
ing the output of anomaly detection.

Wind Energ. Sci., 10, 2615-2637, 2025

Our pipeline enables scalable and rapid analysis across
multiple wind farms while supporting diverse NBM imple-
mentations and configurations. The modularity of the ar-
chitecture allows individual components to be easily inter-
changed or upgraded without disrupting the entire system.
This flexibility enables experimentation with different mod-
els and parameterizations tailored to specific operational con-
ditions. Furthermore, it allows for automatic hyperparameter
optimization tailored to individual farms, mitigating the im-
pact of site-specific variations on anomaly detection perfor-
mance. Additionally, the cloud-based implementation sup-
ports dynamic scaling, allocating computational resources as
needed during training and inference. This ensures efficient
processing even as the volume of incoming data increases.
The pipeline further facilitates seamless deployment and
maintenance, with automatic packaging of module code and
integration with container orchestration technologies such as
Kubernetes.

We also implemented an anomaly detector according to
the NBM framework. Specifically, we trained an undercom-
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Figure 14. Filtered anomaly scores aggregated with a rolling average per day. The filtering was done with tuples constructed from all levels
(—3 to 3), using the Manhattan distance. The striped black line marks the start of the generator failure.

plete autoencoder, and though it should be able to learn with
unlabeled data, we posited that training it exclusively on
healthy data might increase its performance. To do this, we
curated the available data based on a failure list provided by
the turbine generator and a forced shutdown list we extracted
from the status logs. Our generator model demonstrated a
UHH ratio of up to 1.69, while the gearbox model exhibited
a UHH ratio of up to 1.21.

A key innovation of this study is our time-aware anomaly
filtering method, which refines anomaly scores using the
fleet median as a reference. This technique reduces the vol-
ume of raw anomaly scores by up to 65 % while preserving
nearly identical predictive accuracy, facilitating straightfor-
ward analysis and more efficient alarming. Properly config-
ured, this approach retains significantly predictive anoma-
lies while minimizing noise and anomalies unrelated to the
targeted failures. It also enhances the failure predictions for

https://doi.org/10.5194/wes-10-2615-2025

some anomaly detection methods through mitigating the im-
pact of fleet-wide anomalies. To achieve this, we aggregated
the original anomaly scores using sliding windows of differ-
ent sizes. We then calculated the distance between the result-
ing tuples and the fleet median, creating a time-aware mea-
sure of the difference between a turbine and the fleet for any
specific signal, enabling more precise anomaly filtering.
Our analysis of distance metrics and thresholding strate-
gies identified Manhattan distance as the most robust mea-
sure. However, Mahalanobis distance, which accounts for
variance and covariance among dimensions, exhibited supe-
rior performance in some cases, suggesting potentially bet-
ter performance with further tuning. The other metrics, Eu-
clidean and maximum distance, tended to be less sensitive
to low-level but persistent and numerous anomalies. We also
showed that threshold selection plays a crucial role, finding
that the Var95% threshold provided the best balance between

Wind Energ. Sci., 10, 2615-2637, 2025
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Figure 15. Comparison of distance methods and thresholds. The percentage difference in the number of anomaly scores compared to the
number of original scores in the healthy and unhealthy zones. All nonzero scores of healthy and unhealthy zones (as defined in Sect. 3.3.6)

of all turbines with known GEN or GBX failures.

filtering stringency and predictive accuracy, outperforming
the alternative approaches const95% and MAD x 3. This
thresholding approach effectively filters out non-relevant
data while preserving significant anomalies, leading to more
reliable maintenance alerts. And since our filtering method
is purely subtractive, it ensures that the probability of false
positives remains equal to or lower than the original anomaly
scores.

In summary, we presented a scalable pipeline that en-
ables us to swiftly and simply scale failure detection across
offshore wind farms. We also presented an undercom-
plete autoencoder-based NBM implementation that performs
temperature-based anomaly detection. Furthermore, we pro-
posed and evaluated an anomaly filtering technique based
on comparing turbine signals to the fleet median and found
that it significantly reduces noise while also retaining critical
predictive anomalies. These advancements lead to improved
predictive maintenance, reduce operational costs, and con-
tribute to the broader goals of sustainable and cost-effective
renewable energy production. Future work could focus on
refining these methods, further automating the pipeline, en-
hancing the deep autoencoder method, exploring additional
metrics, and optimizing filtering thresholds further to en-
hance the robustness and precision of the filtering process.

Wind Energ. Sci., 10, 2615-2637, 2025

Appendix A: Cluster resources

Table A1. Processor types and clock speeds of the Kubernetes clus-
ter used to run the pipeline framework. The autoencoder was run
using the same processor type as Node 5.

Node CPU type CPU clock
types (GHz)
Node 1 Intel® Xeon® Silver 4214 2.20
Node 2  Intel® Xeon® Gold 6348 2.60
Node 3 Intel® Xeon® Gold 6130 2.10
Node 4 Intel® Xeon® Silver 4214 2.20
Node 5 Intel® Xeon® Gold 6430 2.10
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I. Vervlimmeren et al.: Scalable failure prediction and anomaly filtering for offshore wind turbines

Appendix B: Distance-threshold comparison table

2635

Table B1. Comparison of distance methods and thresholds. The number (count) of scores per level and percentage difference compared to
the original scores. The original scores show the score percentages instead. All nonzero scores of healthy and unhealthy zones (as defined in
Sect. 3.3.6) of all turbines with known GEN or GBX failures.

Variable 95 % threshold

Constant 95 % threshold ‘

Variable MAD x 3 threshold

Score Unhealthy Healthy ‘ Unhealthy Healthy ‘ Unhealthy Healthy

-3 10948 120.91 % 972 | 8.76 % 10948 120.91 % 9721 8.76 % 10948 120.91 % 972 | 8.76 %

-2 4956 19.74 % 885 [7.98 % 4956 19.74 % 8857.98 % 4956 19.74 % 885 7.98 %

—1 9855 | 18.82 % 3527 31.80 % 9855 | 18.82% 3527 31.80 % 9855 | 18.82 % 3527 31.80 %

Original anomaly scores 1 9940 | 18.89 % 3632 32.74 % 9940 | 18.89 % 3632 |32.74% 9940 | 18.89 % 3632 32.74 %
2 6085 | 11.62 % 1093 19.85 % 6085 | 11.62 % 1093 19.85% 6085 | 11.62 % 1093 19.85 %

3 10577 120.20 % 983 | 8.86 % 10577 120.20 % 983 | 8.86 % 10577 120.20 % 983 | 8.86 %

Total* 106452 16980 ‘ 106452 16980 ‘ 106 452 16980

-3 9967 | —8.96 % 311 | —68.00 % 10642 | —2.80 % 689 | —29.12% 10360 | —5.37 % 327 | —66.36 %

-2 3677 | —25.81% 195 | =77.97 % 4595 | —7.28% 550 | —37.85% 4031 | —18.66 % 262 | —70.40 %

-1 5454 | —44.66 % 1348 | —61.78 % 8049 | —18.33 % 2226 | —36.89 % 6805 | —30.95 % 1817 | —48.48 %

Euclidean 1 5678 | —42.88 % 1191 | —67.21 % 7507 | —24.48 % 2227 | —38.68 % 6664 | —32.96 % 1713 | —52.84 %
2 4587 | —24.62 % 297 | =72.83 % 5447 | —10.48 % 700 | —35.96 % 4913 | —19.26 % 386 | —64.68 %

3 9395 | —11.18% 367 | —62.67 % 10173 | -3.82% 628 | —36.11% 9633 | —8.93 % 370 | —62.36 %

Total*  85746.0| —19.45%  5557.0 | —67.27 % 98085.0| —7.86% 10904.0 | —=35.78% | 91336.0| —14.20% 6917.0 | —59.26 %

-3 9993 | —8.72 % 334 | —65.64 % 10695 | —2.31% 738 | —24.07 % 10419 | —4.83 % 376 | —61.32%

-2 3756 | —24.21 % 209 | —76.38 % 4673 | =5.71 % 597 | —32.54 % 4113 —17.01 % 328 | —62.94 %

—1 5546 | —43.72 % 1369 | —61.19% 8212 | —16.67 % 2338 | —-33.71% 7003 | —28.94 % 1923 | —45.48 %

Manhattan 1 5821 | —41.44 % 1146 | —68.45 % 7684 | —22.70 % 2306 | —36.51 % 6901 | —30.57 % 1815 | —50.03 %
2 4700 | —22.76 % 322 | —70.54 % 5545 | —8.87% 738 | —32.48% 5016 | —17.57 % 4331 —60.38 %

3 9478 | —10.39 % 326 | —66.84 % 10249 | —-3.10% 687 | —30.11% 9564 | —9.58 % 389 | —60.43 %

Total* 86692.0 | —18.56%  5557.0 | —67.27 % ‘ 99164.0| —6.85% 11589.0| —31.75% ‘ 92111.0| —13.47%  7555.0 | =55.51%

-3 9960 | —9.02 % 301 | —69.03 % 10604 | —3.14 % 679 | —30.14 % 10342 | —5.54 % 320 | —67.08 %

-2 3644 | —26.47 % 170 | —80.79 % 4546 | —8.27 % 512 —42.15% 3987 | —19.55 % 234 | =73.56 %

-1 5426 | —44.94 % 1341 | —61.98 % 7900 | —19.84 % 2131 | —39.58% 6702 | —=31.99 % 1828 | —48.17 %

Maximum 1 5557 | —44.09 % 1197 | —67.04 % 7370 | —25.86 % 2165 | —40.39 % 6547 | =34.13 % 1700 | =53.19 %
2 4508 | —25.92 % 273 | =75.02 % 5354 | —12.01 % 653 | —40.26 % 4860 | —20.13 % 408 | —62.67 %

3 9325 | —11.84% 354 | —63.99 % 10109 | —4.42% 567 | —42.32% 9636 | —8.90 % 374 | —61.95%

Total*  85142.0] —20.02%  5389.0 | —68.26 % 97209.0 | —8.68% 10364.0 | —38.96% | 90877.0| —14.63%  6894.0 | —59.40 %

-3 9989 | —8.76 % 309 | —68.21 % 10237 | —6.49 % 618 | —36.42% 10389 | —5.11% 320 | —67.08 %

-2 3891 | —21.49 % 241 =72.77% 42751 —13.74 % 443 | —49.94 % 4136 | —16.55% 305 | —65.54 %

-1 6043 | —38.68 % 1494 | —57.64 % 6503 | —34.01 % 1491 | =57.73 % 6887 | —30.12 % 2089 | —40.77 %

Mahalanobis 1 5521 | —44.46 % 985 | —72.88 % 6050 | —39.13 % 1560 | —57.05 % 6544 | —34.16 % 1879 | —48.27 %
2 45551 -25.14% 314 | =71.27 % 4965 | —18.41 % 493 | —54.89 % 4913 —19.26 % 484 | —=55.72 %

3 8638 | —18.33 % 423 | =56.97 % 9028 | —14.64 % 591 —-39.88% 9407 | —11.06 % 411 | —58.19%

Total*  84337.0| —20.77% 5785.0 | —65.93% | 88828.0 | —16.56 % 8550.0 | —49.65% | 90917.0 | —14.59%  7739.0 | —54.42 %

* Note that the totals are obtained by summing count - [level|, and the percentage difference is between these totals, unlike the count used for the percentage difference per level.
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