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Abstract. Blade erosion of wind turbines causes significant performance degradation, impairs aerodynamic ef-
ficiency, and reduces power production. However, traditional monitoring systems based on supervisory control
and data acquisition (SCADA) data, which rely on operational data from turbines, lack effectiveness at early
detection and quantification of these losses. This research builds on an established turbine performance integral
(TPI) method with a sensor-augmented aeroelastic modelling approach to enhance wind turbine performance
assessment, focusing on blade erosion. Applying this approach to a distinct multi-megawatt turbine model, the
study integrates multibody aeroelastic simulations and real-world operational data analysis. The study identified
readily available sensors that were sensitive to blade surface roughness changes caused by erosion. Operational
data analysis of offshore wind turbines validated the initial sensor selection and approach. Refined simulations
using further virtual sensors quantified the effect size of these sensors’ output under different turbulence levels
and blade states, employing Cohen’s d — a dimensionless metric measuring the standardised difference between
two means. For the turbine investigated, findings indicate that sensors such as blade tip torsion, blade root
flap moment, shaft moment, and tower moments, especially under lower turbulence intensities, are particularly
sensitive to erosion. This confirms the need for turbine-specific, controller-informed sensor selection and em-
phasises the limitations of generic solutions. This research provides an approach for bridging simulation insights
with operational data for turbine-specific performance assessment, contributing to the development of condition
monitoring systems (CMSs), resilient turbine designs, and maintenance strategies tailored to specific operating
conditions.

1 Introduction

Wind energy has emerged as a cornerstone of the global
transition towards sustainable power generation, offering a
renewable source that aligns with environmental responsi-
bility and economic feasibility. Central to the operational
integrity and efficiency of wind turbines are their blades,
whose performance is significantly impacted by the condi-
tion of their leading edges. Environmental factors coupled
with high tip speeds subject these blades to erosion and sur-
face roughening, which reduces the aerodynamic efficiency
and thereby decreases their annual energy production (AEP)

(Han et al., 2018; Maniaci et al., 2016; Bak et al., 2020; Bak,
2022). It is well-understood that even minor surface imper-
fections can have profound consequences, adversely affect-
ing performance by altering the blade’s aerodynamic pro-
file. This phenomenon necessitates a deeper understanding
of how blade erosion impacts wind turbine efficiency, with
the aim of developing more resilient blade designs and main-
tenance strategies to optimise output and enhance turbine
longevity. Therefore, a comprehensive understanding of the
impact of blade erosion on wind turbine efficiency is crucial.

The precise quantification of performance changes caused
by blade erosion and subsequent repairs has received con-
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siderable attention in wind energy research. Investigations,
such as those outlined by Malik and Bak (2024b), have il-
luminated the complex relationships between blade surface
condition, aerodynamics, operational dynamics, and turbine
efficiency. This research builds upon those findings and fur-
ther explores a refined analytical approach that emphasises
the nuances of varying turbine control systems. By integrat-
ing multibody aeroelastic simulations for performance data
analysis, this study aims to provide a more detailed under-
standing. A key aspect of this investigation is the use of
turbine-generated supervisory control and data acquisition
(SCADA) data for performance monitoring. While the value
of SCADA data in this context is well-established (Ding
et al., 2022; Yang et al., 2014; Badihi et al., 2022; Gonzalez
et al., 2019; Butler et al., 2013), it has become evident that
existing sensor configurations have limitations. This high-
lights a pressing need for adaptable monitoring strategies tai-
lored to the specific characteristics of each turbine model and
its control system, as emphasised by Malik and Bak (2024Db).
In contrast to methodologies that generalise sensor pair ap-
plications across different original-equipment manufacturer
(OEM) turbine models, this work emphasises the deliberate
selection of a controller-specific sensor pair. For instance, us-
ing power as a function of generator speed or power as a
function of wind speed indiscriminately across turbines can
overlook critical differences in turbine dynamics and control
strategies. This strategy emphasises the importance of find-
ing the most suitable sensor pairings for each turbine and
associated controller philosophy.

The primary motivation for the preliminary investigation
was to determine whether the sensors readily available to
wind farm owners and operators via SCADA systems could
effectively track individual wind turbine performance and,
more specifically, the reduction in power output due to ero-
sion. The question is whether sensors exist in the real world
that can detect possible reductions in power output, even
amidst the unsteady signals present in SCADA data analy-
sis. This study begins with preliminary multibody aeroelas-
tic simulations, using an OEM-provided proprietary model
that matches the operational turbines under investigation, and
features a focus on rudimentary but widely accessible sen-
sors since there is often a limited sensor array available in
SCADA systems (Leahy et al., 2019; Yang et al., 2014). The
initial simulations focus on identifying the correct and effec-
tive sensor pairs for the turbine and its controller that exhibit
significant sensitivity to blade erosion, setting the founda-
tion for the development of a turbine-specific turbine perfor-
mance integral (TPI). This approach recognises that while
more advanced sensors may be available to OEMs or may be
potentially deployable in future turbine designs, it is imper-
ative to first understand the capabilities of the existing sen-
sor configuration. This prioritisation aims to ensure that the
findings are relevant and can used to improve current wind
turbine performance monitoring systems. Guided by these
simulation insights, the work then analyses a unique dataset
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covering 16 horizontal-axis three-bladed multi-megawatt tur-
bines within the same offshore wind farm, with nominal
power between 3 and 4 MW and with an approximate aver-
age wind speed of 9.49 ms~!. With this knowledge, the cor-
responding Reynolds number, Re, can be determined by the
rule of thumb (Bak, 2023), where Re is proportional to the
radius, R, of the rotor and between 75000- R and 150000- R.
Thus, Re is approximately 7 million. Importantly, some of
these turbines were commissioned with leading-edge protec-
tion (LEP), while others were not, providing a valuable com-
parison point for erosion effects. Spanning January 2015 to
November 2023, this dataset allows for longitudinal investi-
gation of performance changes due to blade erosion, the stag-
gered application of LEP, and blade repairs, as well as other
events in the turbine’s history.

Building upon the author’s previous analysis (Malik and
Bak, 2024b) of wind turbine SCADA data to detect perfor-
mance impacts due to various influences such as erosion,
this study extends the analysis to include a distinct turbine
model from a different OEM, while continuing to investigate
seasonal impacts, long-term trends, and blade erosion’s ef-
fects. The turbine performance integral (TPI) methodology
introduced in the previous study is employed. This provides
additional support for the approach of STL (seasonal and
trend decomposition using LOESS, where LOESS stands for
“locally estimated scatterplot smoothing”) (Cleveland et al.,
1990) for turbine performance assessment but also explores
its applicability to the inclusion of a turbine from an alterna-
tive OEM. Importantly, the sensor pairs used in this work are
distinct from those in the authors’ previous publication and
are specifically aligned with the current turbine model and
control system under investigation. Furthermore, this study
employs the turbines’ nacelle-mounted anemometers, de-
spite their inherent measurement uncertainties as highlighted
in the IEC 61400-12-2:2013 (International Electrotechni-
cal Commission, 2013) and IEC 61400-12-1 (International
Electrotechnical Commission, 2017) standards, which rec-
ommend wind speed measurements 2.5 rotor diameters up-
stream of the turbine at various heights. This study avoids
the use of separate meteorological masts and explores the
possibility of monitoring individual turbine performance tra-
jectories, using the metrics of either power as a function of
wind speed (measured by the turbine anemometer) or genera-
tor RPMs (rotations per minute) as a function of wind speed.

The “refined” simulation study, while more aspirational in
nature, expands the investigation to a broader range of sen-
sors, including those not currently available to owners but
potentially accessible to OEMs, as well as conceptual fu-
ture sensors. This approach utilises multibody simulations to
evaluate a wide range of virtual sensors, identifying those
with heightened sensitivity to the efficiency changes caused
by blade erosion. Simulation scenarios are designed to eval-
uate turbine responses under various conditions, focusing on
wind speeds, turbulence intensities, and blade condition. This
approach, utilising theoretical models, aims to refine sensor
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selection methodologies and to advance the understanding of
wind turbine performance dynamics. Additionally, it aims to
provide understanding that may inform future research direc-
tions in turbine monitoring and maintenance strategies.

This study integrates multibody simulation and SCADA
measurement analysis, emphasising the necessity of a
turbine-specific, controller-informed approach to monitor-
ing turbine performance changes, as opposed to gener-
alised methodologies. The findings highlight the benefits
of strategically selected and deployed sensors, informed by
proprietary-control philosophies. This research intends to en-
courage collaboration between academics, turbine manufac-
turers, and operators to implement data-driven strategies for
enhancing turbine performance monitoring.

2 Method

2.1 Preliminary multibody simulations for sensor pair
identification

The study’s initial phase employed the blade-element-
momentum-based (BEM-based) multibody aero—servo—
elastic tool HAWC?2 (Horizontal Axis Wind turbine simula-
tion Code, 2nd generation), developed by DTU Wind Den-
mark (Larsen and Hansen, 2007), to identify sensor pairs that
are potentially sensitive to the performance changes caused
by blade erosion. The focus of the preliminary investiga-
tion is on sensors that are readily available via SCADA sys-
tems. This exploration is predicated on the hypothesis that
certain sensor pairs, when analysed under simulated erosion
conditions, may provide indications of performance decline.
The selection of sensors, specifically, pitch, generator RPMs,
and power as functions of wind speed, is informed by the
turbine- and by OEM-specific proprietary-controller settings.
This tailored approach, which explicitly considers controller
dynamics, represents a departure from methodologies that do
not account for these factors.

This work builds upon the authors’ previous findings (Ma-
lik and Bak, 2024a) by combining multibody aeroelastic sim-
ulations and real-world operational data analysis, thus ad-
dressing the gap between simulation-based findings and em-
pirical validation. The previous study focused solely on the
simulated environment, investigating the combined effects of
leading-edge erosion and turbulence intensity (TI), as well as
exploring time-interval averaging as a data processing tech-
nique. To assess the feasibility of observing the power degra-
dation in real-world measurements, that study compared the
performance of turbines with clean blades to those with sim-
ulated surface roughening.

This study uses the same OEM-provided certified multi-
body model of an operational turbine’s controller in the
full aero—servo—elastic simulation loop, ensuring the accu-
rate capture of the response to degraded blades, including
pitch adjustments utilising aerodynamic reserves. Further-
more, the previous study advocated for the use of higher-
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resolution data in analyses to improve the detection of sub-
tle performance changes, a recommendation that this current
study implements by utilising 1 s sampled rather than 10 min
averaged data. For a more detailed elaboration of the method-
ology employed and implications for this work, readers may
refer to the aforementioned paper.

Furthermore, in this work the effectiveness of the iden-
tified sensor pairs for the turbine investigated is compared
to that found in previous research (Malik and Bak, 2024b),
where a distinct wind turbine from a different OEM was
studied and for which the relationship of generator speed
as a function of power formed the basis for the monitoring
of performance variation over time using the turbine perfor-
mance integral (TPI). This cross-turbine sensor comparison
reinforces the importance of tailoring sensor selection to spe-
cific turbine models and control systems. Furthermore, the
application of the TPI method for the turbine under investi-
gation demonstrates the method’s applicability across diverse
wind turbine designs. These elements of the study contribute
to a better understanding of performance monitoring across
varied wind turbine configurations.

2.1.1  Modelling leading-edge erosion

To model blade-leading-edge erosion, surface roughness
based on wind tunnel tests from Krog Kruse et al. (2021)
is used. These tests utilised P400 (fine-grit) and P40 (coarse-
grit) sandpaper to simulate different erosion levels on an al-
ternate aerofoil and provided the empirical basis for deriv-
ing factors for the blade modifications. To simulate early-
stage degradation, the outer 15 % of the blade model’s orig-
inal aerofoil polars are altered by applying a factor of 0.9 to
the clean aerofoil polar and scaling the drag polar by factors
of 1.5 (P400) and 2.0 (P40) (see Malik and Bak, 2024a, for
details) to reflect the erosion observed after approximately
2 years of operation. It is important to note that this study
employs a simplified approach relying on relative changes,
and the simulated roughness may differ from the actual tur-
bine’s conditions. Therefore, while these simulations reflect
deteriorating changes in blade conditions, they do not neces-
sarily represent the precise changes that occur in real-world
scenarios.

2.1.2 Simulation settings and test cases

To analyse the impacts of turbulence intensity and blade ero-
sion on wind turbine performance, simulations were con-
ducted using an OEM-provided multibody model represent-
ing the operational offshore wind turbine also investigated
as part of this work. Simulations were performed for one
clean and two blade-leading-edge-erosion states across a
range of turbulence intensities, with further model parame-
ters and conditions provided in Malik and Bak (2024a). In
contrast to the previous work where simulations were run
at 1 ms~! increments, the current study employs a higher-
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fidelity approach. To focus on the turbine’s power ramp-up
phase (where erosion effects are most likely to manifest) and
to ensure that the binning and averaging process of the data
did not obscure subtle dynamics, individual cases were run
in 0.1 ms~! increments between 6.5 and 14ms~!. This in-
crement achieves a balance between fine-scale accuracy and
computational efficiency. Following the IEC (2019) 61400-1
standard, six individual simulation runs, or seeds, were used
per configuration to ensure statistical robustness.

Turbulence intensity (TI) was varied across a spectrum
0%, 3%, 6%, 9 %, and 12 %), with 6 % approximating fil-
tered average offshore conditions. Simulations were executed
for 900 s, with data from the last 600 s analysed to ensure
steady-state conditions. Time steps were set at 0.01 s. Wind
shear followed a power-law profile with an alpha value of
0.14, and air density was fixed at 1.225kgm™> (represen-
tative of sea-level conditions at 15 °C). The default Mann
turbulence model parameter, ae?3, of 1 was used (Mann,
1994). For detailed explanations, please refer to the HAWC2
manual (Larsen and Hansen, 2007) and IEC61400-1 edn. 3
(IEC, 2019).

With the focus of the preliminary investigation on sensors
that are readily available via SCADA systems, simulations
utilising the multibody aeroelastic model facilitated the iden-
tification of sensor pairs that exhibit significant sensitivity
to blade erosion, setting the foundation for the development
of a turbine-specific turbine performance integral (TPI). Due
to confidentiality agreements, a generalised description of
the turbine is provided, and results are presented in relative
terms.

2.2 Wind turbine operational SCADA data analysis

Building upon the sensor pairs identified through multibody
simulations, this section conducts an analysis of SCADA
data from operational turbines. By focusing on the sensor
pairs of power as a function of wind speed and generator
RPMs as a function of wind speed, this investigation aims
to validate the simulation-derived hypotheses within a real-
world setting, assessing their feasibility and effectiveness at
detecting blade erosion. This analysis both tests the hypothe-
ses generated from the simulations and provides a practical
process for evaluating the sensor pairs’ effectiveness at per-
formance monitoring.

For this purpose, 16 front-row, offshore multi-megawatt
turbines within the same wind farm were selected for their
direct exposure to dominant wind conditions. Due to con-
fidentiality agreements, the specific site and turbine type
will not be disclosed. The wind farm provides an exten-
sive SCADA dataset spanning January 2015 to November
2023. This dataset offers a valuable experimental timeline,
with some turbines installed with a specific LEP (type A),
while others remained unprotected. As expected, unprotected
blades exhibited significantly greater erosion within the first
2 years of operation. Starting in 2019, remedial actions were

Wind Energ. Sci., 10, 269-291, 2025

taken, i.e. the repair of unprotected blades and the application
of a different shell-type LEP system (type B). This applica-
tion was phased, with some turbines receiving partial LEP
coverage (approximately 7 %—8 % of the blade span) and oth-
ers receiving complete coverage (15 %). Notably, LEP appli-
cation could take from a week up to, in exceptional cases,
a month, due to logistical arrangements in an offshore envi-
ronment. In 2021, the remaining turbines received full LEP
coverage. Additionally, minor LEP repairs (approximately
0.5-1.5 m) were performed in 2020 and 2021; however, these
lesser interventions are not expected to produce a measurable
impact on turbine performance. This dataset, with its distinct
phases of LEP application and repair, provides an opportu-
nity to investigate the longitudinal effects of blade erosion
and the impact of the application of LEP, or change in the
aerodynamic profile, on wind turbine performance. Data re-
garding LEP applications and repairs were obtained directly
from technician reports.

From the restricted set of sensors accessible through the
SCADA system, the following parameters pertinent to the
investigation were gathered:

— nacelle wind speed v (m s,

nacelle direction (°),

ambient temperature 7 (°C),

blade pitch angle B(°),

generator speed 2 (RPMs),

power production P (kW),

power set point demand P (kW), and

turbine operational state (e.g. waiting for wind, cur-
tailed, cable unwind, etc.).

To heighten the accuracy of detecting subtle performance
changes (Badihi et al., 2022; Malik and Bak, 2024a), this
study utilised a dataset comprising SCADA data sampled at
1 s intervals (rather than 10 min averaged data), which were
pre-computed from the wind turbine’s data archive, where a
sensor’s signal is only updated when a change is recorded.
Missing values were handled using the “previous value”
method to reduce computational demands. The dataset was
filtered and processed according to International Electrotech-
nical Commission (IEC) 61400-12-1 guidelines International
Electrotechnical Commission (2017) but not corrected for
temporal density variations. Nacelle direction served as a
proxy for wind direction, despite being influenced by the tur-
bine’s control algorithm hysteresis and rotor wake.

2.2.1  Wind turbine control and turbine performance
integral

An understanding of the characteristics of the turbine inves-
tigated reveals that the turbine employed in this study con-
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trasts with the previous work where the TPI method was first
introduced (Malik and Bak, 2024b), such that the rotor con-
trol does not primarily rely on its wind speed anemometer
as a control input during its power generation mode. Once
it is generating power, the turbine controller relies on op-
erational trajectories following a speed—power and a pitch—
power curve rather than using direct information regarding
the wind speed. Examples of such control include work by
Hansen and Henriksen (2013).

For the turbine investigated, the turbine performance inte-
gral (TPI) is defined as the area under the power curve be-
tween wind speeds of 6 and 10.5ms~!. This integral, with
units of power - wind speed (kW m s~ 1), is used to extract the
seasonal variations using the STL technique that serves as
an indicator of the turbine’s performance trajectory. Alterna-
tively, the generator RPMs as a function of wind speed area
metric (between 5.5 and 8.5ms~!) may be employed. It is
important to ensure that the wind speed limits selected create
a monotonic relationship and that the turbine operates out-
side of full-load conditions. This is because the effects of ero-
sion are primarily visible in partial-load conditions. The pitch
angle—wind speed relationship only becomes monotonic be-
tween 10.5 and 11.5ms™ !, making it less suitable.

A weekly updating ring buffer with a fixed value is em-
ployed, the adjustment of which affects TPI outcomes. The
structure and data flow of the ring buffer system can be vi-
sualised in Fig. 1. This block diagram illustrates how sensor
data (in this case, power and wind speed output) are input
to the system, stored in a ring buffer, and processed through
bin-wise trapezoidal integration to compute the TPI. Addi-
tionally, the diagram shows the data carryover mechanism,
where the previous week’s data are used to fill gaps when
insufficient new data are available.

The ring buffer’s mathematical model is based on modular
arithmetic, which facilitates its circular structure. Let B rep-
resent the buffer size, icurrent the current index for data entry,
and ¢, the nth data point from the sensors. The position for
the next data point is determined by

inext = (icurrent + 1)H10dB. (1)

This equation ensures that when the buffer reaches its ca-
pacity, it wraps around and starts overwriting the oldest data.
The buffer size affects how quickly changes are detected. A
large buffer may smooth out short-term variations, while a
smaller buffer is more responsive to immediate fluctuations.

Once the data are stored in the buffer, the TPI is calcu-
lated using trapezoidal integration. TPI quantifies turbine ef-
ficiency by representing the area between the power (P) as
a function of wind speed (v) and the wind speed axis over a
specified range. Mathematically, the TPI is defined as

v2

TPI = / P(v). dv. @

V]
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This integral calculates the area under the power curve be-
tween power levels v and v, which correspond to 6 and
10.5m s, respectively, providing a measure of turbine per-
formance within this operational range.

2.2.2 Seasonal-trend decomposition and data
visualisation

An analysis of wind turbine SCADA data is used to assess
the influence of seasonal effects and blade erosion on per-
formance. This study utilises the approach employed in Ma-
lik and Bak (2024b), where the turbine performance integral
was first introduced. The TPI signal is used to extract the
seasonal variations using the seasonal and trend decompo-
sition using LOESS (STL) method (Cleveland et al., 1990).
The STL technique decomposes a time series into three com-
ponents: seasonal, trend, and residual. This decomposition is
mathematically represented as follows:

i =T+ S+ R, 3)

where Y; denotes the observed data at time ¢, T; is the under-
lying performance trend component, S; is the cyclical sea-
sonal component related to annual variations in atmospheric
conditions, and R; is the residual component that is com-
posed of un-attributed transient factors.

This work focuses on the direct impact of LEP applica-
tions and repairs on long-term performance trends. Rather
than attempting to isolate the various factors influencing per-
formance, as was done in the previous study, this work over-
lays data regarding LEP applications and repairs onto the
long-term performance trajectory. This approach acknowl-
edges the limitations of this approach in providing a com-
prehensive picture but attempts to offer insights into the di-
rect effects of these interventions. A multi-panel visualisa-
tion with a shared time axis is employed to analyse wind tur-
bine performance data decomposed using STL, which was
performed using MATLAB’s “trenddecomp” function (The
MathWorks, Inc., 2023). This approach allows for the simul-
taneous examination of long-term trends and seasonal and
remainder components, highlighting their interactions over
time. The shared temporal axis serves as a reference point to
compare the evolution of each component, aiding the identi-
fication of changes and potential anomalies within the data.

While previous work (Malik and Bak, 2024b) emphasised
the meticulous collection of operations and maintenance
(O&M) data, including detailed accounts of events that in-
cluded blade erosion and repair-related interventions, the cur-
rent investigation adopts a more focused approach. This de-
cision does not diminish the significance of O&M activities
on turbine performance. Instead, it aligns the scope with the
specific objective of validating and applying the TPI method.
This approach provides an illustration of the method’s capa-
bilities within the context of a distinct OEM model and con-
trol system rather than constituting a comprehensive analysis
of O&M'’s influence on turbine performance.
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Figure 1. Block diagram of the ring buffer system for wind turbine performance monitoring.

2.3 Refined multibody simulations for detailed sensor
evaluation

Building upon the empirical validation of initial findings, this
research advances to a series of multibody simulations de-
signed to gain a deeper understanding of various sensors’
sensitivity to blade erosion under varied turbulence intensity
conditions. Details of the simulation methodology may be
found in Sect. 2.1, where the preliminary investigation is de-
scribed.

The primary objective of this exercise is to evaluate a di-
verse array of sensors chosen based on their potential to de-
tect changes in blade aerodynamic performance due to ero-
sion. While a wider selection of sensors was simulated, in-
cluding lift and drag coefficients at various blade positions,
the sensors displayed were down-selected based on the fol-
lowing criteria:

— Relevance to blade aerodynamic performance. Sensors
that directly or indirectly measure parameters influ-
enced by changes in blade surface conditions, such as
blade loads, power output, and moments, are prioritised.

— Availability in existing SCADA or condition monitoring
systems (CMSs). Sensors that are commonly available
or can be readily integrated into current monitoring sys-
tems are preferred to facilitate practical implementation
in real-world scenarios.

— Sensitivity to erosion-induced changes. Sensors that ex-
hibit a clear and measurable response to varying levels
of blade erosion are selected to ensure reliable detec-
tion.

— Signal-to-noise ratio. Sensors with high signal-to-noise
ratios are chosen to minimise the influence of external
factors and measurement uncertainties.

While the findings for these sensors may be specific to the
turbine studied, the process serves as an example of a pro-
cedure that may be followed for other turbines. This evalua-
tion begins with selecting a broader range of virtual sensors
within the simulation environment to identify suitable indica-
tors of erosion-related performance changes. These sensors
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include but are not limited to blade root bending moments,
blade tip deflections, tower top and bottom loads, and driv-
etrain torque. The selection criteria prioritise sensors or data
channels that are readily deployable and practical in real-
world scenarios and have the potential to improve existing
monitoring and performance analysis capabilities.

Next, a series of multibody simulations are conducted,
modelling the turbine under various operating conditions.
The sensors selected are subjected to a series of simulations
under various blade erosion states (clean, P400, and P40)
and turbulence intensity conditions (0 %, 3 %, 6 %, 9 %, and
12 %). The response of the generated sensors is then pro-
cessed and analysed using Cohen’s d (described in detail in
Sect. 2.3.1) to quantify the effect size of blade erosion on
each sensor’s output. Sensors exhibiting high sensitivity are
identified as potential candidates for erosion detection and
performance monitoring. The understanding gained from the
simulation results are then discussed in terms their relevance
and practical application.

The methodology explores theoretical simulation but stops
short of the empirical validation that would ensure that the
findings are anchored in both theoretical rigour and oper-
ational relevance, due to the nonexistence of or a lack of
access to the broader sensor suite in the real world. This
exercise, however, demonstrates the potential of such sen-
sors in revealing valuable information regarding turbine per-
formance and suggests their inclusion in future turbine de-
signs, which is a key motivation of this study. Despite this,
the results are discussed for their practical applicability. This
simulation-based methodology aims to complement tradi-
tional SCADA data analyses, providing perspectives that
might be difficult to glean from operational turbines alone,
while simultaneously highlighting the need for development
in sensor deployment in wind turbines to improve perfor-
mance monitoring and maintenance strategies.

2.3.1 Framework for sensor output comparison —

Cohen’s d calculation

This study quantifies the impact of erosion through differ-
ences in sensor output, providing visualisations of both clean
and eroded blade states. The primary objectives are to gain an
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understanding of turbine performance dynamics and to con-
tribute to the development of monitoring strategies for early
detection of erosion or performance deviations.

To compare multiple sensor outputs under different blade
conditions, an appropriate statistical metric is needed. Co-
hen’s d (Cohen, 1992) was chosen due to its ability to quan-
tify effect size. It provides a standardised measure of the dif-
ference between two means that is independent of the units
of measurement. This allows for meaningful comparisons
across diverse sensor outputs (e.g. blade root bending mo-
ment or tower moment as functions of wind speed).

Importantly, Cohen’s d provides a normalised measure of
effect size. This is valuable for understanding the magnitude
of erosion’s impact and for identifying the sensors that are
most sensitive to changes in blade aerodynamic surface prop-
erties. Using a percentage change for this comparison would
disproportionately emphasise changes in values close to zero,
whereas Cohen’s d avoids this potential bias.

Cohen’s d was applied in an analysis of full-scale mea-
surements (Malik and Bak, 2024b) and serves as the link
between the simulations and future full-scale measurements.
Using this method will indicate whether certain signals can
be detected better than others.

To quantify the difference between clean and rough (P40)
blade conditions for each sensor and wind speed bin, Cohen’s
d was calculated:
d= M’ )

Sp
where d is Cohen’s d (a dimensionless measure of effect
size), Xrough is the mean of the sensor data in the rough blade
condition, Xjean 1S the mean of the sensor data in the clean
blade condition, and sp, is the pooled standard deviation cal-
culated as

2 2
(”rough - l)srough + (Mclean — l)sclean

Sp = Q)
p ’
Rrough + clean — 2

where 7nough is the number of samples in the rough condition,
Tclean 18 the number of samples in the clean condition, Sough
is the standard deviation of the sensor data in the rough con-
dition, and s¢jean 18 the standard deviation of the sensor data
in the clean condition.

The magnitude of Cohen’s d aids in interpreting the prac-
tical significance of the differences observed between clean
and rough blade conditions. Values around 0.2 indicate a
small effect size, 0.5 a medium effect, and 0.8 or greater
suggests a large effect. However, these values should be in-
terpreted as a guide that should be informed by the con-
text of the relevant sensor in context of this analysis (Cohen,
1992). This allows for the identification of the most-erosion-
sensitive sensors and the assessment of the impact’s magni-
tude.

Furthermore, this metric is appropriate for this work, as it
incorporates a pooled standard deviation. This accounts for
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154
©
a

o
©

o
®

0.75

Normalised Generator Speed
o

—I— Clean

— F - P40 roughness
: L

L

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalised Power
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intensity of 6 % (simulated).

potential variability in the number of data points across sim-
ulations and sensors, ensuring valid comparisons.

3 Results and discussion

3.1 Preliminary multibody simulations for sensor pair
identification

The comparative analysis revealed substantial behavioural
differences between sensor pairs, attributable to the varying
turbine control systems. For the turbine investigated in this
study, illustrated in Figs. 2 and 3, the relationships between
blade pitch angle and generator speed as functions of nor-
malised power did not exhibit any noticeable changes due to
alterations in blade roughness (error bars represent 1 standard
deviation). This finding contrasts sharply with the sensor pair
dynamics of the turbine evaluated in Malik and Bak (2024b),
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where this specific sensor pair formed the basis of the TPI
signal.

However, Figs. 4 and 5 demonstrate that erosion at the
leading edge significantly affects turbine performance. In the
former, an eroded blade necessitates more aggressive pitch-
ing to sustain power generation, while in the latter, an eroded
blade manifests in lower RPMs for any given wind speed.
This suggests a shift in operational set points, given that the
turbine’s control algorithm does not incorporate wind speed
measurements from its anemometer during production.

These results highlight the necessity of a turbine-specific
approach in selecting sensor pairs to effectively assess tur-
bine performance. A generic, one-size-fits-all strategy is in-
adequate for addressing the complexities of diverse turbine
control philosophies. Thus, it is necessary to develop tailored
sensor pair selection methods to ensure the accuracy of per-
formance integrity evaluations.

Wind Energ. Sci., 10, 269-291, 2025

—I—Clean
L= F - P400 roughness
P40 roughness

o
©

o
®

o
3

Normalised Power
=} o
(%] o

o
IS
T

o
w
T

o
o

; é &; 1‘0 1‘1 1‘2 1‘3
Wind Speed [m/s]

Figure 6. Normalised power as a function of wind speed for various
blade profiles, with a fixed turbulence intensity of 6 % (simulated).

Furthermore, shown in Fig. 6 is the normalised power
curve for three blade profiles. These simulations are executed
at 6 % TI, which approximates the mean annual turbulence
intensity at the location of the real offshore turbines analysed
later in this study. The simulation results demonstrate that
the roughening of the blade leading edge has a detrimental
impact on the turbine performance. The area under this nor-
malised power curve, specifically between wind speeds of 6
and 10.5ms~!, will form the foundation of the turbine per-
formance integral (TPI) signal. In this manner, the TPI signal
encapsulates the variations in power output due to blade sur-
face conditions. It offers a quantifiable metric to assess the
degree of erosion’s impact on turbine efficiency.

3.2 Wind turbine operational SCADA data analysis

Building upon the authors’ previous work (Malik and Bak,
2024b), which attempted to correlate turbine performance
with operations and maintenance (O&M) events, this study
adopts a more focused approach. Recognising the consider-
able resource investment required to compile comprehensive
O&M datasets, particularly those pertaining to blade erosion
and repair-related interventions, this investigation focuses on
demonstrating the application of the TPI method. This de-
liberate focus allows further examination of the decompo-
sition technique for assessing turbine performance and ex-
pands the approach to incorporate a turbine from a different
OEM. Thus, it connects the findings of the previous work
(Malik and Bak, 2024b) with the focused investigations of
the current paper.

Presented in Fig. 7 is the measured power curve for the
turbine in question, with the variability indicated by the
standard deviation bars. This dataset spans approximately 9
years. For this graphical representation, 10 min averaged data
were utilised, whereas all other measurement analyses utilise
non-time-averaged 1s sampled data. The data were filtered
and processed in adherence with the standards prescribed in
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Figure 7. Power as a function of wind speed (filtered dataset,

10 min averaged, measured). Error bars represent 1 standard devia-
tion from the mean.

the IEC 61400-12-1 (International Electrotechnical Commis-
sion, 2017). This 10 min averaging allows for a direct visual
comparison with the simulated power curve shown earlier in
Fig. 6. Variation between the profiles of the two curves may
be attributed to an array of influences, including the fidelity
of data filtering, temporal changes in turbine performance,
fluctuating atmospheric conditions, and the impact of O&M
interventions.

3.2.1 Seasonal-trend decomposition

The seasonal-trend decomposition analysis of the TPI sig-
nal performed in this study expands upon the methodologies
and findings presented in Malik and Bak (2024b). While the
general approach to decomposing turbine performance data
into trend, seasonal, and residual components remains con-
sistent, the current investigation introduces a detailed exam-
ination tailored to the unique operational characteristics and
sensor configurations of the turbine under investigation. The
focus of this analysis is the extension of the previously in-
troduced methodology, paired with a turbine and controller-
specific sensor pair (i.e. power as a function of wind speed
based on simulation-based results; see Sect. 3.1).

Figure 8 illustrates the trend decomposition of one of the
16 turbines under investigation. This figure illustrates the de-
composition of a single turbine’s performance, highlighting
the long-term performance improvement or decline, the re-
current seasonal patterns, and the short-term deviations from
expected performance trends. Here, an increased trend re-
flects improved turbine performance, and the opposite is true
for a reduction in trend trajectory. These changes may be
caused by operational and maintenance events, blade repair,
erosion, or various other factors. The seasonal component il-
lustrates the cyclical performance variations attributable to
environmental factors. It is worth noting that the analysis
methodology has been applied to scenarios including waked
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turbines, yielding consistently sound results despite the po-
tential for additional variability under those conditions. Im-
portantly, the TPI signal relies exclusively on data generated
by the individual turbine, without incorporating comparisons
to neighbouring turbines or meteorological masts.

To highlight the important role of sensor pair selection,
consider the power-to-wind-speed TPI signal. This signal is
a more responsive indicator for detecting performance os-
cillations, which is empirically substantiated here. Figure 9
elucidates the comparative dynamics of TPI signals extracted
using two distinct sensor pairs: power as a function of wind
speed and generator speed as a function of power. The nor-
malisation process, involving the division of the seasonal-
trend component by the long-term trend component, provides
a dimensionless metric encapsulating temporal performance
variations. The power-to-wind-speed TPI signal exhibits pro-
nounced cyclicality, reflecting substantial seasonal perfor-
mance fluctuations, demonstrating its higher sensitivity to
performance oscillations. Conversely, the generator-speed-
to-power TPI signal demonstrates notably muted cyclical be-
haviour, largely due to the turbine’s generator speed adher-
ing to a pre-encoded operational “ceiling” (see Fig. 2). This
programmed limit delineates the maximum-permissible gen-
erator speed relative to power, preventing upward deviations.

3.2.2 Seasonal influence

Presented in Fig. 10 are the aggregated seasonal trends of the
turbines investigated, highlighting variations that may not be
evident from the analysis of individual turbines. The over-
laid individual results support the turbine performance inte-
gral (TPI) method introduced in Malik and Bak (2024b) and
demonstrate the efficacy of the power-curve-based sensor se-
lected. The synchronisation evident across the turbine popu-
lation suggests that this approach may be suitable.

While Fig. 10 appears dense, its primary purpose is to
illustrate the high degree of synchronisation across the en-
tire turbine set rather than to track individual turbine perfor-
mance. Readers should focus on the overall pattern and syn-
chronicity, which are consistent with the expectations of the
selected sensor pair and the TPI method.

A notable observation is the tight synchronisation in per-
formance variation signals, particularly during winter peaks
and summer troughs, a pattern further delineated in the vio-
lin plots (Bechtold, 2016; Bechtold et al., 2021) presented
in Fig. 11. This synchronisation, appears to be more pro-
nounced than the coherence found in the previous work (Ma-
lik and Bak, 2024b), could indicate a more representative
signal pair, despite the power curve incorporating the uncer-
tainty in wind speed. Alternately, this may be attributed to
an improvement in the quality of the underlying data, with
fewer gaps caused by factors such as de-ratings or outage-
type events. Such improvement in data integrity potentially
stems from the weekly data buffering underlying the system,
which may contribute to a more robust outcome (described
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as a function of wind speed and generator RPMs as a function
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normalised to highlight relative changes. This comparison demon-
strates the higher sensitivity of the power as a function of the wind
speed pair.

in Malik and Bak, 2024b). However, it is crucial to note that
buffering would still introduce “elasticity” in the signal’s rep-
resentation in cases with missing data, as data bins still re-
quire filling.

The results reveal not only the expected seasonal vari-
ations but also additional intriguing patterns that warrant

Wind Energ. Sci., 10, 269-291, 2025

further exploration. Specifically, the winter peaks display a
characteristic pattern of an initial lower peak towards the
end of the year, followed by a minor trough and then a pro-
nounced peak. Similarly, the summer troughs exhibit a brief
peak before descending further. These patterns appear con-
sistent across most turbines in a given season but not across
all seasons.

Since the signal is not normalised for air density varia-
tions, unlike the approach in the previous study, the observed
variations encompass atmospheric conditions including tem-
perature, wind direction, and turbulence. These distinct pat-
terns raise questions about the specific meteorological condi-
tions influencing these variations. Future research could fo-
cus on identifying correlations between performance patterns
and weather data to gain a deeper understanding of the un-
derlying cumulative factors driving these trends. This distinct
seasonal trend in turbine behaviour may also reflect a unique
signature of the specific site that could vary for identical tur-
bines at different locations, conceptualising the turbine as an
instrument measuring local atmospheric characteristics.

Moreover, the characteristic patterns within the seasonal
trends warrant further investigation, potentially through an
interdisciplinary collaboration with meteorologists. Such
collaborations could help identify specific atmospheric phe-
nomena driving these performance variations. Alternatively,
these additional “bumps” or minor peaks in data may be
mathematical artefacts intrinsic to MATLAB’s implementa-
tion of STL via the “trenddecomp” function, which was em-
ployed in this work (The MathWorks, Inc., 2023). Addition-
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ally, understanding these patterns could aid in the calibration
of sensor data.
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The improved clarity and definition of the seasonal decom-
position signal compared to previous work offers the poten-
tial to derive valuable performance understanding. For exam-
ple, analysing deviations of a single turbine’s performance
from its historical pattern or from the trends of neighbour-
ing turbines could signal underlying performance issues and
pinpoint the need for targeted interventions or maintenance.
This suggests the applicability of seasonal performance anal-
ysis as a proactive maintenance tool within wind farms.

3.2.3 Long-term trend

Figure 12 illustrates the temporal progression of 16 turbines’
long-term performance. This visualisation facilitates our un-
derstanding of the overarching trends and deviations in tur-
bine performance over the extended period, providing in-
sights into the effects of variables such as operations and
maintenance, environmental influences, and blade erosion on
turbine efficiency.

The zeroing of the trend data accentuates relative changes
over time, enabling an examination of the performance devi-
ations from a normalised baseline and highlighting those that
diverge from the fleet’s general performance trajectory.

Turbines 4, 5, 6, 7, 8, 11, and 13 were initially commis-
sioned without LEP, leading to accelerated wear compared to
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Figure 12. Grouped long-term trends in turbine performance: analysis of shared trajectories among 16 turbines, showing performance

increases with value.

blades with LEP. The subsequent installation of LEP on these
turbines at later dates potentially also influences their perfor-
mance trajectories. Specifics of these LEP installations, in-
cluding dates, are provided in Sect. 3.2.4.

The longitudinal analysis depicted in Fig. 12 shows a di-
verse array of performance trajectories across the analysed
turbine fleet. Specifically, group A turbines (1, 6, 9, and 16)
exhibit an upward trend, potentially indicative of improved
performance stemming from successful maintenance inter-
ventions or systematic upgrades implemented over the ob-
served period. Conversely, group B turbines (3, 5, and 14)
show a downward trend suggesting progressive performance
decline, possibly due to accumulated wear that maintenance
efforts have not fully mitigated. Group C, including turbines
8, 11, 13, and 15, shows a somewhat stable trend.

The variable performance of turbines 2, 4, and 7 in Group
D, characterised by intervals of sharp increases and de-
creases, aligns with patterns reported in earlier work (Malik
and Bak, 2024b). Such fluctuations could result from a com-
bination of operational dynamics and external environmen-
tal factors. Integrating this analysis with meteorological data
could help clarify the underlying causes. Moreover, method-
ological limitations, such as the application of the STL de-
composition, might also contribute to these variations. Ad-
justing the smoothing or other parameters to minimise “leak-
age” of seasonal effects into the long-term trend could im-
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prove trend fidelity, possibly causing seasonal effects to be
visible in the long-term trend and preventing the misattribu-
tion of seasonal effects to climatic variability. A thorough in-
vestigation incorporating the turbines’ maintenance history
and regional climate conditions is warranted to clarify their
impact on the observed performance dynamics.

Generally, the turbines are noted to improve or maintain
performance over the period analysed, with a few exceptions
that merit further investigation. While a detailed comparison
with Malik and Bak (2024b) is beyond the scope of this anal-
ysis, the identification of similar patterns highlights the util-
ity of longitudinal performance assessment. This approach
aims to facilitate data-driven decision-making for mainte-
nance and contributes to understanding the factors influenc-
ing wind turbine performance over time.

3.2.4 Influence of erosion, blade operations, and

maintenance events

Informed by the synchronised seasonal trends that emphasise
the importance of turbine-specific sensor selection, this sec-
tion explores the impact of LEP applications and repairs on
the long-term performance of a targeted subset of turbines.
Figure 13 and subsequent Figs. Al to A16, shown in Ap-
pendix A, illustrate these effects.

While blade-related interventions and erosion have the
capacity to alter turbine performance, a multitude of other
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edge protection (LEP) application. The solid line represents the
long-term TPI trend.

unaccounted-for factors also contribute to deviations. These
include weather events, O&M events, component replace-
ments, control system updates, measurement uncertainties,
and more. A comprehensive effort to document every influ-
encing factor and its impact is undertaken in Malik and Bak
(2024b). However, it is not replicated here due to the exten-
sive data aggregation required and the potential for incon-
clusive results stemming from insufficient event data in that
work.

This study’s further focus is identifying turbine-specific
critical sensors, as evidenced by the synchronised seasonal
trends. Despite the thorough analysis, erosion detection does
not yield definitive conclusions, necessitating the exploration
of alternative methods. In the subsequent sections, potential
sensors suitable for detecting erosion will be evaluated.

3.3 Refined multibody simulations for detailed sensor
evaluation

Motivated by the limited sensor availability in operational
studies based on SCADA data, this investigation revisits the
multibody simulation environment to examine the response
of various sensors to blade roughness.

Figures 14 and 15 exemplify the changes in electrical
power, attributable to two distinct degrees of blade rough-
ness as a function of wind speed and for various turbulence
intensities. The impact of erosion becomes markedly percep-
tible at wind speeds exceeding 9ms~!, with the P40 rough-
ness having a more pronounced effect on the power curve.
Moreover, the influence of erosion is more pronounced at
lower turbulence intensities, as evidenced by the most sig-
nificant change in power at 0% TI compared to 12 % TI.
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An annual mean TI of 6 % is considered representative of
the offshore site under investigation. This aligns with the an-
ticipated impacts of erosion on aerodynamic efficiency and,
consequently, turbine sensor readings.

To quantify the sensitivity of various sensors to blade ero-
sion, Cohen’s d was selected as the metric of choice to pro-
vide a standardised and interpretable measure of the effect
size of blade erosion (P40 roughness). This metric allows a
comparison of the responsiveness of different sensors across
varying wind speeds and turbulence intensities, providing
insights into which sensors are most suitable for detecting
blade erosion. In Fig. 16, the heat map provides a visual rep-
resentation of Cohen’s d values, demonstrating the differen-
tial sensitivity to erosion across varying wind speed bins for
a limited suite of sensors at a turbulence intensity of 6 %.
The results for 0 % and 12 % are provided in Appendix B,
Figs. B1 and B2, respectively.
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Figure 16 presents a heat map of Cohen’s d values for
multiple sensors across different wind speeds at a TI of 6 %.
This visualisation is useful for identifying the most sensitive
sensors and the wind speed ranges where erosion effects are
most pronounced. To interpret the heat map, observe the x
axis, which represents different wind speed bins, and the y
axis, which lists the various sensors being evaluated. Each
cell in the heat map corresponds to the Cohen’s d value for a
given sensor at a particular wind speed. Warmer colours in-
dicate higher magnitudes of change, suggesting greater sen-
sitivity of that sensor to blade erosion, while cooler colours
indicate lower magnitudes of change. This visual represen-
tation allows for quick identification of the most responsive
sensors across different operational conditions.

To focus on the magnitude rather than the direction of
changes in sensor readings due to blade erosion, the abso-
lute values of Cohen’s d are taken, extending the range from
0 to 2. This adjustment simplifies the interpretation of re-
sults, as it emphasises the extent of the change rather than
its direction. Moreover, the values within this range are not
displayed in the figure; the figure serves solely as a guide to
identify which sensors and wind speed regions warrant fur-
ther analysis.

It is important to interpret the absolute values of Cohen’s
d in the context of the specific sensor. As an example, the
response of electrical power (6 % TI and P40) relates directly
to Fig. 15, herein presented in terms of Cohen’s d.

Higher absolute values of Cohen’s d suggest a greater
sensor sensitivity, with darker colours representing a greater
change in value. A value of 0 indicates no difference be-
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tween the clean and rough conditions. The heat map colour
scale was limited to this range to improve the visualisation of
patterns across sensors, highlighting relative differences and
making patterns easier to discern. While this obscures the
absolute difference in sensor response, a logarithmic scale
could compress the range of Cohen’s d values, although it
would make interpreting the magnitude of the effects less in-
tuitive.

Sensors registering the highest Cohen’s d values across
multiple bins warrant particular attention in relation to the
research question. The Cohen’s d values for torsion at the
blade tip were exceptionally higher in magnitude compared
to other sensors. Values reaching approximately —13 (6 %
TI) suggest either a substantial sensitivity of blade tip tor-
sion to blade erosion conditions or potential overestimation
of this sensitivity by the model. Further analysis of the blade
tip torsion data is needed to determine the primary cause. The
underlying torsion data may have extreme values or outliers
(for both rough and clean conditions) that might be skew-
ing the results. It should be considered whether the simula-
tion model might be overemphasising the blade tip torsion
response under certain conditions. Additionally, if the stan-
dard deviation of the blade tip torsional load is particularly
small within certain conditions, even moderate differences in
means can produce a large Cohen’s d.

The heat map analysis reveals sensors with notable sensi-
tivity to erosion, specifically blade tip torsion, blade root flap
moment, shaft moment, and tower moments. These sensors
demonstrate particular sensitivity under lower turbulence in-
tensities (compare Figs. B1 and B2). However, care should be
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taken in the practical application of sensors such as the tower
bottom moment, which may not be as reliable in a real-world
environment as it is in simulations. This sensor’s distance
from the primary cause of the effect, blade erosion, can result
in significant noise interference. For instance, fouling on the
foundation, which may also vary over time similarly to ero-
sion, can confound the readings from such sensors, making
it challenging to attribute changes directly to blade erosion.

Although the heat map analysis reveals several key find-
ings, it is important to acknowledge that these results are
based on multibody simulations, which may have limitations
in representing non-uniform inflow conditions (Boorsma
et al., 2024). Additionally, the aerofoil aerodynamic model
may have reduced accuracy at high Reynolds numbers, as
limited validation exists for eroded aerofoil modelling under
these conditions. These limitations may affect the accuracy
of the sensor sensitivity analysis.

These findings provide an understanding of the capabili-
ties of various sensors for erosion detection and performance
monitoring. They emphasise the potential utility of sensors
that may show promise for integration into existing SCADA
or condition monitoring systems (CMSs). This integration
may enable the detection of both blade erosion and perfor-
mance alterations due to other potential changes stemming
from blade-aerodynamic-profile-alteration-related causes.

Furthermore, these findings suggest potential benefits for
wind farm owners and operators to discuss sensor inclu-
sion with turbine manufacturers during contract negotiations.
Certain sensors, such as those embedded in the drivetrain
or blade lay-up, are typically installed during manufactur-
ing and are difficult to retrofit later. Access to data from
these sensors at appropriate sampling rates through standard
SCADA systems could strengthen fleet monitoring capabili-
ties. Owners and operators may want to consider requesting
such access to improve their ability to monitor turbine per-
formance over time.

4 Conclusion

This investigation explores advancements in assessing wind
turbine performance using blade erosion as a proxy for detri-
mental performance changes. The work describes the pro-
cess of utilising a turbine OEM-provided multibody model
for effective sensor selection on the same operational off-
shore wind turbine. The turbine’s wind speed anemometer,
previously considered of limited utility, appears to be a cru-
cial sensor for performance monitoring. However, the inher-
ent uncertainties in wind speed measurements must be ac-
counted for when interpreting performance trends, as they
could significantly influence the reliability of data-driven in-
sights.

The study applies the turbine performance integral (TPI)
to a multi-megawatt turbine of a different manufacturer than
in previous work (Malik and Bak, 2024b), testing the TPI’s
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effectiveness across diverse operational contexts. This sug-
gests the necessity of a controller-informed, turbine-specific
approach to sensor selection and highlights the potential ben-
efits of collaboration between turbine manufacturers and op-
erators. Such partnerships would facilitate the application of
proprietary-control philosophies to deploy the most appro-
priate sensors.

This research attempted to address the gap between sim-
ulation and operational reality by empirically examining the
efficacy of an identified sensor pair in an operational turbine.
Multibody simulations were used to establish the correct sen-
sors, which were then applied to analyse seasonal perfor-
mance variations. The analysis shows TPI synchronisation
across 16 turbines in the same wind farm over a 9-year pe-
riod, revealing overarching seasonal trends and sub-seasonal
variations warranting further exploration.

However, attributing long-term performance changes to
blade erosion or LEP interventions remains challenging. The
multitude of operational events throughout a turbine’s life-
time often obscure direct correlations between performance
deviations and specific interventions. This difficulty aligns
with findings from Malik and Bak (2024b), which demon-
strated the challenges inherent to drawing correlations be-
tween various events in a turbine’s lifetime and its perfor-
mance.

To address these challenges, the investigation returned to
the simulation environment. By employing Cohen’s d as
a normalised metric, additional useful sensor signals were
identified for the turbine investigated. Blade tip torsion, blade
root flap moment, shaft moment, and tower moments exhib-
ited heightened sensitivity to blade erosion, particularly un-
der lower-turbulence-intensity conditions.

While the findings gained from the simulation results
could not be directly compared with operational data due to
lack of access or due to the potential non-existence of certain
sensors, this area offers avenues for future iterative valida-
tion with results compared against empirical results to fur-
ther refine the methodology. Such refinement must also con-
sider how uncertainties in measurements impact the derived
trends, particularly when the wind speed signal is employed
by TPI. This may involve adjusting the simulation param-
eters, refining the sensor selection criteria, or incorporating
additional data processing techniques. The iterative approach
aims to ensure that the final set of identified sensors is both
theoretically sound and practically relevant. The goal is to
converge on a set of sensors that exhibit strong correlations
with performance trends in operational data, potentially im-
proving erosion monitoring. It is important to note the lim-
itations of this approach, particularly regarding potential in-
accuracies of multibody simulations in non-uniform inflow
conditions. The aim is to identify reliable and practical in-
dicators of blade-erosion-related performance changes that
could be implemented in real-world turbine monitoring sys-
tems.

Wind Energ. Sci., 10, 269-291, 2025




284 T. H. Malik and C. Bak: Full-scale wind turbine performance assessment

This study indicates the pressing need for widely available
turbine-specific simulation models that accurately reflect op-
eration under real-world conditions. Such models could be
useful for fine-tuning sensor selection and deepening the un-
derstanding of turbine performance. This analysis of sim-
ulated sensor effectiveness at detecting performance reduc-
tions due to blade erosion has several potential implications
for wind turbine operation and maintenance:

— Tailored sensor selection. Operators could potentially
improve performance monitoring accuracy by focusing
on specific sensors with high sensitivity to blade ero-
sion, as determined through turbine-specific models.

— Sensor sensitivity. This research suggests that certain
sensors are particularly sensitive to surface roughness
caused by erosion. Their high Cohen’s d values indi-
cate their potential for early detection of performance
degradation. The heightened sensitivity at lower turbu-
lence intensities suggests the value of filtering datasets
for calmer wind conditions to improve the likelihood of
detection.

— Potential for early detection, optimised maintenance,
and enhanced efficiency. Integrating sensitive sensors
into existing SCADA or CMSs could enable proactive
maintenance scheduling, potentially minimising energy
losses and preventing severe damage. The work iden-
tifies potential sensors that may provide reliable indica-
tors of erosion-related performance changes, supporting
data-driven decision-making for improved operational
efficiency and asset longevity.

Increased collaboration between academics, turbine
OEMs, and operators is essential to the promotion of data-
driven strategies to improve performance monitoring accu-
racy. This collaboration will facilitate the practical appli-
cation of research findings and provide direction for future
studies aimed at advancing the sustainability and efficiency
of wind energy production.
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Appendix A: Influence of erosion, operations, and
maintenance events on all 16 turbines
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Figure A1. Turbine 1: overlay of blade maintenance activities on
long-term turbine performance integral (TPI) trends. Performance
increases with higher TPI values. The vertical dashed line indi-
cates blade-leading-edge-protection (LEP) application. The solid
line represents the long-term TPI trend.
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Figure A2. Turbine 2: overlay of blade maintenance activities on
long-term TPI trends (details as in Fig. A1).
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Figure A3. Turbine 3: overlay of blade maintenance activities on
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Figure A4. Turbine 4: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. A1).
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Figure A5. Turbine 5: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. Al).
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Figure A6. Turbine 6: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. Al).

Wind Energ. Sci., 10, 269-291, 2025




286

9600 T T T T T

T. H. Malik and C. Bak

T 10200

: Full-scale wind turbine performance assessment

1

9400

Long Term Trend
= = = Blade LEP Application | |

I

9200

©
o
o
o

Long Term Trend
ol
@
o
o

[~ Blade A LEP applied B CEF applied C'LEP dpj

9800

10000 [

Long Term Trend
= = = Blade LEP Application | 7

L L L L L L L

8600
8400
8200
8000 . . . . .
2016 2017 2018 2019 2020
Time
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Figure A9. Turbine 9: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. Al).
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Figure A8. Turbine 8: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. A1).
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Figure A10. Turbine 10: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. A1).
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Figure A11. Turbine 11: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. A1l).
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Figure A12. Turbine 12: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. A1l).
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Figure A13. Turbine 13: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. Al).
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Figure A14. Turbine 14: overlay of blade maintenance activities on

long-term TPI trends (details as in Fig. Al).
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Figure A15. Turbine 15: overlay of blade maintenance activities on
long-term TPI trends (details as in Fig. A1).
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Figure A16. Turbine 16: overlay of blade maintenance activities on
long-term TPI trends (details as in Fig. A1).
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Appendix B: Cohen’s d as a function of wind speed
for rough (P40) and clean conditions, for multiple
sensors at various turbulence intensities
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Figure B1. Cohen’s d as a function of wind speed for rough (P40) versus clean conditions, for multiple sensors at 0 % TI.
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Figure B2. Cohen’s d as a function of wind speed for rough (P40) versus clean conditions, for multiple sensors at 12 % TI.
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