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Abstract. We present an active power control (APC) algorithm for wind farms that operates wind turbines to
maximize their power availability in order to robustly track a reference power signal in the presence of turbulent
wind lulls. The operational setpoints of the wind turbines are optimized using an engineering flow model by
combining induction control with wake steering. The latter has the goal of deflecting low-momentum wakes
and increasing power margins. The algorithm also features a proportional–integral closed loop inspired by the
literature to correct potential errors deriving from the offline computation of the setpoints.

First, we demonstrate the new approach in steady-state conditions, showing how the availability of power is
increased by mitigating wake interactions. We observe that our proposed method is particularly effective in con-
ditions of strong wake impingement, occurring in scenarios of high power demand. Next, considering two wind
farm layouts, we compare the performance of the algorithm to three state-of-the-art reference APC formulations
in unsteady scenarios using large-eddy simulations coupled with the actuator line method (LES-ALM). We show
that the occurrence and treatment of local temporary instances of power unavailability (saturations) dramatically
affect power tracking accuracy. The proposed method yields superior power tracking due to the increased power
margins that limit the occurrence of saturation events. Additionally, we show that this performance is achieved
with reduced structural fatigue.

1 Introduction

As renewable energy sources occupy a larger portion of the
electricity mix, they must become also capable of providing
extra functionalities to the grid, beyond the pure generation
of power (Aho et al., 2012; Ela et al., 2014). Among these
extra operating modes, active power control (APC) is a strat-
egy where generating assets are intentionally operated below
their maximum output to satisfy operational constraints im-
posed by the transmission system operator (TSO).

In the context of wind energy, the APC problem is partic-
ularly challenging due to the dynamics of mesoscale weather
phenomena, the two-way interaction of the atmospheric
boundary layer with a wind farm, the complex development
of the flow within the plant, and its local interaction with the
aeroelastic behavior of wind turbines. The maximum avail-
able power that can be generated by a wind farm at any given
time is strongly influenced by site and local turbine-specific

ambient conditions, which change over time in uncertain and
difficult-to-predict ways (van Kuik et al., 2016). As a result,
sudden drops in wind speed or inaccuracies in forecasts can
result in inadequate power reserves, making it difficult to fol-
low a given reference signal (Fleming et al., 2016).

In a wind farm, the situation is further complicated by the
presence of low-momentum turbulent wakes, which lead to
power losses and contribute to fatigue loading on frequently
waked turbines (Vermeer et al., 2003; Lee et al., 2013; Guil-
loré et al., 2024). A variety of approaches have been sug-
gested to reduce the impact of wake effects, such as induc-
tion, yaw control, and mixing (Meyers et al., 2022). Yaw con-
trol, in particular, involves “steering” the wakes away from
downstream turbines. Its effectiveness in boosting power
has been demonstrated in numerical simulations (Jiménez
et al., 2010; Fleming et al., 2014; Vollmer et al., 2016),
wind tunnel experiments (Medici and Alfredsson, 2006;
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Campagnolo et al., 2016; Schottler et al., 2017), and real-
world field trials (Fleming et al., 2019; Doekemeijer et al.,
2021). In recent years, machine learning techniques have
been increasingly integrated into wake mitigation strategies,
further enhancing their effectiveness (Meyers et al., 2022;
Ally et al., 2025).

Different APC approaches have been described and tested
in the literature. The most straightforward method uses an
open-loop strategy, where each turbine is given a predefined
power share setpoint (Fleming et al., 2016). However, unsur-
prisingly, the absence of feedback reduces the power tracking
accuracy, particularly under strong wake impingement con-
ditions. Additionally, uniformly distributing power among
turbines may result in suboptimal performance, as the lo-
cal power availability varies among different turbines due to
wake effects.

Various authors have used model predictive control (MPC)
for APC (Shapiro et al., 2017; Boersma et al., 2018). The
main drawback of such methods lies in the need for a dy-
namic farm flow model, which increases complexity and
computational cost. While such methods undoubtedly have
their own merits, here we are interested in solutions that are
closer to practical applicability and a more rapid uptake from
industry.

Classical PID (proportional–integral–derivative) con-
trollers are widely used in an extremely broad range of dif-
ferent industrial applications. As a result, they have also been
widely studied for wind farm APC (van Wingerden et al.,
2017). While these methods lack the sophistication of MPC,
they do not require a dynamic wind farm flow model and can
offer quick response times with straightforward implementa-
tions.

The APC PI (proportional–integral) controller proposed
by van Wingerden et al. (2017) operates on the tracking er-
ror, adjusting the power demands to match a reference, and
distributes power among the turbines in a predefined static
manner. The approach incorporates gain scheduling, which
is based on the proportion of wind turbines in saturation,
defined as those whose available power is less than the de-
manded power.

Multiple authors have formulated APC methods that – be-
yond tracking a power signal – also try to control dynamic
loads in order to reduce fatigue (Kanev et al., 2018; Vali et al.,
2019; Silva et al., 2022). In particular, Vali et al. (2019) in-
troduced a nested PI loop to dynamically adjust the setpoints
of the wind turbines, with the goal of equalizing their load-
ing. So far, these PI-based methods have been applied only
to induction control.

Although these methods perform well in many conditions,
their performance may be significantly impacted by satura-
tion events, caused by a temporary local lack of power (i.e.,
when the local reserves are exhausted). Saturations harm
tracking accuracy, and therefore their occurrence should be
limited as much as possible. Saturations, or more generally
power reserves, are not explicitly accounted for, nor are they

monitored in the existing APC PI implementations, which is
a gap in the existing literature.

The effects of wind variability can be mitigated by hy-
bridizing wind farms with storage solutions (Sinner et al.,
2023). While storage has a crucial role to play in the tran-
sition towards a large penetration of renewables, here we
are interested in mitigating the effects of wind variability on
APC performance without the addition of extra hardware but
simply through a better, more robust way of controlling wind
farms.

The success of wake steering in power-boosting control
makes this technology a primary candidate to increase power
reserves, thereby improving APC tracking robustness. In
fact, some initial attempts in this direction have been recently
presented by Starke et al. (2023) and Oudich et al. (2023).
These studies showed that the timescales required by wake
redirection are compatible with secondary grid frequency
regulation. However, these same studies lack a comprehen-
sive modeling of misaligned conditions, which are signifi-
cantly affected by curtailed operation (Cossu, 2021; Cam-
pagnolo et al., 2023; Heck et al., 2023).

This paper introduces a novel wind farm control algorithm
designed to enhance power tracking accuracy under condi-
tions of strong, persistent wakes, especially when the power
demand approaches the maximum available power of the
wind farm. The algorithm improves tracking performance by
explicitly maximizing power reserves with the goal of mit-
igating the impact of wind lulls. This innovative approach
integrates wake steering with induction control. The asso-
ciated power losses in misaligned conditions are accounted
for with a recent model by Tamaro et al. (2024a), which
takes into account the way a turbine is controlled as it yaws
out of the wind. Wake steering is achieved using an open-
loop, model-based optimal setpoint scheduler. This approach
is based on the offline optimization of the control setpoints
that, once stored in lookup tables, are interpolated at run-
time. The resulting relatively simple online implementation,
which is still based on a sophisticated offline optimization,
has recently gained popularity in power-boosting wind farm
control (Meyers et al., 2022), and it is being deployed in a
growing number of industrial applications. Induction control
is implemented through a rapid closed-loop corrector to en-
hance tracking accuracy (Tamaro and Bottasso, 2023).

The methodology described in this paper has been prelimi-
narily tested in a simulation environment by Tamaro and Bot-
tasso (2023) and also demonstrated through experiments per-
formed with scaled models in a boundary layer wind tunnel
by Tamaro et al. (2024b). While both these already published
articles reported promising results, they did not describe the
formulation in detail, which was also still not completely
mature; additionally, these papers only considered a limited
number of cases, and a comprehensive detailed comparison
to state-of-the-art APC methods was missing. To address and
correct these limits of our previous studies, here we more
thoroughly describe and improve our APC method and ex-
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pand its testing across a wider range of operating conditions
through new dedicated simulations. To understand whether
and to what extent this new approach improves on the state
of the art, we perform a comparative analysis with respect to
three alternative recently described APC methods, consider-
ing power tracking accuracy and fatigue loading. Particular
attention is devoted to saturation events, as they are strong
drivers of performance for both power and load metrics. The
study is conducted on a small cluster of wind turbines with
different layouts, first in steady-state with the FLOw Redi-
rection and Induction in Steady State (FLORIS v3) code
(Gebraad et al., 2016; NREL, 2023) and then in unsteady
conditions using a TUM-modified version of NREL’s large-
eddy simulation with actuator line model (LES-ALM) Simu-
lator fOr Wind Farm Applications (SOWFA) (Fleming et al.,
2014; Wang et al., 2019).

The paper is organized as follows: Sect. 2 presents the new
formulation, the tools developed to support it, and the ref-
erence APC algorithms. Section 3 describes the simulation
setup and reports and discusses results from the steady and
unsteady analyses. Finally, Sect. 4 concludes and offers an
outlook for future work.

2 Active power control formulation

Here we present the proposed active power control formula-
tion, which will be referred to in the following as CL+MR,
which stands for closed loop with maximum reserves. The
presentation covers all the APC-relevant aspects at the farm,
turbine, and flow levels. The overall CL+MR APC method
is described in Sect. 2.1, together with its setpoint scheduler
and closed-loop corrector. Next, in Sect. 2.2 we present the
reference APC methods, which will be used later on to per-
form a comparative analysis of the performance of our new
approach. The next two sections discuss the turbine-level as-
pects of the problem. The identification and treatment of sat-
uration events – which play a central role in the behavior of
APC methods – are discussed in Sect. 2.3, while Sect. 2.4
presents the wind turbine controller. The final two sections
are devoted to the flow-related aspects of the problem. A
steady-state model, described in Sect. 2.5, is used to synthe-
size the open-loop setpoint scheduler; the same model is used
later on for a preliminary performance assessment in steady
conditions. Next, Sect. 2.6 describes a dynamic flow model
used for gain tuning.

2.1 Robust APC: closed loop with maximum reserve
(CL+MR)

The central component of the wind farm control system is
an open-loop, model-based optimal setpoint scheduler. This
scheduler determines the yaw misalignment of each turbine
and calculates its contribution (i.e., power share) to meet the
power demand set by the TSO, based on the current ambi-
ent conditions. Real-time wind speed and turbulence inten-

Figure 1. Schematic representation of the APC controller, featuring
an open-loop model-based optimizer and a closed-loop corrector.

sity can be obtained from SCADA data. Wind sensing tech-
niques (Bertelè et al., 2021, 2024) can be employed to ac-
count for wind shear, for a finer adjustment of the controller
to the ambient conditions. Additionally, a feedback loop is
used to correct any tracking errors that may occur from the
open loop in real time. Such errors are always present in prac-
tice and are due to two inevitable limiting factors: first, open-
loop setpoints are computed using models, which are clearly
always of only a limited fidelity to reality; second, setpoints
are chosen based on the knowledge of the current ambient
conditions, which are always obviously known only with a
limited accuracy. A block diagram of the control system is
provided in Fig. 1.

The closed and open loops operate at different time rates
due to the varying timescales of the physical phenomena
they control. Specifically, the open loop, which adjusts the
yaw setpoints γi and power shares αi , updates at a slow rate
because of the time required by wakes to propagate down-
stream. On the other hand, the closed loop operates at a much
faster rate, as it is charged with locally correcting small track-
ing errors. In this study, the open loop is updated 3 orders of
magnitude faster than the closed loop.

2.1.1 Open-loop setpoint optimal scheduler

The open-loop part of the algorithm calculates the optimal
setpoints for yaw misalignment and power share. These are
determined by solving an optimization problem that maxi-
mizes the minimum power reserve across the farm, while
meeting a specified overall power demand. All necessary
flow-related quantities are computed from a fast engineer-
ing model, which in this work is based on the FLORIS v3
implementation (NREL, 2023). The optimization is based
on a gradient-based approach (Brayton et al., 1979). In fact,
this class of methods typically outperforms derivative-free
approaches (Thomas et al., 2023) in the presence of active
constraints at convergence (the power demand, in this case)
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and when the solution space is smooth (Nocedal and Wright,
2006).

The power of the ith turbine is noted as Pi = Pi(Ai,ui),
where Ai = (U,ψ,k,I ) indicates the local ambient condi-
tions, here assumed to include the rotor-equivalent wind
speed U , wind direction ψ , vertical shear k, and turbulence
intensity (TI) I . The symbol ui = (γi,αi) indicates the con-
trol inputs, which are represented by the yaw misalignment
γi and power share αi = PD,i/

∑N
i=1PD,i , where PD,i is the

power demand. Power is computed using the wind farm flow
model described in Sect. 2.5. The power of misaligned and
curtailed wind turbines is computed based on Tamaro et al.
(2024a).

The maximum power that turbine i can capture by modi-
fying its control setpoints ui (with the setpoints of the other
turbines held constant) is calculated as

Pa,i =max
ui
Pi(Ai,ui)=

1
2
ρ π R2U3CP(λ,θ,γ ), (1)

where ρ is the air density, R is the rotor radius, CP(λ,θ,γ )
is the power coefficient, and λ=�R/U is the tip speed ratio
(where � is the rotor speed and θ is the blade pitch angle).

Following Tamaro et al. (2024a) (Sect. 3.2), the power co-
efficient is calculated as

CP(λ,θ,γ )= CP(λ,θ,0)ηP(λ,θ,γ ), (2)

where CP(λ,θ,0) is the power coefficient in wind-aligned
conditions and ηP indicates the scaling factor that accounts
for power losses due to misalignment γ . This model can
also take into account the effects resulting from rotor tilt δ
(Tamaro et al., 2024a).

As explained in more detail in Tamaro et al. (2024a), the
power model accounts for the turbine-level control strategy.
In fact, given the desired power setpoint αi , misalignment
angle γi and present wind speed U , the tip speed ratio λ and
pitch setting θ appearing in the power model Eq. (2) are com-
puted based on the turbine control strategy. The turbine con-
troller used here is described in Sect. 2.5, although the ap-
proach is agnostic to these specific details, and other control
approaches could be readily used as well.

The algorithm seeks the setpoint combination that mini-
mizes the maximum power ratio Pi/Pa,i across all N tur-
bines in the farm, while ensuring the power demand of the
TSO, noted as Pref, is met. This can be expressed as

min
u

max
i∈[1,N ]

Pi

Pa,i
such that

N∑
i=1

Pi = Pref. (3)

In fact, a smaller power ratio Pi/Pa,i results in a larger re-
serve ri = 1−Pi/Pa,i , which can be used to mitigate local
drops in wind.

Equation (3) represents a constrained optimization prob-
lem. However, this optimization does not need to be carried

out in real time during operation. Instead, it is performed of-
fline for a range of ambient conditions and wind farm curtail-
ment levels. The results are stored in a lookup table, which is
then interpolated at runtime, similarly to the approach used
in power-boosting wind farm control (Meyers et al., 2022).
Although executing the optimization online may be feasi-
ble, performing it offline offers the advantage of validating
the resulting setpoints in advance, which is beneficial from
an operational safety perspective. When the maximum re-
serve of the farm is zero, the optimization provides the tradi-
tional maximum power solution (Meyers et al., 2022), mak-
ing power boosting a limiting case of the proposed APC for-
mulation. This feature ensures a seamless and smooth transi-
tion between the power boosting and APC modes of opera-
tion.

By using a load surrogate model (Guilloré et al., 2024),
damage could be readily introduced as a cost term or a con-
straint in the optimization, although this option was not con-
sidered further in this work.

2.1.2 Closed-loop corrector

The closed-loop corrector is directly adopted from the work
of van Wingerden et al. (2017). It features a simple PI feed-
back loop that operates based on the power tracking error,
which results from the open-loop part of the control system.
The tracking error 1P is defined in this work as

1P = Pref−

N∑
i=1

Pi . (4)

The PI gains are obtained with a tuning procedure based on
a simple Simulink (The MathWorks Inc., 2022) model de-
scribed in Sect. 2.6; van Wingerden et al. (2017) proposed a
gain scheduling based on the number of saturated turbines.
This approach is not used here because it was found that –
when used with a limited number of wind turbines – it may
cause abrupt variations in the gains that can lead to instabili-
ties. Instead, when a turbine saturates, its local power track-
ing error is redistributed equally among the non-saturated
ones, as proposed by Vali et al. (2019). This is explained in
more detail in Sect. 2.3.

The controller features an anti-windup term on the integra-
tor when all turbines are saturated, and the integrator is reset
when no saturation occurs, as proposed by Silva et al. (2022).

2.2 Reference APC formulations for performance
comparison

Three reference wind farm APCs are considered, with the
goal of comparing the performance of the proposed power-
reserve-boosting method, namely:

– Open loop (OL). This simple approach assigns prede-
termined setpoints αi to each turbine as fractions of
the power demanded by the TSO, so that

∑N
i=1αi = 1.
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These setpoints are scheduled with the current wind di-
rection to account for different local power availabili-
ties, but they are independent of Pref.

– Closed loop (CL). This method is the same as OL
with the addition of the PI feedback loop described in
Sect. 2.1.2.

– Closed loop with load balance (CL+LB). This method
consists of CL without the fixed scheduling of the power
share setpoints αi . Instead, an additional PI loop is
nested to distribute the αi’s, with the purpose of bal-
ancing loads throughout the wind farm (Vali et al.,
2019). In this work, the tower-base fore–aft bending
moment is chosen as the target load. As proposed by
Silva et al. (2022), the mean load is computed consid-
ering only non-saturated turbines, and an anti-windup
term is added to the integrator of a turbine when it satu-
rates.

All open-loop setpoints are computed based on the engi-
neering model of the plant (NREL, 2023). CL, CL+LB,
and CL+MR feature the same PI control block described in
Sect. 2.1.2, so the closed-loop part is exactly the same. A vi-
sual comparison of all APC strategies considered in this work
is presented in Fig. 2.

2.3 Identification and treatment of saturation conditions

Local turbine saturations are detected when the blade pitch
lies at its optimal value and the tracking error exceeds a given
threshold, set to 1 % of rated power. Both conditions need to
be verified to activate saturation. The threshold for the pitch
angle is set to 0.4°. When a wind turbine enters saturation,
its power demand is fixed to the last value recorded, while its
local tracking error is equally redistributed to non-saturated
turbines in the form of an additional power demand to ensure
that

∑N
i=1αi = 1. This way, locally isolated saturation events

– even if persistent – do not introduce significant tracking
errors as long as other turbines with enough power reserve
can compensate.

On the other hand, conditions in which all wind turbines
are close to saturation are particularly harmful to the tracking
accuracy, as a cascade effect can be triggered that may lead to
all turbines being saturated. In fact, in this case, all wind tur-
bines operate in greedy mode and, if the TSO demand drops,
a significant (negative with respect to Eq. 4) tracking error
will arise. To avoid this situation, when the wind farm pro-
duces more than the instantaneous demand (with a threshold
set to 3 % of the rated power), every saturation condition is
forcibly reset.

2.4 Wind turbine controller

The wind turbine controller is characterized by two distinct
regimes, namely:

– Below rated. The blades lie at the optimal pitch angle,
while the generator torqueQ is related to the rotor speed
� as Q(�)= κ�2, where κ is a constant (Bossanyi,
2000).

– Above rated. Each turbine yields its demanded power
by collectively pitching the blades based on a standard
PI loop.Q and� are fixed and equal to the rated values,
i.e., QR and �R, respectively.

An intermediate regime is also often present in typical con-
trollers for noise or load reduction (e.g., thrust clipping)
(Abbas et al., 2022); however, such an intermediate control
regime is not considered in this work for simplicity.

The transition between the below- and above-rated
regimes occurs when � exceeds �R. Turbines can track a
given power demand PD = αiPref by adjusting �R as

�R =
3

√
PD

κ
(5)

and by setting QR = PD/�R. In case a gearbox is present,
the rotor angular velocity should be corrected by the gearbox
ratio to yield the high-speed shaft velocity.

With this control approach, the blade pitch angle θ can
be used to measure the margin of a curtailed wind turbine
(Tamaro and Bottasso, 2023). Generally, high values of θ in-
dicate a high margin since the turbine operates at a subopti-
mal CP. The lowest limit for θ is the optimal pitch angle θopt,
which yields the maximum CP.

This type of controller was chosen because it explicitly
receives a power demand as an input, which is accurately
tracked using the blade pitch angle. Other control methods
could also be used, possibly significantly affecting the APC
performance.

2.5 Steady-state model for control synthesis

The engineering farm flow model FLORIS v3 (NREL, 2023)
is used both to synthesize the open-loop part of the con-
troller and to perform steady-state analyses. The results re-
ported here are based on the Gauss–curl hybrid wake model
with default wake parameters, due to its fast computation
time and accurate modeling of lateral wake deflection (King
et al., 2021). To model off-rated operation, the lookup tables
of power coefficient CP and thrust coefficient CT are mod-
ified to consider curtailed conditions. The sum of squares
freestream superposition model by Katic et al. (1987) and
Annoni et al. (2018) is used to model the interaction of the
wakes.

Since off-rated operation spans a wide range of CT – and
misaligned operation is strongly dependent on CT (Cossu,
2021; Heck et al., 2023) – the standard FLORIS model is
coupled with an analytical model to predict rotor perfor-
mance (Tamaro et al., 2024a), rather than relying on the
cospp method (Liew et al., 2020). In fact, the latter may yield
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Figure 2. Visual comparison of the three APCs considered in this work: open loop (a), closed loop (b), and closed loop with load-balancing
setpoint distributor (c) and closed loop with max-reserve setpoint distributor (d).

inaccurate power estimates in the scenarios considered here,
as it neglects to consider how the rotor is controlled as it is
yawed out of the wind. Conversely, the misalignment model
by Tamaro et al. (2024a) determines how much power is lost
for a given misalignment angle γ based on the tip speed ratio
λ and pitch setting θ used by the turbine. Since λ and θ are
the results of the control strategy, which is itself reacting to γ ,
the problem is implicit. Hence, to compute CP = CP(λ,θ,γ )
and CT = CT(λ,θ,γ ), the balance equation between aerody-
namic power P and demanded power PD is solved iteratively.
Following Tamaro et al. (2024a), the equation

P =
1
2
ρ πR2U3CP(λ,θ,γ )=Q(PD,�)�= PD (6)

is solved for λwith θ = θopt. If the resultant� is smaller than
the rated value�R – which is computed from PD via Eq. (5) –
the turbine operates in below-rated conditions, whereas if
�≥�R it is in rated conditions. In this case, Eq. (6) is in-
stead solved for θ , with λ=�RR/U .

In the optimization phase, we normalize PD using the rated
power PR, defining a curtailment parameter ε = PD/PR. Fig-
ure 3 presents the setpoints of λ and θ for a range of ε values
for U = 8 m s−1, plotted as functions of the misalignment γ .

Figure 3a shows that when ε is decreased, λ is reduced
due to the smaller �R (see Eq. 5). Accordingly, the blade
pitch angle in Fig. 3b increases to reduce the power output.

The quantities ε and γ are used as optimization vari-
ables. The curtailment ε is limited to 0≤ εi ≤ Pa,i/PR to
ensure that the optimizer never asks for a power demand
that exceeds the locally available one, while the yaw angle
is bounded to γmin ≤ γ ≤ γmax; these turbine-dependent lim-
its are typically imposed by ultimate and/or fatigue loads.

A different optimization is solved for each ambient condi-
tion (wind speed, wind direction, optionally turbulence inten-
sity) to generate the associated setpoints. When the optimiza-

tion converges, the resulting power share setpoints are com-
puted as αi = Pi/

∑N
i=1Pi , and they are stored together with

the yaw setpoints in a lookup table. The optimization prob-
lem is solved with the gradient-based sequential quadratic
programming (SQP) method (Brayton et al., 1979). A total
of 102 optimizations are performed, i.e., 51 per wind direc-
tion, each corresponding to a wind farm power request from
50 % to 100 % of the greedy one. During operation, αi and
γi are linearly interpolated from the lookup tables based on
the average power demand computed over the last 30 sec-
onds. Clipping to the last available value of the lookup table
is applied to avoid extrapolation.

Figure 4 reports the yaw setpoints and power share per-
centages that maximize the minimum local available power
for the aligned turbines of Sect. 3.1.

The figure shows that the most upstream turbines are mis-
aligned with respect to the wind, with the goal of increasing
the power reserves of the downstream ones. The wind tur-
bines are misaligned more when the rotor overlap is larger.
The power shares result from different local inflow condi-
tions, yaw misalignment, and wake effects.

2.6 Digital twin for gain tuning

The gains of the APC controllers are synthesized with a re-
duced wind turbine model coupled with a simple dynamic
wake model. The Simulink (The MathWorks Inc., 2022) im-
plementation features three wind turbines with their own
controllers. The Jensen wake model (Jensen, 1983) is com-
bined with the instantaneous thrust coefficient CT to estimate
the wake deficit for downstream wind turbines. Wake effects
are delayed based on the local wind speed and wind turbine
separation distance to simulate the time needed for wake ef-
fects to propagate downstream. Figure 5 presents a sketch
of the digital twin. This rather crude wake model is adopted
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Figure 3. Control setpoints λ (a) and θ (b) plotted as functions of the misalignment angle γ for U = 8 m s−1 and for different values of the
normalized power demand ε, as indicated by the different colors of the lines.

Figure 4. Optimal setpoints that maximize the minimum power reserve for the three aligned turbines of Sect. 3.1. Power setpoints (a, b),
yaw setpoints (c, d). Wind direction ψ = 7.1° (50 % wake overlap) (a, c), wind direction ψ = 3.6° (75 % wake overlap) (b, d). The power
setpoints are plotted as fractions of the available wind farm power.

Figure 5. Block diagram of the structure of the Simulink model
used for optimizing the APC gains.

here purely because, although very simple, it still provides
for a realistic estimation of wake deficit in this aligned setup,
although probably not necessary for the goal of gain tuning; it
is, however, clear that other more sophisticated models could
be used.

The wind turbines are assumed to be fully aligned, and
the inflow is taken from wind tunnel measurements in a
turbulent boundary layer. The CL and CL+LB APC super-
controllers are implemented in the digital twin. Their gains
are optimized with the interior-point gradient-based algo-

rithm, where the cost function is the root mean square (RMS)
of the power tracking error. To improve the robustness of the
gains, zero-mean white noise is added to the input measured
power.

In the case of CL+LB, the cost function is defined
as J = 0.751P+ 0.25

∑N
i=11L,i , and it represents the

weighted sum of the non-dimensional tracking error 1P
and non-dimensional overall load-balancing error 1L,i , de-
fined as 1L,i = Li −

∑N
i=1Li . Both quantities are non-

dimensionalized to lie in the interval [0,1].

3 Results

3.1 Numerical setup

Tests are performed on an array of three wind turbines lo-
cated at a streamwise distance of 4 diameters (4D). The
use of a small cluster of turbines is motivated by the com-
putational cost of the LES-ALM simulations. However, the
small distance between the turbines implies a short propa-
gation time that requires a very robust APC. At the same
time, this layout – while still capturing the strong aerody-
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namic couplings caused by single and double wake interac-
tions on downstream rotors – is sufficiently simple to clearly
isolate and understand the underlying effects within the wind
farm.

Two scenarios are considered, with wind directions ψ
equal to 3.6 and 7.1°, corresponding to 75 % and 50 % ro-
tor overlaps, respectively. Rotor overlap is defined as the lat-
eral offset between the centers of two wind turbine rotors,
expressed as a percentage of the rotor diameter. An overlap
of 100 % means that the rotors are perfectly aligned (center
to center), while 50 % overlap means that the downstream
rotor is laterally displaced by half a rotor diameter. These
scenarios were chosen because they involve partial wake im-
pingement, which is particularly relevant for fatigue consid-
erations (Guilloré et al., 2024). The most upstream turbine is
labeled WT1, the most downstream one WT3, and the one
in the center is referred to as WT2. Simulations are con-
ducted using the IEA 3.4 MW reference wind turbine, a typi-
cal onshore machine with a contemporary design (Bortolotti
et al., 2019). Here, we only note that the turbine has a ro-
tor diameter D of 130 m and a 5° uptilt angle (i.e., δ =−5°)
(Tamaro et al., 2024a). The optimal pitch is θopt = 1.09°, and
the constant κ for the generator torque in the below-rated
regime is κ = 1804 kN m s2 rad−2. The maximum yaw rate
is equal to 0.8 ° s−1. The PI gains for the CL+MR controller
are KP

APC = 1.3127 [–] and K I
APC = 0.2063 s−1, while the

ones for the coordinated load distribution (CLD) of CL+LB
areKP

CLD = 0.03427 Nm−1 andK I
CLD = 0.07959 Nm−1 s−1.

The APC open loop is updated every 30 s and the closed loop
every 0.01 seconds. The closed-loop frequency of 100 Hz is
faster than the 1–10 Hz reported by other studies (Liu et al.,
2019; Vali et al., 2019), and it is due to the small time step
used by the LES-ALM solver. In CL+LB, loads are filtered
by applying exponential smoothing with a time constant of
0.1 s.

LES-ALM simulations are used for testing the perfor-
mance of the new APC formulation, because they can repre-
sent the complex dynamics typical of wind turbine wakes and
their interactions (Wang et al., 2019). We use an in-house ver-
sion of the LES-ALM code SOWFA (Troldborg et al., 2007;
Wang, 2021), which includes the smearing correction to the
blade tip forces proposed by Meyer Forsting et al. (2019).
The incompressible solver is based on a finite-volume formu-
lation and uses a standard Smagorinsky model to treat sub-
grid scales, with a constant of 0.13 (Sagaut, 2006).

The LES Cartesian mesh comprises approximately 14.3×
106 cells and includes six refinement levels. The smallest
cells measure 1 m and are located in correspondence with the
three rotors. Two tilted hexahedral regions are used to refine
the wind farm array. The computational domain, grids, and
turbine layout are shown in Fig. 6.

Unsteady tests are run with a turbulent wind obtained from
a precursor generated in stable atmospheric conditions with
periodic inlet–outlet boundary conditions. The inflow is char-
acterized by a turbulence intensity TI= 5.7 %, a hub height

wind speed U∞ = 9.54 m s−1, a power-law shear coefficient
k = 0.21, and an integral length scale of turbulence at hub
height equal to 0.79D. The normalized mean streamwise ve-
locity and turbulence intensity fields at the inlet – 4D up-
stream of WT1 – are shown in Fig. 7.

Each LES-ALM simulation is run for 1200 s. The first
200 s are considered as the initial transient, and hence they
are discarded. The total time of 1000 s is approximately
equivalent to 1.6 standard 10 min seeds, which is less than
the minimum recommended value (Liew and Larsen, 2022)
but in line with the numerical study of van Wingerden et al.
(2017). The figure shows that the three rotors are immersed in
the boundary layer and that the flow is not perfectly uniform,
which is expected, given the integral length scale of 0.79D
and the averaging time of only 1000 s. Given the short dura-
tion, results are likely dependent on the specific inflow real-
ization, especially at high power demands due to the multiple
simultaneous saturations. To mitigate this effect, LES-ALM
simulations are also performed with all turbines operating in
greedy mode. The results of the different APC formulations
are then compared to the corresponding greedy results.

3.2 Reference power demand signal

A dynamic reference power signal typical of automatic gen-
eration control (AGC) is used as a reference power signal.
AGC is the secondary response regime of grid frequency
control, and it consists of the modification of the power out-
put of a plant depending on dynamically changing requests
by the TSO (Aho et al., 2012). A similar signal has also
been considered by other authors (Fleming et al., 2016; van
Wingerden et al., 2017; Shapiro et al., 2017; Boersma et al.,
2018; Vali et al., 2019). The signal is defined as

Pref(t)= Pgreedy(ψ)
(
b + cnAGC

k (t)
)
, (7)

where nAGC
k (t) is a normalized perturbation from a standard

test signal, Pgreedy is the time-averaged available power of
the wind farm in greedy conditions, and b and c are param-
eters that shift and change the amplitude of nAGC

k , respec-
tively. A “ground truth” greedy power output Pgreedy is com-
puted from a LES-ALM simulation in which the turbines are
aligned with the inflow and operate in greedy power mode
(i.e., PD = PR, see Sect. 2.4). Figure 8 shows the time his-
tory of the normalized perturbation nAGC

k .
Pgreedy is computed on a preliminary LES-ALM simula-

tion under the same ambient conditions of the APC runs,
where the turbines operate aligned and in greedy mode. The
value c = 0.1 is used in all cases, while three different val-
ues of b are considered, i.e., b = [0.7,0.8,0.9]. In general, a
higher value of b makes the TSO signal harder to track, due
to a closer proximity to the greedy power available.
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Figure 6. Wind farm layout and simulation scenarios for 75 % (a) and 50 % (b) rotor overlap. The shaded areas indicate the mesh refinement
levels.

Figure 7. Slices of inflow fields. Time-averaged wind speed normalized by the freestream wind speed (a) and turbulence intensity field (b).
The locations of the three wind turbines for ψ = 7.1° (50 % wake overlap) are marked with a line transparency that increases along with the
distance from the inflow slice.

Figure 8. Time history of the normalized perturbation signal nAGC
k

of Eq. (7).

3.3 Steady-state analysis

First, the proposed method CL+MR is compared to OL us-
ing the steady-state engineering flow model FLORIS. This
analysis is performed on the cluster of three IEA 3.4 MW
turbines at a streamwise distance of 4D and three inflow an-
gles ψ = [0°, 3.6°, 7.1°], corresponding to rotor overlaps of
100 %, 75 %, and 50 %, respectively.

In addition to this basic comparison to the simplest possi-
ble (open-loop) approach, here we also would like to under-
stand the role of wake steering and whether it alone would be
sufficient to achieve a satisfactory APC performance. To this
end, we consider the situation where the OL power setpoints
αi are superimposed, with the yaw misalignment setpoints
that optimize power output, i.e., the classical wake-steering-
based power boosting. In principle, this method is attractive
due to its simplicity compared to CL+MR, and it similarly

incorporates wake steering. This approach is referred to in
the following as OL+power boosting.

Results are shown in Fig. 9, where we report the difference
between the rotor power and the locally available one, nor-
malized by the rated power. We use this quantity instead of
the power reserve r in order to compare the APCs in absolute
terms.

The figure shows that the margin drops to zero in corre-
spondence with the maximum power of the plant, whereas
it increases as the power demand is lowered and the wind
turbines are curtailed. Wake steering effectively extends the
power available to the wind farm. In agreement with the lit-
erature, the effectiveness of wake steering depends on the
direction of the wind with respect to the alignment of the
turbines, an effect that is here captured by the ψ angle. In
all cases, the proposed CL+MR strategy increases the power
margin for all wind farm power demands. The highest power
margin improvement is observed for ψ = 3.6° (75 % wake
overlap), and it is in excess of +20 %. As the power demand∑N
i=1Pi,OL is reduced, the added margin of CL+MR dimin-

ishes since wake effects get weaker and the effectiveness of
wake steering is reduced, in both cases because of the lower
CT. In the figure, the classical maximum power solutions are
shown using red circle symbols.

The plots show that OL+power boosting achieves the
same power reserve improvement of CL+MR only at the
red-circled points, where both the αi and γi setpoints are
identical. However, as the wind farm power demand de-
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Figure 9. Local power margin in percentage obtained with a purely inductive wind farm control (labeled OL), with an inductive APC that
operates with statically misaligned rotors according to the power-boosting solution (labeled OL+power boosting) and with the proposed
controller that dispatches power and yaw setpoints to optimize power reserves (labeled CL+MR). The first three columns show the power
margin for WT1, WT2, and WT3, respectively, while the fourth column indicates the minimum power margin in the wind farm. The first row
is obtained at ψ = 0°, i.e., 100 % rotor overlap; the second row at ψ = 3.6°, i.e., 75 % rotor overlap; and the third row at ψ = 7.1°, i.e., 50 %
rotor overlap. On the x axis, wind farm power is normalized by the maximum value for OL. The red circles indicate the classical maximum
power solution, and the colored area represents the power reserve improvement of CL+MR with respect to OL.

creases, the power margin of OL+power boosting recov-
ers at a much slower rate than for CL+MR, resulting in a
smaller improvement compared to the standard OL approach.
At lower power demands – specifically when

∑N
i=1Pi,OL ≈

90% – OL+power boosting actually yields a smaller mini-
mum reserve than OL. This can be attributed to an imbal-
ance in the distribution of power reserves across the wind
farm. Specifically, upwind rotors that are yawed for steering
their wakes have reduced margins compared to downstream,
aligned rotors, which benefit from wake steering. As a result,
in CL+MR, the optimizer tends to realign the yawed wake-
steering rotors when the power demand drops. Conversely,
in OL+power boosting, these rotors remain misaligned: the
effectiveness of wake steering diminishes with reducing CT,
which in turn decreases the locally available power. This ef-
fect is more pronounced at ψ = 7.1° (50 % wake overlap),
where wake steering is inherently less effective.

Overall, WT1 presents the largest power margin for both
OL and CL+MR, since it is driven by a clean inflow, while
for downstream rotors the margin recovers at a lower rate,
due to the non-linear behavior of wake recovery.

3.4 Unsteady conditions

Next, results from the LES-ALM simulations are presented.
Figure 10 reports slices of the time-averaged freestream

velocity fields u(x,y) at hub height, normalized by the
freestream value U∞. Figure 11 shows the turbulence in-
tensity (TI). The plots are shown for OL, and the proposed
CL+MR for ψ = 3.6° (75 % wake overlap) and ψ = 7.1°
(50 % wake overlap) for a power demand level b = 0.8. CL
and CL+LB are not shown for the sake of simplicity, since
they are qualitatively similar to OL.

These figures highlight the different extent of wake im-
pingement that occurs on the downstream rotors at ψ = 3.6°
(75 % wake overlap) and ψ = 7.1° (50 % wake overlap).
Similarly, Fig. 10b and d allow one to appreciate the effect
of yaw misalignment on the wakes, which are significantly
deflected to one side compared to fully aligned conditions.
The effect is remarkable when considering that the turbines
are curtailed, and hence the smallerCT reduces the deflection
compared to a greedy scenario.

The plots of turbulence intensity in Fig. 11 highlight the
fact that waked rotors operate in regions of significant turbu-
lence, as expected. The turbulence levels reach rather large
values in correspondence with the wake of WT3, especially
in OL with 75 % rotor overlap (see Fig. 11a). Overall, the
rather high turbulence intensity levels are likely to be also the
result of the unsteady operation of the rotors due to power
tracking. For the proposed CL+MR method, the turbulence
intensity levels are generally significantly lower than OL
for two reasons. First, wake steering reduces wake overlaps,
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Figure 10. Time-averaged streamwise velocity fields for a TSO power request b = 0.8 for two APC control strategies: open loop (OL) (a,
c) and closed loop with optimal power reserve (CL+MR) (b, d). ψ = 3.6° (75 % wake overlap) (a, b) and ψ = 7.1° (50 % wake overlap) (c,
d). The slices are extracted at hub height.

Figure 11. Turbulence intensity fields for a TSO power request b = 0.8 for two APC control strategies: open loop (OL) (a, c) and closed
loop with optimal power reserve (CL+MR) (b, d). ψ = 3.6° (75 % wake overlap) (a, b) and ψ = 7.1° (50 % wake overlap) (c, d). The slices
are extracted at hub height.

and, second, the rotors operate generally at lower CT values,
which in turn lead to reduced amplitudes of wake meander-
ing (Foti et al., 2018) and to smaller speed gradients over the
rotor.

Next, the time series of produced and demanded power are
shown in Figs. 12 and 13 for ψ = 3.6° (75 % wake overlap)
and ψ = 7.1° (50 % wake overlap), respectively. The gray
background shows the “ground truth” wind farm power from
a preliminary LES-ALM simulation where the turbines op-
erate aligned in greedy mode. This greedy power can differ
and even be lower than the one produced in the APC cases
because of the slightly different wake effects due to curtail-
ment. Nevertheless, it is reported here to provide a proxy for
the instantaneous power available in the wind farm.

Both figures show that at the low-demand value b = 0.7,
all methods track power somewhat accurately. In fact, in this
case, the power demanded by the TSO is always smaller than
the greedy power, and in general, all turbines have enough
power reserve to avoid saturations. As the power demand in-
creases, it gets closer to the available one, leading to track-
ing inaccuracies driven by local saturation events. Still, for
b = 0.8, the effectiveness of the closed-loop methods is evi-
dent. This is mostly due to the setpoint redistribution logic
that makes unsaturated turbines compensate for the track-
ing error of the saturated ones. However, when b > 0.8, the

power available to the wind farm is often not enough to
track the reference signal, and this is especially clear in the
time interval 650 s< t < 1000 s. In such cases, the higher
power availability made possible by wake steering allows
only CL+MR to track the signal, while other methods clearly
lack the power reserve to do so.

In the zoomed regions of the plots, the saturation events
can be clearly observed. In the open-loop case, the power
demand remains unaffected since no countermeasure is im-
plemented. Conversely, in the closed-loop cases, the power
demand remains constant for saturated rotors since the other
ones are called to compensate.

3.4.1 Saturation events

Figures 14 and 15 provide a visual representation of the oc-
currences of local saturation conditions for each APC strat-
egy and different TSO request scenarios for ψ = 3.6° (75 %
wake overlap) and ψ = 7.1° (50 % wake overlap).

These plots indicate that waked wind turbines – i.e., WT2
and WT3 – are often saturated because of their generally
small power reserve. This effect is exacerbated in the sce-
nario with stronger wake impingement when ψ = 3.6° (75 %
wake overlap). CL does not reduce the extent of saturation
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Figure 12. Time series of power demand PD,i and power-generated Pi for ψ = 3.6° (75 % wake overlap). The y axes are non-
dimensionalized by the rated power PR of the IEA 3.4 MW reference wind turbine. The wind farm power obtained in greedy operation
(without wake steering) is displayed in the background in gray.

events compared to OL but it rather increases them since
other turbines are requested to compensate.

The strategy CL+LB presents the highest number of satu-
ration events of waked turbines. This is because, in order to
balance the tower-base fore–aft bending moment, waked tur-
bines are requested to yield a power that is not actually avail-
able. At high power demands (i.e., b > 0.8), waked wind tur-
bines operate in greedy mode, while WT1 is responsible for
following the TSO signal. In this case, the difference between
50 % and 75 % rotor overlap is remarkable, since in the lat-
ter case WT1 is often saturated, while in the former it is not.
This is due to the different wake impingement that modifies
the load distribution.

To further understand the reasons for the observed satura-
tion events, the collective blade pitch angle θ is considered.
In fact, this parameter can be seen as a proxy of the local
power reserve, as discussed in Sect. 2.4. Figures 16 and 17

show the mean collective blade pitch angle θ , binned accord-
ing to the instantaneous required power and normalized by
the available power of the wind farm, as determined from
a greedy LES-ALM simulation in the same conditions. This
type of binning is chosen to decouple the aerodynamic effects
of the APC strategy from sporadic events introduced by the
characteristics of the inflow seed. All simulations with differ-
ent power demand (b) levels are included in the average for
a given ψ , and only bins with a minimum total length of 30 s
are included. Figure 16 refers to the scenario ψ = 3.6° (75 %
wake overlap), while Fig. 17 reports the case for ψ = 7.1°
(50 % wake overlap).

These results show that OL and CL share the same power
reserve distribution since, in both cases, the same power set-
points αi are used. As expected, when the power demand in-
creases, all CL-based methods present a lower θ than in the
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Figure 13. Time series of power demand PD,i and power-generated Pi for ψ = 7.1° (50 % wake overlap). The y axes are non-
dimensionalized by the rated power PR of the IEA 3.4 MW reference wind turbine. The wind farm power obtained in greedy operation
(without wake steering) is displayed in the background in gray.

OL case; this is due to the closed-loop correction and to the
setpoint redistribution that occurs with saturations.

In line with the results shown previously, CL+LB presents
a distribution of power reserves that is strongly unbalanced
towards the upstream turbine. In fact, the goal of balanc-
ing loads implies that waked turbines receive relatively high
power demand setpoints, which push them closer to satura-
tion as the power demand increases. This is an important un-
desired and yet unreported side effect of the load-balancing
strategy; as shown later on, in turn, this effect undermines
the very ability of the strategy to balance loads in certain
situations. The proximity to saturation is visible in Figs. 16
and 17, as the mean blade pitch angles approach the opti-
mum value θopt. Conversely, the proposed CL+MR approach
presents a distribution of reserves that is balanced throughout
the wind farm, resulting in a generally higher power reserve
for waked turbines and a lower one for the upstream turbine.

Additionally, CL+LB appears to be sensitive to the wind
direction ψ , as a strong wake impingement at ψ = 3.6°
(75 % wake overlap) yields a more unbalanced power re-
serve distribution than for ψ = 7.1° (50 % wake overlap).
Conversely, the effect of the amount of wake overlap is less
evident for the proposed CL+MR. This is expected since, in
this case, the setpoints specifically depend on the wind direc-
tion.

3.4.2 Power tracking accuracy

Figure 18 presents the RMS of the power tracking error 1P
for both wind direction (i.e., wake overlap) scenarios. Re-
sults indicate that closed-loop methods can significantly re-
duce the tracking error compared to the open-loop approach.
The effectiveness is higher for low-demand values b ≤ 0.8
and gradually reduces as the power demand is increased,
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Figure 14. Occurrence of local saturation events for the three turbines in the array and the different control strategies for ψ = 3.6° (75 %
wake overlap). Only TSO requests with higher demand (b ≥ 0.8) are considered, as few saturations were observed for low-demand values
(b = 0.7).

Figure 15. Occurrence of local saturation events for the three turbines in the array and the different control strategies for ψ = 7.1° (50 %
wake overlap). Only TSO requests with higher demand (b ≥ 0.8) are considered, as few saturations were observed for low-demand values
(b = 0.7).

as it appears already in the time series reported in Figs. 12
and 13. In all cases, the proposed maximum reserve method
CL+MR presents the lowest power tracking error. This is to
be expected since, for b > 0.7, there are short events where
the power demand exceeds the available greedy power. Such
events degrade the tracking accuracy for methods that do not
include wake steering. This highlights the importance of in-
cluding wake steering in APC, as an effective tool for in-
creasing power reserves.

To perform a more comprehensive comparison, the same
analysis is repeated. This time, however, the tracking error
time series are binned according to the instantaneous re-
quired power normalized by the available power of the wind
farm, as done earlier for θ . Only bins with a minimum length
of 30 s are considered, and the values of1P in each bin from
each power demand scenario (b request) are averaged. Only

the positive values of1P are considered here, since they rep-
resent a lack of power, i.e., the inability of the plant to deliver
what was requested. Results are shown in Figs. 19 and 20
for ψ = 3.6° (75 % wake overlap) and ψ = 7.1° (50 % wake
overlap), respectively.

This analysis indicates that all closed-loop methods per-
form similarly at moderate TSO demands, i.e., b < 0.8, with
a remarkable performance improvement over OL. The im-
provement of closed-loop methods is due to the faster re-
sponse of the wind farm and to the treatment of saturation
conditions.

However, as the power demand approaches Pref/Pa,WF ≈

100%, the proposed CL+MR exhibits a much improved
tracking accuracy than all other methods. If, on the one
hand, this is to be expected when Pref/Pa,WF > 100%, due
to the overall higher wind farm power, the improvements ob-

Wind Energ. Sci., 10, 2705–2728, 2025 https://doi.org/10.5194/wes-10-2705-2025



S. Tamaro et al.: Robust active power control 2719

Figure 16. Mean collective blade pitch angle binned by the instantaneous available power, computed from the time series of greedy power
and TSO power request for ψ = 3.6° (75 % wake overlap). The values represent the means over all tested demands (b values). Only bins
with a minimum total length equivalent to 30 s are considered. The optimal blade pitch angle value is indicated by a horizontal black line.

Figure 17. Mean collective blade pitch angle binned by the instantaneous available power, computed from the time series of greedy power
and TSO power request for ψ = 7.1° (50 % wake overlap). The values represent the means over all tested demands (b values). Only bins
with a minimum total length equivalent to 30 s are considered. The optimal blade pitch angle value is indicated by a horizontal black line.

served for 80%< Pref/Pa,WF < 100% are less obvious. In
fact, since CL, CL+LB, and CL+MR share the exact same
closed-loop part of the APC controller, the better perfor-
mance of the new CL+MR is to be attributed to the more bal-
anced power reserve distribution, consistently with the mean
blade pitch angles shown in Figs. 16 and 17. This is also in
agreement with the results of the steady-state analysis shown
in Sect. 3.3.

3.4.3 Load and fatigue analysis

Here we characterize the performance of the proposed
CL+MR strategy on the loading of the turbines, and we com-
pare it to the other reference APC methods.

First, the average loading of the turbines is analyzed by
considering the mean tower-base fore–aft bending moment
L. Since the turbines are yawing out of the wind when per-
forming wake steering, the moment is computed by always

considering the component orthogonal to the rotor orienta-
tion. Figures 21 and 22 report the results for the three wind
turbines in the array, for the casesψ = 3.6° (75 % wake over-
lap) and ψ = 7.1° (50 % wake overlap), respectively.

The figures show that L increases with the TSO power
demand level b. In all cases except CL+LB, WT1 presents
the largest load, while L is rather comparable for WT2 and
WT3. CL+LB successfully balances L in the wind farm. It
only fails to do so when b = 0.9 for ψ = 3.6° (75 % wake
overlap), due to the persistent saturation of waked rotors. In
this case, in fact, the controller is designed to prioritize power
tracking over load balancing.

Interestingly, the proposed CL+MR also presents a rather
balanced load distribution for ψ = 7.1° (50 % wake overlap),
but with slightly lower values than CL+LB. Conversely, for
ψ = 3.6° (75 % wake overlap), the loading on WT3 grows
along with b, due to the larger power share of this rotor com-
pared to the other strategies.

https://doi.org/10.5194/wes-10-2705-2025 Wind Energ. Sci., 10, 2705–2728, 2025



2720 S. Tamaro et al.: Robust active power control

Figure 18. RMS of tracking error normalized by the turbine-rated power, as functions of the TSO demand level (b values). ψ = 3.6° (75 %
wake overlap) (a); ψ = 7.1° (50 % wake overlap) (b).

Figure 19. Positive tracking error binned by the instantaneous available power, computed from the time series of greedy power and TSO
power request for ψ = 3.6° (75 % wake overlap). The values on the y axis are normalized by the rated power of one wind turbine. The values
represent the means over all tested demands (b values). Only bins with a minimum total length equivalent to 30 s are considered.

Next, the effects on fatigue are analyzed by computing
the damage equivalent loads (DELs) for the tower-base fore–
aft bending moment using the rainflow counting algorithm
(Downing and Socie, 1982). Simulations were performed
with rigid wind turbine models, and hence, some dynamic ef-
fects are neglected. Nevertheless, this analysis still captures
the effects generated by the different APC strategies on aero-
dynamically induced loads.

Figures 23 and 24 present the DELs of the three wind
turbines in the array for ψ = 3.6° (75 % wake overlap) and
ψ = 7.1° (50 % wake overlap), respectively.

Similarly to the average loading discussed earlier, DELs
increase with TSO power demand b because of the higher
loads that are involved. In general – and as expected – it ap-
pears that DELs grow as the turbines are more impinged by
wakes. In fact, WT3 is very often the most loaded turbine,
possibly because of the relatively high turbulence associated
with partial wake impingements.

There is, however, a notable exception for CL+LB (which
is explicitly designed to ensure an equal balancing of the
loads), where sometimes WT1 is the most highly loaded
machine. This is explained by the previous analyses (see
Fig. 14), which showed that WT1 is often the only turbine re-
sponsible for tracking the TSO signal, while the waked WT2
and WT3 operate in greedy mode. This points to the fact that
load balancing by itself may not always be able to achieve

the desired effect of an equal distribution of damage, defying
its very design goal.

It is clear that the DELs in Figs. 23 and 24 could be bi-
ased by some unique events. These conditions can arise due
to the high-amplitude cycles that occur, especially in cor-
respondence with simultaneous saturation events. For this
reason, no further conclusions are drawn from these plots.
Rather, the fatigue analysis is repeated by binning the load
time series according to the instantaneously required power,
normalized by the available power of the wind farm, as done
already in Sect. 3.4.1. In this case, multiple DELs are com-
puted on continuous time segments of at least 45 s that be-
long to the same seed, and they are later summed together.
DELs are computed in this way for each TSO demand sce-
nario (b values), and they are then averaged. The results are
shown in Figs. 25 and 26 for ψ = 3.6° (75 % wake overlap)
and ψ = 7.1° (50 % wake overlap), respectively.

These results allow for some further insight into the behav-
ior of the various controllers. For all APCs, damage increases
along with Pref/Pa,WF. OL and CL do not present signifi-
cant differences, as the power share distribution is similar. In
these cases, the turbines operating in waked conditions are
clearly more damaged than the upstream one. CL+LB works
especially well for the simpler case of strong curtailments
Pref/Pa,WF < 80%, with rather low DELs in accordance with
Vali et al. (2019). Damage is also well distributed among the
wind turbines but only in the less difficult cases.
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Figure 20. Positive tracking error binned by the instantaneous available power, computed from the time series of greedy power and TSO
power request for ψ = 7.1° (50 % wake overlap). The values on the y axis are normalized by the rated power of one wind turbine. The values
represent the means over all tested demands (b values). Only bins with a minimum total length equivalent to 30 s are considered.

Figure 21. Mean tower-base fore–aft bending moment for the TSO demand levels b = 0.7 (a), b = 0.8 (b), and b = 0.9 (c), for ψ = 3.6°
(75 % wake overlap).

Notably, the proposed CL+MR presents a relatively con-
stant damage distribution, with improved performance espe-
cially in the more difficult cases for Pref/Pa,WF > 80%. Re-
sults also indicate a strong damage reduction on WT1 and
WT2 for the larger rotor overlap condition (75 %, ψ = 3.6°).

The previous analysis quantified fatigue damage but did
not attribute it to specific dynamic sources. To distinguish the
dominant sources of load unsteadiness, we categorize dam-
age d based on the load cycle duration T obtained by rainflow
counting, according to the following three bins:

– High frequency. 0 s≤ T ≤ 5 s, generated by aerody-
namic loads due to small turbulent eddies, rotational
effects (1P, 3P harmonics), and the associated fast re-
sponses of the turbine and farm-level controllers;

– Medium frequency. 5s≤ T ≤ 30 s, associated with
larger-scale flow eddies (the integral timescale of the
inflow is approximately 11 s), including wake meander-
ing, and the resulting control actions;

– Low frequency. 30s≤ T ≤ 20 min, caused by slower
phenomena such as secondary grid frequency control
(power tracking), long-period gusts, large-scale wake
effects, and the resulting variations in power share (and
hence loading).

Clearly, this definition of the bins is somewhat arbitrary but
still enables a rough initial categorization of the driving phe-
nomena. Since the simulations assume rigid wind turbine
structures, aeroelastic dynamics are excluded from this anal-
ysis.

Figures 27 and 28 present the results of this binning, where
we have considered the total damage deriving from the sim-
ulations with all the different TSO demand levels (b val-
ues). The damage that occurred in a specific cycle has been
normalized with the damage of the baseline greedy control
case (gray area in Figs. 12 and 13), so that the bars labeled
“Greedy” sum up to 1.

Results indicate that the waked turbines WT2 and WT3
present more damage in the high-frequency range than WT1,
as a result of the small eddies that characterize wake turbu-
lence.

The greedy case presents the highest damage in the low-
frequency range for waked rotors (WT2 and WT3), likely
due to strongly fluctuating inflows caused by wake impinge-
ment. All APC methods perform better than the greedy case
because the low-frequency rotor dynamics are driven by
the smooth reference power demand signal, so that large
load fluctuations that would derive from wake turbulence are
somehow mitigated.

As expected, closing the loop (CL) results in greater dam-
age compared to operating in open loop (OL), especially in
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Figure 22. Mean tower-base fore–aft bending moment for the TSO demand levels b = 0.7 (a), b = 0.8 (b), and b = 0.9 (c), for ψ = 7.1°
(50 % wake overlap).

Figure 23. Tower-base fore–aft bending DELs for the cases b = 0.7 (a), b = 0.8 (b), and b = 0.9 (c) for ψ = 3.6° (75 % wake overlap).

the medium frequency range, due to the extra turbine control
activity that derives from the closed-loop correction. This is
clearly visible in Fig. 13, where the local power oscillations
of the various turbines are much larger when using CL than
OL, especially for the higher TSO demand levels (b ≥ 0.8).
However, as already noted, these larger oscillations at the
level of the turbines result in a much improved tracking of the
power signal by the whole wind farm (cf. Figs. 13 and 18).

As already observed earlier, CL+LB in general performs
rather poorly for WT1 when compared to all other methods.
This is due to the extra thrust-loading that results from the
need to compensate for the saturations of WT2 and WT3.
The effect of the added loading on damage is dramatic, due
to the persistent saturations resulting from the CLD loop, as
shown in Figs. 14 and 15.

The proposed CL+MR significantly outperforms all meth-
ods in the entire frequency spectrum for WT1 and WT2,
due to the mitigation of wake impingement by wake steer-
ing, a generally reduced blade pitch actuation, and a partic-
ularly smooth power output made possible by the larger re-
serves, consistently with the time series shown in Figs. 12
and 13. This is true also for WT3 in the milder waking sce-
nario (ψ = 7.1°, 50 % wake overlap), thanks to wake steering
that is able to clean its inflow. For the stronger waking case

(ψ = 3.6°, 75 % wake overlap), while the benefit on WT2
is dramatic, the performance for WT3 is similar to the other
methods, probably due to the combined effects of two im-
pinging wakes.

Overall, results indicate that low-frequency load cycles are
responsible for the largest portion of damage. As shown in
the time series of Figs. 12 and 13, low-frequency cycles of
power (and therefore load) often coincide with saturations,
especially when a compensation mechanism is in place, like
in CL, CL+LB, and CL+MR. In fact, as a result of saturation,
the compensating rotor has to track an additional power sig-
nal, which amplifies its control activity and increases fatigue.
Furthermore, saturated rotors operate in greedy mode, which
means that their loads are subjected to low-frequency varia-
tions deriving from the local inflow, which is often a waked
one. This highlights once again the importance of the treat-
ment and reduction of saturation events.

4 Conclusions and outlook

We have presented a new wind farm APC method to ro-
bustly track a reference power signal in turbulent wind condi-
tions. The controller collectively operates the wind turbines
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Figure 24. Tower-base fore–aft bending DELs for the cases b = 0.7 (a), b = 0.8 (b), and b = 0.9 (c) for ψ = 7.1° (50 % wake overlap).

Figure 25. Tower-base fore–aft bending DELs for ψ = 3.6° (75 %
wake overlap). DELs are binned with the instantaneous available
power, computed with the time series of greedy power and TSO
power request. The values represent the mean over all the tested de-
mands (b values). Only continuous time segments with a minimum
duration of 45 s are considered.

to maximize the minimum local available power. This reserve
can then be exploited for accurate power tracking, ensuring
minimal insurgence of saturation events.

The algorithm combines one open loop and one closed
loop, which operate at different time rates. A modified ver-
sion of FLORIS was utilized to compute the wind turbine
setpoints for the open-loop branch in a gradient-based opti-
mization. The PI gains of the closed-loop branch were tuned
with a digital twin that mimics the wind turbine dynamics
and the propagation of wake effects.

The new methodology was tested on a small cluster of
three wind turbines with persistent waking. We quantified
the power reserve with a steady-state analysis and compared

Figure 26. Tower-base fore–aft bending DELs for ψ = 7.1° (50 %
wake overlap). DELs are binned with the instantaneous available
power, computed with the time series of greedy power and TSO
power request. The values represent the mean over all the tested de-
mands (b values). Only continuous time segments with a minimum
duration of 45 s are considered.

the new algorithm with a standard open-loop APC method.
We observed that the new methodology is particularly effec-
tive at increasing power reserves when it can mitigate strong
wake impingements.

In addition, the new approach was tested with unsteady
LES-ALM simulations, showing an accurate power tracking
performance, which was, in most cases, largely superior to
the one provided by reference controllers representing the
state of the art in APC. We have shown that this better accu-
racy is explained by the strong reduction of saturation events
and the evenly spread power reserve, as measured by the
mean collective blade pitch angle. We have binned the data
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Figure 27. DELs of the tower-base fore–aft bending moment for ψ = 3.6° (75 % wake overlap), binned by cycle duration T and normalized
by the total damage of a baseline greedy control case in that bin.

Figure 28. DELs of the tower-base fore–aft bending moment for ψ = 7.1° (50 % wake overlap), binned by cycle duration T and normalized
by the total damage of a baseline greedy control case in that bin.

according to the instantaneous available wind farm power to
exclude biasing by isolated events.

Overall, the following observations should be highlighted:

– The power reserve of the wind turbines in a wind farm
is significantly affected by the extent of wake impinge-
ment.

– The new methodology is very effective at creating ad-
ditional reserves when the wind farm operates close to
its maximum power capacity, because wake deficits are
particularly strong in those conditions and the effective-
ness of wake steering is maximum.

– Combining wake steering with induction control can
improve wind farm performance by leveraging the
strengths of both strategies. This can be particularly ef-
fective for optimizing objectives beyond power maxi-
mization, such as reducing structural loads, mitigating
fatigue, and managing dynamic responses in general.

– Power tracking accuracy dramatically depends on the
occurrence of saturation events. In this regard, the fol-
lowing should be noted:

– When one wind turbine saturates, it is extremely
beneficial to redistribute its power tracking error in
the form of an additional power demand to other
turbines that are not saturated.

– The main hindrance to tracking accuracy is repre-
sented by conditions in which simultaneous satu-
rations occur. These can trigger cascading effects
of power redistribution or – in a worst case sce-
nario – can push all wind turbines to operate in
greedy mode even if the power demand of the wind
farm is exceeded.

– When applying PI methods, it is extremely impor-
tant to implement anti-windup procedures to hedge
against saturations.

– In the presence of saturations, non-saturated tur-
bines are called to compensate for the saturated
ones, resulting in high-amplitude, low-frequency
load cycles, which have a significant negative effect
on fatigue.

– Saturations not only harm power tracking but also have
significant effects on loads. In fact, load balancing
(Vali et al., 2019) by itself fails to effectively balance
loads in the presence of saturations. We have observed
and reported here several instances where the proposed
method, although lacking in the present implementation
a dedicated load balancer, results in more uniform load
distributions than CL+LB. This suggests that an im-
proved version of the proposed CL+MR method might
exhibit an even better performance if it included a load-
balancing criterion. Beyond balancing, the proposed ap-
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proach generally produced much reduced loadings on
the turbines when compared to the alternative methods.

The main limitation of this work is the rather small du-
ration of the LES-ALM simulations. Although in line with
similar studies in the literature, this limited duration could
have biased some results due to particular events occurring in
the inflow time histories. To account for this, we performed
greedy simulations to quantify the actual available power of
the wind farm at every time instant. Another limitation of the
unsteady results is the use of rigid wind turbine models in the
simulations. If, on the one hand, this should not play a major
role in the behavior of the far wakes (Salavatidezfouli et al.,
2025), on the other hand, it somehow limits the conclusions
that can be drawn from the analysis of fatigue.

Appendix A: Nomenclature

A Ambient conditions
b Shift of normalized power signal (power demand level)
CP Power coefficient
CT Thrust coefficient
c Amplitude of normalized power signal
D Rotor diameter
d Damage
K I Control gain (integral)
KP Control gain (proportional)
L Reference load signal (tower-base fore–aft bending moment)
nAGC
k Normalized power demand perturbation
N Number of turbines in a farm
P Wind turbine power
PD Wind turbine power demand
PR Rated power
Pref Reference power signal
pp Cosine law exponent (yaw misalignment)
R Rotor radius
r Power reserve
s Saturation
t Time
T Load cycle duration
U Rotor-equivalent wind speed
U∞ Freestream wind speed at hub height
u Control inputs
x Cartesian coordinate
y Cartesian coordinate
z Cartesian coordinate
α Power share setpoint
1L Load-balancing error
1P Power tracking error
ε Curtailment
ηP Power loss factor
γ Rotor yaw angle
λ Tip speed ratio
� Rotor angular velocity
�R Rated rotor angular velocity
ψ Wind direction
ρ Air density
θ Blade pitch angle
AGC Automatic generation control
APC Active power control
CL Closed loop
CLD Coordinated load distribution
CL+LB Closed loop with load balancing
CL+MR Closed loop with maximum reserve
DEL Damage equivalent load
FA Fore–aft
FLORIS FLOw Redirection and Induction in Steady State
OL Open loop
PI Proportional integral
RMS Root mean square
SOWFA Simulator fOr Wind Farm Applications
TI Turbulence intensity
TSO Transmission system operator
WF Wind farm
WT Wind turbine
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