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Abstract. In the context of the wind industry, there is an increasing need for a more comprehensive under-
standing of atmospheric wind conditions. A particular emphasis is required concerning wind structures, which
have not been thoroughly investigated in the prevailing standard guidelines. This necessity arises in light of the
current trends toward larger, higher, and more flexible wind turbine designs. Of particular importance are the
correlations between the yet-to-be-characterized atmospheric turbulent structures and the specific responses of
the turbines. These correlations may be crucial in assessing load events relevant to new designs that were neg-
ligible for the earlier, smaller, and stiffer turbines. The center of wind pressure (CoWP) (Schubert et al., 2025)
was recently introduced as a feature of a wind field that characterizes large-scale wind structures and, at the
same time, correlates with the large-scale or low-frequency content of the bending moments at the main shaft
of the wind turbines. In this paper, we comprehensively compare the CoWP and the bending moments in terms
of their statistical properties and fatigue estimates, quantified by damage equivalent loads (DELs). Furthermore,
a stochastic method for the reconstruction of synthetic CoWP signals is proposed. The strong correlation with
the bending moments enables the proposed stochastic CoWP model to serve as a relatively simple surrogate
and estimator of the large-scale dynamics of these loads, which is based solely on the properties of the inflow
wind field. A notable advantage of the stochastic approach is its capability to reconstruct very long time series,
required for evaluating loads over the operational lifetime of the turbine. For such lifetime estimations on wind
turbines, it is necessary to combine the proposed model for large-scale dynamics with a corresponding model for
small-scale features, site-specific wind conditions, and turbine-specific characteristics. The proposed stochastic
model of the CoWP can be used not only for load assessment, but also for characterizing large-scale wind struc-
tures. The model offers an advanced description of wind phenomena, with the potential to be integrated as an
extension of prevailing wind turbulence models.

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



2730 D. Moreno et al.: From the center of wind pressure to loads on the wind turbine

1 Introduction

As part of the design and validation phase, numerical simula-
tions are used to predict the loads on an operational wind tur-
bine (WT). The objective of these simulations is to reproduce
the interaction between the WT and the atmospheric turbu-
lent wind. Given the inherently complex meso- to microscale
nature of atmospheric phenomena, it is extremely difficult to
attempt to incorporate the governing physical models into a
unified description of the wind flow. Consequently, stochas-
tic wind models, which involve numerous simplifications and
assumptions of the atmosphere, are commonly employed for
numerical simulations of WTs. Common examples are the
Kaimal (Kaimal et al., 1972), von Kármán (Von Kármán,
1948), and Mann (Mann, 1998) wind models. The Interna-
tional Electrotechnical Commission (IEC) (IEC, 2019) has
proposed these models as standard atmospheric turbulence
representations for numerical WT simulations. It should be
noted that these models are based on low-order statistical
features of the wind fields, such as power spectra and corre-
lations. However, they do not yet explicitly resolve the tur-
bulent eddies, i.e., the spatial characteristics of the turbu-
lent flow structures. For the spatial coherence of turbulence,
an exponential decay with distance is assumed. The IEC
standard also considers some extreme operating conditions
(EOCs), encompassing peak wind speeds, gusts, and sudden
changes in wind direction. These non-realistic extreme wind
structures are conceived as homogeneous in space (i.e., uni-
form over the entire rotor area), with a return period of 50
years.

Recent advancements in WT design show a persis-
tent trend towards increasing dimensions, including higher
heights and larger rotor diameters. Accordingly, certain
structural properties are significantly modified within the de-
signs of larger WTs. Specifically, a higher degree of flex-
ibility is characteristic of larger and slimmer rotor blades.
This may raise concerns about the validity of the assump-
tions or the omission of specific turbulent structures within
the aforementioned standard wind models currently used by
the WT industry. The increased scale of WTs suggests that
certain wind characteristics, which were previously negli-
gible or unimportant for smaller and more rigid WTs, may
be significant considerations within the aerodynamic inter-
actions of state-of-the-art WT designs. Of particular interest
are the spatial properties of the atmospheric wind structures.
Rotor diameters that exceed 200m may exhibit sensitivity to
the spatial characteristics of wind phenomena, such as wind
gusts.

The necessity for an extended characterization of atmo-
spheric turbulent wind beyond the parameters currently out-
lined in the IEC standard guidelines is supported by the
repeated measurement of unexpected loads in operational
WTs. According to manufacturers and operators of WTs, nu-
merical simulations of the specific WTs and the standard IEC
wind modeling assumptions do not adequately reflect certain

load events that may be important for the structural integrity
of the machines in operation. Consequently, it is imperative
to establish a correlation between the extended features of
the atmospheric wind and the measured unexpected effects
on the operating WTs. Examples of such extended charac-
teristics of atmospheric turbulence include small-scale inter-
mittency (Boettcher et al., 2003; Morales et al., 2012), low-
level jets (Gutierrez et al., 2016), particular coherent vortices
(Abraham and Hong, 2022), fractal turbulent–non-turbulent
interfaces (Neuhaus et al., 2024), wind ramp events (Gallego-
Castillo et al., 2015), and periods of constant wind speed
(Moreno et al., 2025).

A general requirement within the wind industry is to sim-
plify the complexity of WT representations in turbulent wind
environments to allow practical implementation and min-
imize computational costs. As stipulated in the standard
guidelines (IEC, 2019), numerical simulations of a wide
range of operational scenarios are required for the valida-
tion of WT designs. Consequently, optimizing the compu-
tational time and power while ensuring satisfactory accuracy
of the estimations of the responses of the WT is imperative.
Some approaches have been proposed to reduce the complex-
ity of the interaction between the wind and the WT. Exam-
ples of methods based on a given wind field include a modi-
fied actuator sector model for WT simulations (Mohammadi
et al., 2024) and the calculation of extended equivalent wind
speeds over the rotor area (Choukulkar et al., 2016). Con-
versely, techniques are employed to extract characteristics of
the incoming flow field from load measurements at the WT,
such as blade-load-based estimators (Coquelet et al., 2024).
Furthermore, due to the limitations in computational power,
the loads on the WT are typically estimated over short inter-
vals, e.g., 10 min. Consequently, numerical techniques have
been proposed for extrapolating the loads estimated from
such short timescales to lifetime scenarios containing fatigue
damage and extreme load events (Zhang and Dimitrov, 2023;
Qingshan et al., 2022).

The virtual center of wind pressure (CoWP) has recently
been introduced as a feature of a given wind field that is ei-
ther measured or modeled (Schubert et al., 2025). The CoWP
characterizes large-scale wind structures occurring over the
plane perpendicular to the main direction of the wind, i.e.,
the rotor plane, when considering a WT. Most interestingly,
the CoWP is directly correlated to the low-frequency content
of the bending moments at the main shaft of the WT. Con-
sequently, the CoWP not only facilitates the characterization
of extended wind structures, i.e., beyond the IEC standard,
but also proposes a simplified and expeditious method for
assessing the particular characteristics of the WT loads.

In this article, we first aim to perform a comprehensive
comparison between the CoWP, calculated from the wind
fields, and the bending moments at the shaft of the WT, cal-
culated using blade element momentum (BEM) numerical
simulations. The statistical characteristics of the signals and
their damage equivalent loads (DELs) are investigated. Sec-
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ond, based on the correlation between the large-scale struc-
tures of both the CoWP and the bending moments, we pro-
pose a stochastic method to derive the dynamics of the for-
mer, which are subsequently the basis for generating surro-
gate signals of the latter. The statistics of the surrogate data
demonstrate a high degree of comparability to those of the
original CoWP from the wind fields, as well as to the low-
frequency content of the BEM-simulated bending moments.
A notable advantage of the stochastic reconstruction is its
capacity to generate very long time series. The availability
of such extensive data is essential for assessing lifetime load
events without the necessity of numerical extrapolation tech-
niques.

Our model thus offers a twofold approach. On the one
hand, it facilitates the characterization and modeling of large-
scale wind structures. The wind energy sector is in urgent
need of a comprehensive description of these large-scale
structures, as standard wind models are likely to oversimplify
them. Modern large wind turbines are particularly vulnerable
to this oversimplification. On the other hand, our stochas-
tic model allows the estimation and extrapolation of spe-
cific characteristics of the bending moments at the main shaft
while bridging these responses of the WT with structures of
the inflow wind field. In its current state, the method is lim-
ited to the modeling of the dynamics of the low-frequency
components of the bending moments. However, when com-
bined with a description of the high-frequency components, a
validated rescaling procedure, and the characterization of the
site-specific wind conditions, this approach enables a novel
method for a fast assessment of the lifetime loads in WTs.
In a preliminary investigation (Moreno et al., 2024), the
stochastic method for reconstructing the time series of loads
based on the dynamics of the CoWP from IEC-standard-
modeled wind fields was introduced. The present paper ex-
tends the stochastic approach to wind data from atmospheric
measurements.

The paper is structured as follows. Section 2 presents the
relevant definitions that are discussed in the paper. Section 3
describes the wind data that are investigated. The analysis
of the reconstructed data from IEC-standard-modeled wind
fields and atmospherically measured data is presented in
Sect. 4. Finally, the conclusions and outlook of our inves-
tigation are stated in Sect. 5.

2 Definitions

2.1 Center of wind pressure

The virtual center of wind pressure (CoWP) is defined by
Schubert et al. (2025) as the two-dimensional position in the
plane of the rotor at which a point-wise thrust force F T acts
and induces the bending moments T . This position is spec-
ified with respect to a reference point, e.g., the main shaft
of a WT. The moments are estimated as T = CoWP ×F T.

Figure 1. Schematic illustration of (a) the wind field u(y,z, t) over
the area of a rotor disk and (b) the resulting two-dimensional CoWP
calculated from the wind field.

Figure 1 illustrates the concept of the CoWP, introduced as a
characteristic of a given wind field u(y,z, t).

In the following, a brief derivation of the concept of the
CoWP is presented. Let us consider a wind field u(yi,zi, t)
defined over a discretized grid with N points on the rotor
plane, i.e., the y–z plane, perpendicular to the main direction
of the flow. Then, the normal thrust force FT acting over the
rotor area A at the y–z plane is calculated as

FT (t)=
1
2

N∑
i=1

ρair CT u
2(yi,zi, t) 1Ai, (1)

where u is the longitudinal component of the wind perpen-
dicular to the y–z plane, ρair is the density of air, CT is the
thrust coefficient of the rotor, and1Ai is the discretized sec-
tion of the rotor area A. Now, the bending moments T due to
the normal thrust force can be calculated as

T(t)= r̃(t) × FT (t), (2)

where r̃ is the distance between the acting location of FT to
the reference point. Considering the main shaft, i.e., the cen-
ter of the rotor disk (y0, z0), as the reference point, the yaw
Tyaw and tilt Ttilt moments at the main shaft are estimated as

Tyaw(t)=
1
2

N∑
i=1

ỹi ρair CT u
2(yi,zi, t) 1Ai

Ttilt(t)=
1
2

N∑
i=1

z̃i ρair CT u
2(yi,zi, t) 1Ai, (3)

where ỹ and z̃ are the horizontal and vertical distances, re-
spectively, of each location i to the reference point so that
ỹi = yi−y0 and z̃i = zi−z0. Assuming 1

2 ρair CT to be con-
stant, the two CoWP components are defined as the fraction
of the moments (yaw and tilt) and the normal thrust force,
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resulting in

CoWPy(t)=
∑N
i=1ỹi u

2(yi,zi, t) 1Ai∑n
i=1u

2(yi,zi, t) 1Ai

CoWPz(t)=
∑N
i=1z̃i u

2(yi,zi, t) 1Ai∑N
i=1u

2(yi,zi, t) 1Ai

. (4)

The CoWP is calculated solely by wind field data, com-
prehensively representing specific wind structures, whether
modeled or measured. Furthermore, the area A, used to com-
pute the CoWP, can be adapted to investigate diverse sizes
and domains within fields, e.g., one-dimensional dynamics,
when measuring atmospheric data with vertically aligned de-
vices in a met mast or different WT rotor sizes from numeri-
cally modeled wind fields.

2.2 Damage equivalent load

The damage equivalent load (DEL) is the method recom-
mended by the standard IEC (2019) for performing fatigue
assessments and damage calculation analyses of the mechan-
ical elements of the WT. In essence, the DEL represents a
fixed-amplitude and fixed-frequency load, calculated from a
load signal encompassing a range of frequencies and ampli-
tudes. Based on Miner’s rule (Miner, 1945) and the rainflow
counting method (Matsuishi and Endo, 1968; Downing and
Socie, 1982), the DEL is calculated over a period T as

DEL=
(∑n

i=1nis
m
i

Nf

)m−1

T

, (5)

where ni is the number of cycles with amplitude si , and Nf
is a reference number of cycles. The Wöhler exponent m is
characteristic of the material and is extracted from the so-
called S–N curves (Basquin, 1910). Note that, according to
Eq. (5), the contribution of the amplitudes si to the DEL is
determined by the exponent m. The larger the value of m,
the stronger the dominance of larger amplitudes si within the
calculation of the DEL. More details about the estimation and
assumptions of the DEL can be found in Sutherland (1999).
This study uses the DEL to evaluate the effect on the bending
moments at the main shaft induced by the wind structures
characterized by the CoWP.

2.3 The stochastic Langevin model

The CoWP, calculated from a given wind field, can be char-
acterized in terms of its statistical properties and dynamical
behavior. Since the CoWP signals are noisy and irregular,
we introduce the Langevin model as a stochastic approach to
characterize the dynamics. The range of applications of the
Langevin method is extensive, encompassing domains as di-
verse as medical signals, e.g., human balance (Rinn et al.,
2016b; Bosek et al., 2004) or brain activity (Costa et al.,

2016), financial markets (Friedrich et al., 2000), and cone
penetration signals for stratigraphy (Lin et al., 2022).

Assuming a one-dimensional stochastic process X(t), the
general differential Langevin equation,

d
dt
X =D(1)(X,t)+

√
D(2)(X,t)0(t), (6)

describes the temporal derivative dX
dt as the sum of two con-

tributions: a deterministic part driven by the drift coefficient
D(1) and a stochastic component driven by the diffusion coef-
ficientD(2) and weighted by a stochastic force 0(t) (Lemons
and Gythiel, 1997; Risken, 1996), where 0(t) is Gaussian
noise with a mean of 0 and a δ correlation; i.e., 〈0(t)〉 = 0
and 〈0(t)0(t − t ′)〉 = 2δ(t − t ′). The angular brackets 〈. . .〉
denote the temporal average.

The Langevin method, introduced by Friedrich and Peinke
(1997) and Siegert et al. (1998), proposes an approach to
derive the coefficients D(k) from time series X′(t). This is
achieved by calculating the derivative of the conditional mo-
ments M (k)(X,t,τ ) for the state X =X′(t) of the system as

D(k)(X,t)= lim
τ→0

1
τ
M (k)(X,t,τ ) (7)

for k = [1,2], where τ is a small-enough time step. The con-
ditional moment M (k)(X,t,τ ) is calculated by averaging the
kth power of the increments, X′(t + τ )−X, as

M (k)(X,t,τ )=
1
k!
〈
[
X′(t + τ )−X

]k
|X′(t)=X 〉. (8)

Now, for a two-dimensional process X(t)=
{X1(t),X2(t)}, the Langevin equation has the form

d
dt

[
X1
X2

]
=

[
D

(1)
1 (X, t)

D
(1)
2 (X, t)

]
+

[
D

(2)
11 (X, t) D

(2)
12 (X, t)

D
(2)
21 (X, t) D

(2)
22 (X, t)

][
01(t)
02(t)

]
,

(9)

with the diffusion coefficients D(2)
12 and D(2)

21 ,

D
(2)
12 (X, t)=D(2)

21 (X, t)=
1
2

lim
τ→0

1
τ
〈
[
X′1(t + τ )−X1

]
[
X′2(t + τ )−X2

]
|X1=X

′

1(t), X2=X
′

2(t)〉. (10)

Once the coefficients D(1,2) are known, the method can
be reversed. Then, time series X(t) can be generated via
the stochastic integration of Eq. (9). The application of the
Langevin approach for the stochastic reconstruction of the
time series of the two-dimensional CoWP is discussed in
the next section. Further developments of and details on the
Langevin model can be found in Friedrich et al. (2011),
Reinke et al. (2015), Rinn et al. (2016a), and Tabar (2019).

2.4 Stochastic model for CoWP and WT loads

In Fig. 2, we schematically show our proposed stochas-
tic method in the context of load estimation of the low-
frequency contribution of the bending moments at the main
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shaft of a WT. Starting from either a modeled or a mea-
sured wind field u(y,z, t), the CoWP is calculated according
to Eq. (4) (going in the upward direction in Fig. 2). Then,
the stochastic Langevin approach is used to derive the coeffi-
cients D(1,2) from the CoWP signals. Based on the extracted
coefficients D(1,2), the stochastic reconstruction of signals of
the low-frequency bending moments at the main shaft can
be achieved. The strength of this approach lies in its abil-
ity, based on the Langevin stochastic differential equation, to
generate a time series of any length while preserving the sta-
tistical properties of the original CoWP data from the wind
field data. This feature is particularly advantageous, as life-
time load assessments of a WT require large amounts of
computationally expensive data or numerical extrapolation
techniques. However, the implementation of the stochastic
method for lifetime load assessment in engineering applica-
tions (i.e., including both the high- and the low-frequency
components of the loads) is constrained in its application.
To ensure a comprehensive lifetime model, it is necessary to
incorporate additional elements. A turbine-specific transfer
function for rescaling the magnitudes of the loads is required.
A complementary model for the high-frequency components
of the loads must be integrated. Finally, the occurrence of
the loads must be weighted by the distribution of the mean
wind speed at the location of the WT (e.g., annual Weibull
distribution).

The current standard procedure for load assessment in the
wind industry is shown in the downward direction from the
wind field u(y,z, t) in Fig. 2. In brief, the response of a WT
to a specific inflow wind field is investigated via a BEM sim-
ulation, with a typical length of 10 min. The time series of
the loads are obtained from several 10 min random realiza-
tions that account for different wind conditions. Thus, the
assessment of all required wind situations is computation-
ally very demanding. After the aggregation of 10 min BEM
simulations, extrapolation methods are applied to account
for extreme load events and damage calculation during the
lifetime of the WT (Zhang and Dimitrov, 2023; Qingshan
et al., 2022). Compared to the standard approach, our pro-
posed model is computationally very efficient and thus fast.
The lowest path in Fig. 2, depicted by dashed lines, shows
the potential use of operational wind and load measurements
for validation and optimization processes.

As a side comment, the description of the dynamics of the
CoWP, e.g., via the derivation of D(1,2), provides a compre-
hensive characterization of the large-scale structures in the
wind field, which can be further investigated. For instance,
it can be used to estimate the accuracy of modeled wind
data compared to atmospheric measurements, or it can be in-
cluded as a parameterization into extensive descriptions of
the turbulent wind, such as the IEC standard models or other
surrogate models for wind field reconstruction (Yassin et al.,
2023; Friedrich et al., 2022; Rinker, 2018).

The solid red box in Fig. 2 schematically shows the three
data sets that are compared and discussed in the following

sections of this paper. From the bottom to the top are the
following:

a. the bending moments at the main shaft calculated by
BEM simulations

b. the CoWP calculated from the modeled or measured
wind fields (see Sect. 3)

c. the time series generated via the stochastic reconstruc-
tion.

Again, the dashed line shows a potential use of operational
load data to be included in the comparison.

3 Wind data: IEC standard fields and atmospheric
measurements

We aim to characterize and model the CoWP from two wind
data sets:

i. IEC standard Kaimal data. Synthetic wind fields are
generated with the Kaimal model (Kaimal et al., 1972)
proposed by the IEC standard (IEC, 2019). The fields
are defined in a 130m × 130m spatial grid with a sep-
aration 1y =1z= 10m and are centered at y = 0 and
z= 90m. The grid points are shown schematically by
the small black dots in Fig. 3. The circular gray area
depicts the scaled rotor of the 5 MW NREL turbine
(Jonkman et al., 2009) with hub height at 90m and
a rotor diameter of 126m. The mean wind speed u=
7 m s−1 and turbulence intensity TI= 7% of the non-
shear wind fields are defined at the location of the hub.
The BEM simulations of the 5 MW NREL turbine are
performed in OpenFAST (Jonkman et al., 2025). A to-
tal of 4.7× 104 s of simulated time is investigated. The
TurbSim package (Jonkman, 2016) was used to gener-
ate the Kaimal fields. The implementation in TurbSim
of the Kaimal spectrum for the longitudinal component
u of the wind follows

Eu(f )=
4σ 2
uLu/uH

(1+ 6f Lu/uH)5/3 , (11)

where σu is the standard deviation of u, uH is the
mean at hub height, and f is the frequency. The in-
tegral scale Lu is defined as Lu = 8.103u, with 3u
being the turbulence scale. 3u is calculated as 3u =
0.7 (min{30m,HH}), where HH is the hub height. In
conjunction with the Kaimal spectra, an exponential co-
herence model is assumed to describe the spatial corre-
lation of the longitudinal component u. The coherence
scale parameterLc for the coherence model (IEC, 2019)
is assumed as Lc = Lu = 8.103u.

ii. Atmospheric GROWIAN data. The measurement cam-
paign was conducted in Germany between 1984 and
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Figure 2. Diagram of the stochastic surrogate method for the assessment of the low-frequency content of the bending moments at the main
shaft given a wind field u(x,y,z). The proposed method goes upwards from the wind field in the figure. For comparison, the path in the
downward direction shows the standard procedure for load estimations specified by the IEC standard guideline. The solid red box contains
the three data sets to be compared in the following sections. The dashed lines at the lowest part of the figure represent operational measured
data to be potentially included in an extended comparison.

1987. The horizontal wind speed was measured with a
frequency of 2.5Hz by 16 propeller anemometers ar-
ranged in two met masts, covering an area of 76m ×
100m. Details of the GROWIAN data are found in
Körber et al. (1988) and Günther and Hennemuth
(1998). The blue circles in Fig. 4 illustrate a schematic
representation of the measurement arrangement. The
GROWIAN data have been conditioned by the mean
wind speed 8.5≤ u < 11.5 m s−1, turbulence intensity
6≤ TI< 12%, and shear exponent 0≤ q < 0.06. The
characteristics u, TI, and q are calculated over 10 min
periods at the location with coordinates y =−14 and
z= 100 m. To guarantee an undisturbed flow, the wind

direction over the 10 min periods remains within a 100°
range with respect to the location of the two met masts
(i.e., main direction of the flow). After the conditioning,
18 blocks of 10 min intervals or 1.08× 104 s is consid-
ered for the analysis.

In order to perform BEM simulations of a realistic
WT, a rescaling of the GROWIAN data is needed. The
rescaled GROWIAN fields are defined on a stretched
grid of 152m × 150m. The stretching is performed by
increasing the distance between neighboring points of
the original grid by a factor of 1.5 in the vertical di-
rection and a factor of 2 in the horizontal direction. The
green circles in Fig. 4 illustrate the rescaled GROWIAN
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Figure 3. Schematic representation of the Kaimal spatial grid and
the 5 MW NREL rotor. The black points depict the discrete lo-
cations of the spatial grid with 1y =1z= 10m. The hub of the
model WT is located at the center point of the grid at y = 0 and
z= 90m.

spatial arrangement, centered at y = 0 and z= 125m.
The wind speed measurements at the 16 original lo-
cations have not been modified. The four grid points
at the corners of the stretched grid are filled with the
data from the next neighboring grid point at the same
height. For example, the wind speed at the corner point
(−76, 50 m) is assumed to be identical to the point at
(−76, 25 m). The gray area in Fig. 4 depicts the WT
model that is simulated. The hub of the WT is located at
125m, and the rotor diameter is 149m. The BEM simu-
lations are performed with the alaska/Wind aero-elastic-
servo simulator (ICM, 2023; Zierath et al., 2016), de-
veloped at the Institute of Mechatronics in Chemnitz,
Germany. The multi-body alaska/Wind model incorpo-
rates several coupled sub-models: the foundation, the
tower, the nacelle, the yaw drive, the pitch drive, the
rotor, the drive train, the generator, and the controller. A
Beddoes–Leishman-type dynamic model and a flexible
wake model consider the unsteady airfoil aerodynamics
and the wake effects, respectively. Among the specified
degrees of freedom are the radial degree in the drive
train for torsional effects of the gearbox; the nodding
degree in the yaw drive; and the side-to-side, fore–aft,
and torsional motions of the tower. These considerations
regarding the modeling assumptions of the simulations
follow the simulations in Schubert et al. (2025).

It is important to note that the simplified wind field rescal-
ing in this study results in some degree of distortion to the
spatial correlations of the original GROWIAN data. The in-
troduced distortion, under the assumption of self-similarity
of turbulence, is of minor significance, as our primary uti-
lization of the GROWIAN data is to develop realistic, large-

Figure 4. Schematic representation of the GROWIAN spatial grid.
The blue circles show the original GROWIAN arrangement. The
green circles show the locations of the stretched grid used for BEM
simulations of a WT. The gray area depicts the WT model to be
simulated with hub height at 125m and rotor diameter of 149m.

scale structures of the turbulent atmospheric boundary layer.
Large-scale wind structures (e.g., of the size of the rotor di-
ameter) are not present in other standard numerical wind
fields. They will become important for the CoWP and the
loads, as demonstrated in the following.

4 Results and discussion

This section presents the results of the two objectives of
our investigation: the comparisons between the CoWP and
the bending moments at the main shaft of the WT and
the stochastic modeling of the CoWP. In Sect. 4.1, the re-
sults from the standard-modeled Kaimal data are shown. In
Sect. 4.2, the investigation of the atmospheric GROWIAN
measurements is presented. The analysis of the two data sets
is performed as follows: the two components of the CoWP=
{CoWPy,CoWPz} are calculated from the wind fields ac-
cording to Eq. (4), with the hub location, i.e., equivalent to
the location of the main shaft, as the reference point (y0,
z0). The Langevin stochastic approach described in Sect. 2.3
is then applied to model random signals of the CoWP. The
characteristics of the original CoWP, the modeled CoWP, and
the BEM-simulated bending moments T= {Tyaw,Ttilt} at the
main shaft of the WT are compared. For the comparison, the
statistics over time, as well as the DEL, are analyzed.

In Schubert et al. (2025) it has been shown that the CoWP
can be used as a description of wind structures with tem-
poral scales larger than 10 s. Accordingly, the correlation to
the bending moments is limited to the low-frequency com-
ponent. Therefore, to discard the high-frequency content, the
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Figure 5. 20 min excerpts of the CoWP and the bending moments at the main shaft of a WT. (a) Tyaw and CoWPy and (b) Ttilt and CoWPz.
The signals are normalized and low-pass filtered.

Figure 6. CoWP against the bending moments plotted as (CoWP(t), T (t)) for each time step t of the time series. (a) Tyaw and CoWPy and
(b) Ttilt and CoWPz. The gray lines depict linear fittings T = a (CoWP) + b. The values of the root mean square error (RMSE) are shown
in the legends. The signals are normalized and low-pass filtered.

signals are low-pass filtered. This applies to both the bend-
ing moments and the CoWP. The filter is a finite impulse
response (FIR) filter with a cutoff or pass-band frequency
fcutoff. The value of fcutoff should be lower than the rotational
frequency P of the WT. In this way, the effect of gravitational
loads from the rotating blades (i.e., P and 3P) is averaged out.
Here, a 0.1 Hz cutoff frequency is applied. For comparabil-
ity, the signals have also been normalized to have a mean of
0 and a standard deviation equal to 1. The comparisons pre-
sented in the following sections are made using the signals of
the CoWP and the bending moments after frequency filtering
and normalization.

4.1 The CoWP from standard Kaimal wind fields

4.1.1 The CoWP and the bending moments at the main
shaft

We start by comparing the CoWP calculated from the Kaimal
wind fields and the bending moments T from the BEM sim-
ulations. Figure 5 shows 20 min excerpts of the time series
of the CoWP and the bending moments. In panel a, CoWPy
and Tyaw are shown, and in panel b, CoWPz and Ttilt are
shown. The observed correlation between the time series of

the CoWP and the bending moments is quantified in Fig. 6.
Each time step in the time series is represented by a point
(CoWP(t), T (t)). In panel a, Tyaw and CoWPy are shown,
and in panel b, Ttilt and CoWPz are shown. The observed lin-
ear behavior with a slope of approximately 0.93 quantifies
the strong correlation between the normalized CoWP, which
characterizes particular structures within the wind field, and
the normalized bending moments experienced by the WT in-
teracting with such a wind field. These correlations obtained
from the standard Kaimal wind field corroborate the findings
presented in Schubert et al. (2025), where the CoWP cal-
culated from atmospherically measured data demonstrated
correlation coefficients of up to 0.9 with the correspond-
ing BEM-simulated yaw and tilt bending moments at the
main shaft. A turbine-specific transfer function for rescal-
ing the normalized values of the CoWP to magnitudes of the
low-frequency component of operational bending moments
would be necessary for the assessment of the loads in engi-
neering applications. Such a transfer function will therefore
depend on the structural properties of the WT and particular
control mechanisms.

As a further statistical comparison, Fig. 7 shows the proba-
bility density functions (PDFs) of the CoWP and of the bend-
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ing moments, taking into account all the simulated data. It
should be noted that the rare large events, depicted by the
tails of the PDFs, are in good agreement.

Now that we have proven the strong correlation between
the dynamics of the low-frequency content of the CoWP
and the bending moments, we continue by introducing the
DELCoWP. The DELCoWP follows from Eq. (5) as

DELCoWP =

(∑n
i=1(ni,CoWP s

m
i,CoWP)

Nf

)m−1

T

, (12)

where the number of cycles, ni,CoWP, and the amplitudes,
si,CoWP, are derived from the CoWP signals.

In Schubert et al. (2025), it was demonstrated that high
values of the DEL are driven by significantly large-amplitude
events in the low-pass-filtered time series of the loads. Addi-
tional proof of this correspondence is given in Appendix A.
Accordingly, large-amplitude events in the signals of the
CoWP will result in high values of DELCoWP.

Good agreement between the DEL and the DELCoWP im-
plies that estimations of the low-frequency events of the
bending moments at the main shaft of a WT can be accom-
plished purely from the estimation of the CoWP from the
incoming wind field. Figure 8a and b show the correlation
plots of the resulting time-resolved DEL and DELCoWP ob-
tained through an averaging of time T = 60 s and a coeffi-
cientm= 10. Their statistics are summarized in the box plots
in c and d. The DEL and DELCoWP are calculated in a and
c from CoWPy and Tyaw and in b from CoWPz and Ttilt. A
lower correlation is obtained for the DEL and DELCoWP in
the vertical direction in panel b compared to the horizontal
component shown in panel a. The lower correlation is ex-
plained by the more scattered results within the correlation
of the time series of the Ttilt and the CoWPz shown in Fig. 6.
There, a value of RSME= 0.40 indicates a higher degree of
scattering for Ttilt compared to an RSME= 0.34 for Tyaw.
Overall, the data in Fig. 8 reveal very good agreement be-
tween the DEL and DELCoWP in a statistical sense. Although
some spread of the data is observed, the statistics and cor-
relation are consistent. In an aggregate sense, these results
indicate an equivalence between the CoWP and the bending
moments. The validity of the method has been proven for the
rated power regime of the WT.

It is essential to acknowledge that the discussion of the
DELs presented in our work is exclusively focused on the
DELs from the low-frequency component of the signals. This
choice is based on a particular interest of our research part-
ners. In order to assess the complete DELs (e.g., from both
the low- and the high-frequency load events), it is necessary
to establish an additional model to incorporate the contri-
bution from the high-frequency signal. In this direction, a
simple surrogate stochastic model has shown satisfactory re-
sults. The characteristics of the original high-frequency load
signal are well reproduced. The proposed stochastic model
for the high-frequency signals, calculations of the differences

between the DELs from the low- and high-frequency load
components, and total DELs are shown in Appendix B.

4.1.2 Stochastic reconstruction of the CoWP

We now apply the stochastic Langevin approach introduced
in Sect. 2.3 as a method for characterizing the low-frequency
dynamics of the CoWP from the Kaimal wind fields. The
two-dimensional stochastic differential equations (see Eq. 9)
are thus applied for CoWP(t)= {CoWPy(t),CoWPz(t)}.
Since the two components CoWPy(t) and CoWPy(t) proved
to be uncorrelated, i.e., D(2)

12 =D
(2)
21 = 0, the coefficients

D(1,2) are independently estimated from the time series
of CoWPy and CoWPz according to Eqs. (7) and (8).
The results of the calculation of the correlation function
〈CoWPi(t) CoWPj (t + τ )〉 for i = 1,2 are shown in Ap-
pendix C.

The results of the coefficients D(1,2) are shown in Fig. 9.
The linear dependence of the drift coefficients D(1) in a
is clear for the two components CoWPy and CoWPz. An
almost-constant diffusion term D(2) is observed in b for the
two components.

The estimated D(1) and D(2) are used for the reconstruction
of synthetic time series (CoWPR) via the stochastic integra-
tion of Eq. (9). A signal CoWPR with a length of 4.7× 104 s
is reconstructed.

For a first visual comparison between the original and the
reconstructed signal, the filtered but non-normalized trajecto-
ries of the CoWP and CoWPR in the y–z plane are shown in
Fig. 10. Symmetric paths, i.e., comparable magnitudes in the
two directions y and z, are observed for CoWP and CoWPR.

Note that due to the stochastic reconstruction, temporal
correlation is not expected between the two signals. How-
ever, a statistical similarity should be present. This is shown
in Fig. 11, which compares the PDF of the signals. After fil-
tering and normalization, the results of the BEM-simulated
bending moments at the main shaft are also included: in a,
the components in the horizontal y direction and, in b, the
components in the vertical z direction.

To characterize the similarity of the signals in more detail,
we also investigate the statistics of their increments or their
variations for a given timescale τ . The increments are de-
fined as 1xτ (t)= x(t + τ ) − x(t) for a given signal x(t) and
include two-time correlations like the autocorrelation or the
power spectrum (Morales et al., 2012). Figure 12 shows the
excellent agreement in the increment statistics of 1CoWPτ ,
1CoWPR,τ , and 1Tτ for values of τ = (5,10,20,30) s. The
components in the horizontal y direction and in the vertical
z direction are shown in the upper and lower rows, respec-
tively.

Finally, we show in Fig. 13 the agreement in the result-
ing DEL, DELCoWP, and DELCoWPR through box plots. A
subindex “R” refers to the reconstructed signal (a – the com-
ponents in the horizontal y direction; b – the components in
the vertical z direction). As observed from the box plots, the

https://doi.org/10.5194/wes-10-2729-2025 Wind Energ. Sci., 10, 2729–2754, 2025



2738 D. Moreno et al.: From the center of wind pressure to loads on the wind turbine

Figure 7. PDFs of the CoWP and the bending moments at the main shaft of a WT. (a) Tyaw and CoWPy and (b) Ttilt and CoWPz. The
signals are normalized and low-pass filtered.

Figure 8. Comparison between the DEL and DELCoWP. Correlation plots and box plots for CoWPy and Tyaw in (a) and (c) and CoWPz
and Ttilt in (b) and (d). The gray lines in (a) and (b) depict linear fittings. The values of the RMSE are shown in the legends. In the box plots
in (c) and (d), the horizontal line inside each box shows the median, and the bottom and top edges indicate the 25th (P25) and 75th (P75)
percentiles. The whiskers indicate the most extreme data points. They are calculated as P25− (1.5× IQR) and P75+ (1.5× IQR), where IQR
is the interquartile range IQR= P75−P25. The markers show outliers. The DEL and DELCoWP are calculated with m= 10 over periods
T = 60 s, with 30 s overlapping between two consecutive periods. The signals are normalized and low-pass filtered.

distributions of the DELCoWPR from the stochastically recon-
structed signal CoWPR reproduce the distributions of both
the DELCoWP from the original CoWP and the DEL from the
BEM-simulated signals quite accurately.

4.2 The CoWP from atmospheric GROWIAN
measurements

Next, we use the atmospheric GROWIAN wind fields de-
scribed in Sect. 3 to calculate the CoWP, to simulate the BEM
bending moments at the main shaft, and to apply the stochas-
tic Langevin model for the reconstruction of random data.
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Figure 9. Langevin approach of the CoWP from Kaimal wind fields. (a) Drift coefficientD(1) and (b) diffusion coefficientD(2). The vertical
component CoWPy is shown in black, and the horizontal component CoWPz is shown in red.

Figure 10. Trajectories on the y–z plane of (a) the original CoWP
calculated from the Kaimal data and (b) the stochastically recon-
structed signal CoWPR. The data of both CoWP and CoWPR for
plotting the trajectories in (a) and (b) are intentionally not normal-
ized.

The results are presented in the same sequence as done for
the Kaimal data in the previous section.

4.2.1 The CoWP and the bending moments at the main
shaft

Figure 14 shows the correlation plots between the CoWP and
the bending moments T: in a, Tyaw and CoWPy and, in b, Ttilt
and CoWPz. The coefficients of the linear fittings agree with
the correlation coefficients of around 0.9 reported in Schu-
bert et al. (2025), where all the available GROWIAN wind
fields are investigated. Differently, in this paper, we only in-
vestigate a subset of the atmospheric data, conditioned by the
mean wind speed, turbulence intensity, and shear exponent,
as described in Sect. 3. The correlation between the CoWP
and the bending moments is slightly decreased compared to
the standard-modeled wind data shown in Fig. 6. In partic-
ular, loops are observed in Fig. 14 for the two components,
a and b. Such loops correspond to intervals where more se-
vere wind conditions affect the WT than those we find in
the Kaimal wind data. Over those intervals, significant dif-
ferences in the wind speed are observed in the spatial domain

(i.e., over the rotor plane). As a result, divergences in calcu-
lating the CoWP and the bending moments are obtained. Ex-
amples of such severe wind conditions within the atmospher-
ically rescaled GROWIAN fields are shown in Appendix D.

4.2.2 Reconstructing the CoWP from atmospheric wind
data

The results of the coefficients D(1,2) from the stochastic
Langevin method, applied to the CoWP from the GROWIAN
measurements, are shown in Fig. 15. Interestingly, the dif-
fusion coefficients D(2) in b are clearly not constant. This
behavior is called multiplicative noise and is significantly
stronger for the vertical component CoWPz. In contrast, pure
additive noise was obtained for the modeled Kaimal fields in
Fig. 9. Moreover, the diffusion coefficientD(2) of the CoWPz
from Kaimal data with shear showed pure additive noise (see
Appendix E). This effect in D(2) is a consequence of the dif-
ferent wind fields and shows that the Kaimal data lead to
simpler noise. In contrast, atmospheric wind data have more
complicated deterministic and noise contributions.

Figure 16 shows the trajectories of the CoWP and the
CoWPR in the y–z plane. For this representation, the time
series are not normalized. Due to the shear, the movement
of the CoWP in the vertical direction z is larger than in the
horizontal direction y. This differs from Fig. 10, where sym-
metric trajectories in the two y–z directions are obtained for
non-shear Kaimal wind fields.

Figure 17 shows the PDF of the signals. The time series of
the BEM-simulated bending moments Tyaw and Ttilt are also
included: in a, for the horizontal y component and, in b, for
the vertical z component. We see that the stochastic model
reproduces the statistics of the CoWP and bending moment
very well. The PDFs of Fig. 17 show additional structures
like skewness and small bumps. These structures are the con-
sequence of the nonlinearities of D(1,2) in Fig. 9 (see also
the stationary solution of the Fokker–Planck equation, which
corresponds to the Langevin equation, Risken, 1996).
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Figure 11. PDF of the CoWP, CoWPR, and bending moments T . (a) CoWPR,y , CoWPy , and Tyaw. (b) CoWPR,z, CoWPz, and Ttilt. The
signals are normalized and low-pass filtered.

Figure 12. PDFs of the increments with τ = (5,10,20,30) s. (a) Upper row, horizontal component: 1CoWPy,τ , 1CoWPR,y,τ , and
1Tyaw,τ . (b) Lower row, vertical component: 1CoWPz,τ , 1CoWPR,z,τ , and 1Ttilt,τ . The time series are normalized and low-pass fil-
tered.

As a higher-order statistical feature, Fig. 18 shows the
PDFs of the increments 1CoWPτ , 1CoWPR,τ , and 1Tτ for
values of τ = (5,10,20,30) s (a – the components in the hor-
izontal y direction; b – the components in the vertical z di-
rection).

Finally, Fig. 19a and b show the correlation plots of the
DEL and DELCoWP. In c and d, the box plots describing their
statistics are shown. The box plots of the DELCoWPR in the
two components are also included. The DEL and DELCoWP
are calculated in a and c from CoWPy and Tyaw and in b from
CoWPz and Ttilt. All time series are normalized and filtered.

The correlations between the low-pass-filtered and nor-
malized signals of the CoWP and the bending moments
shown in Fig. 14 and between the DELCoWP and DEL shown
in Fig. 19 for the atmospheric GROWIAN data are slightly
lower compared to the modeled Kaimal data in Figs. 6
and 8. The higher complexity of real wind fields includes
wind events characterized by stronger differences in wind
speed over the y–z plane within the stretched wind fields,
which likely explain such particular discrepancies. However,
Figs. 17, 18, and 19 show good agreement between the sta-
tistical properties and the DEL estimations between the orig-
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Figure 13. Box plots of the DELCoWP, DEL, and DELCoWPR from normalized and filtered signals of (a) CoWPy , Tyaw, and CoWPR,y and
(b) CoWPz, Ttilt, and CoWPR,z. The DELs are calculated over periods T = 60 s, with 30 s of overlap and with a coefficient m= 10. The
lines defining each box show the median, and the bottom and top edges indicate the 25th (P25) and 75th (P75) percentiles. The whiskers
indicate the most extreme data points. They are calculated as P25− (1.5× IQR) and P75+ (1.5× IQR). The markers show outliers.

Figure 14. CoWP against the bending moments T at the main shaft of a WT plotted as (CoWP(t), T (t)) for each time step t of the time
series. (a) Tyaw and CoWPy and (b) Ttilt and CoWPz. The gray lines depict linear fittings. The values of the RMSE are shown in the legends.
The time series are normalized and low-pass filtered.

inal and the reconstructed signals of the CoWP and the sim-
ulated bending moments from the atmospherically measured
GROWIAN data. These findings are in agreement with the
results shown in Sect. 4.1 for the standard-modeled Kaimal
data. Therefore, it was demonstrated that the description of
the dynamics provided by the coefficients D(1,2) from the
CoWP can be used as parameters for modeling the low-
frequency signals of the tilt and yaw bending moments at
the main shaft of a WT.

5 Conclusions and outlook

A comparison between the low-frequency content of the cen-
ter of wind pressure (CoWP) as a feature of a turbulent wind
field and the low-frequency content of the BEM-simulated
bending moments at the main shaft of a wind turbine, e.g.,
yaw and tilt, is performed. A strong correlation between
these large-scale structures of the CoWP and bending mo-
ments has been quantified in terms of statistical properties,
correlation factors, and damage equivalent load (DEL). This
correlation is consistent with the results reported in the stud-

ies by Schubert et al. (2025) and Moreno et al. (2024), and
it has been shown to be valid for wind fields from both at-
mospheric measurements and standard models. As a conse-
quence of this correlation, a comprehensive description of
the CoWP from a particular wind field (e.g., site-specific)
might serve as a surrogate estimator of the low-frequency
load events of the tilt and yaw bending moments at the main
shaft of an operating wind turbine.

A step further is the utilization of a comprehensive under-
standing of the dynamics of the CoWP from wind data, with
the objective of modeling loads. The stochastic Langevin ap-
proach has been proposed as a method for characterizing the
dynamics of the CoWP. More interestingly, the method has
been reverse-applied for the stochastic reconstruction of syn-
thetic signals. The resulting statistics from the reconstructed
signals and their estimated DELs have been shown to be
comparable to those of the original CoWP and, more sig-
nificantly, to those from the BEM-simulated bending mo-
ments. Consequently, the stochastic Langevin approach ap-
plied to the CoWP has been proven as a surrogate method
for estimating the low-frequency content of the moments at
the main shaft. In particular, the Langevin approach signifi-
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Figure 15. Langevin approach of the CoWP from GROWIAN wind fields. (a) Drift coefficient D(1) and (b) diffusion coefficient D(2). The
vertical component CoWPy is shown in green, and the horizontal component CoWPz is shown in red.

Figure 16. Trajectories on the y–z plane of (a) the CoWP from the original GROWIAN measurements and (b) the stochastically recon-
structed signal CoWPR. The data are not normalized.

cantly reduces computational cost by solving only a one- or
two-dimensional stochastic equation instead of calculating a
wind field at many different spatial points and its interaction
with the turbine model. This has the potential to reconstruct
very long modeled load data. This feature is essential for the
assessment of tilt and yaw bending moments when particu-
larly large amounts of simulated data are required, e.g., for
25-year lifetime predictions under multiple wind conditions,
and the computational costs associated with costly BEM sim-
ulations would thus be significantly reduced.

However, the development of lifetime predictions in engi-
neering applications necessitates the incorporation of addi-
tional elements in conjunction with the proposed stochastic
method for modeling the low-frequency component of the
loads. Initially, a turbine-specific transfer function for rescal-
ing the CoWP to the magnitudes of the low-frequency com-
ponent of the bending moments should be derived. Secondly,
a numerical model of the high-frequency component of the
loads is required. A stochastic Gaussian model has been
demonstrated to be a viable approach. Thirdly, site-specific
wind characteristics should be considered. These characteris-
tics should include long-term standard wind conditions, such
as the annual Weibull distribution of the wind speed. Addi-

tionally, spatial descriptions (i.e., perpendicular to the main
flow) of the wind structures are necessary to describe the
dynamics of the CoWP at the given location. These spa-
tial descriptions may be derived either from measured data
over a two-dimensional area (e.g., using lidar techniques)
or from accurately modeled wind data, which includes re-
alistic information about the wind structures in the spatial
domain. Once the three complementary elements have been
resolved, the complete prediction of the yaw and tilt bend-
ing moments at the main shaft of a turbine can be applied
as follows: site-specific wind data over relatively short in-
tervals (e.g., 10 min), which are used for the calculation of
the CoWP. Subsequently, the dynamics of the large-scale
wind structures described by the CoWP are derived by us-
ing the Langevin stochastic approach. The parameters of the
Langevin model for the specific wind conditions (i.e., drift
and diffusion coefficients) are then estimated. Next, stochas-
tic realizations of the low-frequency component of the loads
are generated by combining the dynamics of the CoWP and
the previously determined turbine-specific transfer function.
Afterwards, the high-frequency component is modeled. Sub-
sequently, the high- and low-frequency load signals, which
have been modeled independently, are combined. Finally, the
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Figure 17. PDF of the CoWP, CoWPR, and bending moments T . (a) CoWPy , Tyaw, and CoWPR,y . (b) CoWPz, Ttilt, and CoWPR,z. The
signals are normalized and low-pass filtered.

Figure 18. PDFs of the increments with τ = (5,10,20,30) s. (a) Horizontal component: 1CoWPy,τ , 1CoWPR,y,τ , and 1Tyaw,τ . (b)
Vertical component: 1CoWPz,τ , 1CoWPR,z,τ , and 1Ttilt,τ . The time series are normalized and low-pass filtered.

long-term distribution of the mean wind speed p(u) at the
specific location is used to assess the entire lifetime damage
of the bending moments (i.e., by applying the standard IEC
procedure for load assessment based on mean wind speed
binning and design load cases).

In the context of improved descriptions of atmospheric tur-
bulent wind, including the statistical and dynamical proper-
ties of the CoWP from atmospherically measured data into
standard wind models could prove to be of significant value.

Since the wind industry currently uses standard wind models
for design and certification processes, the incorporation of at-
mospheric information would enhance the understanding of
aerodynamic interactions and enable more accurate load as-
sessment of the turbines. For instance, wind structures such
as gusts are assumed by standard wind models to be homo-
geneous in space. The CoWP has the capacity to grasp local-
ized wind structures over the rotor plane. A parameterization
of the dynamics of the CoWP from atmospheric wind would

https://doi.org/10.5194/wes-10-2729-2025 Wind Energ. Sci., 10, 2729–2754, 2025



2744 D. Moreno et al.: From the center of wind pressure to loads on the wind turbine

Figure 19. Comparison between the DELCoWP, DEL, and DELCoWPR . Correlation plots and box plots for CoWPy and Tyaw are shown in
(a) and (c), and those for CoWPz and Ttilt are shown in (b) and (d). The gray lines in (a) and (b) depict linear fittings. The values of the
RMSE are shown in the legends. In the box plots in (c) and (d), the horizontal line inside each box shows the median, and the bottom and
top edges indicate the 25th (P25) and 75th (P75) percentiles. The whiskers indicate the most extreme data points. They are calculated as
P25− (1.5× IQR) and P75+ (1.5× IQR). The markers show outliers. The DELs are calculated withm= 10 over periods T = 60 s, with 30 s
overlapping between two consecutive periods. The signals are normalized and low-pass filtered.

thus describe the realistic and likely non-homogeneous spa-
tial characteristics of the gusts. A comparison of the drift and
diffusion coefficients derived from standard wind model data
and measured data reveals that different characteristics of the
wind fields are mapped into the Langevin equations. Conse-
quently, the availability of local wind data enables the estima-
tion of site-specific wind characteristics and the subsequent
development of the stochastic load model.

This paper shows that the CoWP and its stochastic model-
ing represent a promising new tool for estimating the large-
scale dynamics of specific loads at the wind turbine. The va-
lidity of this load estimation has been demonstrated in the
context of DELs. The dynamic response of modern wind tur-
bines with increased size gives additional relevance to wind
structures over the rotor plane. The larger areas covered by
these larger rotors are likely to include inhomogeneities (e.g.,
severe differences in wind speed) over the rotor. In this direc-
tion, the CoWP and the stochastic approach delineated in our
paper have the potential to serve as a tool for describing and
modeling IEC extreme scenarios (i.e., with 50-year or 1-year
return periods). Up to now, calibrating the magnitude of the
CoWP to the loads requires BEM simulations, at least on a
finite time window. The validity of the CoWP approach for

other loads at different turbine components remains to be in-
vestigated. For a single blade, a rotational frame of reference
could be helpful for the calculation of the CoWP. Based on
the results presented in this paper, it is recommended that a
comparable procedure be considered for any other load in the
turbine. The initial step involves normalizing the signals and
validating the correlation. Following this, a stochastic model
is to be configured to analyze and reconstruct the dynamic
load response.
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Appendix A: Correlation between DEL and DELCoWP

The DELCoWP introduced in Eq. (12) is based on the conclu-
sion stated by Schubert et al. (2025) that large-amplitude load
events, lasting longer than 10 s, e.g., bump structures, drive
large values of the DEL when using the Wöhler exponent
m= 10. We now present a different proof of this finding.

The aim is to compare the DEL between time series with
and without particularly large-amplitude load events. Fig-
ure A1a shows an excerpt of 15×103 s containing the results
of the DEL from the time series of the yaw moment Tyaw.
The horizontal red bars depict the period T = 10 min over
which the DEL is calculated. The largest DELs are identified
and visually separated above the horizontal gray line. The
respective time series Tyaw, from which the DELs are calcu-
lated, are shown in b. The darker highlighted load events at
3300, 3700, 3850, and 9800s correspond to the largest DEL
(over the gray line) in a. The zoomed-in plot in the lower part
of b illustrates the load event at t ≈ 9800s.

Figure A2a shows a modified time series “Tyaw-Mod”,
from which the large load events highlighted in Fig. A1b
have been removed. The resulting DELs from Tyaw-Mod are
shown in b. The comparison between the DELs in Figs. A1a
and A2b, i.e., from the two versions of the time series Tyaw,
confirms that large-amplitude events in the signal induce
large values of the DEL. Therefore, an accurate fatigue as-
sessment of the moments T based on the DEL, as the stan-
dard procedure within the wind industry, requires an accu-
rate description of such large-amplitude loading events. The
DELCoWP is proposed in Sect. 4.1 as an approach for predict-
ing these events on the loads from the wind field.
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Figure A1. Damage equivalent loads (DELs) of the yaw moment signal Tyaw from BEM simulations. (a) DELs of Tyaw. The horizontal gray
line at DEL = 1.1 visually separates the few largest DELs. The DELs are calculated with m=10 over periods T = 10 min. An overlapping
period of 5min is considered between two consecutive intervals. The length of the horizontal red bars depicts the periods T . (b) Time series
Tyaw with large events highlighted, which induce the largest DEL in (a). The length of such identified load events within the time series Tyaw
is considered to be 20s, over which the peak amplitude is included. The event at t ≈ 9800s is detailed in the zoomed-in plot. The time series
Tyaw are calculated by BEM simulations of the 5 MW NREL turbine (see Sect. 3). The time series Tyaw are low-pass filtered with cutoff
f = 0.1 and normalized to a mean of 0 and standard deviation equal to 1.

Figure A2. Damage equivalent loads (DELs) of a modified signal of the yaw moment “Tyaw-Mod” from BEM simulations. (a) Time series
“Tyaw-Mod” from which the highlighted intervals in Fig. A1b have been removed. (b) DELs of Tyaw-Mod. The horizontal blue line at
DEL = 1.1 is kept as a reference. The DELs are calculated with m= 10 over T = 10 min. An overlapping period of 5 min is considered
between two consecutive intervals. The length of the horizontal red bars depicts the length of T .
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Appendix B: DELs from low- and high-frequency
components of the loads

The contribution of the low- and high-frequency components
of the load signal to the DELs of the total load is investigated.
Therefore, different components of the load signal are inde-
pendently investigated. The low-frequency component (“low
freq.”) corresponds to the low-pass-filtered load described in
Sect. 4, with a cutoff frequency of fcutoff = 0.1Hz. The high-
frequency component (“high freq.”) corresponds to the load
fluctuations with a frequency over fcutoff. The total load (“to-
tal”) is the estimated load from BEM simulations, which ag-
gregates both the high- and the low-frequency components.

Figure B1a shows the DELs of the components of the load
over an excerpt of 1200 s. Each of the horizontal bars repre-
sents the period T = 60s over which the DEL is calculated.
A fourth signal, “sum L+H”, is included in the comparison.
It corresponds to the combination of the DELs (i.e., not the
time series) from the low- and high-frequency signals as

(DELSumL+H)= α (DELLow) + β (DELHigh), (B1)

calculated for each period T . The parameters α and β are
fitting parameters to achieve DELSumL+H ≈ DELTotal. These
parameters depend on the Wöhler coefficient m and the
length T for the calculation of DELLow and DELHigh. In
Fig. B1a, the parameters are α = 1.2 and β = 0.5. The values
of the coefficients α and β from the load signals can be taken
as weighting factors, indicating a dominating contribution of
DELLow with respect to DELHigh. For the case shown, the
proportion is approximately 2 : 1.

Figure B1b shows the correlation between the DELs of the
total and the sum L+H signals. The correlation is calculated
for the DELs along the entire data set (4.7×104 s). Based on
the strong correlation between the DELs in b, the DELs of
the total load might be interpreted as a weighted sum of the
individual DELs from the low- and high-frequency compo-
nents.

The results in Fig. B1 show that, despite the dominance of
the low-frequency contribution, both the low- and the high-
frequency components have important contributions to the
DELs of the total load signal. Therefore, for a complete cal-
culation of the DELs on the WT, a second model for the high-
frequency contribution is required. The use of Gaussian dis-
tributed noise is proposed as a first approach. Three random
Gaussian realizations, “R1”, “R2”, and “R3”, with the statis-
tics from the original high-frequency load signal, are gen-
erated. The considered statistics include not only the mean
and standard deviation, but also the correlation and domi-
nant frequency. Next, the three Gaussian realizations of the
high-frequency fluctuations are added to the low-frequency
component of the load. Then, the DELs are calculated.

Figure B2a shows a 20 min excerpt of the DELs. For com-
parison, the original total load, which is the sum of the orig-
inal high-frequency and low-frequency components, is also

compared. Figure B2b shows a box plot of the DELs over
the entire time series (4.7× 104 s).

The comparability between the box plots in Fig. B2 shows
that Gaussian noise, with a parameterized dominant fre-
quency and correlation, can be used as a model for the high-
frequency component of the load signals. Then, this Gaus-
sian model for high-frequency fluctuations might be used in
combination with our proposed model, based on the CoWP,
which reproduced the low-frequency component of the load
signal. Subsequently, an entire description of the load signals
could be achieved. The joint use of these two models must be
further validated by comparing them to the total simulated
loads. For that, a transfer function is required to scale the
magnitudes of the loads. The validation is out of the scope of
this paper.
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Figure B1. (a) 20 min excerpt of the DELs for the Ttitlt signals at the main shaft. The length of the individual horizontal bars depicts the
periods T . (b) Correlation plot between the total load and the sum of the DELs from the low- and high-frequency signals. The DELs are
calculated with m= 10 over periods of T = 60s with an overlap of 30s between periods. The load signals are those calculated from BEM
simulations of the 5 MW NREL WT with Kaimal fields, with u= 7ms−1 (see Sect. 3).

Figure B2. DELs of the total signals (low-frequency and high-
frequency signals). (a) 20 min excerpt with individual DELs. (b)
Box plots of the DELs along the entire time series. The four high-
frequency signals (“high freq.”, “R1”, “R2”, and “R3”) have been
added to the same low-frequency signal. The DELs are calculated
with m= 10 over periods of T = 60s with an overlap of 30s be-
tween periods.
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Appendix C: Correlation and structure function of
the CoWP

Figure C1 shows the correlation function for the two compo-
nents of the CoWP 〈CoWPi(t) CoWPj (t + τ )〉 for i = y,z.
From the top to the bottom, the three rows show the corre-
lation for i 6= j , i = j = y, and i = j = z. The panels on the
left (a, c, d) correspond to the modeled Kaimal data. The pan-
els on the right (b, d, e) show the atmospherically measured
GROWIAN data. The correlation is calculated for time lags
τ = [−200,200].

Figure C1. Correlation function for the two components of the CoWP 〈CoWPi (t) CoWPj (t + τ )〉 for i = y,z and τ = [−200,200]. The
modeled Kaimal data are shown in (a), (c), and (e), and the atmospheric GROWIAN data are shown in (b), (d), and (f).
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Appendix D: “Special events” of the CoWP from
GROWIAN data

In Fig. 14, particular loops are observed when correlating the
CoWP and the tilt and yaw bending moments from atmo-
spheric GROWIAN wind fields. Figure D1 shows three ex-
emplary temporal sequences corresponding to some of the
observed loops in the correlation plots. Short intervals of
4 s are shown. Panels a and b show sequences observed in
the correlation between CoWPy and Tyaw in Fig. 14a. Panel
c shows a sequence observed in the correlation between
CoWPz and Ttilt in Fig. 14b. As observed in the three se-
quences, there are very strong differences in the wind speed
over the rotor plane. The green dot shows the CoWP. The
red dot shows a scaled version of the CoWP, which allows
for better visualization. The scaling is done by subtracting
a mean wind speed from all the points of the wind field.
This subtraction is analogous to removing the mass of the
beam when calculating the center of mass induced by exter-
nal masses. In that way, larger distances of the CoWP with
respect to the reference point are obtained.

The relatively large deviations of the CoWP depicted by
the loops in Fig. 14 from the GROWIAN data suggest that the
CoWP might be very sensitive to such extreme differences in
the wind field over the y–z plane at a given time step.
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Figure D1. Temporal evolution of the GROWIAN wind field and the CoWP on the y–z plane. The wind speed u(y,z, t) is color-coded. The
green dot depicts the location of CoWP. For better visualization, the red dot depicts the location of a scaled version of the CoWP. The lines
show the center lines of the grid, i.e., the reference location for calculating CoWP.

Appendix E: Characteristics of the CoWP from
standard Kaimal wind fields with shear

The results of the drift and diffusion coefficients D(1,2) from
the stochastic Langevin method, applied to the CoWP from
the GROWIAN measurements, are shown in Fig. 15. To in-
vestigate and compare the effect of the shear in the dynamics
of the CoWP from standard-modeled wind fields, we calcu-
lated the coefficients D(1,2) from Kaimal wind fields with a
shear exponent of 0.2. The results are shown in Fig. E1. In-
terestingly, the superimposition of shear to the Kaimal wind
fields results in additive noise only shifted towards higher
heights.

Additionally, the trajectories of the CoWP on the y–z
plane are shown in Fig. E2 for the original CoWP and a re-
constructed signal CoWPR from the Kaimal wind fields with
shear. In comparison to the trajectories from the atmospheric
GROWIAN data in Fig. 16, the trajectories of the CoWP

from the shear Kaimal wind fields are symmetric in the y–z
directions. Again, only a vertical shift is observed within the
CoWP, including shear effects, compared to Fig. 10.
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Figure E1. Langevin approach of the CoWP from Kaimal wind fields with a shear exponent of 0.2. (a) Drift coefficientD(1) and (b) diffusion
coefficient D(2). The vertical component CoWPy is shown in black, and the horizontal component CoWPz is shown in red.

Figure E2. Trajectories on the y–z plane of (a) the CoWP from the original shear Kaimal wind fields and (b) the corresponding stochastically
reconstructed signal CoWPR. The data are not normalized.
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