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Abstract. Floating lidar systems (FLSs) play a crucial role in offshore wind resource assessment, offering a
cost-effective and flexible alternative to traditional meteorological masts. While wind speed and wind direc-
tion measurements from FLSs demonstrate high accuracy without further in-depth correction required, platform
motion introduces systematic overestimation of turbulence intensity (TI), requiring compensation to ensure reli-
ability.

This study presents the first published report of an offshore deployment of a pulsed FLS operating at 5 Hz
effective sampling frequency with full deterministic motion compensation. A side-by-side comparison was con-
ducted with a continuous-wave (cw) FLS of the same platform type under identical offshore conditions. Both
systems were benchmarked against a met mast cup anemometer reference, with a fixed cw lidar included for
plausibility checks.

Performance was evaluated using a comprehensive multi-metric framework, including regression analyses,
absolute and relative error measures (MBE, MRBE, RMSE, RRMSE), representative TI error (Q90 error), and
quantile-based distribution analysis. While it is well established that deterministic motion compensation im-
proves TI estimates from floating cw lidars, this study demonstrates for the first time that the same approach,
when applied to pulsed systems operating at 5 Hz, yields TI bias convergence with floating cw lidars relative to
a met mast reference under identical offshore conditions. After compensation, floating cw and pulsed TI bias
converged towards the cup reference with no systematic ranking, while the pulsed system showed a modest but
consistent advantage in scatter-based metrics.

A central finding is that effective sampling frequency is a decisive configuration parameter for pulsed systems:
empirical evidence demonstrates that a 5 Hz operation adequately resolves turbulence and motion timescales,
achieving industry-relevant TI accuracy. In contrast, 1 Hz undersamples these processes and consistently overes-
timates TI, whereas 50 Hz cw scanning provides no decisive benefit beyond 5 Hz.

These results establish deterministic motion compensation as a transparent and effective baseline for offshore
FLS turbulence assessment. For pulsed deployments, a 5 Hz configuration is sufficient, while residual scatter re-
mains the main limitation. Future work should refine the compensation algorithm by accounting for lidar sensi-
tivities and improving sensor synchronization, while broadening validation across platform types, sea states, and
lidar configurations. Another important direction is the systematic comparison of different motion-compensation
types under identical sea-state and platform-response conditions. Sensitivity studies of motion characteristics, at-
mospheric stability, and lidar parameters are also needed. Machine learning post-processing may be explored as
a complementary tool to further reduce dispersion.

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



2792 W. Watson et al.: Impact of motion compensation on turbulence

1 Introduction

Offshore wind energy has gained significant momentum as a
key component of the global transition to renewable energy
(WindEurope, 2024). Accurate site assessment is crucial for
the successful development of offshore wind farms, as it di-
rectly impacts the feasibility, efficiency, and economic viabil-
ity of these projects. Advanced wind measurement technolo-
gies, including meteorological mast (met mast) and remote
sensing devices, play a pivotal role in understanding wind
conditions over open water (Sempreviva et al., 2008).

Floating lidar systems (FLSs) represent an innovative ad-
vancement over met masts in offshore wind resource as-
sessment (Gottschall et al., 2017). These buoy systems are
designed to provide accurate and reliable measurements of
wind speed, direction, and other meteorological and oceano-
graphic parameters in harsh offshore environments where
traditional met masts may be difficult to install and main-
tain. FLSs typically consist of one or more vertical profil-
ing wind lidars mounted on or integrated into a floating plat-
form. These systems are designed to operate autonomously,
featuring self-sufficient power supplies, multiple communi-
cation systems, motion recording devices (inertial measure-
ment units – IMUs), and various supplementary measure-
ment instruments.

The Carbon Trust OWA Roadmap for the Commercial Ac-
ceptance of Floating LiDAR Technology (The Carbon Trust,
2018, also referred to as the OWA Roadmap) defines a struc-
tured approach to prove the accuracy, quality, and reliabil-
ity of the individual FLS system in three stages of matu-
rity. Herein defined key performance indicators (KPIs) fo-
cus on wind speed and wind direction data. While the IEC
61400-50-4 technical specification (IEC, 2025) provides fur-
ther guidelines for the classification, calibration, and appli-
cation of FLSs, the OWA Roadmap remains a key reference
for their commercial acceptance. In recent years, several FLS
types have reached the full commercial maturity stage (Stage
3: Commercial Stage), underlining the capability of FLSs in
terms of mean wind speed and wind direction measurement
accuracy, as well as system and data availability.

In contrast to mean wind speed and mean wind direction
accuracy, FLSs are known to overestimate the turbulence in-
tensity (TI) compared to an unmoved fixed lidar (Kelberlau
et al., 2020). TI is defined as the ratio of the standard de-
viation of the wind speed to the mean wind speed and is a
key parameter for characterizing atmospheric turbulence in
the wind energy context. This overestimation occurs because
lidars mounted on floating platforms are subject to wave-
induced movements. As the platform moves, the lidar device
itself experiences motion, which introduces fluctuations in
the measured wind speed and consequently leads to an in-
creased standard deviation. The extent of the motion effects
depends on the prevailing sea state, the specific design char-
acteristics of the FLS – including its dynamic response to
sea-state conditions and its anchoring – as well as the de-

ployed lidar type and its configuration. These motion effects
act on timescales of a few seconds, overlapping with the stan-
dard 10 min averaging window used for TI estimation. If the
lidar sampling frequency is too low, short-period platform
motions and turbulent fluctuations are aliased into the re-
solved variance, amplifying bias in raw FLS TI (Thiébaut
et al., 2024). This makes the effective temporal resolution
of the lidar system a critical parameter for compensation ap-
proaches. As these sea-state-induced motions are mainly pe-
riodic, their effects on the 10 min average wind speed are
small, while the TI and wind direction are significantly in-
fluenced (Gottschall et al., 2014b). Different FLS types ex-
hibit varying levels of sensitivity to these motion-induced ef-
fects, depending on their buoy design, mooring system, and
stabilization approaches. As discussed in Gottschall et al.
(2017), FLS can be categorized into buoy-based, spar-buoy,
and semi-submersible platforms, each with distinct dynamic
responses to wave-induced motion. These differences influ-
ence the magnitude of TI overestimation and should be care-
fully considered when interpreting FLS measurements. Fur-
thermore, different lidar types and configurations yield dis-
tinct estimates of TI due to their varying spatial and tempo-
ral resolutions (Newman et al., 2016b). The same applies to
comparisons of lidar- and cup-anemometer-derived TI (Sathe
and Mann, 2013; Newman et al., 2016a; Thiébaut et al.,
2022). Recent studies have addressed different methods to
obtain anemometer-like turbulence from lidar measurements.
Peña et al. (2025) applied a physics-based neural network
to map lidar-derived turbulence to anemometer equivalents,
while Salcedo-Bosch et al. (2025) applied a turbulence-box
(Mann model) simulation-based correction to account for
probe-volume averaging and contamination.

To mitigate the influence of platform motion on float-
ing lidar wind measurements, several motion-compensation
approaches have been proposed in the literature. Among
these, deterministic motion compensation represents the
most fundamental, physics-based, and transparent approach.
In the wind measurement context, early studies have al-
ready presented this approach on ship-mounted ultrasonic
anemometers (Edson et al., 1998). Because these methods
are based on straightforward mathematical and geometri-
cal considerations, they can be directly transferred to li-
dar applications on floating platforms. Wolken-Möhlmann
et al. (2010) developed a deterministic 6 degrees of free-
dom motion-compensation framework based on LoS mea-
surements and evaluated its performance using simulations
for both continuous-wave (cw) and pulsed lidars under syn-
thetic wave-induced motions, identifying dynamic tilt as the
dominant source of wind speed deviations and using wind
speed RMSE for evaluation. Gottschall et al. (2014a)) further
refined the simulation approach, focusing on tilting motions
and applying a deterministic motion-compensation algorithm
to simulated cw and pulsed lidar measurements within syn-
thetic three-dimensional wind fields. An onshore motion-
table experiment with a pulsed lidar and a fixed reference
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was conducted to quantify uncorrected tilt-induced effects,
revealing systematically increased TI due to tilting using
scatter plots. Wolken-Möhlmann et al. (2014) experimen-
tally verified a simplified ship-based motion-compensation
method that accounted for yaw and horizontal translational
motions while neglecting tilt and heave effects. The com-
pensation was applied to data from a pulsed Leosphere
WindCube V2 installed on an offshore support vessel, and
its performance was evaluated by comparing compensated
measurements with FINO1 met mast data using time series
plots. Gottschall et al. (2014b) verified a simplified motion-
compensation approach that considered yaw and tilt mo-
tions during an offshore trial for a pulsed WindCube V2
lidar. Comparison with met mast data showed that deter-
ministic motion compensation substantially improved the
accuracy of TI, demonstrated in scatter plots. Kelberlau
et al. (2020) validated a 6 degrees of freedom deterministic
motion-compensation algorithm, incorporating wind shear
and veer corrections at the LoS level for a buoy-mounted
cw lidar. Near-shore measurements were compared to those
from a nearby fixed onshore reference lidar of the same type,
demonstrating the effectivity in reducing TI overestimation
using TI bias, Deming regression, and evaluating the TI pro-
file. Despite these advances, the application of full determin-
istic motion compensation to floating pulsed lidar measure-
ments has not yet been demonstrated in practice. Existing
studies have either focused on cw lidars or employed simpli-
fied compensation schemes for pulsed systems, leaving the
6 degrees of freedom deterministic framework untested on
pulsed lidar data. This leaves a clear research gap: the ex-
perimental validation of full deterministic motion compen-
sation for pulsed lidars. Deterministic motion-compensation
methods correct the measured LoS velocities by accounting
for the platform’s translational and rotational motion, effec-
tively aiming to reconstruct what a fixed lidar would have
measured. However, they require accurate motion sensing,
tight time synchronization, and correct LoS sign inference,
the latter posing a methodological sensitivity for homodyne
cw systems. Under extreme sea states with complex non-
linear platform motion, these requirements become stricter.
Higher motion-sensor precision, a higher sampling rate and
tighter lidar–IMU synchronization are needed to ensure reli-
able reconstruction. If these conditions are not met, perfor-
mance can degrade in two ways. First, the resulting linear
system of equations may become unsolvable when the mo-
tion distorts the beam geometry. In such intervals, no wind
vector can be reconstructed, which reduces data availabil-
ity. Second, even when the equations remain solvable, the
resulting estimates are bound to the accuracy of the above-
mentioned parameters.

Recent developments have explored data-driven methods
utilizing machine learning (ML) (Rapisardi et al., 2024). ML
models are capable of learning complex non-linear relation-
ships between measurement errors and additional parame-
ters, e.g. motion parameters or meteorological parameters,

a feature that is not considered by traditional deterministic
models. However, ML approaches require extensive high-
quality training data for the sea states that the FLS is ex-
periencing and the regions in which it is operating. These
ML models often operate as “black-boxes”, reducing trans-
parency, which may hinder their consideration and accep-
tance by standards.

Spectra-based models analyse the frequency content of the
measured signals to differentiate genuine turbulence from
motion-induced noise, isolating the true turbulence signal
by filtering out frequency bands dominated by motion arti-
facts (Thiébaut et al., 2024). Numerical models simulate the
dynamic interactions between wave-induced motions and li-
dar measurements, computationally quantifying and correct-
ing biases in TI. These models integrate wave parameters,
lidar scanning geometries, and platform responses to dif-
ferentiate true atmospheric turbulence from motion-induced
errors (Désert et al., 2021). Statistical models, such as un-
scented Kalman filters, estimate and correct TI biases by
modelling uncertainties in wind measurements and platform
motion (Salcedo-Bosch et al., 2022). Hardware-based solu-
tions, such as gimbals or other active or passive stabilization
systems, provide a physical reduction of the motion on the
measurements (Barros Nassif et al., 2020). These methods
increase system complexity and cost but offer a direct way to
compensate for motion in calmer sea states.

In this work, a deterministic approach described in
Wolken-Möhlmann et al. (2010, 2014) is adopted and fur-
ther extended to not only account for motion in all 6 de-
grees of freedom but also to include angular velocities from
tilt motions, as well as the change in effective measurement
height caused by heave and tilt. We chose a deterministic ap-
proach because of the transparency, robustness, and versatil-
ity of a physics-based correction model. By focusing on a
deterministic motion compensation, we ensure that even in
scenarios with high motion dynamics, a consistent and un-
derstandable correction is achieved, presenting an advantage
over less transparent data-driven methods. Moreover, since
the deterministic approach does not rely on training data, it
can be deployed universally without being limited to specific
conditions, locations, or measurement principles. Further, the
lidar’s internal processing is not altered by the algorithm,
keeping the lidar system itself as a black-box to directly as-
sess how the scanning geometry interacts with the applied
motion compensation. The scope of this work is explicitly
limited to evaluating this deterministic approach, rather than
comparing across all possible motion-compensation tech-
niques.

To our knowledge, this work presents the first published
offshore field demonstration of a pulsed FLS operating at
5 Hz with full deterministic motion compensation. A key
novelty is the identification of the effective scanning fre-
quency as an enabling parameter for pulsed systems. Previ-
ous deployments typically operated at 1 Hz, which proved to
be insufficient in capturing the relevant turbulence and mo-
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tion timescales (see Appendix C). This study implements
a 5 Hz effective scanning frequency to address that limi-
tation. The deployment was designed as a controlled side-
by-side offshore comparison with a floating cw lidar. The
two systems, represented by commercially deployed instru-
ments (the ZX Lidars ZX300M (cw) and the Vaisala Wind-
Cube V2.1 (pulsed)), were mounted on identical platforms
under matched sea-state conditions, with the same determin-
istic motion-compensation algorithm applied. The evaluation
against both a met mast cup (as reference) and a co-located
fixed cw lidar (for plausibility checks) provides a uniquely
controlled benchmark setup that isolates the effect of lidar
type while keeping the platform, environment, and compen-
sation method constant. This design enables a principle-level
assessment of whether, once motion effects are removed, the
two measurement approaches yield comparable TI estimates
across metrics and whether differences can be attributed to
the underlying measurement principle. While the specific
systems deployed here are representative commercial imple-
mentations, the intent and interpretation of this study are at
the measurement-principle level. Other models and config-
urations (e.g. probe length, acquisition time, effective per
height sampling) may change the magnitude of the reported
values, but the qualitative trends in how each measurement
principle responds to a deterministic motion-compensation
algorithm are expected to hold.

All accuracy statements are referenced to the met mast cup
anemometer, avoiding lidar-to-lidar circularity. The fixed cw
lidar is used solely as a plausibility check that determinis-
tic compensation removes platform-motion effects, not as an
accuracy reference. The 3-month North Sea calibration cam-
paign covered a broad spectrum of sea states. All conclu-
sions are explicitly bounded by this environmental envelope
and the deployed buoy-type platform, which reacts to the sea
state in a relatively slow, periodic manner.

To evaluate the effectiveness of the compensation, several
metrics are analysed. In St. Pé et al. (2021), the Consortium
for Advanced Remote Sensing (CFARS) proposed an assess-
ment of the accuracy of lidar-derived TI as a function of
binned wind speed using three key metrics: the TI mean bias
error (TI MBE), the TI root mean square error (TI RMSE),
and the representative TI error (representative TI). A simi-
lar formula to the representative TI is mentioned in NEDO
(2023). Kelberlau et al. (2023) propose acceptance thresh-
olds based on their measurement data for TI MBE, with
a best-practice threshold of 1.0 % and a minimum practice
threshold of 2.0 % (absolute values) and for representative
TI, a best-practice threshold of 1.5 % and a minimum prac-
tice threshold of 3.0 % (absolute values), when compared
to cup anemometer TI. Additionally, they propose applying
Deming regression as an alternative to traditional ordinary
least-squares (OLS) regression. While OLS assumes that all
measurement errors are confined to the dependent variable,
Deming regression accounts for uncertainties in both the in-
dependent and dependent variables. DNV (2023) introduces

the mean relative bias error (TI MRBE) and the relative root
mean square error (TI RRMSE) to quantify the relative errors
between the lidar-derived TI and cup anemometer measure-
ments along with KPI thresholds for different use cases.

The OWA Roadmap (The Carbon Trust, 2018) recom-
mends performing a regression through the origin (RTO)
and calculating the slope and the coefficient of determination
(R2) to evaluate FLS TI against a trusted reference TI. How-
ever, the roadmap document does not define specific KPIs
for TI accuracy. In Uchiyama et al. (2024), the TI measure-
ments of several FLSs are compared by performing regres-
sion analysis on the wind speed standard deviation, with a
focus on bias. Furthermore, the 90th percentile of TI (Q90)
as a function of the binned wind speed is assessed. Q90 is a
key parameter used in wind turbine design and loads assess-
ment (IEC, 2019). In IEC (2025), a quantile–quantile (Q–
Q) analysis should be performed as part of the wind speed
uncertainty assessment. In this work, these approaches will
be adapted for comparing TI measurements from different
sources.

Beyond methodological validation, the results provide ac-
tionable guidance for offshore wind applications. Specifi-
cally, this work demonstrates the offshore feasibility of de-
terministic motion compensation for pulsed FLS, establishes
a transparent basis for comparison with the more established
cw approach, and delivers evidence to support project- and
use-case-specific acceptance decisions in the absence of for-
mal industry thresholds. In addition, we show that reliable
TI assessment cannot rely on single indicators alone. While
metrics such as R2 and regression slope are widely reported,
they are insufficient to fully capture TI accuracy. To ad-
dress this, we adopt a broader set of complementary metrics
and benchmark results against best-practice thresholds from
the literature, enabling a more robust evaluation of motion-
compensated FLS performance.

The paper is structured as follows: the Methodology
section (Sect. 2) details the measurement equipment uti-
lized (Sect. 2.1), the applied motion-compensation algorithm
(Sect. 2.2), and the specifications of the measurement cam-
paign (Sect. 2.4). It also presents the metrics used to as-
sess the performance of the applied motion compensation
(Sect. 2.3). The Results section (Sect. 3) evaluates the TI
measurements from the different FLS, both raw and motion
compensated, against reference data from a fixed lidar and
a met mast using the performance metrics described in the
Methodology section. In the Discussion section (Sect. 4), the
findings are discussed, and the effectiveness of the determin-
istic motion-compensation algorithm and its impact on the
accuracy and precision of TI measurements are emphasized.
Finally, the Conclusion section (Sect. 5) summarizes the key
findings of the study and suggests future direction for re-
search.
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2 Methodology

In this section, we outline the methodology employed in this
study, which is structured into the following subsections.
The measurement equipment is described in Sect. 2.1, de-
tailing the Fraunhofer IWES Wind Lidar Buoy, the two de-
ployed vertical profiling wind lidar types, and the offshore
met mast. Following this, Sect. 2.2 focuses on the deter-
ministic FLS motion-compensation algorithm applied in this
study. The performance assessment metrics used to evaluate
the effectiveness of the motion compensation are discussed
in Sect. 2.3. Lastly, Sect. 2.4 provides details about the mea-
surement campaign, including the deployment specification,
data analysis time frame, and environmental conditions.

2.1 Measurement equipment

The measurement equipment used in this study includes two
Fraunhofer IWES Wind Lidar Buoys, each equipped with a
different type of vertical profiling wind lidar represented by
commercially deployed instruments (the ZX Lidars ZX300M
(cw) and the Vaisala WindCube V2.1 (pulsed)). These FLSs
were deployed near the FINO3 offshore met mast, which pro-
vides reference measurements. The specifications and con-
figurations of the equipment are described in the following
subsections.

2.1.1 Floating lidar system

The Fraunhofer IWES Wind Lidar Buoy is based on the
Leuchttonne 1981 (LT81) navigation buoy, a classic German
navigation buoy design that has been deployed since 1981
(see Fig. 1). Navigation buoys are engineered to maintain the
visibility of their signal lights (or beacons) above the water-
line at all times to safely guide ships. Fraunhofer IWES has
adapted and optimized this design for wind measurement ap-
plications, replacing the beacon with an encapsulated wind
lidar system.

The design specifications are listed in Table 1.
Due to its design and mooring characteristics, the Fraun-

hofer IWES Wind Lidar Buoy moves slowly in response to
sea motion, effectively dampening wave-induced motions.
This results in gradual periodic movements rather than rapid
displacements, helping to reduce high-frequency motion in-
fluences in lidar measurements while reducing the require-
ments on motion data precision and time synchronization.
However, as the buoy is experiencing motion in all 6 degrees
of freedom (see Fig. 1b), periodic variations are introduced
in the lidar LoS measurements. These motion effects must be
carefully accounted for through motion-compensation algo-
rithms to ensure the accuracy of TI measurements.

2.1.2 Vertical profiling wind lidar technologies

In this study, two types of vertical profiling wind lidars were
installed in the buoys and studied with respect to the impact

of motion on FLS TI measurements: the ZX Lidars ZX300M
cw and the Vaisala WindCube V2.1 pulsed lidar system. The
measurement principle of each lidar type is illustrated in
Fig. 2. The scan pattern of the cw lidar is depicted in (a),
while (b) shows that of the pulsed lidar.

The ZX300M cw vertical profiling lidar – (a) in Fig. 2 –
employs focusing optics to concentrate a continuously emit-
ted light beam at predefined heights, conducting LoS mea-
surements (depicted as yellow lines) in a conical scan pattern
(sequence and direction implied by an increasing opacity of
the yellow LoS lines and the grey arc arrow). Each scan cycle
consists of 50 LoS measurements taken within a 1 s interval
at one specific height. From each scan, a virtual wind vector
is derived, using the velocity–azimuth display (VAD) method
before focusing on the subsequent measurement height. A
brief overview of the VAD method and the Doppler beam
swinging (DBS) retrieval approach used by the pulsed lidar is
provided in Appendix A. The predefined heights are scanned
consecutively, and the total number of samples taken at each
height within a 10 min interval depends on the number of
specified measurement heights. The virtual wind vector is in-
tended to represent the wind conditions over the lidar (grey
area), ensuring that the resulting 10 min average time series
accurately reflects the wind speed and wind direction as mea-
sured by a met mast (cup anemometers and wind vanes). Due
to its focusing optics, the probe length of a cw lidar increases
with measurement height. The green lines in Fig. 2 imply the
probe length for a scan at 100 m (±7.70 m). The ZX300M
is based on homodyne detection, which means that only the
unsigned absolute value of the Doppler shift can be deter-
mined from the LoS measurements. Consequently, it cannot
distinguish whether the wind is approaching or moving away,
leading to a 180° ambiguity. To mitigate this ambiguity, the
system relies on reference wind direction data supplied by an
additional met station device typically installed closely above
the lidar.

The Vaisala WindCube V2.1 pulsed lidar system –
panel (b) in Fig. 2 – sequentially emits light pulses in four
equally spaced 90° azimuth beam directions alongside one
vertical beam (red lines in Fig. 2). The order of the sequence
is marked with numbers as well as decreasing opacity of the
yellow LoS lines. This scanning pattern is similar to a VAD
and is often referred to as DBS. The time elapsed from the
emission of each pulse is utilized to calculate the distance
travelled by the light, thereby determining the measurement
heights, referred to as range gates. The backscattered signal
within each range gate is collected, and the LoS velocity is
derived. From these LoS measurements, virtual wind vec-
tors are calculated using the DBS method to represent the
wind conditions at the corresponding height above the lidar
(grey areas). The probe length of a pulsed lidar stays con-
stant along all measurement heights. The green lines imply
the probe length for a scan at 100 and 150 m (26.25 m). The
WindCube V2.1 deployed in this study was configured to col-
lect LoS data at an increased effective scanning frequency of
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Table 1. Technical specifications of the Fraunhofer IWES Wind Lidar Buoy.

Parameter Value

Buoy type Fraunhofer IWES Wind Lidar Buoy
Dimensions Overall height 9.2 m, diameter 2.55 m
Weight Approx. 5.6 t
Operational water depth Minimum 15 m
Material Steel hull; anodized aluminium for lidar housing
Mooring DIN 5683-II mooring chain, 4.2 t concrete sinker
Primary power system Autonomous renewable energy-based power system, PV panels, and three micro-wind turbines
Secondary power system Diesel generator (running on GTL diesel)

Figure 1. (a) Photograph of the Fraunhofer IWES Wind Lidar Buoy (© Christian Tietjen, Fraunhofer IWES). In panel (b), a schematic
representation of the Fraunhofer IWES Wind Lidar Buoy with the IMU’s East-North-Down reference coordinate system and arrows denoting
the 6 degrees of freedom is depicted.

5 Hz to better resolve the dominant motion and turbulence
timescales, compared to the standard 1 Hz configuration.

2.1.3 FINO3 offshore met mast

The Forschungsplattform in Nord- und Ostsee 3 (FINO3)
met mast is built on a monopile foundation that supports a
platform and mast structure. The platform is located west of
the DanTysk offshore wind farm, as shown in Fig. 4. The
mast cross-section varies with height, which can result in
stronger mast blockage effects at lower measurement alti-
tudes (FINO3 Research Platform, 2024). FINO3 provides
reference wind speed measurements at multiple heights using
cup and sonic anemometers (refer to Table 2). For this study,
only cup anemometers that are mounted on booms with the
same orientation (345° N) are selected, allowing the use of
the same free-inflow sector for all altitudes. Wind vanes for
measuring wind direction are located at heights of 29 and
101 m.

2.2 Floating lidar motion compensation

The deterministic motion-compensation algorithm applied in
this study builds upon the approach of Wolken-Möhlmann
et al. (2010, 2014), which accounts for tilted and rotated
LoS beam vectors and for translational velocities induced by
surge, sway, and heave. In the present implementation, the
method is extended to also include angular velocities from
tilt motions, as well as the change in effective measurement
height caused by heave and tilt.

A cw or pulsed lidar scan consists of multiple beams, each
associated with a specific timestamp ti . Each beam measures
the wind velocity component along its pointing direction –
referred to as the LoS or radial velocity. For beam i, the lidar
returns a scalar value of νLoS(ti), which represents the pro-
jection of the three-dimensional wind vector u(ti) onto the
beam’s unit direction vector v̂i(ti). This projection is given
by the dot product

v̂i(ti) ·u(ti)= νLoS(ti). (1)
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Figure 2. Representation of vertical profiling wind lidar scanning patterns. (a) illustrates the scanning geometry of a cw lidar performing a
conical scan at 100 m; (b) depicts the scanning geometry of a pulsed lidar, measuring at two heights simultaneously: 100 and 150 m.

Each lidar scan consists of N beams. The unit vectors of
these beams in the lidar’s local coordinate system are de-
scribed by the matrix V̂ ∈ RN×3, whose rows are the unit
vectors v̂i(ti). These vectors are derived from the beam-
specific azimuth angle θi(ti) and a fixed half-cone opening
angle α, and represent the line-of-sight directions relative to
the lidar frame:

V̂(t1, . . ., tN )=


sin(α)cos(θ1(t1)) sin(α) sin(θ1(t1)) cos(α)
sin(α)cos(θ2(t2)) sin(α) sin(θ2(t2)) cos(α)

.

.

.
.
.
.

.

.

.
sin(α)cos(θN (tN )) sin(α) sin(θN (tN )) cos(α)

 . (2)

To express these beam directions in the global coordinate
system, we apply a standard rotation matrix of R(ti) ∈ R3×3,
which is computed from the roll, pitch, and yaw angles at
timestamp ti . The individual rotation matrices are defined as
Rroll(ti), Rpitch(ti), and Ryaw(ti). The combined rotation ma-
trix at time ti is then given by

R(ti)= Ryaw(ti) Rpitch(ti)Rroll(ti). (3)

Each beam vector is individually transformed into the global
reference frame as

v̂rot
i (ti)= v̂i(ti) R(ti)>, i = 1, . . .,N, (4)

resulting in the rotated matrix

V̂rot =


v̂rot

1 (t1)
v̂rot

2 (t2)
...

v̂rot
N (tN )

 ∈ RN×3. (5)

On a platform in motion, the measured LoS velocity is a com-
bination of the wind-induced velocity and the platform’s mo-
tion projected along the same direction. To account for this,
the platform motion must be considered.

At each timestamp ti , the translational velocity of the lidar
platform in the global coordinate system is given by

umotion(ti)=

usurge(ti)
vsway(ti)
wheave(ti)

 , (6)

where the components represent motion in the forward
(surge), lateral (sway), and vertical (heave) directions, re-
spectively. If the lidar is mounted above the platform’s tilting
point, pitch and roll can introduce additional motion at the
lidar location due to the lever arm effect. In such cases, the
angular velocity should be taken into account when comput-
ing the full translational velocity of the lidar.

This motion introduces an additional component to the
measured LoS velocity in beam i, which is computed as the
projection of umotion(ti) onto the corresponding rotated beam
direction v̂rot

i (ti):

νmotion(ti)= v̂rot
i (ti) ·umotion(ti). (7)

This velocity must be considered to isolate the wind-induced
component

νLoS, corr(ti)= νLoS(ti)− νmotion(ti). (8)

Assuming the wind vector u(t) ∈ R3 is constant during the
scan, we can estimate it from the N rotated unit vectors and
the corresponding LoS velocities. For N > 3, the system is
overdetermined and can be solved using the least-squares ap-
proach:


v̂rot

1x (t1) v̂rot
1y (t1) v̂rot

1z (t1)
v̂rot

2x (t2) v̂rot
2y (t2) v̂rot

2z (t2)
.
.
.

.

.

.
.
.
.

v̂rot
Nx (tN ) v̂rot

Ny (tN ) v̂rot
Nz(tN )


[
u(t)
v(t)
w(t)

]
=


νLoS, corr(t1)
νLoS, corr(t2)

.

.

.
νLoS, corr(tN )

 .
(9)
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In the case of a cw lidar performing a conical scan at a fixed
elevation angle, the beam geometry matches the assumptions
of the classical VAD method, which assumes horizontal ho-
mogeneity during the scan. It can similarly be applied to
pulsed lidars, in this case operating in a five-beam DBS con-
figuration.

Following the same principle as in Fig. 2, Fig. 3 visualizes
extreme events of tilted LoS beam vectors of a floating cw
lidar (a) and a floating pulsed lidar (b) from actual measure-
ment data.

As shown in Fig. 3, the tilting, yawing, and heave directly
influence the scanning geometry of the lidar systems, de-
forming the scan volume. The changed measurement height
(due to tilt and heave) is considered in different ways, de-
pending on the lidar type. As pulsed lidar systems take mea-
surements almost simultaneously (see Sect. 2.1.2) at multi-
ple heights, the LoS velocity of each beam can be interpo-
lated to the desired measurement height by considering ad-
jacent measurements from neighbouring heights of the same
pulse. Cw lidars conduct sequential measurements, focusing
on one measurement height before progressing to the next.
Consequently, the interpolation method is not applicable. To
account for changes in measurement height, the power law
wind profile (IEC, 2019) is applied to the radial wind velocity
of each transformed LoS. After applying the transformation
matrices to the LoS beams and compensating the measured
radial velocities for the motion as described, the virtual wind
vector is calculated by applying the VAD or DBS method,
depending on the instrument.

Potential time offsets between the lidar and the motion-
sensor data are identified by repeating the motion compen-
sation several times for each 10 min interval, while shifting
the lidar data by small time increments (time offsets). The
standard deviation of each resulting 10 min wind interval is
determined, and the interval with the lowest standard devi-
ation is selected. A lower standard deviation indicates less
fluctuation and, consequently, a reduced influence of motion
on the measured wind data. The corresponding time offset
then becomes the basis for the offset iteration of the next
10 min interval. Depending on the lidar type, the time off-
set increases over time until the device re-synchronizes, at
which point the time offset returns to zero. To consider this
re-synchronization, the time-offset iteration always includes
a time offset of zero.

2.3 Performance assessment metrics

In this subsection, we introduce the performance assessment
metrics used to evaluate the TI measurements. Building on
the wind industry’s standard practice of analysing 10 min sta-
tistical intervals, we derive time series data that can be statis-
tically analysed, for example, through linear regression. For
standard parameters, such as mean wind speed and direction,
this approach yields the slope, offset, and R2, for which KPIs
are defined in The Carbon Trust (2018). A similar methodol-

ogy can be applied to TI, while alternative metrics might be
more directly connected to the application of TI.

We begin by describing the application of the linear re-
gression techniques in Sect. 2.3.1 to capture the overall trend
between the TI measurements. Section 2.3.2 then introduces
the mean bias error and mean relative bias error, which are
used to quantify systematic differences between the datasets.
In Sect. 2.3.3, we describe the calculation of the root mean
square error and its normalized variant (relative root mean
square error), which highlight the magnitude of random er-
ror or precision. Section 2.3.4 focuses on the representative
TI error, derived from the 90th percentile of the TI distribu-
tion. Finally, Sect. 2.3.5 presents a quantile-based distribu-
tion analysis that provides a visual assessment of measure-
ment distributions and potential biases.

2.3.1 Linear regression

Linear regression and correlation analysis are commonly
used to compare wind speed and wind direction measure-
ments from multiple sources, such as in calibration cam-
paigns or for plausibility checks of data. While OLS as-
sumes that all measurement errors are confined to the de-
pendent variable, Deming regression accounts for uncertain-
ties in both the independent and dependent variables. In this
study, we will investigate the performance using OLS, RTO,
and Deming regression for comparison. While the uncentred
R2 is recommended for RTO, it has been observed to pro-
duce abnormally high values, which distort the results. The
uncentred R2 (R2

uncentered) is described as follows:

R2
uncentered = 1−

∑N
n=1

(
TIref,n−TIcomp,n

)2∑N
n=1

(
TIref,n

)2 , (10)

where TIcomp is the comparison quantity, TIref is the refer-
ence quantity, n refers to the individual data point, and N is
the total number of data points.

To calculate R2, we will use the following equation as an
alternative to the uncentred R2:

R2
= 1−

∑N
n=1

(
TIref,n−TIcomp,n

)2∑N
n=1

(
TIref,n−TIref

)2 . (11)

Using this equation, R2 might yield negative values when
the predictions are worse than simply using the mean of the
observed data as a predictor. In that case, we will print “not
a number” (NaN).

2.3.2 Mean bias error and mean relative bias error

The TI MBE as a function of binned wind speed is defined
as follows (St. Pé et al., 2021):

TIMBE,i =
1
Ni

Ni∑
n=1

TIcomp,n,i −TIref,n,i, (12)
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Figure 3. Simulation of tilted vertical profiling wind lidar measurement principles. Panel (a) illustrates the scanning geometry of a cw lidar
performing a conical scan at 100 m; panel (b) depicts the scanning geometry of a pulsed lidar, measuring at two heights simultaneously: 100
and 150 m.

where i is the wind speed bin (with a bin size of 1 ms−1)
and Ni is the number of data points in the ith bin. The TI
MBE measures the average difference between two datasets,
helping to identify any consistent deviations. It reveals sys-
tematic over- and underestimations (bias), thus indicating the
direction of the error.

The TI MRBE, as introduced by DNV (2023), is deployed
to derive the relative error (relative TI bias) between lidar and
cup anemometer TI. It is a variation of the mean bias error
that expresses bias as a normalized measure. It is defined as
follows:

TIMRBE,i =
1
Ni

Ni∑
n=1

(TIcomp,n,i −TIref,n,i)
TIref,n,i

× 100. (13)

The metric again reveals systematic over- and underestima-
tions but by normalizing the bias, the error becomes easier to
interpret.

2.3.3 Root mean square error and relative root mean
square error

The TI RMSE as a function of binned wind speed is denoted
as follows (St. Pé et al., 2021):

TIRMSE,i =

√√√√ 1
Ni

Ni∑
n=1

(TIcomp,n,i −TIref,n,i)2. (14)

The TI RMSE quantifies the magnitude of random errors be-
tween two datasets by calculating the square root of the aver-
age squared differences. By focusing on squared differences,
it highlights the random errors and statistical variability that
may arise due to differences in measurement instruments.

Normalizing the TI RMSE yields the TI RRMSE that en-
ables direct comparisons across different datasets. It is de-
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fined as follows (DNV, 2023):

TIRRMSE,i =

√√√√ 1
Ni

Ni∑
n=1

(
(TIcomp,n,i −TIref,n,i)

TIref,n,i

)2

× 100. (15)

2.3.4 Representative TI error

The representative TI is defined as the 90th quantile (Q90)
of a TI dataset. For Gaussian distributions, the Q90 can be
approximated according to St. Pé et al. (2021):

TIRep,i = TIavg,i + 1.28×TIstd,i, (16)

where TIavg is the average TI and TIstd is the standard devia-
tion of the TI.

We also apply this equation in our study, instead of cal-
culating the Q90 based on the data population per bin. The
representative TI error is the difference between the binned
representative TI values of the reference and the trialled sys-
tem:

TIReperror,i =
1
Ni

Ni∑
n=1

(TIRep,comp,i −TIRep,ref,i). (17)

2.3.5 Quantile-based distribution analysis

A Q–Q analysis is a graphical tool used to compare the dis-
tributions of datasets by plotting their quantiles against each
other. It helps to assess the goodness of fit between datasets,
allowing for the visual identification of whether the data fol-
low the reference distribution or show patterns of systematic
error or outliers. Additionally, overestimation and underes-
timation (systematic bias) can be derived from the plot by
examining the position of the data points relative to the 1 : 1
line.

2.4 Campaign details

Two FLSs of the type Fraunhofer IWES Wind Lidar Buoy
were deployed in proximity to the FINO3 offshore met mast
from 6 March 2024 to 3 August 2024. The distance between
the FLSs and the met mast was approximately 300 m. One
FLS was equipped with a ZX Lidars ZX300M cw lidar sys-
tem (FLS ZX), the other one with a Vaisala WindCube V2.1
pulsed lidar in a 5 Hz scanning configuration (FLS WC).
Additionally, a ZX Lidars ZX300M cw lidar system (fixed
ZX) was installed on the FINO3 met mast platform at a
height of approximately 27 m above the lowest astronomi-
cal tide (LAT). Both cw lidar systems were running the same
firmware version (v3.3002).

An overview of the device characteristics and configura-
tions is given in Table 2.

The positions of all systems are shown in Fig. 4.
To enhance the accuracy of the motion-compensation re-

sults, the settings of the motion sensors deployed on the FLS

were optimized on 6 April 2024. The fixed cw lidar installed
on the FINO3 met mast platform (fixed ZX) stopped record-
ing data due to a power supply failure on 9 July 2024; as a
result, only data recorded from 6 April to 9 July were con-
sidered in this study.

Additionally, only timestamps where data from all mea-
surement systems were available were considered. A wind
sector filter is applied to only consider wind data coming
from the free-inflow sector at 220 to 300°, using the FINO3
met mast wind vane installed at 101 m above LAT as refer-
ence.

The met mast and wave radac reference datasets were
obtained from the BSH Insitu database (Bundesamt für
Seeschifffahrt und Hydrographie , BSH). All entries that
were flagged as questionable or bad by the database
providers were removed from the analysis. Only timestamps
where all systems recorded data were considered in the anal-
ysis. Within that period, a range of environmental condi-
tions were covered, with average wind speeds reaching up
to 26.54 ms−1 (measured by the cup at 101 m), significant
wave heights (Hs) reaching up to 4.28 m, and peak wave pe-
riods (Tp) of up to 12.5 s.

No data were recorded by the cup anemometer mounted
at 91 m. Furthermore, a data gap is present in the radac Hs
and Tp records from 7 June 2024, 09:00:00 to 19 June 2024,
07:50:00 UTC, which may affect the statistics of certain sea
state parameters, shown in Fig. 5. Panel (a) displays a wind
rose, illustrating the distribution of wind directions recorded
by the wind vane at 101 m LAT, along with the correspond-
ing bin-wise wind speed distribution measured by the cup
anemometer at the same height. Panel (b) presents a den-
sity correlation plot of significant wave height versus spec-
tral peak period measured by the radac mounted on the met
mast.

3 Results

This section evaluates the TI data recorded during the mea-
surement campaign, focusing on how two lidar types – cw
(represented by a ZX Lidars ZX300M) and pulsed (repre-
sented by a Vaisala WindCube V2.1) – perform with and
without motion compensation. For results on the mean hor-
izontal wind speed, please refer to Appendix B. Both sys-
tems were deployed on FLS platforms of the same type, op-
erated under similar offshore conditions and compensated
using the same deterministic algorithm, enabling the ef-
fect of lidar type to be isolated. The resulting TI measure-
ments are validated against met mast cup anemometer data
and cross-checked with a fixed cw lidar to evaluate motion-
compensation effectiveness and relative system performance.
All pulsed lidar results presented here correspond to the 5 Hz
effective scan frequency configuration. This trial represents
the first published offshore deployment of a pulsed FLS op-
erating at 5 Hz with full deterministic motion compensation.
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Table 2. Measurement device characteristics. Matching wind speed measurement heights are marked in bold.

Met mast Fixed ZX FLS ZX FLS WC

Measurement device type Cup anemometer cw lidar cw lidar Pulsed lidar

Model A100L2 ZX300M ZX300M WindCube V2.1

Manufacturer Wind speed LTD ZX Lidars ZX Lidars Leosphere
(Vaisala, France)

LoS sampling rate (Hz) Not applicable 50 50 5

Half-cone opening angle (°) Not applicable 30.6 30.6 28

Probe length (m) Not applicable ±0.07 at 10 m;
±7.70 at 100 mb

±0.07 at 10 m;
±7.70 at 100 mb

26.25 (constant)c

Affected by motion No No Yes Yes

Measurement heights (m
LAT)

31, 41, 51, 61, 71, 81,
91, 101, 107a

64, 71, 91, 101, 107,
130, 160, 200, 225,
250, 275

42, 71, 91, 101, 107,
130, 160, 200, 225, 250

71, 91, 101, 107,
130, 160, 200, 225,
250, 275

a FINO3 Research Platform (2024); b ZX Lidars (2024); c Calculated according to Eq. (29) in Peña (2009).

Figure 4. Measurement campaign location at FINO3 in the German North Sea (based on OpenSeaMap Data (© OpenSeaMap, 2025) under
the Open Database License (ODbL)).

Previous analyses have shown that a 1 Hz configuration is
insufficient in capturing the relevant turbulent timescales for
reliable compensation. For completeness, results from a 1 Hz
pulsed lidar deployment conducted during a separate cam-
paign at FINO3, including the prevailing sea state, are pro-
vided in Appendix C. The results are structured as follows:
first, in Sect. 3.1, a correlation analysis is conducted to com-
pare the TI measured by the FLS before and after motion
compensation. This is followed by an assessment of system-
atic deviations through MBE and MRBE in Sect. 3.2. Af-

ter that, in Sect. 3.3, precision metrics, namely RMSE and
RRMSE, are evaluated. Additionally, the representative TI
error is examined in Sect. 3.4. Finally, in Sect. 3.5, a quantile-
based distribution analysis is conducted to provide further in-
sights into the distribution of FLS TI before and after motion
compensation.

To ensure consistency in the analysis, a wind sector fil-
ter for the range of 220 to 300° was applied, based on
wind direction data from the met mast wind vane at 101 m
above LAT. Additionally, for the regression analysis and the

https://doi.org/10.5194/wes-10-2791-2025 Wind Energ. Sci., 10, 2791–2820, 2025



2802 W. Watson et al.: Impact of motion compensation on turbulence

Figure 5. Statistical overview of reference conditions recorded during the trial period: (a) wind rose displaying wind direction distribution
measured by the wind vane at 101 m LAT, along with the corresponding bin-wise wind speed distribution from the cup anemometer at the
same height (grey scales correspond to the whole campaign period, while blue/green scales represent the selected timestamps); (b) significant
wave height versus spectral peak period density correlation plot measured by the radac mounted on the met mast.

quantile-based distribution analysis, only wind speed data in
the range of 4 to 16 ms−1, as measured by the met mast cup
anemometer at the same height, were considered. The results
presented in this section are based on measurements from
101 m above LAT. To test vertical consistency, additional
measurement heights (71 and 107 m) were investigated. As
the results were consistent with those at 101 m and did not
provide further insights, they are not included in this work.

3.1 Linear regression and correlation analysis

For this study, the fixed cw lidar (fixed ZX) TI serves as the
baseline for a lidar-derived TI measurement without the in-
fluence of motion. This baseline sets the benchmark for as-
sessing the performance of the applied motion-compensation
algorithm.

Figure 6 presents a correlation plot comparing fixed cw
lidar TI with met mast cup anemometer (MM) TI at 101 m
above LAT. To highlight the distribution of data points, the
scatter is represented as a density plot, where point density is
indicated by a colour scale. A solid black 1 : 1 line represents
perfect agreement between the two measurements. As men-
tioned in Sect. 2.3.1, three regression models are analysed,
with R2 calculated according to Eq. (11): OLS regression
(dashed red line), RTO (solid red line), and Deming regres-
sion (dashed black line). The regression parameters (slope,
offset, and R2 values) are listed in Table 3 for reference.

The data points are well aligned along the 1 : 1 line, in-
dicating a strong correlation between the fixed cw lidar and
the met mast cup measurements. All three regression mod-
els yield R2 values above 0.8. While wind speed and wind
direction correlations typically exhibit even higher R2 val-

Figure 6. Density correlation plot and regression analysis of the
fixed cw lidar (fixed ZX) TI versus the met mast cup anemometer
(MM) TI at 101 m above LAT. The point density is indicated by the
colour bar. Derived parameters are listed in Table 3.

Table 3. Regression parameters for the correlation between TI
measured by the fixed cw lidar (fixed ZX) and the met mast cup
anemometer (MM) at 101 m above LAT, as illustrated in Fig. 6.

Deming OLS RTO

Slope 1.158 1.080 1.051
Intercept −0.007 −0.002 –
R2 0.880 0.885 0.884

Number of 10 min data points 3032
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ues, this is considered high for a TI correlation. However,
a slight overestimation of TI by the fixed cw lidar can be
observed, particularly at higher values. The applied regres-
sion models confirm this trend with consistent slopes above
unity and only minor offsets. Further, the resulting Dem-
ing regression slope is higher than the slopes from OLS and
RTO, indicating that the cw lidar measurements systemat-
ically show higher TI values than the met mast cup refer-
ence. As mentioned in Sect. 2.3, the outcome of a regression
analysis for TI is significantly influenced by several factors.
These include the type and configuration of the measurement
device, each of which might have different spatial and tem-
poral resolutions. Additionally, a varying measurement vol-
ume between instruments may lead to different sensitivities.
The spatial separation between devices introduces further un-
certainty, especially in inhomogeneous flow conditions. Al-
though the fixed cw lidar is installed on the met mast plat-
form, the visible scatter, as well as the slope and R2 of the
three types of regression fits between the two instruments, re-
veal deviations between the datasets. These discrepancies are
primarily caused by the differing underlying measurement
principles of the instruments. While lidars are commonly ex-
pected to report lower TI values than cup anemometers, the
regression slope shows a slight overestimation. We have ob-
served similar behaviour in other offshore datasets involving
fixed cw as well as pulsed lidars at FINO3 (the platform) and
believe this may be due to site-specific influences such as at-
mospheric stability conditions or flow disturbances related to
the mast structure and layout.

Building on the baseline analysis in Fig. 6, we now com-
pare motion-affected cw lidar data from the FLS (FLS ZX)
at 101 m above LAT to the fixed cw lidar TI at the same
height. Figure 7 presents two scatter plots, following the
same approach as in Fig. 6, with (a) showing the raw (uncor-
rected) FLS measurements, while (b) displays the motion-
compensated results. The corresponding regression parame-
ters are listed in Table 4. As the floating lidar is subject to
wave-induced motion, additional velocity fluctuations are in-
troduced, leading to an overestimation of TI compared to the
fixed cw lidar. By comparing raw and motion-compensated
FLS data, we assess the extent of motion-induced bias and
evaluate the effectiveness of the applied correction algorithm
in mitigating these effects.

Figure 7 visualizes the difference between the raw (a) and
motion-compensated (b) FLS TI measurements.

In panel (a), a noticeable scatter and deviation from the
1 : 1 line indicates that the floating lidar systematically over-
estimates TI. This is reflected in the regression parameters
listed in Table 4, where all models show lower R2 values
compared to the motion-compensated variant in panel (b).
In the raw cw FLS data, the Deming regression results in a
slope of 1.044 and an offset of 0.037, with anR2 of 0.439, in-
dicating a moderate correlation alongside a systematic over-
estimation reflected in the high offset. The OLS regression
produces a much lower slope of 0.745 alongside an offset of

0.055, further suggesting that the raw cw FLS TI measure-
ments tend to diverge significantly from the fixed cw lidar
TI. The RTO regression, with a slope of 1.464, suggests a
high overestimation, while its negative R2 value underlines
the poor fit (and is therefore marked as NaN).

After motion compensation (panel b), the scatter is re-
duced, and the correlation between cw FLS and fixed cw
lidar significantly improves across the three analysed regres-
sion models. The Deming regression now results in a slope
below unity and a minor offset of 0.007, with an increased
R2 of 0.608, suggesting that the overall overestimation seen
in the raw cw FLS data has largely been corrected, leaving a
slight overestimation at low TI that transitions to increasing
underestimation with higher TI. The OLS regression shows
a similar slope as in the raw cw FLS data but with a much
lower offset and an increased R2, indicating that the motion
compensation has not only reduced the bias but also reduced
the scatter between the two datasets. The RTO regression,
with a slope of 0.994 and an R2 of 0.564, now provides a
reasonable fit, supporting the improvement of the data qual-
ity.

These results confirm that the applied motion-
compensation algorithm effectively mitigates the motion-
induced overestimation seen in the raw cw FLS TI data.
However, the slopes below 1, in combination with an
offset, indicate a range-dependent tilt rather than a uniform
bias, with slight overestimation at low TI, transitioning to
underestimation as TI increases. Several factors contribute
to these remaining discrepancies.

To account for translational motion in deterministic LoS
motion compensation, each measured LoS velocity is ad-
justed by adding or subtracting the platform’s translational
velocity. This approach depends critically on resolving the
correct sign of each LoS. Under conditions of non-uniform
flow, especially at low wind speeds and high TI, sign deter-
mination becomes challenging due to the homodyne detec-
tion method of the trialled cw lidar (ZX Lidars ZX300M)
(see Sect. 2.1.2) and the assumption of homogeneous flow in
the VAD scanning pattern. If the sign is misidentified, for ex-
ample, if the wind is actually moving away from the platform
but is interpreted as moving towards it, the compensation will
apply the opposite adjustment, introducing systematic errors
into the derived virtual wind vectors and potentially amplify-
ing motion-induced fluctuations. Further factors are, for ex-
ample, the remaining time offsets between the IMU and lidar
device, poor time stamping precision, the distance between
the instruments (see Sect. 2.4), the different probe volumes,
and the smaller focal length of the elevated reference lidar
compared to the floating cw lidar.

While Fig. 7 has focused on the comparison between the
floating and fixed cw lidar TI, the next step has been to in-
vestigate whether similar trends are observed for the float-
ing pulsed lidar system (FLS WC). Figure 8 shows one of
the main results and key novelties of this study: determin-
istic motion compensation applied to the floating pulsed li-
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Figure 7. Density correlation plots and regression analyses of TI measured by the floating cw lidar (FLS ZX) versus the fixed cw lidar (fixed
ZX) at 101 m above LAT. Panel (a) shows uncompensated (raw) data, while panel (b) shows motion-compensated data. Point density in both
panels is indicated by the colour bar. Derived parameters are listed in Table 4.

Table 4. Regression parameters for the correlation between TI measured by the floating cw lidar (FLS ZX) and the fixed cw lidar (fixed ZX)
at 101 m above LAT, as illustrated in Fig. 7.

Panel (b): motion-
Panel (a): raw data compensated data

Deming OLS RTO Deming OLS RTO

Slope 1.044 0.745 1.464 0.933 0.758 0.994
Intercept 0.037 0.055 – 0.007 0.018 –
R2 0.439 0.522 NaN 0.608 0.642 0.564

Number of 10 min 3032 3032
data points

dar (FLS WC) significantly improves TI agreement with the
fixed cw lidar at 101 m above LAT. The comparison follows
the same approach as in Figs. 6 and 7. Since pulsed lidars dif-
fer in their measurement principles, particularly the scanning
geometry and range gating (see Sect. 2.1.2), the impact of
motion and the effectiveness of the compensation algorithm
is expected to show different characteristics compared to the
floating cw lidar system.

In Fig. 8, the scatter plots reveal distinct differences be-
tween the raw (panel a) and motion-compensated (panel b)
TI measurements from the floating pulsed lidar (FLS WC).
The raw dataset exhibits wide scatter, with data points devi-
ating significantly from the 1 : 1 line. This increased disper-
sion, along with a consistent upward shift, suggests a sys-
tematic overestimation of TI and highlights the strong influ-
ence of platform motion on the floating pulsed lidar measure-
ments.

The regression models further confirm this trend. Dem-
ing regression yields a slope of 1.078 with a high offset of
0.060, while OLS regression results in a slope of 0.810 and

an even higher offset of 0.076, both reflecting the overestima-
tion. RTO yields a slope of 1.801 with a negative R2 under-
lining the severe overestimation but also revealing the poor
fit.

In contrast, the motion-compensated dataset (panel b) ex-
hibits a clear reduction in scatter and overestimation, with
data points and regression fits aligning closely with the 1 : 1
line. This improvement is further reflected in significantly
reduced offsets and increased R2 values across all mod-
els and regression slopes, generally shifting closer to unity.
The density scatter plot reveals an overestimation of TI for
lower values, tilting the derived slopes. The RTO slope de-
creases from 1.801 to 1.048, now closely aligning with the
1 : 1 line. Meanwhile, the Deming regression slope decreases
from 1.078 to 0.933, and for OLS it increases from 0.810 to
0.854, while both exhibit a significant reduction in positive
offset (0.060 to 0.010 for Deming; 0.076 to 0.015 for OLS).
Combined with the sub-unity slopes, this indicates a range-
dependent tilt rather than a uniform bias: an overestimation at
low TI transitioning towards slight underestimation as TI in-
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Figure 8. Density correlation plots and regression analyses of TI measured by the floating pulsed lidar (FLS WC) versus the fixed cw lidar
(fixed ZX) at 101 m above LAT. Panel (a) shows uncompensated (raw) data, while panel (b) shows motion-compensated data. Point density
in both panels is indicated by the colour bar. Derived parameters are listed in Table 5.

Table 5. Regression parameters for the correlation between TI measured by the floating pulsed lidar (FLS WC) and the fixed cw lidar (fixed
ZX) at 101 m above LAT, as illustrated in Fig. 8.

Panel (b): motion-
Panel (a): raw data compensated data

Deming OLS RTO Deming OLS RTO

Slope 1.078 0.810 1.801 0.933 0.854 1.048
Intercept 0.060 0.076 – 0.010 0.015 –
R2 0.521 0.585 NaN 0.817 0.824 0.771

Number of 10 min 3032 3032
data points

creases. The overall increase inR2 confirms that the compen-
sation algorithm successfully corrects the TI measurements
and significantly improves agreement with the fixed cw lidar.
The remaining discrepancies may be attributed to similar fac-
tors as previously mentioned, with the added influence of the
different underlying measurement principles of the compared
lidars.

3.2 Mean bias error and mean relative bias error

The figures in Sect. 3.1 demonstrated how the applied deter-
ministic motion compensation reduced scatter and system-
atic overestimation in floating lidar TI measurements. While
the regression analysis provided insights into the overall re-
lationship between the datasets, a more detailed performance
assessment is conducted by evaluating systematic deviations
and measurement accuracy across different wind speed bins.
To achieve this, the following analysis examines further per-
formance assessment metrics, as introduced in Sect. 2.3.

The following Fig. 9 illustrates the binned MBE (calcu-
lated according to Eq. (12) in Sect. 2.3.2) between the met

mast cup TI and the trialled lidar devices TI as a function of
binned wind speed. The figure includes both raw and motion-
compensated datasets (where applicable), distinguished by
dashed and solid lines, respectively. The x axis represents
the wind speed bins, while the y axis displays the corre-
sponding error metric values. The figure also features mini-
mum and best-practice performance thresholds, indicated by
dashed horizontal lines.

The MBE trends in Fig. 9 demonstrate a clear distinc-
tion between the raw and motion-compensated datasets, il-
lustrating the systematic overestimation of TI in the uncom-
pensated data and the effectiveness of the compensation al-
gorithm. Both raw datasets, represented by the dashed red
and blue lines, consistently exhibit a positive bias across all
wind speed bins. This bias is most pronounced at lower wind
speeds below 5 ms−1, where motion-induced fluctuations
have a greater relative impact on TI due to the increased influ-
ence of platform movement in relation to wind speed. More-
over, TI values are generally higher at lower wind speeds,
increasing the potential for greater bias in this range.

https://doi.org/10.5194/wes-10-2791-2025 Wind Energ. Sci., 10, 2791–2820, 2025



2806 W. Watson et al.: Impact of motion compensation on turbulence

Figure 9. Binned mean bias error between the MM TI and the TI of the trialled device fixed ZX (yellow), FLS ZX (blue lines, where the
dashed line represents raw data and the solid line depicts motion-compensated data), and FLS WC (red lines, where the dashed line represents
raw data and the solid line depicts motion-compensated data) at 101 m above LAT.

While both lidar types exhibit systematic TI overestima-
tion in their raw datasets, the raw floating pulsed lidar TI
(dashed red line) consistently shows a higher positive bias
than the raw floating cw lidar TI (dashed blue line), while
following a similar pattern until diverging for wind speeds
higher than 17.5 m s−1. This suggests that the pulsed lidar
is more sensitive to motion-induced fluctuations, likely due
to its sequential scanning method. In contrast, the cw lidar,
which averages LoS velocities over a conical scan, appears
to be less affected by motion variations, resulting in a lower
overall bias in the raw data.

The fixed cw lidar also shows a relatively high bias at
low wind speeds, which steadily declines until it approaches
near-zero bias between 5 and 16 ms−1. While this trend
highlights the inherent differences between TI measurements
from cw lidars and those derived from a cup anemometer,
mast effects might also influence the measurements. Follow-
ing motion compensation, the bias in both the floating pulsed
(solid red line) and cw lidar (solid blue line) datasets is sig-
nificantly reduced, confirming the effectiveness of the ap-
plied compensation algorithm. The floating pulsed lidar ex-
hibits the most noticeable relative improvement, with a steep
decline in bias at low wind speeds and a further reduction
as wind speed increases. Despite this, the bias remains con-
sistently positive across all wind speed bins, indicating that
while compensation effectively mitigates motion effects, a
small residual overestimation persists. For wind speeds be-
tween 4 and 9 ms−1, the pulsed lidar falls well within the
minimum practice range, before transitioning into the best-
practice area for all higher wind speeds. The floating cw
lidar maintains a low bias across all wind speed bins. Be-
tween 2.5 and 4 m s−1, it remains below the 0.02 MBE line
before entering the best-practice area. At 5 ms−1, its error is
slightly lower than that of the fixed cw lidar, before fluctu-
ating within the best-practice range at higher wind speeds.

Above 15.5 ms−1, the MBE turns negative, following the
same trend as the fixed cw lidar. While MBE provides insight
into absolute bias, it does not fully capture relative errors,
particularly at low wind speeds, where small absolute differ-
ences may result in large relative deviations. To address this,
we examine the MRBE presented in Fig. 10.

The MRBE trends in Fig. 10 provide a complementary
perspective to MBE. The raw datasets show extremely high
MRBE values across all wind speeds, with the floating pulsed
lidar reaching from about 125 % to 174 % and the floating
cw lidar spanning from 60 % to 101 %. The fixed cw lidar
MRBE remains stable across all wind speed bins, indicating
that most of the bias is due to platform motion. Following
motion compensation, the floating pulsed lidar again experi-
ences the largest relative improvement, with an almost linear
decline with increasing wind speeds. At higher wind speeds
(between 10 and 15.5 ms−1), the compensated pulsed lidar
slightly outperforms the floating cw lidar while keeping a
positive bias. This aligns with previous MBE findings that
motion compensation is particularly effective for the pulsed
floating lidar at higher wind speeds. For the floating cw lidar,
the MRBE closely aligns with that of the fixed cw lidar at
lower wind speeds before diverging around 5 ms−1. While
MBE is effectively reduced at wind speeds between 10 and
15 ms−1, MRBE remains slightly elevated compared to the
floating pulsed lidar.

3.3 Root mean square error and relative root mean
square error

The RMSE trends in Fig. 11 illustrate the magnitude of abso-
lute errors in TI measurements. The figure follows the same
approach as Figs. 9 and 10, showing the error as a function
of binned wind speed.
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Figure 10. Mean relative bias error between the MM TI and the TI of the trialled device fixed ZX (yellow), FLS ZX (blue lines, where
the dashed line represents raw data and the solid line depicts motion-compensated data), and FLS WC (red lines, where the dashed line
represents raw data and the solid line depicts motion-compensated data) at 101 m above LAT.

Aligning with the trends from the MBE and MRBE anal-
ysis, the raw FLS datasets (dashed lines) exhibit substan-
tially higher RMSE values compared to the fixed cw lidar.
The highest RMSE values occur at lower wind speeds, grad-
ually decreasing with increasing wind speed. While both li-
dar types exhibit high RMSE values in their raw datasets,
the floating pulsed lidar (dashed red line) consistently shows
greater RMSE than the floating cw lidar (dashed blue line).
This suggests that, in addition to the higher systematic bias
observed in MBE and MRBE, the motion introduces greater
random errors into the pulsed lidar TI.

The fixed cw lidar (yellow line) exhibits a relatively high
RMSE at low wind speeds, which steadily declines and sta-
bilizes at a low level beyond 4 ms−1. This trend again high-
lights the differences between TI measurements from cw li-
dars and those derived from a cup anemometer. Even without
motion, RMSE does not reach zero, suggesting that part of
the error arises from differences in measurement principles
rather than motion alone.

Following motion compensation, RMSE is significantly
reduced for both lidar types (solid blue and red lines).

The floating pulsed lidar TI (solid red line) experiences the
largest relative improvement in RMSE, following a steep de-
cline at low wind speeds. Notably, for wind speeds above
4.5 ms−1, the RMSE in the pulsed lidar TI is lower than
that of the floating cw lidar, and for wind speeds above
16 ms−1, it even outperforms the fixed cw lidar, suggest-
ing better alignment with the cup anemometer TI in high
wind speed conditions. For the floating cw lidar, RMSE af-
ter motion compensation is clearly reduced but remains con-
sistently higher than that of the floating pulsed lidar and
fixed cw lidar across all wind speed bins beyond 3.5 ms−1.
This again indicates that while the compensation is effective,

some residual motion effects may persist in the floating cw
lidar TI measurements.

While RMSE provides a direct measure of absolute TI de-
viations, it does not account for how these errors scale with
the TI magnitude itself. Since TI varies significantly across
different wind speeds, an identical RMSE value at low and
high wind speeds can have different implications for mea-
surement accuracy. To capture this effect, we have analysed
the RRMSE, presented in Fig. 12.

The RRMSE trends in Fig. 12 reveal patterns that were less
apparent in the RMSE results. While the RMSE decreases
with increasing wind speed, the RRMSE remains relatively
high across all wind speed bins, with peaks at moderate wind.
Those peaks are particularly pronounced in the raw datasets
(dashed lines).

The pulsed lidar (dashed red line) shows the highest
RRMSE, reaching values of up to 56 %, while the float-
ing cw lidar (dashed blue line) exhibits values between
30 % and 45 %. The fixed cw lidar TI RRMSE remains be-
low 10 % across all wind speeds above 5 ms−1, indicating
the impact of the different measurement principles on the
TI RRMSE. Following motion compensation, the floating
pulsed lidar again exhibits the largest relative improvement,
with RRMSE decreasing almost linearly as wind speeds
increase. At wind speeds above 5 ms−1, the compensated
pulsed lidar performs better than the floating cw lidar. Above
14 ms−1, the RRMSE of the floating pulsed lidar is even
lower than that of the fixed cw lidar, indicating a better align-
ment of the pulsed lidars TI with cup anemometer TI. While
the RMSE of the floating cw lidar decreases with increasing
wind speed, the RRMSE fluctuates at lower wind speeds until
reaching its peak around 19 % at the 12 ms−1 bin. For wind
speeds beyond 12 ms−1, the RRSME decreases and almost
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Figure 11. Binned root mean square error between the MM TI and the TI of the trialled device fixed ZX (yellow), FLS ZX (blue lines,
where the dashed line represents raw data and the solid line depicts motion-compensated data), and FLS WC (red lines, where the dashed
line represents raw data and the solid line depicts motion-compensated data) at 101 m above LAT.

Figure 12. Relative root mean square error between the MM TI and the TI of the trialled device fixed ZX (yellow), FLS ZX (blue lines,
where the dashed line represents raw data and the solid line depicts motion-compensated data), and FLS WC (red lines, where the dashed
line represents raw data and the solid line depicts motion-compensated data) at 101 m above LAT.

aligns with the fixed cw lidar RRMSE around the 17 ms−1

bin.

3.4 Representative TI error

While previous metrics provided valuable insights into bias
and variability in the TI measurements, they do not necessar-
ily indicate how well the lidar-derived TI represents statis-
tical reference values for real-world applications (Q90). To
assess the overall accuracy of TI estimates, we have anal-
ysed the representative TI error as a function of binned wind
speed, as shown in Fig. 13, while utilizing the same approach
as in the previous figures. Additionally, KPIs are indicated in
Fig. 13, with the dashed black line representing the mini-
mum practice threshold and the dashed green line denoting

the best-practice range. The representative TI error was cal-
culated according to Eq. (17) in Sect. 2.3.4, while using the
Q90 values derived from the TI distributions.

Similar to previous metrics, the raw floating lidar datasets
(dashed red and blue lines) exhibit substantially larger errors
compared to its motion-compensated versions and the fixed
cw lidar (solid lines).

The floating pulsed lidar (dashed red line) exhibits the
highest representative TI error, followed by the raw float-
ing cw lidar (dashed blue line). This is consistent with pre-
vious observations. The fixed cw lidar (yellow line) shows
an initially high representative TI error which gradually de-
creases with increasing wind speeds. For wind speeds above
3 ms−1, it reaches the minimum practice area before enter-
ing the best-practice range for wind speeds above 6 ms−1.
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Figure 13. Representative TI error between the MM TI and the TI of the trialled device fixed ZX (yellow), FLS ZX (blue lines, where the
dashed line represents raw data and the solid line depicts motion-compensated data), and FLS WC (red lines, where the dashed line represents
raw data and the solid line depicts motion-compensated data) at 101 m above LAT.

Figure 14. Quantile–quantile plot comparing the quantile distribu-
tion between the MM TI and the TI of the trialled device fixed ZX
(yellow), FLS ZX (blue lines, where the dashed line represents raw
data and the solid line depicts motion-compensated data), and FLS
WC (red lines, where the dashed line represents raw data and the
solid line depicts motion-compensated data) at 101 m above LAT.

Beyond the 12 ms−1 bin, the representative TI error almost
aligns with the zero-error line. This suggests that cw lidar TI
differs from cup anemometer TI at lower wind speeds. Fol-
lowing motion compensation, the representative TI error is
significantly reduced for both lidar types. The floating pulsed
lidar (solid red line) shows the greatest relative improvement.
Following a steep decline in representative TI error at low
wind speeds, it almost aligns with the fixed cw lidar trend

for wind speeds beyond the 6 ms−1 bin. For wind speeds
above 14 ms−1, the compensated pulsed lidar starts fluctu-
ating around the zero-error line. The motion-compensated
floating cw lidar trend (solid blue line) shows the lowest ini-
tial representative TI error, displaying an even lower error
than the fixed cw lidar for wind speeds below 4 ms−1. This
is surprising and might be caused by mast wake effects or the
smaller relative scan circle of the elevated fixed lidar. Over-
all, the representative TI error of the motion-compensated
floating cw lidar decreases with increasing wind speed before
passing the zero-error line at the 13 ms−1 bin and fluctuating
around it for wind speeds beyond that. However, at moder-
ate wind speeds (9–15 ms−1), the floating cw lidar retains
slightly higher error values compared to the pulsed lidar.

3.5 Quantile-based distribution analysis

While previous analyses have focused on statistical errors
and bias trends, a Q–Q plot provides an alternative way to
evaluate how well the TI distributions align with the refer-
ence MM TI. Figure 14 presents a Q–Q plot comparing the
floating (both raw and motion-compensated) and fixed lidar
TI measurements against the MM TI at 101 m above LAT.

Viewed against the 1 : 1 and ±10 % guides, the behaviour
of the FLS TI datasets (light blue and light red) is range de-
pendent, while indicating systematic TI overestimation com-
pared to met mast cup TI. The raw pulsed lidar (light red)
exhibited the largest deviations, with deviations increasing
as TI values rise. The raw cw lidar (light blue) displayed a
lower offset. The small deviations shown by the fixed cw li-
dar (yellow) emphasize the difference between lidar and cup
TI. Motion compensation significantly improves the agree-
ment between floating lidar TI estimates and the MM refer-
ence. The motion-compensated datasets (blue and red dots)
shift towards the 1 : 1 lines. The deviation from the ±10 %
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threshold is substantially reduced, confirming the effective-
ness of the applied correction algorithm. The floating pulsed
lidar (red dots) sees the most noticeable improvement, with
compensated TI falling much closer to the 1 : 1 line. How-
ever, a slight overestimation persists, suggesting a minor sys-
tematic bias. The floating cw lidar (blue dots) also shows a
strong improvement. For lower TI values, the distance to the
1 : 1 line is comparable to that of the fixed cw lidar, although
its overestimating rather than underestimating.

At low TI (. 0.04), both compensated lines (blue/red) lie
slightly above the 1 : 1 line, reflecting a small positive offset
(residual overestimation) until they diverge near ≈ 0.04. The
floating cw lidar then almost aligns with the fixed cw lidar,
while the floating pulsed lidar trends marginally above the
±10% band. At mid-range (≈ 0.05–0.08), the floating cw li-
dar diverges from the fixed cw lidar before clustering with
the floating pulsed lidar slightly above the±10% band. Both
raw lidar lines remain far outside that band, indicating how
much motion-related deviation was removed by the compen-
sation. At higher TI (& 0.08–0.11), the fixed cw lidar trends
above the ±10% band, almost converging with the compen-
sated floating lidars. At very high TI (≈ 0.12–0.16), the com-
pensated and fixed systems are well within the ±10 % band
and close to the 1 : 1 line.

4 Discussion

While it is well established that deterministic motion com-
pensation improves TI estimates from floating cw lidars, this
study demonstrates for the first time that the same approach,
when applied to pulsed systems operating at 5 Hz, yields TI
bias convergence with floating cw lidars relative to a met
mast reference under identical offshore conditions. A key
outcome concerns the sampling timescale of pulsed systems.
To our knowledge, this is the first published demonstration
of a pulsed FLS operating offshore at 5 Hz effective sam-
pling frequency with full deterministic compensation, show-
ing that this configuration is sufficient in resolving turbulent
timescales and delivering accurate TI estimates. In contrast,
1 Hz pulsed configurations (summarized in Appendix C)
consistently overestimate TI even after deterministic motion
compensation. This establishes sampling frequency as a de-
cisive configuration parameter for pulsed lidars, with direct
implications for their offshore use. Together, these findings
demonstrate that, once motion effects are mostly mitigated,
cw and 5 Hz pulsed systems provide comparable TI bias ac-
curacy, with the pulsed lidar additionally showing a modest
but consistent reduction in scatter-based metrics. With mo-
tion effects mostly mitigated, the reduction largely reflects
lidar-specific behaviour.

To provide a comprehensive assessment in the absence of
formal TI acceptance criteria, we report a multi-metric evalu-
ation rather than relying on a single indicator. The discussion
is structured into two main aspects: accuracy metrics, which

assess systematic deviations (bias) between FLS and the ref-
erence measurement, and precision metrics, which evaluate
the scatter and consistency of the measurements. In line with
the study’s framing, the discussion reflects on the three core
factors identified as influencing FLS TI measurement per-
formance: the lidar type, the platform-motion characteris-
tics, and the motion-compensation method. In this experi-
ment, the latter two were held constant – both lidars were
deployed on FLSs of the same type under similar environ-
mental conditions and were compensated using the same de-
terministic algorithm. This controlled configuration isolates
the effect of lidar type, allowing for a direct assessment of
how cw and pulsed systems respond to motion and com-
pensation under otherwise similar conditions. Accuracy was
primarily assessed through MBE, MRBE, and representative
TI error. The raw FLS TI data exhibited a consistent posi-
tive MBE, meaning that both cw and pulsed lidars overes-
timated TI. This overestimation was stronger in the pulsed
lidar data, likely due to sequential scanning and probe ge-
ometry interacting with short-term platform motions and tur-
bulence. After motion compensation, the MBE was signifi-
cantly reduced for both lidar types, particularly at moderate
and higher wind speeds, indicating that motion-related con-
tributions were largely addressed, and remaining bias differ-
ences are best attributed to lidar-specific behaviour. With de-
terministic compensation applied, the TI bias error of both
systems relative to the cup reference converges, with fre-
quent overlap and occasional cross-overs across wind speed
bins, while residual differences remain minor. The MRBE
results confirmed this trend, while revealing lower values for
the pulsed lidar at moderate wind speeds. Overall, the analy-
sis showed that the motion compensation effectively reduced
relative bias across all wind speed bins. The compensated
datasets showed near-zero bias at higher wind speeds, fur-
ther validating the motion-compensation approach. The rep-
resentative TI error analysis, which assesses the error in the
90th quantile of the TI distribution, a crucial parameter for
wind turbine design applications, showed a notable improve-
ment after motion compensation. The compensated datasets
closely aligned with the suggested best-practice threshold,
indicating that the motion-compensation algorithm success-
fully minimized systematic errors in TI estimates.

Precision was evaluated through RMSE, RRMSE, correla-
tion analysis (R2 and linear regression), and quantile-based
distribution analysis. The RMSE results highlighted the im-
pact of the motion compensation in reducing motion-induced
scatter and improving measurement stability. The pulsed li-
dar initially exhibited the highest RMSE among the raw
datasets, but after compensation, its RMSE was significantly
reduced, surpassing the performance of the compensated
cw lidar at higher wind speeds. The RRMSE, which nor-
malizes RMSE, further confirmed this pattern. The motion-
compensated pulsed lidar dataset showed the lowest RRMSE
at high wind speeds, even outperforming the fixed cw lidar,
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indicating that a pulsed lidar TI aligns closer with a cup TI at
higher wind speeds than a cw lidar TI.

Linear regression and correlation analysis demonstrated
the overall improvement in agreement between FLS and ref-
erence data. The motion compensation notably increased the
R2 for both lidar types, with the pulsed lidar experiencing
the largest relative improvement. We attribute the remain-
ing scatter to three groups of effects: residual motion not
corrected by the algorithm (e.g. small lidar–IMU timing off-
sets, heave/tilt-induced height variations), spatial configura-
tion (e.g. instrument separation, elevation of the fixed cw
lidar), and lidar-specific measurement-principle differences
relative to the cup anemometers. The quantile-based distri-
bution analysis (Q–Q plot) provided further insight into sys-
tematic over- and underestimation. The motion-compensated
datasets exhibited better alignment with the reference data,
reducing deviations across the distribution, with slight over-
estimation at low TI and a mild tilt towards underestimation
at higher TI.

This study confirms that deterministic motion compen-
sation significantly improves the accuracy and precision of
FLS-derived TI measurements. While both lidar types bene-
fitted from the algorithm, the pulsed lidar exhibited a greater
relative reduction across all metrics and the lowest RMSE
and RRMSE. The results from the representative TI error
analysis further validate the efficiency of the FLS motion-
compensation algorithm. The error of the resulting motion-
compensated datasets closely aligns with that of the fixed
cw lidar. As both lidars were mounted on FLSs of the same
type (Fraunhofer IWES Wind Lidar Buoy) and only times-
tamps where all systems recorded data were considered,
the observed differences are likely due to a combination
of measurement-principle differences and lidar-specific cou-
pling to platform motion. The systematic TI overestimation
in the raw floating pulsed lidar data was consistently higher
than that observed in the raw floating cw lidar measure-
ments. This discrepancy is likely caused by the DBS scan-
ning method of the pulsed lidar, where each LoS is measured
sequentially at different azimuth angles, making it more sen-
sitive to short-term platform motions. Although the deployed
pulsed lidar was configured to collect data at an accelerated
frequency of 5 Hz (compared to the 1 Hz standard configu-
ration), the system was clearly more sensitive to motion than
the cw lidar. A pulsed lidar of the same type with a lower scan
frequency results in an even higher overestimation (see Ap-
pendix C). In contrast, the cw lidar performs continuous con-
ical scans, averaging the measured LoS velocity and thereby
already reducing the influence of rapid motions. The contin-
uous scan with the 50 unsigned LoS measurements, however,
appears to be more sensitive to small time offsets, which may
lead to residual motion effects.

Direct numerical comparison across studies is limited, as
available publications differ in their environmental envelopes
and reporting practices. Sea state, wave conditions, and tur-
bulence context are often not reported, and relative error met-

rics are rarely provided. Accordingly, the following compar-
isons focus on the magnitude and trend of reported absolute
errors, while recognizing that differences in turbulence lev-
els, compensation approach, and platform motions may ex-
plain part of the observed variation. Within these boundaries,
our results are consistent in magnitude with those reported in
prior studies applying a motion compensation to FLS.

In the study by Kelberlau et al. (2023), comparability is
constrained by the fact that only absolute error metrics are
reported. No information on sea state, turbulence informa-
tion context (e.g. binned mean TI, Q90), or platform mo-
tion is provided. These boundaries should be kept in mind
when relating their results to the present study. Kelberlau
et al. (2023), who evaluate the performance of a determin-
istically motion-compensated cw lidar of the same type, re-
port TI MBE within ±1 % and TI RMSE between approx-
imately 0.14 % and 0.3 % for wind speeds between 4 and
16 ms−1 at 101 m height (when considering bins with a rep-
resentative number of data points). In the same study, the
representative TI error of the motion-compensated FLS fol-
lowed the trend of the fixed reference lidar and only diverged
at wind speeds above 12 ms−1, where sample sizes were
limited. Overall, the error is well within ±1.5 % for wind
speeds above 4 ms−1. In our study, the MBE for the motion-
compensated cw lidar similarly remained within±1 %, while
the compensated pulsed lidar slightly exceeded this range
for wind speeds below 8 ms−1. RMSE values for the cw li-
dar were marginally lower at low wind speeds, with both li-
dars showing nearly identical RMSE trends above 8 ms−1.
The pulsed lidar outperforms the cw lidar in both studies in
terms of RMSE. The representative TI error for both motion-
compensated lidar types in our study also closely followed
the trend of the fixed reference lidar system, although with a
slightly elevated error, particularly below 7 ms−1. In terms of
regression analysis, Kelberlau et al. (2023) compared binned
motion-compensated cw lidar TI to both fixed cw lidar and
mast references. While the OLS regression slope and inter-
cept in our study closely match those reported, our Dem-
ing and RTO regression results were slightly closer to unity.
Their R2 values were marginally higher, likely due to the
binning approach. Notably, the motion-compensated pulsed
lidar in our study achieved the highest R2, with values ap-
proaching 0.8.

In the case of Rapisardi et al. (2024), an ML-based
compensation was applied. However, no descriptive statis-
tics of the sea state, platform motion, or turbulence con-
text are provided, which limits the ability to contextualize
the reported error reductions. The evaluation does not in-
clude relative error metrics, restricting comparability to ab-
solute measures. Rapisardi et al. (2024) applied ML-based
motion-compensation models trained on either fixed lidar or
anemometer data to cw (ZX Lidars ZX300M) FLS TI mea-
surements. They evaluated the resulting compensated TI us-
ing OLS regression and MBE, referencing both fixed lidars
and anemometers. Their results show a marked improve-
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ment in R2 after compensation for both models, although
slopes were not reported. However, their correlation plots
show persistent underestimation in both raw and compen-
sated TI, with the fixed-lidar-trained model slightly reduc-
ing this bias and the anemometer-based model increasing it.
MBE was assessed at various heights and locations, both
with training data from the same and from different met
masts. In all cases, motion compensation reduced MBE to
within the best-practice thresholds suggested by Kelberlau
et al. (2023), consistent with the performance reported here.
However, the raw (uncompensated) MBE in Rapisardi et al.
(2024) was notably lower than in our study, likely reflecting
differences in platform-motion characteristics and environ-
mental conditions (sea-state information was not provided).
Together, these results underscore that while individual met-
rics like MBE orR2 can indicate performance improvements,
they are insufficient on their own to comprehensively evalu-
ate TI measurement accuracy. The observed underestimation
in correlation plots despite favourable MBE values in Rapis-
ardi et al. (2024) reinforces the importance of a multi-metric
evaluation approach. These comparisons highlight the fact
that TI measurement accuracy from FLS is governed by a
combination of factors: the deployed lidar type, the dynamic
response of the floating platform, and the applied motion-
compensation method.

In Uchiyama et al. (2024), environmental conditions are
well characterized, with statistics reported for sea state, wave
parameters, and TI distributions, providing valuable context
for interpreting the results. The study evaluated the binned
90th percentile of TI (Q90) for three different FLS types
(buoy, ship, and spar buoy) against reference measurements
from a fixed Vaisala WindCube V2.1 and cup anemometers
but did not apply motion compensation. The buoy-based sys-
tem was equipped with a ZX Lidars ZX300M, the ship-based
system with both a ZX Lidars ZX300M and a Vaisala Wind-
Cube, and the spar buoy with a Mitsubishi Electric Diabrezza
(pulsed lidar). The cw lidar on the buoy-type FLS showed
significant overestimation, while the same lidar on the ship-
type system yielded Q90 values much closer to the fixed
references. Compared to the uncompensated cw lidar in our
study, the overestimation observed in the buoy-type system
appears relatively high. The ship-based FLS showed lower
Q90 errors for both lidar types, with the pulsed lidar display-
ing the larger deviation, which is consistent with our find-
ings. The spar-buoy system showed good agreement with the
reference, suggesting a lower influence of motion. It should
also be noted that the reference curves differ between the
plots, indicating that different time periods may have been
used for each comparison. This limits the ability to directly
compare lidar performance across FLS types. In contrast, our
study uses a controlled setup with platforms of the same type,
co-located deployments, and a shared motion-compensation
method. This allows us to systematically isolate the effects
of platform motion, lidar type, and compensation approach,

thereby expanding on the insights provided by Uchiyama
et al. (2024).

Despite the successful demonstration, the findings of this
study are explicitly bounded to the 3-month North Sea cali-
bration campaign (which lacks seasonal variability), the buoy
type deployed, and the associated environmental envelope
(see Sect. 2.4). In the present campaign, synchronization
and motion sensing were sufficient in meeting the require-
ments for deterministic motion compensation during extreme
sea states (mentioned in the Introduction), as residual errors
showed no systematic dependence on significant wave height
or peak period across the observed envelope. Broader gen-
eralization will require additional deployments across wider
ranges of environmental conditions and FLS types. The com-
parison presented here was restricted to specific commer-
cial implementations of cw and pulsed systems against a
cup anemometer reference (industry standard). Other refer-
ence devices or lidar device configurations, such as alter-
native probe lengths, beam geometries, or pulsed sampling
rates, were not tested and could influence quantitative out-
comes. Moreover, atmospheric stability stratification was not
performed, leaving stability-dependent behaviour as an im-
portant factor for future investigation. The fixed cw lidar on
the mast was treated only as a plausibility check that de-
terministic compensation removed the platform–motion im-
print, not as an accuracy reference. The potential limitation
of cw homodyne detection in combination with a determin-
istic motion-compensation approach did not manifest in the
data. However, it could be a factor contributing to the ele-
vated error in scatter-based metrics. Because platform and
mast positions were fixed, we cannot isolate spatial separa-
tion effects in this dataset. We acknowledge any contribution
but leave it unquantified.

The practical implication of these results is that deter-
ministic motion compensation provides a transparent and
effective baseline for floating lidar turbulence measure-
ments. Within the tested environmental envelope, it removes
motion-induced bias to industry-relevant levels for both cw
and (5 Hz) pulsed systems. While the pulsed lidar consis-
tently exhibited a modest advantage in scatter-based metrics,
dispersion remains the main limitation. This difference, al-
though small, may be relevant for applications that are more
sensitive to dispersion than to mean bias. Importantly, this
trial empirically establishes that for pulsed deployments, a
5 Hz effective scan frequency is necessary and sufficient to
achieve comparability with fixed-system references, whereas
a 1 Hz configuration undersamples turbulence and motion
timescales and cannot resolve them reliably. At the same
time, the absence of a decisive advantage of the 50 Hz cw
system over the 5 Hz pulsed case shows that ever-higher ef-
fective sampling rates are not inherently beneficial for 10 min
TI estimation. Instead, the decisive factor is matching sam-
pling resolution to the dominant timescales of platform mo-
tion and turbulent fluctuations, which the 5 Hz configuration
adequately resolves.
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Taken together, the results underline the importance of a
multi-metric evaluation approach to capture both systematic
bias and variability. They further show that deterministic mo-
tion compensation enables both lidar types to meet offshore
operational requirements, while providing actionable guid-
ance: adopt deterministic compensation as a baseline, con-
figure pulsed systems at 5 Hz, and recognize that cw-pulsed
differences after compensation are secondary and use-case
dependent.

Future work should extend these findings beyond the
present campaign by expanding testing across different buoy
types and sea-state conditions. The present trial used a buoy-
type platform that reacts to the sea state in a relatively
slow and inert manner, with predominantly periodic swing-
ing and heaving that are well suited to deterministic compen-
sation. Ship-type systems that follow the wave crests more
directly are expected to exhibit shorter-period less periodic
motions, which may prove more difficult to correct. Deter-
ministic compensation itself could be further refined through
improved time synchronization between motion sensors and
lidar sampling. Another important direction is the systematic
comparison of different motion-compensation types under
identical sea-state and platform-response conditions. Sensi-
tivity analyses are required to evaluate how deterministic
compensation responds to varying motion characteristics and
environmental variables such as atmospheric stability. In par-
allel, the role of lidar-specific parameters, including probe
length, beam geometry, and internal processing choices (held
constant in this trial), as well as carrier-to-noise ratio (CNR)
and data availability, should be systematically isolated. Fur-
ther, while deterministic compensation should remain the
transparent foundation for industry applications, ML post-
processing may be explored as a secondary layer to further
reduce scatter. Such approaches must be applied with caution
as they introduce black-box behaviour and should be con-
strained to lidar-specific sensitivities, not site-specific effects
(e.g. wakes or other external influences).

5 Conclusions

This study evaluated the accuracy and precision of FLS TI
measurements by comparing raw and motion-compensated
TI data from two different lidar types – cw and 5 Hz pulsed
– as well as fixed cw lidar TI data, against a met mast cup
anemometer reference. Both floating lidars were mounted on
FLS platforms of the same type, operated under identical off-
shore conditions, and corrected using the same deterministic
motion-compensation algorithm. This setup allowed the ef-
fect of lidar type on TI measurement performance to be iso-
lated under controlled conditions. The results demonstrate
that motion-induced overestimation in raw pulsed and cw
FLS TI data can be effectively mitigated through determin-
istic motion compensation, significantly reducing both sys-
tematic bias and scatter.

After compensation, TI bias of both lidar types converged
towards the cup reference, with residual bias near zero across
most wind speed bins and only small bin-to-bin differences
that do not support a systematic ranking between the prin-
ciples, while the pulsed system showed a modest advan-
tage in scatter-based metrics. Importantly, this trial repre-
sents, to our knowledge, the first reported offshore deploy-
ment of a pulsed FLS operating at 5 Hz with full determinis-
tic compensation. While Appendix C shows that 1 Hz is in-
sufficient in resolving the relevant turbulence timescales, the
present results provide empirical evidence that 5 Hz is suffi-
cient and achieves industry-relevant TI accuracy after deter-
ministic compensation. The lack of a decisive advantage of
the 50 Hz cw system over the 5 Hz pulsed case indicates that
ever-higher sampling rates are not inherently beneficial for
10 min TI.

These findings confirm that properly motion-compensated
cw and 5 hz pulsed FLS can provide TI measurements com-
parable to fixed-system references for offshore site assess-
ment. Practically, these contributions offer actionable guid-
ance for the offshore wind sector: adopt deterministic mo-
tion compensation as a transparent baseline, configure pulsed
systems at 5 Hz, and use the presented multi-metric evidence
base to support acceptance decisions in the absence of pre-
scriptive standards.

Future work should focus on refining deterministic com-
pensation to reduce the residual dispersion by improving sen-
sor synchronization and accounting for lidar-specific sensi-
tivities, while validating performance across different plat-
forms, sea states, and environmental conditions. Another
important direction is the systematic comparison of differ-
ent motion-compensation types under identical sea-state and
platform-response conditions. Sensitivity studies should also
be conducted to assess the influence of motion character-
istics, atmospheric stability, and lidar configuration param-
eters. Machine learning post-processing may provide addi-
tional benefit as a secondary layer, provided it is applied cau-
tiously and transparently.

Appendix A: Lidar retrieval methods

The ZX Lidars ZX300M cw wind lidar used in this study em-
ploys the VAD technique to retrieve horizontal wind speed
and direction. This method assumes horizontal homogeneity
of the wind field and estimates wind components based on
Doppler shift measurements taken at multiple azimuth an-
gles during a conical scan. Following Browning and Wexler
(1968), for azimuth θ and half-cone opening angle α,

vr (θ )= a0+ a1 cosθ + b1 sinθ, (A1)

where a0, a1, and b1 are estimated by least squares over each
scan. The fitted coefficients correspond to the wind vector
components

vx =
b1

sinα
, vy =

a1

sinα
, vz =

a0

cosα
. (A2)
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The deployed ZX300M model uses homodyne detection and
therefore reports unsigned radial velocities. To sign the radial
velocities before solving and to resolve the 180° ambiguity,
a reference wind direction from a collocated weather station
is used by the ZX300M units.

The Vaisala WindCube pulsed wind lidars use the DBS
method, which involves sequentially directing the laser beam
along five fixed angles to reconstruct the three-dimensional
wind vector. Like VAD, DBS also assumes horizontal ho-
mogeneity and relies on the trigonometric reconstruction of
wind components from the measured radial velocities. Fol-
lowing Pauscher et al. (2016), the DBS model for beam i

with azimuth αi is

vr,i = (ucosαi + v sinαi) sinφ+w cosφ. (A3)

The wind vector components are retrieved per scan by least
squares over all available beams. The Vaisala WindCube
V2.1 deployed in this study uses simplified pair-difference
equations instead of a least-squares inversion:

u=
vr,0− vr,180

2 sinφ
, v =

vr,90− vr,270

2 sinφ
, w = vr,vert. (A4)

Both lidars reconstruct the wind vector under horizontal ho-
mogeneity using numerical fitting. Vendor-specific filtering
and implementation details are proprietary.

Appendix B: Mean horizontal wind speed correlation
plot

Figure B1. Density correlation plots and regression analyses of
horizontal mean wind speed measured by the fixed cw lidar (fixed
ZX) versus the FINO3 met mast cup (MM) at 101 m above LAT.
Point density is indicated by the colour bar.
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Figure B2. Density correlation plot and regression analysis of horizontal mean wind speed measured by the floating cw lidar (FLS ZX) versus
the fixed cw lidar (fixed ZX) at 101 m above LAT. Panel (a) shows uncompensated (raw) data, while panel (b) shows motion-compensated
data. Point density in both panels is indicated by the colour bar.

Figure B3. Density correlation plots and regression analyses of horizontal mean wind speed measured by the floating cw lidar (FLS ZX)
versus the FINO3 met mast cup (MM) at 101 m above LAT. Panel (a) shows uncompensated (raw) data, while panel (b) shows motion-
compensated data. Point density in both panels is indicated by the colour bar.
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Figure B4. Density correlation plots and regression analyses of horizontal mean wind speed measured by the floating pulsed lidar (FLS
WC) versus the fixed cw lidar (fixed ZX) at 101 m above LAT. Panel (a) shows uncompensated (raw) data, while panel (b) shows motion-
compensated data. Point density in both panels is indicated by the colour bar.

Figure B5. Density correlation plots and regression analyses of horizontal mean wind speed measured by the floating pulsed lidar (FLS
WC) versus the FINO3 met mast cup (MM) at 101 m above LAT. Panel (a) shows uncompensated (raw) data, while panel (b) shows motion-
compensated data. Point density in both panels is indicated by the colour bar.
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Appendix C: Pulsed lidar at 1 Hz effective sampling
frequency

The results presented in this appendix show FLS TI data from
a FINO3 calibration trial of a Fraunhofer IWES Wind Li-
dar Buoy equipped with a Vaisala WindCube V2.1 pulsed
lidar in the commercial standard 1 Hz effective sampling fre-
quency configuration (FLS WC 1 Hz). The data cover the pe-
riod from 6 September 2021, 00:00:00 to 3 November 2021,
00:00:00 UTC, during which a wide spectrum of sea-state
and wind conditions were covered, which is presented in
Fig. C1.

The deterministic motion-compensation algorithm was ap-
plied to the FLS WC 1 Hz dataset. To assess the effect of
this compensation, the FLS WC 1 Hz TI (blue lines) is com-
pared with TI from the FINO3 met mast cup anemometer at
101 m above LAT, using the performance metrics introduced
in Sect. 2.3 (see Fig. C2). In addition, to enable a qualita-
tive comparison of motion compensation between the 1 and
5 Hz effective sampling frequency configurations of floating
pulsed lidars, results from the present campaign (Sect. 2.4)
are also included (red lines).

It must be noted, however, that the datasets were obtained
during different deployments at FINO3. Consequently, the
environmental conditions, particularly the prevailing sea
state, were not identical across campaigns. We therefore
stress that this comparative overview is strictly indicative.

The trends in Fig. C2 highlight the pronounced TI over-
estimation of the FLS operated at a 1 Hz effective sampling
frequency across all panels. In panel (a), the binned mean
TI shows that the raw FLS WC 1 Hz systematically overesti-
mates TI by a factor of≈ 2–4 compared to the cup anemome-
ter reference. Moreover, this overestimation increases with
wind speed, suggesting a strong influence of platform motion
on the derived TI. In contrast, the 5 Hz configuration exhibits
a lower overestimation (around a factor of ≈ 2 %) and shows
no clear dependence on wind speed.

The error metrics in panels (b) and (c) support these obser-
vations, with RMBE reaching up to≈ 360 % and RRMSE up
to ≈ 75 % for the 1 Hz configuration. Motion compensation
proves highly effective in reducing this bias, with a partic-
ularly strong impact on the 1 Hz data. However, even after
compensation, the MBE/RMBE and RMSE/RRMSE of the
1 Hz data remain elevated compared to the compensated 5 Hz
configuration.

The wind speed dependence of the 1 Hz overestimation
can be explained by the interaction of platform motion with
the lidar measurements. As wind speed rises, motion-induced
fluctuations project more strongly into the wind retrieval, am-
plifying the TI. At the same time, because true TI is typically
low at high wind speeds, the absolute error translates into a
much larger relative overestimation at higher wind speeds.
The sampling rate of 1 Hz further amplifies this issue, as it
cannot sufficiently resolve the dominant frequencies of plat-
form motion, leading to aliasing effects and inflated TI esti-
mates.

Interestingly, the representative TI error (Q90 error,
panel d) of the 1 Hz configuration remains small at high wind
speeds and meets best-practice criteria above 11.5 ms−1.
This is consistent with the generally lower TI at high wind
speeds, which reduces the relative impact of motion-induced
fluctuations.
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Figure C1. Statistical overview of reference conditions recorded during the 1 Hz WindCube trial: (a) wind rose displaying wind direc-
tion distribution measured by the wind vane at 101 m LAT along with the corresponding bin-wise wind speed distribution from the cup
anemometer at the same height (grey scales correspond to the whole campaign period, while blue/green scales represent the selected times-
tamps); (b) significant wave height versus spectral peak period density correlation plot measured by the waverider buoy in proximity to the
met mast.

Figure C2. TI error between the MM TI and the TI measured by the device FLS WC 5 Hz (red) and FLS WC 1 Hz (blue) from a separate
campaign, at 101 m above LAT. Dashed lines indicate raw data, while solid lines indicate motion-compensated data. Panels show (a) mean
TI, standard deviation, and Q90; (b) TI MBE and RMBE; (c) TI RMSE and RRMSE; and (d) representative TI error as well as count.

Wind Energ. Sci., 10, 2791–2820, 2025 https://doi.org/10.5194/wes-10-2791-2025



W. Watson et al.: Impact of motion compensation on turbulence 2819

Data availability. The binned TI metrics and summary statistics
underlying the figures and tables (TI MBE, TI RMBE, TI RMSE,
TI RRMSE, TI representative error, mean TI, and Q90) will be
made publicly available in a citable repository record (see Watson
et al., 2025; https://doi.org/10.24406/fordatis/413). The underlying
time series are temporarily restricted due to ongoing commercial
use in a third-party Stage 3 maturity certification. Non-commercial
research access may already be granted on request under a mu-
tual data use agreement (DUA). Access terms will be reviewed
upon completion of the certification process and, if certification
is not granted, at least annually thereafter – in any case, no later
than 2 years from publication. Requests should be directed to war-
ren.watson@iwes.fraunhofer.de. The met mast and wave radac ref-
erence datasets were collected and made freely accessible by the
BSH Marine Environmental Monitoring Network (MARNET), the
RAVE project (http://www.rave-offshore.de, last access: 20 Novem-
ber 2025), the FINO project (http://www.fino-offshore.de, last ac-
cess: 20 November 2025), and cooperation partners of the BSH.
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