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Abstract. This paper introduces JHTDB-wind (https://turbulence.idies.jhu.edu/datasets/windfarms, last access:
11 November 2025), a publicly accessible database containing large-eddy simulation (LES) data from wind
farms. Building on the framework of the Johns Hopkins Turbulence Database (JHTDB), which hosts direct
numerical simulation (DNS) and some LES datasets of canonical turbulent flows, JHTDB-wind stores the 4D
space—time history of the flow and provides users the ability to access and query the data via a web-based
virtual sensor interface. The initial dataset comprises LES results from a large wind farm with 10 x 6 turbines,
modeled using a filtered actuator line method, under conventionally neutral atmospheric conditions. These data
comprise 1 h (hour) of flow field data (velocity, pressure, potential temperature deviation, subgrid-scale (SGS)
eddy viscosity, and turbine forces, approximately 15TB (terabytes) and wind turbine data — including both
turbine-level operational quantities and blade-level aerodynamic quantities (approximately 1.3 TB) — stored in
Zarr and Parquet formats, respectively. Data retrieval is facilitated by the giverny Python package, allowing
remote users to query the database in Python or MATLAB (C and Fortran support are available for flow field
data). This paper details the simulation setup and demonstrates data access through examples that analyze wind
farm flow structures and turbine performance. The framework is extensible to future datasets, including the
JHTDB-wind diurnal cycle simulation analyzed in Xiao et al. (2025).
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1 Introduction

Eddy-resolving simulations of atmospheric boundary layer
(ABL) phenomena (Porté-Agel et al., 2000; Bou-Zeid et al.,
2004; Kumar et al., 2006) and of wind farms in particu-
lar (Calaf et al., 2010; Meyers and Meneveau, 2012; Ge-
braad et al., 2016; Stevens and Meneveau, 2017; Zhang et al.,
2023) have significantly advanced our understanding of the
complex, multi-scale, and multi-physics processes involved.
Large-eddy simulations (LESs) offer high spatial and tem-
poral resolution, capturing the dynamics of relatively small
and fast turbulent eddies (Churchfield et al., 2012; Chatelain
et al., 2013; Yang et al., 2021; Li et al., 2022). While the
range of resolved scales in LES is constrained by computa-
tional resources, the number of LES grid points in typical
simulations continues to increase. However, data handling
and post-processing capabilities have not kept pace with the
resulting rapid increase in data volumes. For instance, a sin-
gle LES of turbulent flow outputting five field variables (e.g.,
the three velocity components, potential temperature, and
pressure) on 2048° spatial grid points and integrated over,
say, 10* time steps (McWilliams et al., 1994; Alexakis et al.,
2024) can generate petabytes (PB) of data. As a result, most
studies store only a few selected snapshots and rely heav-
ily on pre-defined run-time diagnostics when time-resolved
analysis is required. This approach reduces storage require-
ments but limits the ability to revisit data when new ques-
tions and concepts arise, often necessitating costly recompu-
tation. Furthermore, certain analyses — such as backward-in-
time particle tracking from an extreme dissipation event —
cannot be performed without the full temporal data.

To address these challenges, modern database technolo-
gies have increasingly been applied to preserve and store data
from simulation-based turbulence research (Perlman et al.,
2007; Zhang et al., 2018; Chung et al., 2022; Duraisamy
et al., 2019). One example is the Johns Hopkins Turbulence
Database (JHTDB; https://turbulence.idies.jhu.edu, last ac-
cess: 11 November 2025), an open-access platform sup-
ported by the National Science Foundation (Perlman et al.,
2007, Li et al., 2008). JHTDB enables researchers to interact
with easily accessible large-scale simulation data. The sys-
tem currently hosts more than 1 PB of direct numerical sim-
ulation (DNS) data for canonical, turbulent flows of funda-
mental interest (over 2 PB if counting warm backup copies),
including six space—time-resolved datasets and several oth-
ers with a few snapshots available. Some LES datasets of
stably stratified atmospheric turbulence are also included in
JHTDB. Through web-service-based tools, users can query
the database using a “virtual sensors” interface, specifying
spatial and temporal locations for which the system returns
properly interpolated field or derivative values (Li et al.,
2008; Yu et al., 2012). A hallmark of the platform is that
it allows users to access only the specific subsets of the
data they require, eliminating the need to download mas-
sive datasets or manage complex file formats. This approach
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has significantly broadened access to high-fidelity eddy-
resolving simulation data and has contributed to democra-
tizing high-performance computational turbulence research.
To date, JHTDB data have been used in research reported in
over 400 peer-reviewed journal articles.

At the same time, with the growing global demand for re-
newable energy, enhancing wind energy efficiency has be-
come a key priority. As wind turbines grow larger and wind
farms expand in scale, their interactions with the ABL be-
come increasingly complex — particularly with respect to
wake dynamics, energy extraction, and the redistribution of
momentum within the flow. LESs of large wind turbines have
emerged as a crucial complement to field measurements, en-
abling researchers to explore flow—turbine interactions in de-
tail and to develop engineering models that inform turbine
placement strategies and improve wind farm efficiency. For
example, Calaf et al. (2010) used LES with periodic bound-
ary conditions to study the performance of “infinite” arrays
of wind turbines under neutrally stratified conditions. Abkar
and Porté-Agel (2013, 2014) examined how wind farm den-
sity and free-atmosphere stability influence kinetic energy
fluxes in a conventionally neutral boundary layer (CNBL) —
defined as neutrally stratified surface layers capped by sta-
bly stratified free atmospheres (Zilitinkevich et al., 2002).
Allaerts and Meyers (2015) explored the effect of capping
inversion profile on wind farm performance. Numerous ad-
ditional LES-based studies have further advanced the field
(Yang et al., 2014; Aitken et al., 2014; Martinez-Tossas
et al., 2015; Stevens et al., 2018; Gharaati et al., 2022, 2024;
Aiyer et al., 2024), highlighting the continued value of high-
resolution simulation tools for understanding and optimizing
wind energy systems.

These simulations, like many previous numerical stud-
ies of large-scale wind farms, generate extensive datasets.
However, access to these data often remains restricted to
the original researchers who conducted the simulations. The
data (typically 4D space—time fields of velocity, temperature,
etc.) are ephemeral: they must be analyzed in real time dur-
ing the simulation, or, at best, a limited number of snap-
shots are stored for post-processing, while the large major-
ity of the data is discarded. As demonstrated in the case
of the JHTDB database, providing access to the 4D space—
time history of a simulation could provide substantial bene-
fits for the broader research community. The value of open
access to time-resolved numerical datasets is now being rec-
ognized beyond fluid dynamics, particularly in the field of
geosciences. For example, the recently released NOW-23
dataset (Bodini et al., 2024) comprises a full year of Weather
Research and Forecasting (WRF) model simulations of off-
shore wind conditions over several expansive (hundreds of
km) US coastal regions, offering valuable data for wind
farm developers. However, no equivalent open-access LES
datasets currently exist at smaller scales that explicitly in-
clude wind turbine effects — datasets that would be highly
valuable for researchers focused on wake interactions, tur-
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bine siting, and wind farm optimization. More in general,
the lack of data sharing in the wind energy sector has been
recognized to hinder technical progress and leads to missed
opportunities for improving the efficiency of energy markets
(Kusiak, 2016).

To begin addressing the need for open access to LES wind
farm data, we construct JHTDB-wind (see https://turbulence.
idies.jhu.edu/datasets/windfarms, last access: 11 November
2025; Zhu et al., 2025), a publicly accessible turbulence
database built on the JHTDB framework. This paper presents
the dataset by detailing the simulation framework (Sect. 2)
and flow configuration — specifically, a CNBL interacting
with a 60-turbine wind farm using National Renewable En-
ergy Laboratory (NREL) SMW reference turbines. Here,
CNBL is chosen because it is a less complicated atmospheric
state, observed in nature (Liu and Stevens, 2022), for exam-
ple, during the transition period after sunset or on cloudy
days with powerful winds (Allaerts and Meyers, 2017; Liu
et al., 2024). Simulation parameters are described in Sect. 3.
The construction of the database system is described in
Sect. 4, followed by an overview of representative data ac-
cess methods based on the JHTDB virtual sensor method,
illustrated here via Python examples (Sect. 5). Conclusions
are summarized in Sect. 6. Further documentation is avail-
able directly on the database website.

2 Large-eddy simulation framework

In this study, we use the open-source LES code LESGO
(https://lesgo.me.jhu.edu, last access: 11 November 2025) as
a numerical solver to simulate ABL flows and its interactions
with wind turbines (Calaf et al., 2010; Stevens and Mene-
veau, 2017; Martinez, 2017; Stevens et al., 2018; Shapiro
et al., 2018, 2020; Gharaati et al., 2022; Narasimhan et al.,
2022, 2024a, 2025, 2024b; Gharaati et al., 2024; Ayala et al.,
2024). The model represents all variables on a 3D Cartesian
grid, with x, y, and z denoting the streamwise, spanwise, and
vertical directions, respectively. In index notation, these are
expressed as x;, where i = 1, 2, 3. The corresponding veloc-
ities are denoted by u; or also with u, v, and w for its x-, y-,
and z-direction components, respectively.

2.1 Governing equations and numerical methods

The turbulent flow is simulated by solving the filtered
Navier-Stokes equations in their rotational form with
Boussinesq thermal forcing and Coriolis effects, along with
the transport equation for the potential temperature field. The
governing equations include the filtered mass conservation,

i _o; M

3)6,'

the filtered momentum conservation,
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Here, the tilde indicates filtering at the LES grid scale A =
JAx Ay Az; p is the density of air; r%GS =il — il is
SGS.d _ _SGS
=T —
, where

the subgrid-scale (SGS) stress tensor, and T
8i rSGS /3 is the deviatoric (trace free) part of T

d;; is the Kronecker delta; p =p/p+urir/2+ 'L’SGS/3 is
the pseudo-pressure, where p is the resolved pressure; g =
9.81ms~2 is the gravitational acceleration; 6 is the refer-
ence potential temperature scale; and f; is the distributed
body force for modeling the turbine-induced aerodynamic
forces on the air flow (see Sect. 2.3). In the present study,
rsGs’d is parameterized using the Lilly-Smagorinsky eddy-
viscosity- type model (Smagorinsky, 1963; Lilly, 1966),
ie, T = _2ug6s8i; = —2(CsA)|81S;;, where §;; =
O.S(&ﬁ}/ax] +0ii;/dx;) is the resolved strain-rate tensor,

SGS

|§ | =4/ ZS‘Z-J-S',-J- is the strain-rate magnitude, and vsgs =
(CSA)2|S’ | is the modeled SGS eddy viscosity. The coeffi-
cient Cs is dynamically determined using the Lagrangian-
averaged scale-dependent dynamic model (Bou-Zeid et al.,
2005), which has been successfully applied in several prior
LES studies of wind turbine wake flows (Calaf et al.,
2010; Stevens and Meneveau, 2017; Martinez, 2017; Stevens
et al., 2018; Narasimhan et al., 2022; Gharaati et al., 2022;
Narasimhan et al 2024a; Gharaatl et al., 2024). In Eq 3),
the term I1; = u jé it j0 is the SGS heat flux whose eddy
diffusivity (KSGS) is determined from ksgs _PFSGSVSGS,
where the SGS Prandtl number of Prggs = 1 (Narasimhan
et al., 2022) is prescribed.

The atmospheric boundary layer flow is driven by
a geostrophic wind whose pressure gradient is given
by —VPoo/p—(chg, feUg). Here, f.=2Qsing =
107%s~! is the Coriolis parameter corresponding to a
mid-latitude position (specifically to ¢ =43.44° with
Earth’s rotation rate Q = 7.27 x 10 rads~'). The quanti-
ties Ug, Vy are the geostrophic wind velocity components
along the x and y directions, respectively, with magnitude

G= /Ug2+ ng, and directed at an angle of ag relative

to the x direction such that Uy = Gcosag, Vg = Gsinag.
At each time step, a proportional-integral (PI) controller is
utilized to control the direction of the geostrophic wind such
that the wind flows in the streamwise direction with zero
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wind veer at the hub height (Sescu and Meneveau, 2014;
Narasimhan et al., 2022).

LESGO uses a Fourier-series-based pseudo-spectral
method based on collocated grids for the spatial discretiza-
tions in the horizontal (x and y) directions and a second-
order central difference method based on staggered grids in
the vertical (z) direction. The 3/2 rule is used to eliminate
the aliasing error associated with the pseudo-spectral dis-
cretization of the nonlinear convective terms. The simulation
is advanced in time using a fractional-step method. First, the
velocity field is advanced in time by integrating Eq. (2) us-
ing the second-order Adams—Bashforth scheme to obtain a
predicted velocity field. Then, a pressure Poisson equation is
constructed based on the divergence-free constraint Eq. (1)
for the new time step and is solved to obtain the pseudo-
pressure field. Lastly, the predicted velocity field is projected
to the divergence-free space using the gradient of the pseudo-
pressure to obtain the velocity field for the new time step.
The above fractional steps are repeated at every time step in
LES to advance the flow field in time. More details of the nu-
merical schemes used in the LESGO solver can be found in
the original references (Albertson, 1996; Albertson and Par-
lange, 1999).

2.2 Boundary conditions

In the streamwise (x) direction, inflow—outflow boundary
conditions are applied using the concurrent precursor sim-
ulation approach (Stevens et al., 2014). Specifically, a sep-
arate precursor domain without wind turbines is simulated
to generate realistic turbulent inflow conditions, which are
then imposed at the inlet of the wind farm domain. To en-
sure periodicity, a fringe region is introduced at the end of
the wind farm domain where the outflow is gradually forced
to match the inflow from the mapped region in the precursor
domain. More details of the inflow—outflow conditions im-
plemented in the current pseudo-spectral solver are provided
in Stevens et al. (2014). Additionally, the simulation in the
precursor domain uses a shifted periodic boundary condition
where the flow field in a spanwise shifting region is shifted to
prevent persistent spanwise locking of large-scale turbulent
structures (Munters et al., 2016). Following the recommen-
dation in Munters et al. (2016) a shift of Ly shife = 0.25L; is
used in this study, where L, is the domain height. In the span-
wise (y) direction, periodic boundary conditions are used.
In the vertical (z) direction, the ground surface boundary
condition is specified in both the precursor and wind tur-
bine domains using the Monin—-Obukov Similarity Theory
(MOST)-based equilibrium surface flux modeling (Monin
and Obukhov, 1954). The components of local surface shear
stress are computed as a function of the prescribed roughness
length according to
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Here, « = 0.41 is the von Karman constant, and zq is the
prescribed roughness length. The friction velocity u, is ex-
pressed in terms of the horizontal velocity (Zi,fif) at the first
grid point (z1 = 0.5Az), filtered at twice the grid resolution,

A =2A (Bou-Zeid et al., 2005). Since we simulate con-
ventionally neutral conditions, the surface heat flux is set
to zero; thus no stability correction terms (as used in Xiao
et al., 2025) are included. At the top of the domain, a stress-
free boundary condition is imposed. A sponge or Rayleigh-
damping layer (Durran and Klemp, 1983) is included ap-
proaching the top boundary, ranging from 0.75L, to L, with
a sponge inverse relaxation timescale (frequency) parameter
of 3.9 x 10735~ In this layer, a damping body force with a
cosine profile is applied to suppress the reflection of gravity
waves.

Henceforth, the (7) notation for LES-filtered field variables
(e.g., velocity u;, temperature #) will be omitted for brevity.
All subsequent variables should be interpreted as implicitly
filtered quantities obtained from the LES solution, governed
by the equations presented in this section.

2.3 Wind turbine representation

The aerodynamic forces exerted by wind turbines on the air-
flow are modeled through the distributed body force term
fi in the momentum transport equations (Eq. 2). During
the initial spin-up phase (i.e., Phase 1), we employ an ac-
tuator disk model (ADM) on a coarse grid for computa-
tional efficiency, with the thrust force magnitude calculated
as f = %pC/T(uT)gDZ (Calaf et al., 2010; Howland et al.,
2016). Here, p is the air density, (u7)q is the local wind ve-
locity averaged over the rotor disk, D is the diameter of the
wind turbine, and C’T is the local thrust coefficient (set to a
common value Cf. = 1.33). We recall that C’ is based on the
disk-averaged velocity (171 )4, which, unlike the far-upstream
velocity Uy, is immediately available in LES (Calaf et al.,
2010).

After the spin-up simulation converges to quasi-steady be-
havior, the grid is refined to its final resolution, and the actu-
ator line model (ALM) is adopted (Sgrensen and Shen, 2002;
Troldborg, 2009; Jha et al., 2014; Martinez-Tossas et al.,
2015). In ALM, each turbine blade is represented by a collec-
tion of actuator points along a line, where forces are applied
according to the velocity field and the angle of attack. The
forces per unit width at every actuator point are computed as

fam = 0.50¢| Vel |*(CLer + Cpep), Q)
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where c is the airfoil chord length, | V| is the magnitude of
the relative velocity of the upwind flow to the turbine blade,
CL and Cp are lift and drag coefficients obtained from tab-
ulated airfoil data, and ey, and ep are unit vectors along the
direction of the lift and drag forces at each actuator point, re-
spectively. These forces are then smeared using a Gaussian
kernel to project them into the computational LES grid:

1 2,2
Ne=337¢ /e, (6)
where r is the distance from the grid point to the actuator
point and € denotes the width of the kernel. The kernel width
is chosen to be at least € = 2(A A, AZ)1/3, as recommended
to avoid numerical instabilities (Troldborg, 2009; Martinez-
Tossas et al., 2015).

The accuracy of the ALM can be sensitive to grid resolu-
tion and the choice of €. The optimal €, needed to resolve
the induced velocities is typically much smaller than the €
used to avoid numerical instabilities (Martinez-Tossas et al.,
2017). To address this challenge, we use the generalized fil-
tered lifting line theory correction to accurately represent the
blade aerodynamics (Martinez-Tossas and Meneveau, 2019;
Martinez-Tossas et al., 2024), including the shedding of un-
resolved vorticity leading to missing induced velocities at the
blade. The correction accounts for subgrid-scale induced ve-
locity that would be obtained by using an optimal gy by esti-
mating its contribution and adding it to the resolved velocity
in the LES. With the correction, the ALM provides consistent
blade loading predictions across varying grid resolutions.

The NREL-5MW baseline wind turbine (Jonkman et al.,
2009) is adopted as our reference model. It is a widely used
benchmark model developed by NREL to standardize re-
search on wind technologies. The turbine has a diameter
of D =126m, three blades, and a hub height at elevation
zn = 90m. It reaches a rated electrical power output of 5 MW
at a rated wind speed of approximately 11.4ms~!. Its ro-
tor blades utilize the Delft University (DU) and National
Advisory Committee for Aeronautics (NACA) series airfoil
profiles optimized for aerodynamic efficiency, structural in-
tegrity, and minimal fatigue loads, making the NREL-5MW
turbine an essential tool for evaluating wind turbine perfor-
mance, control strategies, structural design, and off-shore
platform dynamics.

The dataset employs fixed but row-dependent rotor angu-
lar velocities determined through an initialization procedure.
Initialization begins with all turbines operating at tip-speed
ratio TSR =7.5 (near-optimal for NREL-5SMW turbines). In
this initialization simulation (i.e., first part of Phase 2), the
angular velocity €2 for each turbine is then computed dynam-
ically using
Q =TSR x M, @)

(1-a)R
where Uy is the disk-averaged velocity; the numerator incor-
porates an empirical 8.7 % correction factor for LES filter-
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scale effects (¢ = 16m), validated through single-turbine
laminar inflow tests; and the induction factor a derives from
rotor geometry (blade number Ny = 3, radius R = 63 m, and
chord ¢ = 3-4m) and local inflow angle ¢ via

1

T s g) /e C 1 ®

with a rotor solidity of o = Npc/(wR) and a force co-
efficient of C, = CLcos¢ + Cpsing. After approximately
40 min (minutes) of initialization simulation, the angular ve-
locity 2 for each turbine is averaged within its respective
row, which serves as the fixed operational values for the sub-
sequent database simulations.

We also note that LESGO’s ALM implementation in-
cludes detailed turbine operation control methods, such as
pitching the blades (feathering) during region 3 operations.
In the current simulation we chose to operate all turbines ex-
clusively at optimal tip-speed ratio, “region 2” (also with-
out including regions 1.5 and 2.5). This choice was made in
order to avoid the need to store additional data relating to
blade pitch (curtailment) and other complex turbine control
actions. Since this practice deviates slightly from the refer-
ence NREL-5SMW nameplate data, we refer to the turbine in
our simulations as the NREL-5SMW+ turbine. Specifically,
the front turbines are allowed to rotate slightly faster than the
maximum rotation rate of the original NREL-5MW reference
turbine.

3 Simulation parameters

We simulate turbulent flow through a 10 x 6 array of NREL-
SMW+ turbines (with diameter D = 126m) in a 28.224 x
3.78 x 2km® domain, equally split between precursor and
wind farm subdomains (each 112D = 14.112km long). Fig-
ure 1 displays the domain dimensions. The precursor domain
includes the region denoted as P of length 5L, /8, the map-
ping region Py of length L, /8, and the spanwise shifting re-
gion Ps of length L, /8. The wind farm domain features 14D
of upstream buffer zone, a 63D turbine region, a 21 D down-
stream wake recovery region (these three regions combined
are denoted as W), and a 14D outflow fringe region (Wp).
The turbines are spaced 7D (streamwise) and 5D (spanwise),
with lateral boundaries 2.5D from the outermost turbines.
Note that Py, Ps and Wr regions have a length of L, /8 and
that Py extends from 5L, /8 to 3L, /4. Vertically, a 0.5km
Rayleigh damping sponge layer (denoted as R) is located be-
tween 1.5 and 2km (see Fig. 1). We adopt 6y = 263.5K as
the reference potential temperature, consistent with the value
chosen in studies by Gadde and Stevens (2021) and our prior
simulations of stable boundary layer (SBL) and CNBL flows
reported in Narasimhan et al. (2024a). This reference tem-
perature was inspired by observations from the Beaufort Sea
Arctic Stratus Experiment (BASE) and simulations by Koso-
vi¢ and Curry (2000). While the value of 6 is relatively low,
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Figure 1. Schematic representation of the computational simulation domain (not to scale), showing (a) top view (x—y plane), (b) side view
(x—z plane), and (c) front view (y—z plane). The precursor computational domain consists of the regions denoted as “P”, the precursor
mapping region “Py;”, and the precursor spanwise shifting region “Pg”. The wind farm computational domain includes the wind farm region
“W” and the fringe region “Wg” near the outlet. Both the precursor and wind farm computational domains include a Rayleigh damping
region at the top (denoted as“R”). The turbine diameter D = 126 m and hub height z;, = 90m are also marked.

it serves primarily as a relative additive reference that does
not significantly affect the simulated flow dynamics or the
physical interpretation of the results. For example, if we used
273K, it would change the implied thermal expansion coeffi-
cient in our Boussinesq approximation only by about 3 %.

The turbulent flow is driven by a constant geostrophic
wind speed G = 15ms™! at oy &~ —22.5° to the x direc-
tion, with the angle controlled by a PI controller (K p = 10,
K7 =0.5) to align hub-height mean wind velocity with the
x axis in the conventionally neutral boundary layer (Sescu
and Meneveau, 2014; Narasimhan et al., 2022). The surface
has roughness length of zo =0.1m and a reference poten-
tial temperature of 6y = 263.5K. Initial conditions are set
at Uy = 15ms~! (streamwise) and Vg = O0ms~! (spanwise),
perturbed by random noise, while potential temperature de-
creases from 265K at the surface with a 1 Kkm™! lapse rate,
including random perturbations below 1km.

The numerical simulation is conducted in three consecu-
tive phases to ensure proper flow development and statistical
convergence.

— Phase 1: coarse-resolution ADM spin-up. A 10h simu-
lation using the ADM is performed to establish a quasi-
stationary atmospheric boundary layer and wind farm
wake field. This phase leverages the computational ef-
ficiency of ADM, which approximates turbine forces
without resolving actuator line-level aerodynamics.
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— Phase 2: fine-resolution ALM convergence. A 1h sim-

ulation using the actuator line model at finer spatial
resolution transitions the flow from ADM-averaged to
ALM-resolved turbine representation. Besides the tur-
bine model update, two additional changes are in-
troduced in this phase: (i) the time-stepping scheme
is switched from a constant Courant—Friedrichs—Lewy
(CFL) number of 0.0625 to a fixed time step of
At = 0.025s. This adjustment has negligible impact on
the results because, under these simulation conditions,
CFL = 0.0625 corresponds to Az = 0.03s. The slightly
more restrictive At = 0.025s maintains numerical sta-
bility while preserving solution accuracy. (ii) The rotor
control changes from a fixed tip-speed ratio (TSR =17.5)
to fixed rotor angular velocities that vary across turbine
rows, as tabulated in Table 1. This adjustment has a neg-
ligible impact on the results because the prescribed an-
gular velocities closely match the values achieved un-
der TSR = 7.5 conditions (see the calculation method
in Sect. 2.3), ensuring nearly identical rotor dynamics.

Phase 3: fine-resolution simulation for database con-
struction. A final 1 h simulation is carried out to collect
high-fidelity flow and turbine data. Flow field variables
are recorded every 20 LES time steps (i.e., every 0.55s)
on a filtered and subsampled spatial grid (every other
grid point in the x—y plane), while wind turbine data
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— both integral and blade-resolved — are stored at ev-
ery LES time step (0.0255s). Note that we purposefully
operate the NREL-5SMW+ turbine in “region 2” during
the simulation time, in order to avoid having to choose
and document additional controller actions. As a result,
during some times, some of the turbines operate “above
rated conditions” but maintain self-consistent aerody-
namic behavior of the blades and air flow.

The three phases of the simulation are illustrated through
the time history of the boundary layer height z; = hapr and
the geostrophic wind angle shown in Fig. 2.

4 JHTDB-wind database construction

The LES data from the final 1 h sampling period are system-
atically ingested into the database and organized into two pri-
mary data types: (i) flow field data, consisting of 4D space—
time fields captured across both simulation domains (precur-
sor and wind farm domains), providing complete spatiotem-
poral information about the atmospheric flow, and (ii) turbine
data, which are further subdivided into two subtypes. The
first subtype is turbine-level operational data, comprising
time histories of turbine power and thrust. The second sub-
type is blade-level data, which include time histories of aero-
dynamic quantities sampled at each discrete actuator point
along each blade.

4.1 Flow field data
4.1.1 Domain of the dataset

As described in Sect. 3, the LES is conducted in the do-
main of dimensions (2 x 14.112) x3.78 x 2km? (see Table 2).
When compiling the database, we exclude numerically im-
posed auxiliary regions: specifically, the final L, /4 of the
precursor domain (which includes the precursor spanwise
shifting region Ps) and the final L,/8 of the wind farm
domain (i.e., the wind farm fringe region Wg), as visual-
ized in Fig. 1. These regions serve purely numerical func-
tions (periodicity enforcement and inflow recycling, respec-
tively) without contributing to physical flow dynamics of
interest. The resulting database domain has the extents of
(10.584 4+ 12.348) x 3.78 x 2km?, as shown in Fig. 3. The
top 0.5 km sponge region is kept in the database for simplic-
ity of data management and possible interest.

4.1.2 Spatial resolution of the dataset

To minimize storage, we applied spectral filtering on x—y
planes for flow field data by truncating Fourier modes above
Kmax/2, where kmax = /ALEs is the LES cutoff wavenum-
ber. The filtered fields were then subsampled at every alter-
nate grid point in the x and y directions, maintaining the orig-
inal vertical (z) resolution. This approach reduces the dataset
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size by 75% while maintaining fidelity in capturing the dy-
namically significant larger-scale flow structures and turbine
wake interactions. Thus, the flow field data have a grid size
of (576 4 672) x 192 x 400.

4.1.3 Temporal resolution of the dataset

Field data are stored at intervals of 0.5s (i.e., every 20
LES steps of 0.025s), ensuring that fluid parcels advected
at the maximum geostrophic speed (15ms~!) travel less
than the horizontal grid spacing (Ax ~9.19m) between
snapshots. Although rotor blade tips move across several
vertical grid spacings during this interval, the correspond-
ing rotor force field is smooth (Gaussian filtered at scale
€ =16m > 2./AxAyAz), ensuring that the storage fre-
quency of 0.5s remains appropriate. Over the 1h simula-
tion period (i.e., 3600s), the simulation advances through
3600/0.025 = 144000 LES time steps, with flow fields
stored at 144 000/20 = 7200 consecutive snapshots.

4.1.4 Final structure of the dataset

Consequently, the final stored data dimensions are ny x 1y x
n; xny = 1248 x 192 x 400 x 7200. At each stored time step,
six spatial fields are recorded: the three velocity compo-
nents u(x,y,z,t), v(x,y,z,t), and w(x,y,z,t); the (kine-
matic) pressure field p(x, y, z,1)/p = p*(x,y,2,t) —ugur/2
(the SGS stress trace is not available and is anyhow neg-
ligible); the potential temperature field relative to the ref-
erence temperature 0'(x, y,z,t) = 0(x, y,z,t) — 6y; and the
subgrid-scale eddy viscosity vsgs(x, v, z,t). In addition, the
three components of the turbine force field, f,(x,y,z,1),
fy(x,y,z,1), and f,(x,y,z,t), are also stored. Unlike the
other flow field variables, these force components are stored
only from the ground up to 200m in the vertical direction.
However, they are retained at the original spatial resolution
(i.e., not filtered in the x—y planes). The detailed information
of these stored field variables can be found in Table 3. It also
needs to be mentioned that the concurrent precursor method
ensures smooth transitions in velocity, potential temperature,
and eddy viscosity fields between precursor and wind farm
subdomains, by construction. However, due to the non-local
nature of the pressure solution (solved separately in each do-
main via Poisson equations) and the velocity-only coupling
between domains, the stored pressure field exhibits a minor
discontinuity at the interface. This artifact does not affect the
resolved turbulence dynamics or turbine wake interactions
but needs to be taken into account if computing pressure gra-
dients across the boundary separating the precursor and wind
farm domains.

These 4D field variables are stored using Zarr format
(Miles et al., 2023). In Zarr-based storage, data are orga-
nized into chunks, the smallest units retrieved during a query.
To ensure efficient data access, chunk sizes must be large
enough to support common operations, such as differenti-
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Table 1. Rotor speed for each row of turbines.

X. Zhu et al.: JHTDB-wind open wind farm LES data

Row no.

1 2 3 4

5 6 7 8

9 10

Q (radsfl)

1.33 1.02 1.04 1.07

1.09

1.09 1.09

1.09

1.09 1.10

Table 2. Three consecutive phases and computational domain parameters

Phase  Grid Turbine model Domain size Number of grid points Spatial resolution ~ Time grid CFL
level (2 xLx)xLyxL, (2 X Nx) x Ny x N Ax X Ay X Az or At
(km x km x km) (m x m x m) (—ors)
1 Coarse ADM 2x14.112) x3.78 x 2 (2 x512) x 192 x 400 27.56 x 19.69 x5 CFL=0.0625
ALM CFL =0.0625
. TSR=17.5
2 Fine (2x14.112) x 3.78 x 2 (2 x 1536) x 384 x 400 9.19x9.84 x5
ALM
Q =const At =0.025s
Simulation with
3 Fine ALM 2x14.112) x 3.78 x 2 (2 x 1536) x 384 x 400 9.19x9.84 x5 At =0.025s
2 =const Sampling over/with
(10.584412.348) x 3.78 x 2 (5764 672) x 192 x 400 18.38 x 19.68 x5 Atr=0.5s

ations and interpolations, which typically require access to
a 3D neighborhood around the query point, while remain-
ing small enough to avoid excessive memory usage. Based
on extensive testing and prior experience with other JHTDB
datasets, a chunk size of 64° grid points provides optimal re-
trieval speeds and performance for typical data access modal-
ities. We chose a similar chunk size but shaped according to
52 x 64 x 80 so that an integer multiple of the chunk size
in each direction fits into the stored domain size. The to-
tal amount of data stored is about 15 TB. These flow field
data can be queried using getData (. ..) calls from anal-
ysis programs such as Python, MATLAB, Fortran, or C, in
the same manner as with other turbulence datasets available
through JHTDB.

4.2 Wind turbine data

4.2.1 Turbine-level data

The turbine-level data are integral quantities characteristic of
each turbine operation, which are derived from the actuator
line modeling. This dataset includes high-fidelity time histo-
ries of power output, thrust force, and rotor angular veloc-
ity, sampled at At = 0.025s for all 60 turbines, as summa-
rized in Table 4. In the present dataset, the angular velocity is
held constant in time, but for other datasets (e.g., Xiao et al.,
2025), this is not generally the case. For each variable, the
dataset consists of 144000 rows and 2 columns, where the
first column represents time and the second column contains
the corresponding values of the recorded variable. The tur-
bine data are stored in files using Parquet format, which fa-
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cilitates efficient access and querying from various program-
ming languages. Turbine-level data can be accessed using the
getTurbineData (...) function call from analysis en-
vironments such as Python or MATLAB.

Table 4 summarizes the turbine-level data variables. Note
that, unlike the field data which are stored in kinematic
(density-independent) units, the force and power data require
a specified air density. The value used in the simulations to
compute these forces is puir = 1.23 kg m~3.

4.2.2 Blade-level data

In addition to the integral quantities characteristic of each
turbine’s operation, more detailed information is captured
along each turbine blade to enable blade-resolved aerody-
namic analysis. This fine-grained dataset allows users to in-
vestigate the local aerodynamic behavior of blades under
unsteady flow conditions, which is critical for understand-
ing load distributions, fatigue effects, and control optimiza-
tion strategies. The turbine blade-level dataset includes high-
fidelity time histories sampled at 0.025 s for all 180 blades in
the wind farm (i.e., 60 turbines x 3 blades each), with aero-
dynamic and geometric quantities sampled at 100 discrete
actuator line points along the blade span. As summarized in
Table 5, a total of 19 variables are sampled and stored, with
each variable written to a separate file. For each variable, the
dataset has dimensions of 144 000 x 3 rows and 103 columns.
Each time step includes three rows corresponding to the three
blades of a turbine, resulting in a total of 144000 x 3 rows.
Vertically, the first column represents time in seconds, the
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Figure 2. Time history of boundary layer height z; = hogr. and geostrophic wind angle «, indicating the three simulation phases (Phase 1:
coarse-resolution ADM spin-up; Phase 2: fine-resolution ALM convergence; and Phase 3: fine-resolution simulation for database construc-

tion).

Figure 3. Schematic representation of the database domain (not to scale). This is the physical domain available in the database, merging the
precursor domain (P + Pyp) up to the end of the mapping region at 3/4L, with the wind farm domain (W) and excluding the fringe region
(WE). A total of 60 turbines are shown, with only a subset labeled for clarity. The domain dimensions are (10.584 + 12.348) x 3.78 x 2km3.

second column specifies the turbine number, and the third
column denotes the blade number (blades can be identified
by the time histories of the individual ALM point positions).
The remaining 100 columns contain the values of the selected
variables at each of the 100 actuator points from the blade
root to tip. Similarly to turbine-level data, blade-level data are
stored as Parquet files, allowing efficient access across mul-
tiple programming environments. Blade-level data can be ac-
cessed using the getBladeData (. . .) function call from
analysis environments such as Python or MATLAB.
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5 Web-accessible virtual sensor data access
methods and examples

5.1 Flow field data

A defining feature of the JHTDB database system (Li et al.,
2008) is its low entry barrier for data usage, enabling users
to efficiently explore large-scale simulation datasets through
web services and virtual sensor methodology. The JHTDB-
wind system adopts the same approach, allowing access to
wind farm data using these established tools. Users can de-
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Table 3. Summary of flow field data variables.

X. Zhu et al.: JHTDB-wind open wind farm LES data

No. Name of Name in Symbol  Unit Data size Data resolution
variable dataset nx XNy X nz X ng Ax X Ay X Az X At
(mxmxmxXs)
1 Streamwise velocity
2 Spanwise velocity velocity v ms~!
3 Vertical velocity v 1248 x 192 x 400 x 7200 18.38 x 19.68 x 5 x 0.5
4 Potential temperature deviation temperature 0’ K
5 Pressure (kinematic) pressure p m2s—2
6 SGS eddy viscosity eddyviscosity  vsgs m?s~!
7 Turbine streamwise force (kinematic) fx
8 Turbine spanwise force (kinematic) force fy ms2 871 x 384 x 40 x 7200 9.19x9.84 x5x%x0.5
9 Turbine vertical force (kinematic) fz
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Figure 4. Contour plots of instantaneous flow field variables in part of the precursor domain (here between x = Om and x = 10381.875m),
at time t = 1800.75 s. (a) The streamwise velocity u, (b) the vertical velocity w, (¢) the pressure p, and (d) the potential temperature deviation

o'.

velop analysis scripts or notebooks in familiar program-
ming languages such as Python and MATLAB (as well For-
tran and C) to run them remotely on their own machines
or on SciServer, a cloud service dedicated to running code
close to the data. Within these analysis environments, users
specify space—time arrays by defining spatial locations (e.g.,
along a line, across a surface, within a subvolume, or scat-
tered arbitrarily) and corresponding time instances; i.e., users
specify the positions of virtual sensor arrays. These space—
time arrays are then passed to the pre-defined function,
getData (...), which returns interpolated values of the
selected variables at defined coordinates. This framework en-
ables targeted, on-demand data access without the need to
download large volumes of raw simulation output.

Figures 4 and 5 display contour plots of flow field vari-
ables at the turbine hub height (z = z;, = 90m) for the precur-
sor and wind farm domains, respectively. Figure 6 presents
Python code snippets that demonstrate how to query the
JHTDB-wind database to extract snapshots of velocity, pres-
sure, and potential temperature fields at a specific time, ap-
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proximately in the middle of the stored 1h dataset, namely
at r = 1800.75s. As a first step, an array “points” is popu-
lated with spatial coordinates that define a 2D plane: in this
case, an equally spaced grid of 950 x 200 points in the x and
y directions at a constant height z = z, = 90m. These query
points typically do not coincide with the actual simulation
grid points, and users are not required to know the grid layout
to access the data. The JHTDB-wind interface provides inter-
polated field values based on a user-specified interpolation
method. Supported options include no interpolation (it re-
turns the value at the nearest grid point); Lagrange polynomi-
als of order 4, 6, or 8; and several spline interpolation meth-
ods (Li et al., 2008; Graham et al., 2016). In this example,
we use eighth-order Lagrange polynomial interpolation in
space. Similarly, if the requested time does not coincide with
a stored time step, temporal interpolation is applied using the
third-order Piecewise Cubic Hermite Interpolating Polyno-
mial (PCHIP) method (Li et al., 2008). This user-friendly
data access model eliminates the need for downloading and
parsing simulation files. Instead, the Python application pro-
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Table 4. Summary of turbine-level data variables. Each dataset is a 2D matrix of size nt x 2, where n¢ is the number of time steps. Columns
1 and 2 represent time and measured values, respectively.

No. Name of Name in Symbol  Unit Data size  Data resolution
variable dataset ne x 2 At (s)
1 Power power P w
Thrust force thrust F; N 144000 x 2 0.025
3 Rotor angular velocity  RotSpeed rads~!

Table 5. Summary of blade-level data variables. Each dataset is a 2D matrix of size (nt x 3) x 103. Here, (n¢ x 3) represents the total number
of blade-wise samples, formed by concatenating the time series data from each of the three blades of a turbine. Columns 1-3 represent time
and turbine number, and columns 4-103 store aerodynamic measurements at ny, = 100 discrete locations along each blade.

No. Name of Name in Symbol  Unit Data size Data resolution
variable dataset (ny x 3) x (ng +3) At x AL (s x m)
1 x position of ALM point xPos Py
2 y position of ALM point yPos Py m
3 z position of ALM point zPos P,
4 Perturbation velocity at LES uy_LESI1 u/y LESI
resolution, component 1
5 Perturbation velocity at LES uy_LES2 u/y LES2 M sl
resolution, component 2
. . . /!
6 Perturpatlon velocity at optimal uy_optl Uy opt (144000 x 3) x (100+3)  0.025 x 0.615
resolution (0.25¢), component 1
7 Perturbation velocity at optimal uy_opt2 u;’opt
resolution (0.25¢), component 2
8 Perturbation velocity correction dul Au; 1
u;,’opt - M/y,LES’ component 1
9 Perturbation velocity correction du2 Au/y 5
u;’opt - “/y,LES’ component 2
10 Angle of attack alpha o rad
11 Lift coefficient Cl CL _
12 Drag coefficient Cd Cp
13 Lift force per unit length lift F/¢ Nm-!
14 Drag force per unit length drag Fp/t m
15 Local relative velocity magnitude Vmag Vinag
—1
16 Axial component of the local relative Vaxial Vaxi ms
velocity in blade-oriented coordinates
17 Tangential component of the local Vtangential Vian
relative velocity in blade-oriented
coordinates
18 Axial component of the local force axialForce Faxi N
19 Tangential component of the local tangentialForce  Fian

force
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Figure 5. Contour plots of instantaneous flow field variables in part of the wind farm domain (here between x = 10584m and x =
21921.375m), at time ¢ = 1800.75s. (a) The streamwise velocity u, (b) the vertical velocity w, (c¢) the pressure p, and (d) the potential
temperature deviation ’. The short black lines represent the location of wind turbines.

initialize getData parameters (except time and points)

variablel, variable2, variable3, temporal_method, spatial_method, spatial_operator = 'velocity', 'pressure', 'temperature', 'pchip', 'lag8', 'field'

initialize getData times and points
time, nx, ny, n_points = 1800.75, 950, 200, 950 *x 200

x_start, x_end, y_start, y_end = 10584, 21921.375, 0, 3789

x_points, y_points, z_points = np.linspace(x_start, x_end, nx, dtype=np.float64), np.linspace(y_start, y_end, ny, dtype=np.float64), 90
points = np.array([[x, y, z_points] for x in x_points for y in y_points], dtype=np.float64)

use the tools and processing gizmos.
# process interpolation/differentiation of points.
resultl

getData(dataset, variablel, time, temporal_method, spatial_method, spatial_operator, points)

result2 = getData(dataset, variable2, time, temporal_method, spatial_method, spatial_operator, points)

result3

Figure 6. Python code snippet used to obtain the data to generate Fig. 5.

gramming interface (API) returns arrays with the queried
field variables, which can then be visualized directly within
a Jupyter notebook (or MATLAB code). This approach was
used to generate Figs. 4 and 5. It is important to note that the
full 1 h dataset (comprising 14 400 time steps) is available for
analysis, allowing users to query any time between ¢ = 0 and
t = 3600s. For example, Fig. 7 shows a hub-height snapshot
over the entire domain at time ¢ = 2505s.

Similar queries can be made for the values, spatial gradi-
ents, and Hessians (second-order derivatives) of all variables
listed in Table 3. For example, Fig. 8a and b show the turbine
streamwise force field f, and the x-direction gradient of the
pressure field (dp/dx), respectively, on a y—z plane intersect-
ing Row 1 (turbines #1-#6) at x = 12348 m (1764 m down-
stream of the wind farm domain), at time ¢ = 1000.013s.
Figure 8c and d present similar results on a plane inter-
secting Row 9 (turbines #49—#54) at x = 19404 m (8820m
downstream of the wind farm domain) at another time ¢ =
2000.67 s. These plots were generated using the Python code
shown in Fig. 9. In these examples, the queried times are in-
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getData(dataset, variable3, time, temporal_method, spatial_method, spatial_operator, points)

tentionally chosen not to coincide with the stored simulation
time steps, demonstrating the temporal interpolation capabil-
ities of JHTDB-wind.

Next, we provide examples of computed mean vertical
profiles of fundamental flow quantities within the precursor
domain, which features standard conventionally neutral at-
mospheric conditions. Figure 10 shows vertical profiles of
horizontal- and time-averaged mean velocities, subgrid-scale
eddy viscosity, and deviations in potential temperature, all
obtained by averaging in the horizontal directions and over
time. The data used to produce these profiles are retrieved us-
ing the virtual sensor framework, and an example code snip-
pet demonstrating this process is shown in Fig. 11.

5.2 Wind turbine data

Wind turbine data, including both the turbine-level and
blade-level data, are considerably smaller than the 4D flow
field data, and one possibility would have been to allow users
to download these data directly as files. However, such an
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Figure 7. Contour plot of instantaneous streamwise velocity u in the entire database domain, ranging from x = 0 to x = 22913.625m, at time
t =2505s. Itis noted that, although the total length of the database domain is 10584412348 = 22932 m, the data resolution in the x direction
is 18.375m and the grid points are located at cell centers. Consequently, the last data point is located at 22932 — 18.375 =22913.625 m.
The short black lines represent the location of wind turbines.
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Figure 8. Instantaneous contours of turbine streamwise (i.e., x-component) force (as projected onto the LES grid using Gaussian smoothing
as part of the ALM method) in the y—z planes (a) in the first row (i.e., Row 1, x = 12348 m) and between the relevant vertical range
z €[2.5,200]m and (c) in the second-to-last row (i.e., Row 9, x = 19404 m). Panels (b) and (d) show the x-direction pressure gradient
distributions on the same planes, coincident with the turbines.

tialize getData parameters (except time and points)

variablel, variable2, temporal_method, spatial_methodl, spatial_method2, spatial_operatorl, spatial_operator2 = 'force', 'pressure', 'none', 'none', 'fd4lag4', 'field', 'gradient'

tialize getData times and points
timel, time2, ny, nz, n_points = 1000.013, 2000.67, 384, 40, 384 * 40

y_start, y_end, z_start, z_end = 0, 3780, 2.5, 197.5

first row of wind turbines locates 12348 m downstream of inlet.
second-to-last row of wind turbines locates 19404 m downstream of inlet.

Xx_pointsl, y_pointsl, z_pointsl = 12348, np.linspace(y_start, y_end, ny, dtype=np.float64), np.linspace(z_start, z_end, nz, dtype=np.float64)
pointsl = np.array([[x_pointsl, y, z] for y in y_pointsl for z in z_pointsl], dtype=np.float64)
x_points2, y_points2, z_points2 = 19404, np.linspace(y_start, y_end, ny, dtype=np.float64), np.linspace(z_start, z_end, nz, dtype=np.float64)
points2 = np.array([[x_points2, y, z] for y in y_points2 for z in z_points2], dtype=np.float64)

use the tools and processing gizmos.

# process interpolation/differentiation of points.

result_forcel = getData(dataset, variablel, timel, temporal_method, spatial_methodl, spatial_operatorl, pointsl)
result_force2 = getData(dataset, variablel, time2, temporal_method, spatial_methodl, spatial_operatorl, points2)
result_pressurel = getData(dataset, variable2, timel, temporal_method, spatial_method2, spatial_operator2, pointsl)
result_pressure2 = getData(dataset, variable2, time2, temporal_method, spatial_method2, spatial_operator2, points2)

Figure 9. Python code snippet used to obtain the data to generate Fig. 8.
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Figure 10. Vertical profiles of horizontal- and time-averaged (a) velocities (u(z))x,y,s» (v(2))x,y,r and velocity magnitude V(z)x,y r =

1/2
[(u(z)x,y,,)2 + (v(z)x,y,t)z] , (b, bottom axis) subgrid-scale eddy viscosity (vsGs(2))x,y,r used in the LES as a result of the Lagrangian

scale-dependent dynamic model, and (b, top axis) potential temperature deviation (6'(z))x, y,t (i.e., the deviations from a reference tempera-

ture 6y = 263.5K).

initialize getData parameters (except time and points)

variable, temporal_method, spatial_method, spatial_operator = 'velocity', 'pchip', 'lag8',

initialize getData times and points
timel, time2, time3, time4, nx, ny, nz = 900, 1800, 2700, 3598.5, 200, 100, 100

x_start, x_end, y_start, y_end, z_start, z_end = 0, 10584, 0, 3780, 2.5, 1997.5

‘field'

x_points, y_points, z_points = np.linspace(x_start, x_end, nx, dtype=np.float64), np.linspace(y_start, y_end, ny, dtype=np.float64), np.linspace(z_start, z_end, nz, dtype=np.float64)
points = np.array([[x, y, z] for x in x_points for y in y_points for z in z_points], dtype=np.float64)

use the tools and processing gizmos.

# Process interpolation/differentiation of points

resultl = getData(dataset, variable, timel, temporal_method, spatial_method, spatial_operator,
result2 = getData(dataset, variable, time2, temporal_method, spatial_method, spatial_operator,
result3 = getData(dataset, variable, time3, temporal_method, spatial_method, spatial_operator,
result4 = getData(dataset, variable, time4, temporal_method, spatial_method, spatial_operator,

# Calculate the average
average_result = [

(V1 +v2 +v3 +v4) /4

for v1, v2, v3, v4 in zip(resultl, result2, result3, result4)
1

points)
points)
points)
points)

Figure 11. Python code snippet used to obtain the data to generate vertical profiles of (u(z))x,y,:: for the 100 heights z between z =2.5m
and z = 1997.5m, we query data on a regular mesh (not necessarily coinciding with stored grid points). For statistical convergence, we
average over four times covering the entire hour (t = 900 s, 1800's, 2700s, 3598.5 s).

approach would require users to identify specific files, un-
derstand naming conventions, and handle formatting, posing
a barrier to seamless integration with flow field queries. To
maintain consistency and usability across the platform, we
adopt a similar virtual sensor data access paradigm used for
the flow field data. Two dedicated query functions are de-
veloped: get TurbineData (. . .) for turbine-level quan-
tities and getBladeData (.. .) for blade-resolved data.
For getTurbineData (...), users specify the turbine
number (ranging from 1 to 60) and desired time instances.
For getBladeData (...), both turbine number and
blade number (ranging from 1 to 3) need to be specified,
along with an array of actuator point indices (ranging from
1 to 100) and times (ranging from 1 to 3600 s) at which the

Wind Energ. Sci., 10, 2821-2840, 2025

data are requested. Linear interpolation in time is supported
to provide values between stored simulation time steps.

As an example, Fig. 12 presents the time series of to-
tal wind farm power output (panel a) and of rows 1 and 9
of six turbines (panel b). The code snippet specifying the
getTurbineData (...) call is shown in Fig. 13. Sim-
ilar calls can be made to extract any of the turbine-specific
variables listed in Table 4.

Next, we illustrate the use of getBladeData(...)
in Fig. 14, which shows (a) the time evolution of the lift
and drag coefficients and (b) the lift coefficient as a func-
tion of blade angle. The blade angle is computed as ¢(¢) =
arctan[z(t) — z)/(x(t) —x7)] over a 60s period. The re-
sults shown are for a particular turbine and blade (Tur-
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Figure 12. Time evolution of power from turbines during the 10 min time interval, i.e., r € [1000.33, 1600.33]s. Panel (a) shows the total
power from the entire wind farm, while panel (b) shows the power for the turbines in Row 1 (i.e., turbines #1—#6) and in Row 9 (i.e., turbines
#49-4#54).

initialize getTurbineData parameters

turbines = list(range(1, 61))
turbine_variable = 'power'

initialize time array, below shows the one from 1000.33 s to 1600.33 s and the time interval is 0.025s

time_start, time_end, dt = 1000.33, 1600.33, 0.025
ntime = int((time_end - time_start) / dt)
turbine_times = np.linspace(time_start, time_end, ntime, dtype=np.float64)

use the tools and processing gizmos.

# process turbine data.
turbine result = getTurbineData(dataset, turbines, turbine variable, turbine times)

Figure 13. Python code snippet illustrating the use of the function get TurbineData (. . .) as part of a loop over all turbines in the wind
farm and subsequent summation to evaluate time series of total power used to generate Fig. 12a.

bine #28 in the central portion of the wind farm and Blade 6 Conclusions
#3 — the latter being an arbitrary choice, of course). The
Python code snippet shown in Fig. 15 illustrates the use of

getBladeData (. ..), with the queried data plotted di- datasets from high-fidelity LES simulations of wind farms.

rectly as a tim.e series within the same script. USinS a similar We extend the standard “virtual sensors” data access methods
approach, variable data can be extracted along turbine blades (Lietal., 2008; Yu et al., 2012; Graham et al., 2016) that have
and further processed to compute higher-order statistics. Fig- y ’ . ’ :

ure 16 shows axial force, tangential force, and drag and lift
coefficients for an upstream turbine (Blade #1 of Turbine #1)
and a downstream turbine (Blade #1 of Turbine #60) at a spe-
cific time of t = 1500 s. Any of the variables listed in Table 5
can be similarly queried (also in MATLAB).

In this paper, we have introduced JHTDB-wind, hosting

been successfully used for democratizing access to more fun-
damental turbulence datasets. Besides velocity, pressure, po-
tential temperature, and SGS eddy-viscosity fields, JHTDB-
wind adds 4D space—time data on aerodynamic turbine force
distributions as seen by the flow and the time series of
turbine- and actuator-line-specific aerodynamic data along
each of the turbine blades, modeled using ALM. We explain
the simulation details, provide background on the numerical
method and flow parameters, and provide detailed examples
and explanations of the user-friendly data access methodolo-
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Figure 14. (a) Time evolution of lift and drag coefficients on an ALM point 80 % along the span of Blade #3 for Turbine # 28. (b) Polar plot
of lift coefficient for that point as a function of blade angle along its rotation. For this turbine, the rotational speed is fixed at 2 = 1.09rad s!
(as obtained from get TurbineData (. . .)), corresponding to approximately 10.5 revolutions during a 60 s period.

initialize getBladeData parameters

turbines, blades, blade_variablel, blade_variable2 = [28], [3], 'Cl', 'Cd’

initialize time array, below shows the one from 1000.33 s to 1600.33 s and the time interval is 0.025s
time_start, time_end, dt = 1000.33, 1600.33, 0.025

ntime = int((time_end - time_start) / dt)

blade_times = np.linspace(time_start, time_end, ntime, dtype=np.float64)

blade_actuator_points = [80]

use the tools and processing gizmos.

# process blade data.
blade_resultl = getBladeData(dataset, turbines, blades, blade_variablel, blade_times, blade_actuator_points)
blade_result2 = getBladeData(dataset, turbines, blades, blade_variable2, blade_times, blade_actuator_points)

Figure 15. Python code snippet used to obtain the data to generate Fig. 14.

(a) (b)
4000 .
wone sl
3000 urbine
S S
%2000 %200
o o
1000 0 —— Turbine # 1
o —— Turbine # 60
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r/R r/R
(c) d g5
—— Turbine # 1 ’ —— Turbine # 1
—— Turbine # 60 0.4 —— Turbine # 60
750.3
Q
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Figure 16. Distributions of ALM quantities along the turbine blade at a specific time (+ = 1500 s for Blade #1 of Turbine #1, blue lines; Blade
# 1 of Turbine #60, orange lines): (a) axial component of the local force (on each A¢ = 0.615m segment) F,y;, (b) tangential component of
the local force (on each A¢ = 0.615m segment) Fiap, (c) lift coefficient C, (d) drag coefficient Cq.
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gies. It is hoped that these data will provide useful insights
about the complex fluid dynamic processes occurring in wind
farms.

We realize that in generating a dataset for a representative
conventionally neutral boundary layer case, with a relatively
large wind farm with 60 turbines, many other choices could
have been made (flow parameters, turbine model and control
scheme, usage of a particular LES numerical code, numerical
resolution, and so on). We anticipate that different members
of the community would have made different choices, and we
look forward to conversations about how to further improve
such datasets. We believe, however, that the case selected is
representative of CNBL wind farm dynamics that have been
studied by many others before, with a well-tested numerical
code. Hence, the authors hope that the data can be of some
use and interest to researchers in wind energy.

As a final note, we have additionally prepared a sec-
ond dataset for JHTDB-wind featuring an eight-turbine wind
farm over a full diurnal cycle, capturing both strongly stable
and unstable atmospheric boundary layer regimes at different
times of the day and night (Xiao et al., 2025).

Code and data availability. The wind farm data are available
on the JHTDB-wind website at https://turbulence.idies.jhu.edu/
datasets/windfarms (last access: 11 November 2025; see also its
DOTI: https://doi.org/10.26144/D8ES-FC15) (Zhu et al., 2025). Var-
ious modes of data access are provided: (i) single-point queries of
flow field variables using a browser interface at https://turbulence.
idies.jhu.edu/database/query (last access: 11 November 2025);
(ii) multiple-point queries up to 4096 points at a time by down-
loading DEMO codes (Python or MATLAB) at https://turbulence.
idies.jhu.edu/database/wind (last access: 11 November 2025) and
executing the DEMO code on users’ own platforms. Users can then
edit the DEMO codes to select different points and times to query
desired data. To access the current dataset, the “dataset” variable
should be set to “nbl_windfarm”, with times chosen in the range
0-3600s.

Author contributions. XZ performed the simulations, generated
the majority of the data, and assisted in document and figure prepa-
ration and detailed proof-reading. SX performed the majority of
the data transformation into Zarr and Parquet formats, worked on
testing data access methods, and generated many of the figures.
GN developed the thermal stratification and initialization methods
in the LES code. LAMT developed and implemented the gener-
alized ALM method in the LES code. MS and HY developed the
giverny backend software and Python/MATLAB data access codes.
GL directed the SciServer and Zarr format optimization. AS de-
signed the storage architecture. DG participated in data interpre-
tation and analysis and edited the article. CM participated in sim-
ulation and database design, data interpretation and analysis, and
document preparation and proof-reading.
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