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Abstract. The Norwegian Government aims to install offshore wind power with a total capacity of 30 GW
by 2040, and the Norwegian Water Resources and Energy Directorate has suggested 20 candidate regions. We
show that the potential for reducing overall power production variance across these regions is high using modern
portfolio theory and the hourly and spatially rich reanalysis NORA3 Wind Power data set (NORA3-WP). The
geographical diversification effect is demonstrated under various relevant scenarios, including a sequential build-
out scenario with a fully connected Norwegian power grid assumption. By considering 20 alternative regions
selected using a recently developed suitability score, we further illustrate that the diversification effect is robust
to location changes.

1 Introduction

Policymakers, environmental organizations, industry and re-
searchers portray offshore wind power as a vital energy
source to meet the increasing demand for clean, renewable
energy as the world transitions from fossil fuels. Norway has
a large and largely unexploited potential for offshore wind
power production (Bosch et al., 2018). The Norwegian Gov-
ernment has presented an ambitious development plan, called
30by40, of continuously opening offshore areas for large-
scale wind power deployment, sufficient for 30 GW installed
capacity by 2040 (Norwegian Government, 2022). Theoret-
ically, having only one wind farm with 30 GW of installed
capacity would occupy 9400 km2, corresponding to a square
with sides of 97 km (Solbrekke, 2022). However, distribut-
ing wind farms across a larger geographic area could sta-
bilize the instantaneous power production (Solbrekke et al.,
2020; St.Martin et al., 2015). If there is little wind in one
area, this can be compensated by windy conditions some-
where else. This effect is analogous to diversification in fi-
nancial portfolio selection problems using modern portfolio

theory (Markowitz, 1952). Thus, we consider the distribution
of wind farms as an optimization problem, where we aim to
maximize power production while minimizing its variance.
In the context of opening several areas for offshore wind
power deployment, where the instantaneous wind resources
are more or less dependent, it is crucial to first determine the
location of potential wind farms. We then apply modern port-
folio theory to determine the relative sizes of the wind farms
to obtain the best tradeoff between power output and stabil-
ity. Our objective is to find the portfolio that minimizes the
variance given a specific expected power output. We advance
the current literature by introducing a new set of cardinality
constraints and a novel sequential build-out routine. Mod-
ern portfolio theory has a long history in financial portfolio
selection, where the weights represent how large a portion
of the total investment one should invest in different stocks,
bonds, or funds. In a wind farm portfolio, the weights corre-
spond to the proportion of the total number of wind turbines
potentially installed at each wind farm location.

The Norwegian (exclusive) economic zone (NEZ) is ex-
tensive, and not all areas are suitable for installing turbines.
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In most areas, the sea depth is too large for anchoring wind
turbines to the sea floor at an acceptable cost. Some areas
are known to be spawning grounds for fish, while other ar-
eas may be too close to other offshore installations, such as
oil and gas platforms. In this paper, we only consider loca-
tions that are suitable for the installation of offshore wind
turbines. We achieve this by using two different approaches
when selecting suitable candidate sites. Our first set of can-
didate locations was suggested by the Norwegian Water Re-
sources and Energy Directorate (NVE). The NVE suggests
20 areas in the NEZ for further consideration in a subsequent
impact assessment. Our second set of candidate locations is
based on the study by Solbrekke and Sorteberg (2023), who
use a multicriteria decision analysis to point out suitable and
robust offshore areas for wind power deployment.

Markowitz’s modern portfolio theory (Markowitz, 1952)
has been applied to wind power production several times
in the literature. Drake and Hubacek (2007) study the geo-
graphic diversification effect of wind farm portfolios in the
United Kingdom by comparing a portfolio of 2.7 GW in one
location to one where the same energy is distributed over four
locations. They find a reduction of 36 % in the standard devi-
ation of instantaneous wind power production. Roques et al.
(2010) consider total wind production data from five Euro-
pean countries (Spain, France, Germany, Denmark and Aus-
tria) and apply modern portfolio theory to minimize variance,
in a theoretical unconstrained portfolio as well as a portfolio
in which national wind resource potential and transmission
constraints are taken into account. Rombauts et al. (2011)
build on the work of Roques et al. (2010), but instead of
using aggregated data by country, they apply portfolio the-
ory on simulated data from different locations within each
country. They also model cross-country transmission con-
straints more explicitly. With case studies from the United
States, Degeilh and Singh (2011) propose a general plan-
ning method to minimize the variance of aggregated wind
power output by optimally distributing turbines over a pre-
selected number of potential sites, Novacheck and Johnson
(2017) study the potential for diversification of wind power
variability in the Midwest, and Costa-Silva et al. (2017) use
modern portfolio theory with 4 re-balancing strategies on
11 hypothetical offshore wind farms off the US East Coast.
Hjelmeland and Nøland (2023) analyze the correlation struc-
ture between potential Norwegian offshore wind resources
and existing resources in neighboring countries concerning
potential price effects. More recently, Tejeda et al. (2018)
employed the ERA-Interim wind resource reanalysis data to
minimize the variability of aggregated wind farm production
over a 0.25× 0.25° grid of onshore Europe (EU-28) and a
selection of offshore grid cells.

In this study, we use the high-resolution wind power re-
analysis NORA3-WP (see Sect. 2.1), which is a dynamic
downscaling of the state-of-the-art reanalysis ERA5 (Hers-
bach et al., 2020). Comparing NORA3-WP to the data set
used by Tejeda et al. (2018), NORA3-WP has a higher tem-

poral resolution (hourly versus 6-hourly) and a more ex-
tended history (24 years versus 10 years). Furthermore, the
analysis by Tejeda et al. (2018) includes most of the Euro-
pean continent, while we focus exclusively on sites in the
NEZ suitable for offshore wind power installations. Instead
of placing wind power by grid cell (Tejeda et al., 2018),
we find the optimal number of turbines on a wind farm
unit represented by the wind resources from one grid cell
in NORA3-WP. Our study, therefore, builds naturally on re-
cent developments in the identification of suitable locations
for wind power generation (Solbrekke and Sorteberg, 2023)
and methodology for distributing resources between them
(Tejeda et al., 2018). We develop the procedure for wind
power distribution further by incorporating the Norwegian
Government’s sequential development plan, 30by40, and in-
troducing a constraint on the maximum number of wind
farms (see Sect. 3).

The structure of this paper is as follows. We present the
NORA3-WP data in Sect. 2.1. We then present the NVE
candidate locations and the Solbrekke and Sorteberg (2023)
counterpart. In Sect. 3, we present Markowitz’s portfolio the-
ory with particular adaptations specific to the wind power
problem. We set up five cases with varying constraints and
build-out strategies. The optimal portfolios are presented and
discussed in Sect. 4. We then give some concluding remarks
in Sect. 5.

2 Data

2.1 NORA3-WP

The backbone of this study is the new wind resource and
wind power data set NORA3-WP constructed by Solbrekke
and Sorteberg (2022). It is based on the 3 km Norwegian
reanalysis data (NORA3), which is the most recent high-
resolution data archive from the Norwegian Meteorological
Institute (Haakenstad et al., 2021), generated by a dynami-
cal downscaling of ERA5 (Hersbach et al., 2020). Solbrekke
et al. (2021a) and Haakenstad et al. (2021) carry out a vali-
dation of NORA3 against observations, together with a com-
parison of NORA3 to the host data set ERA5. These stud-
ies conclude that NORA3 is consistently closer to the ob-
served wind speed compared to ERA5, especially over land,
where the topography is complex, and for high wind speeds.
Cheynet et al. (2022) compare NORA3 to the New European
Wind Atlas. Both data sets are found to provide reliable es-
timates of the mean wind speed, but NORA3 shows slightly
better performance for the mean wind speed in terms of root-
mean-square error, bias, earth mover’s distance and Pearson
correlation coefficient (Cheynet et al., 2022).

NORA3-WP covers the North Sea, the Norwegian Sea, the
Baltic Sea and parts of the Barents Sea in a 3 km× 3 km hor-
izontal grid. NORA3-WP contains climatological data on a
monthly timescale from 1996 to 2019, providing 7 wind re-
sources and 18 wind power-related variables for 3 selected
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turbines with different power ratings, turbine diameters and
hub heights. The underlying hourly wind speed and wind
power data are also available on the same spatial scale. For
more details on the data, see Solbrekke and Sorteberg (2022).

In this study, we use the hourly wind power data, calcu-
lated using the 15 MW reference turbine from the Interna-
tional Energy Agency, IEA-15 MW (Gaertner et al., 2020),
which is the largest among the three turbines covered by
NORA3-WP. IEA-15 MW has a rated power of 15 MW, a
hub height of 150 m and a rotor diameter of 240 m. If the
wind speed is below 3.0 m s−1 or above 25 m s−1, the power
production is zero due to internal friction and sheltering pur-
poses, respectively. If the wind speed is between 3.0 and
10.59 m s−1, the power production is proportional to the
wind speed cubed. Lastly, if the wind speed lies between
10.59 and 25 m s−1, the turbine produces its rated power.

Using the IEA-15 MW turbine in our analysis implies that
installing 30 GW of offshore wind power corresponds to
building 2000 turbines. From the NORA3-WP data, we ex-
tract hourly time series from the grid cells closest to the cen-
ter of the NVE regions described in the next section and the
actual grid cells from the Solbrekke and Sorteberg (2023)
selected locations in the following section. We calculate the
mean capacity factor, i.e., the average production as a per-
centage of rated power, and the covariance matrix describing
the linear dependence between the different locations. This
mean vector and covariance matrix is then used in the port-
folio optimization described in Sect. 3. Since the capacity
factor is a relative measure in [0,1], we report it as a percent-
age. Note that the standard deviation of a capacity factor is
then measured in percentage points (pp).

2.2 Norwegian Water Resources and Energy
Directorate (2023) candidate locations

The Norwegian Water Resources and Energy Directorate
(NVE) led a group with members from different state agen-
cies (the Norwegian Petroleum Directorate, Directorate of
Fisheries, the Norwegian Environment Agency, the Norwe-
gian Coastal Administration and the Norwegian Defence Es-
tates Agency) with a mandate from the Norwegian Ministry
of Petroleum and Energy to identify suitable locations for
offshore wind farms that have few conflicting interests (Nor-
wegian Water Resources and Energy Directorate, 2023). The
group of directorates identified 20 regions suitable for wind
power (see shaded areas in Fig. 1d). In September 2023, the
Norwegian Government instructed the NVE to start an im-
pact assessment on 3 of these 20 areas: Vestavind B, Ves-
tavind F and Sørvest F (Norwegian Government, 2023). Parts
of Sørvest F and Vestavind F were considered previously for
wind power production under the names Sørlige Nordsjø 2
(SN2) and Utsira Nord (UN), respectively. SN2 and UN were
identified in an earlier report by the NVE (Norwegian Wa-
ter Resources and Energy Directorate, 2012), and it has been
decided to allocate areas for 1500 MW at each location to

start with. We will, therefore, make sure these are in both
candidate sets and use the names SN2 and UN for the cor-
responding areas in both sets. The suggested regions from
2012 were also used in the analysis by Hjelmeland and Nø-
land (2023). The NVE used a tool called “Marine Resources
Tools”, or MaRS, for selecting the newest areas (The Crown
Estate, 2019). This is essentially a suitability analysis that
excludes certain areas due to input from the interest group
members.

The total area covered by the 20 regions suggested by the
NVE is 54 867 km2. The Norwegian Water Resources and
Energy Directorate (2023) uses different capacity densities
(3.5, 5 and 7.5 MW km−2) and different area utilization rates
(33 %, 67 % and 100 %). We choose the lowest capacity den-
sity and a 100 % utilization rate for our study.1 Using these
parameters, we can calculate the maximum number of tur-
bines per region by

potential installed capacity= area · 3.5 MW km−2
· 100%,

maximum NoT=
⌊

potential installed capacity
15 MW

⌋
,

where b·c means rounding down to the nearest integer, and
NoT is the number of turbines. The area and resulting po-
tential capacity and maximum number of turbines per region
are given in Table 1. The coordinates in the table are the av-
erage of the corners of the regions. Using these parameters
(3.5 MW km−2 and 100 % utilization rate), the potential ca-
pacity of these regions is 192 GW or 12 802 turbines. If we
instead had used the most optimistic parameters in the re-
port (7.5 MW km−2 and 100 % utilization rate), the numbers
would be 412 GW and around 27 400 turbines. In the table,
we have also included a maximum portfolio weight given a
total of 2000 turbines, which is used as a constraint in the
portfolio optimization presented in Sect. 3.

We have also included the average and standard deviation
of the hourly capacity factor, estimated from the NORA3-
WP data at the closest grid cell to the given coordinates in
Table 1. The averages range from 54.6 % to 65.6 %, and the
standard deviations range from 39.2 to 42.4 pp. The expected
capacity factor for any portfolio based on these locations will
fall in this range of means. We show below that the diver-
sification effect reduces the standard deviation of the total
hourly power production considerably.

We refer to these candidate locations as the NVE locations.

2.3 Candidate locations based on Solbrekke and
Sorteberg (2023)

Solbrekke and Sorteberg (2023) constructed wind power
suitability scores (WPSSs) for potential wind farm locations
for the entire Norwegian economic zone (NEZ), taking into

1Using 5 MW km−2 and 67 % utilization would result in
3.35 MW km−2 compared to 3.5 MW km−2.
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Figure 1. (a) All locations in the NEZ are colored by the wind power baseline suitability score (WPSS). (b) Locations that are in the top
25 % WPSS in all suitability perspectives are colored according to baseline. (c) The 19 locations selected after running Algorithm 1. (d) The
19 locations chosen as potential wind farm sites with Utsira Nord added, numbered from 1 to 20 in red numbers with white circles around and
the 20 NVE-suggested areas numbered from 1 to 20 as shaded areas with black ID numbers (see Table 1). Colors are only used to distinguish
the regions.

account many relevant factors like wind resources, techno-
economic aspects, social acceptance, environmental consid-
erations and met-ocean constraints such as wind and wave
conditions. Solbrekke and Sorteberg (2023) exclude some
grid cells due to, e.g., oil platforms or other obstacles, but
areas are not excluded solely due to input from one interest
group. Since the user must specify the importance of the dif-
ferent criteria, the WPSS is not an objective measure. To cope
with the subjective criteria weights, Solbrekke and Sorteberg
(2023) carried out a sensitivity analysis where the criteria im-
portance was tuned according to distinct preferences of three
actors: the investor, the environmentalist and the fisher. The
result from Solbrekke and Sorteberg (2023) gives informa-
tion about which NORA3-WP grid cells are most suited for

wind power in the NEZ, and the sensitivity analysis reveals
which of these are robust to changes in criteria importance.

To avoid some candidates very close to shore, we add a re-
quirement that the offshore location should be at least 15 km
from the nearest land mass and select locations with a WPSS
above a certain percentile, α, from the baseline scenario and
the three actors of Solbrekke and Sorteberg (2023). To be
deemed a suitable location, all three actors and the baseline
suitability score must agree that the location is among the
top 100α% of candidates, α ∈ (0,1). Thus, all candidate lo-
cations are grid points with the highest and most robust suit-
ability scores.

Our goal is not to place each wind turbine precisely but,
more generally, to place the wind farms. We allow one grid
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Table 1. The NVE-selected locations with coordinates and area. The potential installed capacity is calculated using a capacity density of
3.5 MW km2 and 100 % area utilization rate. The maximum number of turbines (NoT) is based on 15 MW per turbine, and CF is the capacity
factor. Note that the standard deviation (SD) is measured in percentage points (pp).

Longi- Lati- CF Potential Max
tude tude- mean SD Area installed Max portfolio

ID Location (°E) (°N) ( %) (pp) (km2) capacity (MW) NoT weight

N

1 Nordavind A 32 71.1 57 % 40.3 4275 14 962 998 49.9 %
2 Nordavind B 27.9 71.8 57.7 % 40.3 2239 7836 522 26.1 %
3 Nordavind C 20.1 71.7 56.5 % 40.7 1054 3689 246 12.3 %
4 Nordavind D 18.7 71.4 56.3 % 40.8 3642 12 747 850 42.5 %

NW
5 Nordvest A 9.5 66.2 57.6 % 40.9 11 307 39 575 2638 131.9 %
6 Nordvest B 7.4 64.8 56.3 % 41.2 3437 12 030 802 40.1 %
7 Nordvest C 6.8 63.8 54.6 % 41.8 5582 19 537 1302 65.1 %

W

8 Vestavind A 3.7 62 61.3 % 41.2 1884 6594 440 22 %
9 Vestavind B 3.8 61.1 59.3 % 41.8 2985 10 448 696 34.8 %
10 Vestavind C 3.7 60.4 58.6 % 41.8 1040 3640 243 12.1 %
11 Vestavind D 4.4 60.3 55.8 % 42.4 724 2534 169 8.4 %
12 Vestavind E 3.9 59.1 61.6 % 40.9 1475 5162 344 17.2 %
13 Vestavind F 4.5 59.2 59.8 % 41.3 1989 6962 464 23.2 %

SW

14 Sørvest A 3.5 57.9 64.1 % 39.9 1456 5096 340 17 %
15 Sørvest B 3.4 57.4 64.1 % 39.8 2179 7626 508 25.4 %
16 Sørvest C 3.9 57 64.4 % 39.6 1766 6181 412 20.6 %
17 Sørvest D 3.9 56.5 63.9 % 39.6 1215 4252 284 14.2 %
18 Sørvest E 4.7 57.5 65.5 % 39.5 1016 3556 237 11.9 %
19 Sørvest F 4.9 56.9 65.4 % 39.2 2702 9457 630 31.5 %

SE 20 Sønnavind A 7.6 57.5 65.6 % 39.7 2900 10 150 677 33.8 %

Algorithm 1 Algorithm of selecting candidate locations.

Let S denote the set containing candidate locations. A pri-
ori, these are all located 15 km from shore and among the top
100α% in terms of the baseline WPSS and the WPSS of the
three actors. Let r denote the minimum distance between can-
didate locations.

Loop over the locations, and for each location s, calculate the
distance to the other locations. If Rs = {s∗ ∈ S\{s} : ‖s−
s∗‖ ≤ r} 6=∅, select among Rs∪{s} the one with the highest
WPSS and store it in S∗ ⊂ S.
Remove duplicates from S∗ and let S = S∗.
Repeat steps 1–2 until Rs =∅ for all s ∈ S.

cell (3× 3 km) to represent one wind farm and its surround-
ing area. Therefore, we do not want to include grid points too
close to each other. If two points are within r km from each
other, we select the one with the highest baseline WPSS. The
algorithm for doing this is described below, in Algorithm 1.
Two choices affect the number of candidate locations: the
minimum distance between candidates r and the percentile
of a WPSS α.

We use the top 25 % (i.e., α = 0.25) in Algorithm 1, and
the minimum distance between each potential wind farm is
set to r = 40 km. This is based on the somewhat rough cal-

culation that a wind farm of around 200 turbines will require
a square of 15× 15 km2, and we require at least 10 km be-
tween the farms to minimize the interactions between the
wind farms. This seems reasonable compared to the mini-
mum distances to the nearest wind farms for existing and
planned offshore wind parks (see Fig. 3 of Finserås et al.,
2024). The two offshore areas opened for wind farm develop-
ment in Norwegian waters, UN and SN2, have a planned op-
erational limit of 5 km between adjacent wind farms (Norwe-
gian Water Resources and Energy Directorate, 2018). How-
ever, the appropriate separation distance between wind farms
will greatly vary due to, e.g., atmospheric stability and wind
direction.

Algorithm 1 is an ad hoc selection procedure to reduce the
number of grid points to consider. It does not find a unique
and optimal solution to how the Norwegian offshore portfo-
lio should look. This is not a major concern here since the
points are only seen as representatives of that area. Running
the algorithm with α = 0.25 and r = 40 km, we end up with
25 locations. For comparison reasons, it is beneficial that the
two candidate sets have the same number of locations. There-
fore, we increase the minimum distance between wind farms
(r) from 40 km by 1 km at a time until 20 locations are se-
lected, including both SN2 and UN.

https://doi.org/10.5194/wes-10-293-2025 Wind Energ. Sci., 10, 293–313, 2025



298 S. Hølleland et al.: Optimal allocation of 30 GW offshore wind power

In Fig. 1a, we show all the locations in the NEZ consid-
ered as potential by Solbrekke and Sorteberg (2023) and be-
ing 15 km for shore (total: 71 021 points). In Fig. 1b, we have
kept only locations with suitability scores above the 75th
percentile in all suitability scores (baseline, investor, fisher
and environmentalist), leaving 6419 suitable locations. Then
we run Algorithm 1 with r = 47 km and end up with the
19 potential locations in Fig. 1c. For visibility purposes in
the figure, we have increased the size of each grid cell by a
factor of 10. Among these SN2 (NVE region Sørvest F) is
represented, but UN (NVE region Vestavind F) is not. Since
the Norwegian Government has decided to allocate areas for
wind farms in these two regions, we add UN as a candidate
location. This is represented by a grid cell inside the NVE
region Vestavind F at the center of the approved region iden-
tified by Norwegian Water Resources and Energy Directorate
(2012). This point is more than 40 km away from any other
location. It has a baseline suitability score of 14.85 % and in-
vestor score of 11.2 % but fisher and environmentalist scores
of 46 % and 60.9 %, respectively, which violates the top 25 %
assumption (see Table 2). Thus, the 20 locations are shown
in Fig. 1d, numbered from 1 to 20 following the Norwegian
coast from the Barents Sea to the Skagerrak, where location
14 is in UN and location 16 is in SN2. We will refer to this
set of candidate locations as S&S. There is some overlap be-
tween the candidate sets (Fig. 1d). Some S&S locations lie
within a corresponding NVE region (S&S 10 – Vestavind A,
S&S 11 – Vestavind B, S&S 18 – Sønnavind A) or just out-
side (S&S 1– Nordavind A, S&S 4 – Nordavind B, S&S 7 –
Nordvest A).

In Table 2, we have presented the coordinates of the se-
lected candidate locations with the mean and standard devi-
ation of the capacity factor based on the NORA3-WP grid
cell. The suitability scores are calculated on the same grid as
NORA3-WP, so the coordinates are exact (although rounded
off). We have also included the wind power suitability scores
as what upper percentile the location has within each ac-
tor score. Some of the scores of location 14 (UN) are high-
lighted as they violate the top 25 % score assumption for the
fisher and environmentalist scores. The mean capacity factor
ranges from 52.3 % to 66.8 %, while the standard deviations
range from 39.1 to 41.7 pp. These locations thus have a wider
range of mean capacity factors and a narrower standard devi-
ation range compared to the NVE regions. S&S location 18
has the highest mean capacity factor of 66.8 % and the sec-
ond lowest standard deviation of 39.2 pp, making it probably
the best location among all the candidates. It resides within
the NVE region Sønnavind A, which also has the highest
mean capacity factor of the NVE regions (Table 1).

We divide the two candidate location sets into five regional
groups, corresponding to the Norwegian naming of the NVE
regions: north (N), northwest (NW), west (W), southwest
(SW) and southeast (SE). Which locations belong to which
group can be seen from the first columns of Tables 1–2. The
northern groups are similar across the NVE and S&S, but the

NVE regions are more spread out, while the S&S is closer to
shore (except S&S 2). We have the same number of locations
and roughly the same geographical spread in the northwest.
The largest difference is that the S&S locations are much
closer to shore, especially S&S 9. The opposite is true for
the west coast, where S&S 12–13 and 15 are further out at
sea than the NVE regions. The other S&S locations overlap
with NVE regions for this group. The most striking aspect
in the southwest group is that there are twice as many NVE
regions as there are S&S regions. The NVE regions are also
farther to the south and west. S&S 18 lies inside Sønnavind
A, but we count S&S 18 as southwest, while Sønnavind A is
the only NVE member in the southeast. Farther east, we also
find S&S 19–20 in this group, closer to the Danish–Swedish–
Norwegian border intersection in the Skagerrak. The two
candidate sets both have some similarities and some inter-
esting distinctions. This grouping is applicable when inter-
preting the correlation structure of the two location sets (see
Sect. 3.2).

The NVE regions have a finite area, which we use for set-
ting constraints on the maximum number of turbines. The
S&S areas do not have this. To ensure a fair comparison, we
do not allow S&S locations with more than 500 turbines. The
median maximum number of turbines for the NVE regions is
486, so we have rounded this off to 500. This constraint cor-
responds to an area of 2143 km2 using the same assumptions
of 100 % utilization and 3.5 MW km−2, comparable in size
to Sørvest B or Nordavind B.

Now that we have our two sets of candidate locations, the
NVE and S&S locations, we present a methodology for allo-
cating turbines to the different wind farm locations.

3 Modern portfolio theory

There are some fundamental differences between a wind
farm portfolio and a portfolio of financial assets:

1. One cannot borrow turbines (which corresponds to
shorting assets in finance), meaning the portfolio
weights have to be non-negative.

2. Selling or re-balancing the portfolio as time passes is
not feasible. One can, in practice, only build more wind
parks by investing more.

3. In financial investment theory, a higher risk should give
a higher potential return, which is not necessarily valid
for wind power production.

4. There is no equivalent to a risk-free interest rate for a
portfolio of wind farms.

We argue, however, that the well-known diversification ef-
fect that we get when spreading financial investments across
a large portfolio of assets is highly relevant when select-
ing sites for wind power production as well. In finance, we
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Table 2. ID, location, mean and standard deviation of the capacity factor (CF) for the S&S selected candidate locations. The latter four
columns are the wind power suitability scores of the different actors presented by percentile of the score in the NEZ by Solbrekke and
Sorteberg (2023). Except for location 14 (violations in bold), all locations have scores below 25 % by assumption, with distance from shore
of more than 15 km.

Longi- Lati- CF SD Wind power suitability scores
tude tude mean CF (upper percentile within each actor score)

ID (°E) (°N) ( %) (pp) Baseline Investor Fisher Environmentalist

N

1 32.4 70.6 56.9 % 40.4 9.9 % 12.8 % 18.6 % 14.5 %
2 31.1 71.9 57.6 % 40.3 7.0 % 15.9 % 2.1 % 5.8 %
3 29.7 71.4 57.1 % 40.3 7.4 % 11.5 % 17.1 % 11.0 %
4 27 71.6 57.7 % 40.3 3.9 % 8.0 % 1.8 % 5.6 %
5 24.5 71.6 55.7 % 40.7 9.8 % 14.2 % 24.2 % 23.5 %
6 22.9 71.5 55.2 % 40.8 7.9 % 14.6 % 6.2 % 14.7 %

NW
7 10.7 66 56.7 % 41.0 10.8 % 19.2 % 6.9 % 16.4 %
8 9.4 64.7 54.8 % 41.1 9.7 % 18.9 % 9.4 % 24.6 %
9 9.2 64.1 52.3 % 41.0 < 0.1 % < 0.1 % 1.7 % 9.9 %

W

10 3.8 62 61.2 % 41.2 5.8 % 10.9 % 2.1 % 6.0 %
11 3.5 60.8 59.4 % 41.7 6.7 % 11.4 % 3.5 % 8.4 %
12 2.5 60.3 61.4 % 41.1 8.2 % 12.5 % 16.7 % 9.5 %
13 2.1 59.9 62.3 % 40.8 5.6 % 10.9 % 1.6 % 4.9 %
14 4.5 59.3 59.4 % 41.4 14.9 % 11.2 % 45.9 % 60.9 %
15 1.9 59.2 62.9 % 40.5 6.8 % 12.8 % 1.7 % 4.9 %

SW
16 5.3 56.9 65.7 % 39.1 0.3 % 1.5 % < 0.1 % 0.1 %
17 5.7 57.7 66.4 % 39.4 0.1 % 0.3 % < 0.1 % < 0.1 %
18 6.7 57.4 66.8 % 39.2 0.1 % 0.3 % < 0.1 % < 0.1 %

SE
19 9.3 58 60.0 % 40.9 2.4 % 2.0 % 1.9 % 3.5 %
20 9.8 58.5 56.3 % 41.3 3.9 % 3.2 % 6.9 % 13.2 %

look for assets that have low, or even negative, correlation
to lessen the impact of negative movements in the markets
on the overall portfolio. If the value of one investment goes
down, this will not be systematically associated with failure
in other investments simultaneously. The corresponding phe-
nomenon for wind farms is if wind conditions at one wind
farm location are systematically associated with conditions at
other locations. As one increases the distance between wind
farms up to a point, the systematic association decreases, and
the diversification effect increases (Solbrekke et al., 2020;
St.Martin et al., 2015).

The classical approach for allocating wind farms seen
in previous studies is modern, or mean variance, portfo-
lio theory (Markowitz, 1952). The goal is, for a given tar-
get capacity factor, TCF, to compose the portfolio that ex-
hibits the minimum variance. Let Xt i ∈ [0,1] denote the
stochastic variable for capacity factor from location i at
time t and Xt = (Xt1, . . .,Xtm)′, where m is the number
of locations, t = 1, . . .,n and ′ is the transpose operator.
Let µ= (µ1, . . .,µm)′ = EX′t denote the time-invariant ex-
pected value vector. Further, let 6 = Cov(Xt ) denote the
covariance matrix. Let w = (w1, . . .,wm)′ denote the vec-
tor of non-negative portfolio weights, i.e., the proportion of
the total number of wind turbines installed at each loca-

tion. These must be non-negative because you cannot build
a negative number of wind turbines. The portfolio capac-
ity factor at time t , Yt , can then be expressed as Yt =∑m
i=1wiXt i = w

′Xt . The expected (time-invariant) capac-
ity factor and the corresponding variance of the wind farm
portfolio are, respectively, given by EYt =

∑m
i=1wi µi =

w′µ and Var(Yt )= w′6w. We want to find a portfolio that
minimizes the portfolio variance for a given level of expected
capacity factor, TCF. We require the weights, w, to sum to 1:
w′1= 1, where 1= (1, . . .,1)′ is a vector of length m. Then,
we can formulate the optimization problem as

minimize w′6w,

subject to w′µ= TCF,w
′1= 1, and wi ≥ 0, i = 1, . . .,m.

This is the simplest case with the bare minimum of con-
straints and corresponds to what Markowitz (1952) also used.

The formulation above does not exclude solutions where,
for instance, only one wind turbine is placed far out in
the Barents Sea or some turbines at every location. Small,
spread-out wind farms are not a realistic solution since one
must invest a lot in the infrastructure associated with each
farm. Therefore, we rather prefer to cluster together many
turbines at a few locations, which can be achieved by adding
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a constraint on the maximum number of nonzero weights,
i.e., locations with more than zero turbines, called a position
limit constraint. Another relevant constraint is the so-called
box constraint, meaning setting a lower and upper limit on
each location’s weights and thus restricting the number of
turbines allowed at said location. The box constraint avoids
wind farms that are too large or too small. We derive maxi-
mum constraints based on the limited areas of the NVE re-
gions (Table 1) and use a maximum of 500 turbines per lo-
cation for the S&S locations. Tejeda et al. (2018) also use a
box constraint with a minimum of 0 MW and a maximum of
250 MW per grid cell (≈ 550 km2).

For the position limit constraint, let 1(w > 0) denote the
indicator function, which equals 1 if w > 0 and 0 other-
wise, and let h denote the maximum number of nonzero
turbine locations. For the box constraint, let wi ∈ [`,u] for
i = 1, . . .,m, where 0≤ `≤ u≤ 1. We write wi ∈ [`,u]∪{0}
to allow for zero weights if combined with a position limit
constraint.

The problem then becomes

minimize w′6w, (objective)
subject to w′µ= TCF, (expectation constraint)

w′1= 1, (sum-to-one constraint)
wi ∈ [`,u] ∪ {0}, i = 1, . . .,m, (box constraint)

and
m∑
i=1

1(wi > 0)≤ h(position limit constraint).

We consider five different scenarios with different combina-
tions of constraints below. The most optimal solution would
be the one with the fewest constraints, but it may be unreal-
istic due to the reasons listed earlier in this section.

We estimate the expected value vector µ and the co-
variance matrix 6 by the empirical mean and covari-
ance of the hourly observations, i.e., µ̂= n−1∑n

t=1Xt , 6̂ =

n−1∑n
t=1(Xt − µ̂)(Xt − µ̂)′.

The target capacity factor, TCF, should be within the range
of µ̂. Otherwise, a solution will not exist. If TCF =maxiµ̂i ,
all turbines must be placed on the location with the highest
mean capacity factor.

We implement the position limit constraint by optimizing
all combinations of h locations separately and selecting the
minimum variance portfolio. We compare this approach to a
stepwise approach by adding the location that improves the
portfolio performance the most in each step, referred to as
a sequential build-out. In the sequential build-out, we start
building on the two locations the Norwegian Government
already decided on (1500 MW at each) and then consider
adding one other location (looping over all the other candi-
dates) or building more turbines at the existing locations. We
use the lower box constraint to keep the already-built turbines
in the next iteration.

The number of turbines at a location is an integer num-
ber. In the portfolio optimization, we estimate weights as the

proportion of 2000 turbines (30 GW). We get the number
of turbines at a location by multiplying 2000 turbines with
their portfolio weight and rounding off to the nearest integer.
Even though the sum of the weights is 1, this rounding off
may lead the total number of turbines to not equate 2000. We
compensate for this by removing one turbine from the nec-
essary number of locations in the estimated portfolios with
too many turbines until the total is 2000 and correspondingly
adding one turbine to the necessary number of locations with
too few. The identified locations where this adjustment is ap-
plied are those with the number of turbines closest to being
rounded down or up, respectively.

We use the R package quadprog (Turlach et al., 2019),
which contains functions for solving quadratic program-
ming problems, to optimize the portfolios under differ-
ent constraint scenarios. For reproducibility purposes, the
R code is made available at https://github.com/holleland/
OffshoreWindPortfolios (last access: 20 January 2025; see
data availability statement for further details).

3.1 Choice of temporal scale

The decision-maker’s choice of the temporal scale at which
the portfolio variance is minimized is essential. We have cho-
sen to use an hourly timescale, which is the highest temporal
resolution in NORA3-WP and the most relevant scale for bal-
ancing the electricity grid. Aggregating to a coarser temporal
resolution and finding the optimal portfolios corresponds to a
higher focus on minimizing seasonal variation in the portfo-
lio throughout the year. In what follows, we focus exclusively
on using the hourly capacity factor in our analysis. We have
also included a sensitivity analysis for some of our results to
this choice of scale in Appendix A, including the effect vari-
ous timescales have on the correlation structure (see Fig. A1).

3.2 Correlation structure

From the NORA3-WP data set, we estimate a mean vector µ̂
and an empirical covariance matrix 6̂ for the NVE regions
and the corresponding S&S locations. The covariance struc-
ture is important for the diversification effect. To simplify,
say we have a portfolio of two assets, X and Y , such that the
portfolio value iswX+(1−w)Y , with weightw ∈ (0,1). The
portfolio variance is then

w2σ 2
X + (1−w)2σ 2

Y + 2w(1−w)ρ σx σy, (1)

where ρ ∈ [−1,1] is the correlation between X and Y , and
σX and σY are the standard deviations of X and Y , respec-
tively. With all else fixed, reducing the correlation ρ will
thus reduce the portfolio variance. Having wind power lo-
cations with a low correlation with other locations (perhaps
even negative) is important for achieving diversification ef-
fects and a lower portfolio standard deviation.

We have presented the correlation matrices for the NVE
and S&S locations as correlation heat maps in Fig. 2. Since
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the standard deviations are all in the same range (around
40 pp; see Tables 1 and 2), we use correlations instead of
covariances as the scale is easy to interpret. The dashed red
lines split the correlation matrices into blocks correspond-
ing to the five location groups N, NW, W, SW and SE, de-
scribed above. We have a substantial block structure follow-
ing this grouping in the matrices, where the correlations are
high within each block but low between them. The locations
farthest to the north (Nordavind A–D, S&S 1–6) are almost
uncorrelated with the remaining locations. The clear block
off the northwest coast (Nordvest A–C and S&S7–9) also
stands out as having a low correlation with the other blocks.

Further south, more locations are more closely packed,
leading to a higher correlation between the blocks. The
between-blocks correlations might be slightly higher for the
southern NVE regions than the S&S locations, but these re-
gions are also more evenly spread. In contrast, the S&S lo-
cations are more clustered in three more distinct groups (see
map in Fig. 1d). For the NVE regions, Sønnavind A stands
out as a location with low correlation with others and simi-
larly for the two S&S locations in the Skagerrak (S&S 19–
20).

3.3 Portfolio cases

We set up five sets of constraints under which we find the
optimal portfolio. For scenarios below, with exactly five lo-
cations, our greedy algorithm for the position limit constraint
loops over all combinations of five locations. For cases B and
C, there are

(
18
3

)
= 816 and

(
20
5

)
= 15504 such combina-

tions, respectively, using the binomial coefficient notation.
The cases are as follows:

– Case A has no constraints on the number of locations
(benchmark portfolio).

– Case B has exactly five locations, where Sørlige Nord-
sjø 2 (SN2) and Utsira Nord (UN) are included.

– Case C has exactly five locations, not necessarily in-
cluding SN2 and UN.

– Case D built 1500 MW at SN2 and 1500 MW at UN.
Where to build 1500 MW next? (“as we go”/sequential
build-out) until reaching 30 GW total. At each step, we
either build where we already have farms or add one
more location.

– Case E only builds on the first five sequentially selected
locations from case D.

The resulting portfolios will depend on the value used for
the target capacity factor, TCF. For comparison purposes, TCF

should be within the range of values for both the NVE re-
gions and S&S locations. We therefore run the portfolio op-
timization for three values of TCF: 58 %, 60 % and 62 %. For
case A, we also solve the problem with a high resolution of

TCF between 56 % and 65 %. These are high capacity fac-
tors compared to onshore wind farm portfolios. For exam-
ple, Tejeda et al. (2018) use a 23 % capacity factor for their
mainly onshore setting.

Case A will not necessarily give a realistic portfolio of
wind farms as it has no restrictions on the number of lo-
cations. The optimal solution may involve many locations,
some very small. However, it should give the portfolio with
the lowest standard deviation, and, as such, it is a meaningful
benchmark for the other portfolios. For cases B, C and E, we
are restricted to only building on five locations, which will
not result in very small wind farms. An interesting compari-
son is between case B and E as both require building on SN2
and UN and three other locations. They may result in the ex-
act same portfolios. For the NVE regions, we do not allow for
more turbines than the maximum number of turbines given in
Table 1 and, correspondingly, no more than 500 turbines for
S&S locations. Note that, for case E, we initially build five
wind farms as in case D, corresponding to 7.5 GW installed
capacity, and then distribute the remaining 22.5 GW in these
five locations.

The sequential build-out in cases D and E starts with a
portfolio of 1500 MW (100 turbines) at NVE regions Sørvest
F and Vestavind F and, correspondingly, S&S locations 16
and 14. These are the locations where the Norwegian Gov-
ernment has decided to start building the first offshore wind
farms, i.e., SN2 and UN. The initial portfolio of 1500 MW at
each location will not fulfill the TCF requirement, as the ca-
pacity factor will be 62.6 %. We then, for all combinations of
the existing wind farms and one new candidate location, find
the optimal portfolios, using a box constraint to ensure that at
least 1500 MW is kept on SN2 and UN. We also consider not
adding new locations but merely building more on existing
ones. Having found the optimal portfolios for each candi-
date location, we choose the one that minimizes the portfolio
standard deviation and fulfills the target capacity factor con-
straint. We then update the box constraint with the weights
of the best portfolio, and we start a new iteration, considering
adding another location or building more on the existing ones
in the same manner. In each iteration, we build 1500 MW
(100 turbines) and repeat the process until 30 GW installed
capacity or 2000 turbines have been placed. All the portfo-
lios following the initial one must fulfill the TCF requirement.
Since SN2 and UN have such a high mean capacity factor,
we do not run cases D and E for TCF = 58%. Having initially
installed 1500 MW at SN2 and UN and then deciding where
to place the next 1500 MW to achieve 58 % capacity factor,
the only choice would be to place all 1500 MW at a loca-
tion with a capacity factor of around 49 %. The minimum
capacity factor for the NVE and S&S locations, respectively,
is 54.6 % and 52.3 %. Hence, there exists no solution for the
first iteration of the sequential algorithm when the target ca-
pacity factor is 58 %.
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Figure 2. Correlation matrices for the hourly capacity factor at the 20 NVE regions and S&S locations. The dashed red lines split the
locations according to the grouping of Tables 1–2.

3.4 Underlying assumptions

For the analysis that follows, we make some simplifying as-
sumptions that we want to make explicit. We refrain from
imposing the current limitations on the Norwegian transmis-
sion grid to the optimization problem presented in this paper
because they will likely change over the decades to come. In-
stead, we assume a “copper-plate Norway”, where the power
grid is fully connected so that power production in the Bar-
ents Sea can have beneficial diversifying effects on the total
power production in the event of no wind in the North Sea,
for instance. Some offshore wind farms may not even pro-
duce energy for the Norwegian energy system but exclusively
export energy to other European countries. The copper-plate
assumption simplifies the problem but is not essential to the
methodological approach that we propose. One alternative
could be to assume no or a very limited transmission between
the north and the south of Norway, which is more realistic
today. This would then split the problem into two separate
parts, on which we can apply the same analytical strategy
separately, where the government distributes the total amount
of installed power, 30 GW, say, between the two regions.

We do not explicitly take into account any energy system
losses, such as electrical resistance losses, converter losses,
maintenance losses, wake losses and auxiliary power con-
sumption. Electrical resistance losses depend on the length
of the cable. For the S&S locations, distance to shore is
penalized in calculating the wind power suitability score.
Hence, this is part of the decision of candidate selection.
It is, however, not part of the placement of turbines. Wake
losses are also important and would affect the total produc-
tion from a wind farm, especially the larger ones (Barthelmie
et al., 2009; Ghaisas et al., 2017). Quantifying wake losses
would involve making assumptions about how the turbines

are placed within a wind farm, but we focus on a more macro
level. Our analysis, however, concerns the distribution of
turbines across wind farms. Technology and innovation ad-
vancements in wind turbine and installation strategies may
also reduce the effect of wake losses as we approach 2030
and beyond.

The wind power generated from the offshore fleet will
enter an existing power market and become a portion of
the higher-level electric power portfolio. One could imag-
ine optimizing the allocation of wind power for this port-
folio considering the current power sources. Hydroelectric
power is the dominating energy source for producing elec-
tricity in Norway today (88.2 % in 2022; Statistics Nor-
way, 2023). While hydropower can usually be controlled by
opening or closing the flow of water, wind power is a non-
dispatchable energy source. It must be utilized instantly un-
less stored (e.g., charging batteries, producing hydrogen or
pumped-storage hydroelectricity). Therefore, it is appropri-
ate that Norwegian hydropower will adapt to wind power
rather than vice versa. Although combining wind and hydro-
electric power is an interesting case study, we focus exclu-
sively on the wind power portfolio.

Investment and maintenance costs will be primary drivers
of offshore spatial planning. Costs will undoubtedly vary
across different sites. For the S&S locations, factors that
affect costs are implicitly regarded through the suitability
score of each region. The suitability scores consider cost-
increasing factors such as ocean depth and distance to shore,
which are especially important for the investor actor’s suit-
ability score (Solbrekke and Sorteberg, 2023). After select-
ing the candidate locations, we only optimize the portfolios
based on wind power resources and do not consider costs.
A key parameter for a cost–benefit analysis is the price of
electricity, which is difficult to forecast far into the future.
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Historical prices are irrelevant since 30 GW of wind power
will nearly double the Norwegian electricity production (not
considering changes in supply from other sources). A further
analysis considering prices and costs may be a way to take
this further, but it is outside the scope of this paper.

4 Results

In Fig. 3 we have plotted the optimal portfolios, with port-
folio standard deviation on the x axis and portfolio capacity
factor on the y axis, where the color distinguishes the two
sets of locations we consider. In addition to the cases, we
have included single-location portfolios as colored dots, i.e.,
portfolios with all turbines placed at one location, even if this
violates the size constraints. These dots are simply the hourly
mean and standard deviation of the capacity factor at each lo-
cation. The curves are for case A with values of the capacity
factor target between 56 % and 65 %. Since case A has the
mildest restrictions, the curves represent the minimum stan-
dard deviation possible for this range of target values. These
curves are called the efficient frontiers in modern portfolio
theory. We note that the size of the diversification effect is
large. Distributing wind turbines across multiple sites cuts
the portfolio standard deviation nearly in two, from approxi-
mately 40 % to approximately 20 %, compared with collect-
ing all turbines in a single location. The minimum standard
deviation portfolios based on the NVE and S&S have stan-
dard deviations of 20.5 pp and expected capacity factors of
59.5 % and 58.9 %, respectively. Vestavind F has a mean ca-
pacity factor of 59.8 %, which is quite close to 59.5 % of
the NVE minimum standard deviation portfolio and a cor-
responding standard deviation of 41.3 pp. Compared to the
36 % reduction found by Drake and Hubacek (2007), we find
a potential geographical diversification effect of 50.4 % from
placing all power at Vestavind F to the minimum standard
deviation portfolio of the NVE locations at TCF = 59.8%, in-
dicated by the blue arrow in Fig. 3.

For financial investments, intuition says a higher risk
should give a higher potential return. In our case of wind
power production, however, we see that the highest-power-
producing locations also have the lowest standard deviations.
The efficient frontier curves in Fig. 3 illustrate this point on
a portfolio level. As the target capacity factor decreases, the
standard deviation decreases to a point (around TCF = 59 %),
where it turns. Decreasing the target capacity factors be-
yond this point will increase the portfolio standard deviation.
Therefore, the portfolios for case A at 58 % have a higher
standard deviation than the corresponding at 60 % and should
never be chosen. The same effect is present in case C, going
from 58 % to 60 %. The diversification effect on the portfo-
lio standard deviation is strong, so the best portfolios must
include some relatively high- and low-producing locations.
However, to achieve a 58 % capacity factor, the portfolio
must consist of more low-mean locations with a higher stan-

dard deviation. The reason for this U-turn is the lack of a risk-
free asset among the candidate locations. There is no equiv-
alent to placing capital in the bank, so to speak, at a risk-free
interest rate in wind power production, which is necessary
for a monotonically increasing efficient frontier.

Case A has fewer constraints than any other scenario and
should give the portfolio with the lowest standard deviation
for the same capacity factor target. We can see from Ta-
ble 3, presenting summary statistics for the different portfo-
lio cases, and Fig. 3 that this is the case. Without any con-
straints on the number of locations, case A tends to have
many wind farms, ranging from 11 to 17 across all capac-
ity factor targets and location sets. Table B1 shows the actual
number of turbines per wind farm location, and the turbines
for case A are spread out all over NEZ, although less so for
the 62 % target capacity factor cases. It is relevant to com-
pare case A to the sequential build-out case D, as both have
no restrictions on the number of wind farms. The number of
wind farms for these cases is similar. However, we have small
wind farms ranging from 4 to 63 turbines. Restricting the op-
timization problem to five locations (cases B, C and E) seems
to avoid this issue because they result in the minimum num-
ber of 158 turbines at one location. We impose restrictions
on the maximum number of turbines for the different loca-
tions. The largest NVE farm is 527, while, for S&S cases,
the 500-turbine upper limit is met in 6 of the 13 scenarios.

For cases B, C and E, we build five wind farms, and in
cases B and E, UN and SN2 are required to be included.
In terms of standard deviation, the ascending order of these
cases should always be C–B–E. This is because case C has
the fewest requirements. It does not need to include UN or
SN2. Case B has to include UN and SN2, but we can build
as few turbines as we want there. For case E, we must have
at least 1500 MW (100 turbines) installed capacity on both
UN and SN2, as this is the initial portfolio. From Table 3 and
Fig. 3, we see that the ascending order holds, but for capacity
factor 62 %, cases B and E have the same standard deviation
up to the accuracy of the table. Looking at the exact distribu-
tion of the 2000 turbines, presented in Appendix Table B1,
we see that the portfolios are exactly the same for the NVE
locations but with minor differences for the S&S locations.

For the sequential build-out in case D, we have plotted
the decreasing portfolio standard deviation as a function of
the sequentially increasing installed capacity in Fig. 4. We
have included the standard deviation of case A for the re-
spective setups as dashed horizontal lines, representing the
lower threshold of what is possible to achieve. The num-
bers correspond to the number of wind farms included in
the portfolio at the given iteration. The diversification ef-
fect is apparent. As expected, the portfolio standard devia-
tion decreases rapidly as the number of locations increases,
converging towards an asymptote. Building around 5–7 wind
farms achieves a high diversifying effect on the standard de-
viation. In fact, with only three locations for the NVE case
with a target capacity factor of 60 %, the reduction in stan-
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Figure 3. Portfolios summarized by portfolio capacity factor and standard deviation in percentage points (pp) for the NVE and S&S locations.
The dots are one-location portfolios, while the letters represent the different-case portfolios for capacity factor targets 58 %, 60 % and 62 %.
The curved lines are efficient frontiers for case A, i.e., optimal portfolios for a finer sequence of capacity factors from 56 % to 65 %. The blue
arrow indicates a 50.4 % reduction in portfolio standard deviation from placing all turbines at Vestavind F to the minimum standard deviation
portfolio of the NVE locations for case A with TCF = 59.8%.

Figure 4. Standard deviation (pp) as a function of installed capacity (GW) for sequential build-out in case D, colored by target capacity
factor and panels by candidate location set. The numbers give the number of wind farms at each iteration. The dashed lines are the standard
deviations for the corresponding portfolios for case A.

dard deviation compared to placing all turbines at Vestavind
F is roughly the same as what Drake and Hubacek (2007)
found (37.8 %). This estimate is conservative as the target
capacity factor is lower at Vestavind F compared to the 60 %
target. A supplementary animation for case D at 60 % tar-
get capacity factor for the NVE regions, showing the turbine
distribution on a map for each iteration, is available on the
GitHub repository associated with the article (see the data
availability statement). Remember that the initial portfolios
with only two locations (UN and SN2) are not optimized;
i.e., the weights are not estimated but fixed to 0.5 and 0.5.

Therefore, the initial portfolio does not fulfill the target ca-
pacity factor constraint. For the 62 % cases, we see that after
having installed 16.5 GW at 11 locations and 18 GW at 12
locations, we do not include new NVE and S&S locations,
respectively. It is better to extend the existing ones. At 60 %,
the corresponding numbers are 27 GW at 14 and 22.5 GW
at 13 locations. We can also see from Fig. 4 that the portfo-
lio standard deviation approaches the value of case A with a
negligible difference, and for 60 % NVE, it reaches it exactly.
Note that case E does not have the same standard deviation
as the five wind farms in Fig. 4, because at that point in the
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Table 3. Summary of the different wind farm portfolios for the two sets of potential locations, cases, expected capacity factor (CF) and the
standard deviation (SD) of the portfolio given in percentage points (pp). The number of wind farms (No. WF) with turbines and the smallest
(Min turb.) and largest (Max turb.) wind farm. The CF 5 % and 95 % columns are the 5th and 95th percentiles of the portfolio capacity factor,
respectively.

SD Min Max CF
TCF Case (pp) No. WF turb. turb. 5 % 95 %

NVE

58 %
A 21.0 12 20 333 22 % 91.4 %
B 22.5 5 300 479 19.6 % 95.5 %
C 22.1 5 283 468 20.5 % 94.6 %

60 %

A 20.5 15 25 333 24.3 % 91.9 %
B 22.8 5 158 495 20.3 % 98.5 %
C 21.7 5 309 526 22.3 % 95.2 %
D 20.6 14 11 321 24.2 % 91.9 %
E 23.4 5 279 522 19.3 % 100 %

62 %

A 22.6 11 43 510 22.2 % 94.8 %
B 24.1 5 183 523 19.7 % 100 %
C 23.1 5 276 525 21.2 % 98 %
D 22.9 11 63 527 21.7 % 95 %
E 24.1 5 183 523 19.7 % 100 %

S&S

58 %
A 20.7 17 4 311 22.7 % 91.1 %
B 22.6 5 268 471 18.6 % 95.3 %
C 22.1 5 348 434 20.7 % 94.3 %

60 %

A 20.7 15 14 246 24 % 92.2 %
B 23.1 5 179 500 19.6 % 99 %
C 22.0 5 316 500 21.8 % 95.7 %
D 20.8 13 50 222 23.8 % 92.5 %
E 23.4 5 191 500 19.1 % 99.9 %

62 %

A 22.6 11 59 451 21.9 % 95.4 %
B 24.6 5 218 500 18.2 % 100 %
C 23.5 5 265 500 20.6 % 100 %
D 22.9 12 43 495 21.3 % 95.6 %
E 24.6 5 262 500 18.3 % 100 %

build-out, UN and SN2 have a minimum of 20 % of the in-
stalled turbines each, while, for case E at 30 GW, they are
only required to have 5 %.

We see in Fig. 3 that the diversification effect of 50.4 %
would have been nearly the same if we compared it against
the S&S efficient frontier for case A. Having the same num-
ber of locations and similar box constraints for the wind farm
locations, we can also compare the portfolios between the
two sets of locations. From Fig. 3 and Table 3, the NVE port-
folios outperform the S&S portfolios case by case in terms
of variance for the most relevant capacity factors 60 % and
62 %, but the differences are slight. The minimum standard
deviation on the efficient frontiers is the same, but the NVE
has a higher capacity factor at that point on the curve. For ca-
pacity factors below this minimum standard deviation port-
folio, the S&S locations have lower standard deviations for
case A and almost the same for cases B–C. The only notable
case in terms of robustness is case B as it has a lower stan-
dard deviation at 58 % than at 60 %. Above 62 %, the efficient

frontier of S&S lies above the NVE with a large difference
at 65 %. This is because, at 65 %, we approach the maximum
capacity factor of the NVE regions (65.6 %). At the same
point, S&S still has three locations well above 65 % and thus
has a higher potential for diversification.

We have included a sensitivity analysis in the choice of
temporal scale for the NVE locations under case A at a target
capacity factor of 60 %. The temporal scales considered are
hourly, daily, weekly and monthly. The number of turbines
per NVE candidate location has been aggregated to the five
NVE regions (from northwest to southeast), resulting in Ta-
ble A1. Aggregating to lower temporal scales increases the
dependence between different sites, implying that we need
a longer distance between wind farms to obtain diversifica-
tion effects. Since we keep the candidate locations fixed, the
turbines are spread over fewer locations at lower temporal
scales. For more details, see Appendix A.

As the Norwegian Government has decided to start build-
ing wind farms at SN2 and then UN, they currently have
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a sequential build-out strategy. It is interesting to compare
this to a global optimization scenario where the perspective
is how the offshore wind power portfolio looks when all is
said and done, i.e., when all the offshore areas for the 30 GW
wind power are settled. We have already seen that the stan-
dard deviation of the sequential case D approaches that of A,
but the distribution of the turbines is also essential. Compar-
ing case A to case D in Table B1, they seem very similar in
terms of where to build the wind farms. In most cases, where
a different location is selected, it is a neighboring location.

We note that UN is not included in case A for portfo-
lios with a capacity factor above 58 % (Table B1). At 62 %,
cases A and D have selected the same locations except for
UN (Vestavind F/S&S 14). Interestingly, in the iterations
of the sequential build-out, we never build any turbines at
UN except for the 100 we started with (Tables B2–B3 in
the Appendix). In fact, in all the cases where UN is not re-
quired (cases A and C), we do not build any turbines there
if TCF > 58%, suggesting that UN is likely not a highly suit-
able location when only concerned with minimizing the stan-
dard deviation and under our other assumptions. On the other
hand, SN2 is included in all S&S A cases and NVE cases ex-
cept the 58 % capacity factor. From Table B1, we can also
see that SN2 is included in all cases when TCF = 62%.

For the other locations, Sønnavind A/S&S 18 and Ves-
tavind A/S&S 10 stand out as locations selected in most
cases. These location pairs are almost the same in both sets.
Sønnavind A/S&S 18 has the highest capacity factor and
among the lowest standard deviations, making it an attrac-
tive location. Vestavind A/S&S 10 is likely included due to
its diversification effect. Among the S&S locations, S&S 10
is far from the central cluster off the west coast and the fur-
thest away from UN for cases where this is mandatory. The
latter also holds for the NVE region. Based on the correlation
matrices and with a maximum of five wind farms, choosing
one location from each of the five regional groups seemed
natural to obtain the most considerable diversification effect.
For cases B, C and E, such a clear pattern is not seen. We al-
ways place one or two wind farms in the northern and west-
ern groups. If two wind farms, they are always the ones that
are farthest away from each other (Nordavind A and D, Ves-
tavind A and F, S&S 1 and S&S 6, S&S 10 and S&S 14). In
the south, Sørvest F/S&S 16, Sønnavind A/S&S 18 or both
are included. There is a tendency to follow the correlation
matrix blocks (see Fig. 2) for the 60 % case C, where we get
two farms in the north, one in the northwest, one in the west
and one in the south. At 62 %, for the same case, turbines are
placed at the two farms in the south, probably to achieve the
capacity factor requirement.

One interesting point is that for the 60 % capacity factor
case D, the first selected location S&S 8 and Nordvest C, all
and almost all of the 100 new turbines placed in that itera-
tion are put at the new site (see Tables B2–B3), respectively.
Choosing these locations and placing virtually all new tur-
bines there pushes the capacity factor from 62.6 % to 60 %.

We do not build any more turbines at S&S 8; for Nordvest
C, only three turbines follow the initial 98. This observation
indicates that these selected locations in the first iteration are
suboptimal for minimizing the variance, as the procedure has
to assign turbines to them to meet the expectation constraint.
For comparison reasons, we keep the strict expectation con-
straint, but one could imagine a different approach (e.g., a
gradual decrease from the initial 62.6 % capacity factor to
the target).

5 Concluding remarks

We have shown how to adapt modern portfolio theory to the
challenge of allocating offshore wind turbines across a range
of suitable wind farm regions. The constrained optimization
due to the limited area makes the resulting portfolios more
sensible. Limiting the number of wind farms has not been
done in a wind farm portfolio context, likely because most
earlier studies have not focused on offshore wind. When not
using a maximum number of wind farms, our results indi-
cate that the Norwegian Government’s apparent strategy of
sequentially opening new offshore regions for wind power
deployment may lead to a suboptimal final solution to the
allocation problem, but it is seemingly very close or even
equal to the global solution. However, a step-by-step build-
out may, after all, be a good idea, as it likely provides better
intermediate portfolios on the way towards 30 GW installed
capacity.

The NEZ has considerable potential for obtaining a di-
versified offshore wind power portfolio. Among our can-
didate locations, we found a clear block structure in the
wind power correlation matrices (Fig. 2). Spreading the wind
farms across these blocks dramatically reduces the total vari-
ation. The maximum potential diversification effect we found
was 50.4 % for a capacity factor of 59.8 %. From the sequen-
tial build-out case, we found that the diversification effect
was also large after including only a few locations (5–7).

Deciding where to place wind farms and how to construct
an investment portfolio are two different problems. We have
highlighted some of these fundamental differences and how
these can be taken into account or can be seen in the results
of a modern portfolio analysis. The U-turning efficient fron-
tier could also occur for financial investment portfolios, but
in such applications, a risk-free interest rate is usually in-
cluded in the pool of assets. A consequence of the U-turn is
a unique minimum standard deviation portfolio that is not an
extremity in the expected output variable.

The 20 areas that the Norwegian Water Resources and En-
ergy Directorate (2023) has identified seem reasonable from
our perspective. Using the wind power suitability scores of
Solbrekke and Sorteberg (2023) to identify 19 locations and
adding Utsira Nord resulted in a similar pool of candidate
locations, with some distinctions. The performance of the
resulting portfolios for the two candidate location sets was
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satisfactory. The NVE portfolios did slightly better for low-
variance portfolios and S&S slightly better for high-capacity-
factor portfolios in the case with the fewest restrictions. In
any case, the differences are minor and indicate that our re-
sults are robust against the selection of candidate locations.

We do not expect the Norwegian Government to decide
where to place each turbine in the NEZ solely based on this
work. Given the points already discussed, this paper merely
contributes to the discussion regarding the spatial planning
of offshore wind farms in the NEZ. Getting reliable cost es-
timates for building and maintaining offshore wind farms at
different locations should be part of such a decision. It could
also be that the parameters we have optimized the portfo-
lios under do not correspond with the risk aversion of the
decision-makers. Accepting a more volatile wind farm port-
folio with lower infrastructure investments seems like a rea-
sonable compromise.

Appendix A: Sensitivity to temporal resolution

In this section, we have performed a sensitivity analysis of
the choice of hourly temporal scale. One could argue that
other timescales are more relevant, and the turbine distribu-
tion will depend on the choice of scale. We have aggregated
the NORA3-WP hourly capacity factor data at the different
NVE locations to daily, weekly and monthly averages and
calculated the empirical covariance matrices on the various
scales. The mean capacity factor per location (µ̂) will not
change due to this scaling. The corresponding correlation
matrices are presented in Fig. A1. We then solve the turbine
distribution problem using modern portfolio theory for NVE
case A with target capacity factor of TCF = 60% and sum the
total number of turbines per NVE region. The number of tur-
bines per region is presented in Table A1.

Clearly, the distribution of turbines depends on which
timescale a decision-maker is interested in minimizing the
variance. Aggregating from an hourly scale will increase
the correlation of wind power production between sites (cf.
Fig. A1) and require larger distances between wind farms
to obtain diversification effects. This results in concentrat-
ing the 2000 turbines on fewer locations, which can be seen
in the final column of Table A1. Hourly and daily will be
qualitatively very similar, but the diversification potential is
significantly reduced for the Norwegian offshore wind power
portfolio at weekly and monthly scales.
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Table A1. Number of turbines per NVE region from case A for the NVE locations at different temporal resolutions.

Region North Northwest West Southwest Southeast Number of wind parks

Hourly 723 347 333 303 294 15
Daily 756 312 400 234 298 12
Weekly 905 146 586 57 306 10
Monthly 1026 113 654 0 207 7

Figure A1. Correlation matrices for capacity factor for the NVE locations at different timescales: hourly, daily, weekly and monthly.
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Appendix B: Additional tables

In this Appendix, we have included tables with further details
about the allocation of turbines for the different cases and
candidate locations.

Table B1. Number of turbines per location for the portfolio cases (A–E) and target capacities (58 %, 60 %, 62 %), with NVE locations at the
top and S&S below. The far right column contains the maximum turbine constraints per location.

TCF 58 % 60 % 62 % Max

Case A B C A B C D E A B C D E turb.

N

Nordavind A 333 479 468 269 477 416 266 150 319 135 998
Nordavind B 125 146 146 522 174 523 176 523 523
Nordavind C 118 100 100 67 63 246
Nordavind D 266 461 457 208 463 381 205 102 276 89 850

NW
Nordvest A 204 204 309 202 148 128 2639
Nordvest B 20 41 35 802
Nordvest C 296 451 443 102 101 486 1303

W

Vestavind A 194 407 368 208 328 440 410 310 440 440
Vestavind B 56 37 11 697
Vestavind C 243
Vestavind D 169 169
Vestavind E 63 345
Vestavind F 74 300 349 158 100 279 183 100 183 465

SE

Sørvest A 25 12 43 340
Sørvest B 509
Sørvest C 413
Sørvest D 159 218 160 138 132 284
Sørvest E 32 170 152 238
Sørvest F 309 28 495 133 304 170 361 470 188 361 631

SW Sønnavind A 180 283 333 526 321 409 510 493 525 527 493 677

N

1 229 424 399 191 436 386 180 109 99 500
2 171 171 146 161 459 159 500
3 4 500 500
4 68 129 500 165 176 500 500
5 34 500
6 311 429 434 246 404 352 213 79 61 500

NW
7 176 194 316 179 153 265 136 500
8 8 72 100 401 500
9 221 408 416 25 500

W

10 143 232 481 446 222 408 291 500 405 280 500 500
11 45 348 500
12 500
13 14 500
14 81 268 179 100 191 218 100 262 500
15 105 155 128 193 160 500

SE
16 91 471 137 500 167 500 177 297 371 167 280 500
17 43 112 50 162 124 500
18 87 403 204 500 221 451 485 500 495 458 500

SW
19 65 157 165 59 43 500
20 186 22 500
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Table B2. Number of turbines for each iteration of the sequential build-out in case D for the different targets (60 %, 62 %) and candidate
location set NVE.

Set – Installed Location IDs
TCF power (GW) 13 19 7 2 20 4 5 8 1 17 3 6 9 14

NVE/60 %

3 100 100
4.5 100 102 98

6 100 133 98 70
7.5 100 133 101 135 31

9 100 133 101 135 71 60
10.5 100 133 101 135 104 76 52

12 100 133 101 135 113 102 61 55
13.5 100 133 101 135 142 102 61 66 60

15 100 133 101 135 154 114 77 81 85 19
16.5 100 133 101 135 171 114 91 95 102 34 23

18 100 133 101 135 187 118 107 110 122 49 39
19.5 100 133 101 135 203 129 122 124 142 64 47

21 100 133 101 135 219 141 138 138 161 78 56
22.5 100 133 101 135 236 152 152 152 181 93 64 2

24 100 133 101 135 253 162 162 165 199 109 72 9
25.5 100 133 101 135 270 173 172 178 218 124 80 15 1

27 100 133 101 135 287 183 182 188 236 136 88 22 4 4
28.5 100 133 101 139 304 194 192 198 252 148 95 28 8 8

30 100 133 101 146 321 205 202 208 266 160 100 35 11 12

13 19 2 20 8 5 4 1 17 18 3

NVE/62 %

3 100 100
4.5 100 142 58

6 100 142 103 55
7.5 100 142 112 78 69

9 100 142 112 131 73 42
10.5 100 142 112 183 91 42 30

12 100 153 112 220 113 42 38 23
13.5 100 153 112 244 128 46 48 35 33

15 100 153 112 267 144 54 59 49 37 25
16.5 100 153 112 294 161 60 59 59 48 40 14

18 100 153 112 321 178 68 59 72 59 55 25
19.5 100 153 116 347 194 76 59 82 70 70 34

21 100 153 124 373 211 83 59 90 81 84 42
22.5 100 153 133 399 227 91 63 97 92 99 46

24 100 157 142 425 244 98 68 105 101 111 50
25.5 100 165 150 450 260 105 73 112 109 122 53

27 100 173 159 476 277 113 79 120 116 132 56
28.5 100 180 168 501 294 120 84 127 124 142 60

30 100 188 176 527 310 128 89 135 132 152 63
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Table B3. Number of turbines for each iteration of the sequential build-out in case D for the different targets (60 %, 62 %) and candidate
location set S&S.

Set – Installed Location IDs
TCF power (GW) 13 19 7 2 20 4 5 8 1 17 3 6 9 14

14 16 8 4 10 1 19 18 6 7 2 15 17

S&S/60 %

3 100 100
4.5 100 100 100

6 100 129 100 71
7.5 100 132 100 109 59

9 100 160 100 109 74 57
10.5 100 167 100 109 87 74 64

12 100 167 100 129 93 113 74 24
13.5 100 167 100 129 100 113 74 62 55

15 100 167 100 129 112 113 74 92 71 42
16.5 100 167 100 129 128 113 75 114 79 56 39

18 100 167 100 129 128 113 83 117 94 69 53 47
19.5 100 167 100 129 136 113 94 135 110 84 71 61

21 100 167 100 129 148 118 104 153 125 98 86 72
22.5 100 167 100 129 160 128 114 168 140 112 96 82 5

24 100 167 100 129 173 138 124 178 155 125 106 91 14
25.5 100 167 100 129 185 149 134 189 169 139 116 100 23

27 100 167 100 129 197 159 144 200 184 152 126 109 32
28.5 100 167 100 129 209 170 155 211 198 166 136 118 41

30 100 167 100 129 222 180 165 221 213 179 146 128 50

14 16 4 18 10 7 2 15 1 6 19 17

S&S/62 %

3 100 100
4.5 100 140 60

6 100 140 113 47
7.5 100 140 117 65 78

9 100 140 117 115 83 45
10.5 100 140 117 158 96 45 44

12 100 140 117 185 106 53 68 32
13.5 100 140 117 223 119 57 68 44 32

15 100 140 117 262 134 63 68 58 44 14
16.5 100 140 117 296 149 68 79 70 49 19 13

18 100 140 117 302 163 75 91 77 55 26 18 36
19.5 100 140 118 328 178 83 102 88 61 33 21 49

21 100 140 126 353 193 90 111 99 66 37 24 62
22.5 100 140 135 378 207 98 119 110 72 41 27 74

24 100 140 143 402 222 106 127 120 77 45 31 87
25.5 100 140 151 427 237 113 135 131 82 49 34 100

27 100 149 160 450 251 121 143 141 88 53 37 108
28.5 100 158 168 473 266 129 151 150 93 57 40 116

30 100 166 176 495 280 136 159 160 99 61 43 124

Code and data availability. The NORA3-WP data
(Solbrekke and Sorteberg, 2022) are available at
https://doi.org/10.11582/2021.00068 (Solbrekke et
al., 2021b). The necessary R code and extracted
NORA3-WP data for the 40 locations are published
at https://github.com/holleland/OffshoreWindPortfolios
(https://doi.org/10.5281/zenodo.14709968, Hølleland, 2025)
in agreement with Solbrekke and Sorteberg (2022).
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