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Abstract. We perform a statistical analysis of the occurrence of periods of constant wind speed in atmospheric
turbulence. We hypothesize that such periods of constant wind speed are related to characteristic wind field
structures that, when interacting with a wind turbine, may induce particular dynamical responses. Therefore,
this study focuses on characterizing the constant wind speed periods in terms of their lengths and probability
of occurrence. Atmospheric offshore wind data are analyzed. Our findings reveal that long constant wind speed
periods are an intrinsic feature of the marine atmospheric boundary layer (ABL). We confirm that the probability
distribution of such periods of constant wind speeds follows a Pareto-like distribution, admitting power law
behavior for periods exceeding the large-eddy-turnover time. The power law characteristics depend on the local
conditions and the precise definition of wind speed thresholds. A comparison to wind time series generated
with standard synthetic wind models and to time series from ideal stationary turbulence suggests that these
structures are not characteristics of small-scale turbulence but seem to be consequences of larger-scale structures
of the atmospheric boundary layer and thus are multi-scale. Given the results, we show that the continuous-time
random walk (CTRW) model, as a non-standard wind model, can be adapted to generate time series of the wind
speed whose statistics match the statistics of observed periods of constant wind speed.

1 Introduction

Estimation of the loads experienced by a wind turbine (WT)
is fundamental to decision-making processes during the de-
sign phase of various components of the machine, as well
as for control strategies during its operation. Such estima-
tion is performed through numerical modeling of the inter-
action between the WT and the incoming wind. Therefore,
an accurate description of the wind within the atmospheric
boundary layer (ABL) is essential to correctly calculate the
loads acting on the WT. The International Electrotechnical
Commission (IEC) has defined both the widely used standard
parameters for the characterization of the atmospheric wind
and the models for generating synthetic wind fields used for
numerical estimation of loads on the WT (IEC, 2019). These
IEC standards consider the spectral properties and coherence
of the velocity components of the wind. Nevertheless, such

guidelines are designed to mimic the atmospheric wind in a
computationally efficient way. As a result, some flow features
in the ABL are neglected or simplified in the characteriza-
tion of atmospheric measured data, as well as in the genera-
tion of the synthetic wind fields. Furthermore, during the past
decades, new challenges in the design process of WTs have
emerged (Veers et al., 2019). On the one hand, trends in the
design of modern WTs account for bigger rotor areas and less
rigid structures (i.e., blades) to capture more energy from the
available wind resources. On the other hand, the weight and
material requirements of each component are being pushed
to minimal levels. As a result, new WTs are becoming, in
general, larger and less rigid. Therefore, some of the charac-
teristics of the wind within the ABL that are not addressed in
the IEC standard wind models might become relevant for the
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extra loads that were previously neglected within the design
of smaller and stiffer WTs.

Based on cooperative research with a WT manufacturer,
we hypothesized that one of these features, disregarded by
the IEC guidelines, is the periods of constant wind speed
(CWS) in atmospheric flows. Such periods are defined as the
intervals of time over which the magnitude of the wind speed
remains almost constant within a certain range, limited by a
threshold value. In the following, we first contextualize the
periods of CWS within the general characterization of turbu-
lent features. Afterwards, we discuss the ways in which such
CWS structures may be relevant for a WT.

Concerning the CWS periods as a general feature of the
wind, we should mention that there are relevant and well-
investigated turbulent quantities closely associated with our
definition of CWS periods. This is the case for the persis-
tence phenomenon, which characterizes how long the flow
remains in a particular state before switching to another one.
Persistence times can be inversely related to occurrence rates
of extreme wind speeds or gusts. In this context, the ex-
ceedance statistics proposed by Rice (1944) have been ap-
plied to describe gusts as excursions at which certain thresh-
olds of wind speed are exceeded (Kristensen et al., 1991;
Young and Kristensen, 1992; Manshour et al., 2016). An-
other interpretation of persistence within turbulent flows is
the zero-crossing analysis. In this case, for a zero-mean sig-
nal, the waiting times between two successive crossings of its
zero level are evaluated. Statistical properties of zero cross-
ings have been used to characterize intrinsic turbulent quan-
tities such as the Taylor micro-scale (Narayanan et al., 1977;
Sreenivasan et al., 1983; Kailasnath and Sreenivasan, 1993;
Poggi and Katul, 2010) or the integral length scale (Mora and
Obligado, 2020; Mazellier and Vassilicos, 2008). Analyses
of zero crossings of velocity and temperature fluctuations in
atmospheric turbulent data have been discussed (Cava and
Katul, 2009; Cava et al., 2012; Chamecki, 2013; Chowd-
huri et al., 2020). To summarize, the above-mentioned in-
vestigations showed that the statistical characteristics of the
persistence for experimental and atmospheric data exhibit
power law behavior up to a certain threshold, followed by
log-normal or exponential cutoffs.

It is worth noting that even though the inter-arrival times
of both excursions and zero crossings refer to structures be-
tween particular turbulent states, they do not correspond to
the periods of reduced turbulent amplitudes in which we
are interested. Further details of the differences between
CWS periods and inter-arrival times between excursions and
zero crossings are shown in Appendix A. Nevertheless, the
method and statistics of such persistent events are relevant
to the discussion. Of special interest are self-similar, critical,
or fractal features of turbulence that propose power law be-
havior for the probability distribution of the time intervals
with duration T , which can be formulated as p(T )∝ T −α

(in particular for the limit of large T ). A characteristic fea-
ture of a power law distribution is the absence of an intrinsic

scale, i.e., the probability of observing a realization larger
than ξT is ξ−α+1 times the probability of observing a re-
alization larger than T , independent of the value of T . The
long-tail regime of many distributions occurring in complex
systems is assumed to exhibit power law behavior (Laher-
rere and Sornette, 1998). In the context of wind energy, for
instance, a Pareto distribution has been tested as an extrapo-
lation method to estimate extreme loads on a multi-megawatt
wind turbine generator with a 1-month return period (Dim-
itrov, 2016).

Next, we discuss the potential relevance of an accurate de-
scription of the CWS periods for WT applications, which is
directly linked to the increasing size and flexibility of the
WTs. In the simplest case, such periods of CWS should im-
ply relatively quiescent operating conditions for a WT when
the CWS structure occurs homogeneously in the rotor area.
A more entangled case might occur when resonant or near-
resonant dynamics appear for specific periods of CWS over
which the resonance can be strongly excited. In particular,
for the larger WTs, the CWS periods may be restricted to a
sub-area of the rotor plane. In this case, resonant dynamics
exhibiting 3P oscillations may be amplified. Within this con-
text, recent studies are devoted to interfaces between turbu-
lent and non-turbulent states in atmospheric wind measured
at typical WT heights (Neuhaus et al., 2024). Meanwhile,
numerical and experimental investigations of the laminar–
turbulent transition mechanisms on rotating wind turbine
blades have shown changes in the transition characteristics
over a single revolution, which affect the aerodynamic re-
sponse of the WT (Lobo et al., 2023; Özçakmak et al., 2020).

As a last possible application for WTs, we want to men-
tion that the statistical features of CWS periods may be-
come of interest for probabilistic design methods. Although
the methods proposed by the IEC for estimating WT loads
are mostly deterministic (IEC, 2019), in recent years, prob-
abilistic design methods have been introduced as surrogates
for the design and load assessment of WTs (Abhinav et al.,
2024; Kelma, 2024). Such probabilistic approaches produce
more reliable estimations by considering the explicit cal-
culation of the uncertainties from the operational condi-
tions, aerodynamic models, materials, etc. (Sørensen and
Toft, 2010). Characteristics of the wind are then defined as
stochastic variables within the probabilistic model. Accord-
ingly, broader and more accurate statistical descriptions of
the intrinsic features of the wind inside the ABL account for
a reduction in the uncertainty in the estimated loads and re-
sponses of the WTs.

In this paper, we focus on the periods of CWS as gen-
eral features of turbulence; the discussion of possible im-
pacts on a WT will be done only as side remarks. In particu-
lar, we characterize the statistics of periods of CWS (with a
low level of turbulent fluctuations) from wind measurements
in the ABL. In a preliminary investigation, the method for
the assessment of such events from wind speed time series
was presented, and the first results on the characterization
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of the periods of CWS in terms of their duration and proba-
bility distributions were also reported (Moreno et al., 2022).
Special attention within the characterization was given to the
tails of the distributions, which describe extremely long peri-
ods. Interestingly, we found that the probability distribution
for very long periods shows a power law decay p(T )∝ T −α .
Furthermore, a comparison with wind data generated by an
IEC standard model revealed that the model underestimates
the frequency of occurrence of the extremely long CWS pe-
riods measured in the ABL. In this study, we aim to address
whether the CWS periods are induced by specific orographic
perturbations, whether they are laminar or low-turbulence
structures, and whether they are intrinsic features of a turbu-
lent flow or rather result from large-scale interactions within
the ABL. To characterize the CWS periods, we use data from
offshore wind, as we expect them to have fewer special oro-
graphic effects compared to onshore data, and thus we can
get more general insights into the CWS structure. This is
also the motivation for the comparison of our results with
ideal turbulent data from a free-jet experiment. Furthermore,
a stochastic wind field model for WT simulations is pre-
sented as a surrogate approach to incorporate the statistics
of long CWS periods from turbulence in the ABL.

The paper is structured as follows: Sect. 2 restates the
method for measuring the periods and describes the atmo-
spheric wind data to be analyzed. In Sect. 3, the results of
the statistical characterization of the periods from the atmo-
spheric data are shown. In Sect. 4, we compare the results
from ABL data to those from two different data sets, i.e., the
IEC standard wind model and experimental ideal turbulence.
In Sect. 5, we present our conclusions and potential future
work.

2 Methodology and data

2.1 Definition of a period of CWS

Following Moreno et al. (2022), a CWS period (Tc) is defined
as the time over which the magnitude of the wind speed u(t)
exhibits low-amplitude fluctuations enclosed within certain
thresholds. A period Tc is depicted in Fig. 1. Over the length
of Tc, the wind speed remains inside the constant speed range
(CSR). The CSR is defined as ut∗ ± ε, where ut∗ is the ref-
erence speed value at t = t∗, and ε is the maximum accept-
able magnitude of the fluctuations around ut∗ . In Fig. 1, the
horizontal red bars illustrate the thresholds that delineate the
CSR. It should be noted that the CWS periods are not strictly
laminar but are periods with a smaller amplitude of turbu-
lence; see also the spectral analysis in Sect. 3.

In the following, the method for measuring the length of a
period Tc at a given time step t∗ is described in detail. The
goal is to count the number of N consecutive time steps, in-
cluding t∗, for which their wind velocity u(t) is contained
inside the CSR. For that, the reference speed ut∗ = u(t∗) and
the corresponding CSR, ut∗±ε, are defined. Next, the veloc-

Figure 1. Schematic representation of a CWS period (Tc) measured
from an exemplary wind speed time series u(t). The constant speed
range (CSR), ut∗ ± ε, specifies the limits for the accepted level of
turbulence within a period Tc. The CSR is shown by the horizontal
red bars.

ities at the time step t∗+ i for i = (1,2,3. . . ,∞) are eval-
uated and counted. The counter Ñ+ for the evaluation of
ut∗+1 = u(t∗+ i) is then defined as

Ñ+ =

{
Ñ+ =+1 if (ut∗ − ε)≤ ut∗+1 ≤ (ut∗ + ε)

end otherwise.
(1)

Note that only consecutive points are counted in Ñ+. The
count is concluded once the value of u(t∗+ i) exceeds ei-
ther the bottom limit or the top limit of the CSR. So far, only
points in the forward direction (+) from t∗ are evaluated. The
same algorithm is subsequently applied to count the number
of points Ñ− in the backward direction from t∗. In this case,
values of i = (−1,−2,−3. . .,−∞) are considered to evalu-
ate ut∗+1 in Eq. (1). Finally, the total number of consecutive
pointsN measured at t∗ results from the sum of Ñ+ and Ñ−,
which are independently counted in their corresponding di-
rections. The length of the period Tc at t∗ is then obtained
by multiplying the total N by the size of the time step δt .
A period Tc is estimated for every time step in the time se-
ries u(t). In the case of overlapping periods, only the longest
period measured is recorded. By doing so, a recounting of
events is avoided.

In Moreno et al. (2022), the threshold ε for fixing the CSR,
ut∗ ± ε, was randomly selected (e.g., 0.2–0.4 m s−1), and the
method described in Eq. (1) was applied over the actual mea-
surements u(t). However, limitations of the method appear
when analyzing large data sets with very different mean wind
speed u and standard deviation σu, which are calculated over
shorter time windows (i.e., 10 min) with respect to the length
of the sample. To introduce a systematic approach, in this
paper, the threshold ε is defined as proportional to the stan-
dard deviation of the wind speed σu. Then, ε to fix ut∗ ± ε is
calculated as

ε = A σu, (2)

where A is a factor, typically A< 1. The value of A can be
chosen depending on the particular application. In the case
of a WT, A might be related to the thresholds for the control
system to operate within different turbulent regimes. In prac-
tice, such thresholds in the operating protocols are commonly
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Table 1. Mean (T c), standard deviation (σTc ), and maximum length
(Tc,max) of the calculated periods Tc at different heightsH . A factor
A= 0.3 is assumed for the estimation of Tc.

H [m] 30 50 70 90

T c [s] 3.6 3.6 3.7 3.6
σTc [s] 3.0 3.2 3.3 3.3
Tc,max [s] 106 147 151 123

defined as a function of the turbulence intensity TI= σu/u.
In Eq. (2) and through this paper, we refer to u and σu as the
mean and standard deviation values calculated over 10 min
periods, unless a distinction is clearly stated.

2.2 Atmospheric wind data

Data from the offshore research platform FINO
(Forschungsplattformen in Nord- und Ostsee) are in-
vestigated. We expect offshore wind to provide a better
representation of undisturbed, or less disturbed, conditions
within the ABL compared to onshore data. Therefore, the
possible effects of onshore orographic conditions on the
CWS structures are diminished.

Specifically, measurements at the FINO1 platform, located
in the North Sea, are used. Records of the wind speed u(t)
were taken by vertically aligned cup anemometers mounted
at different heights H (FINO, 2025). The data correspond to
measurements from January to December 2007, with a sam-
pling frequency of 1 Hz. Measurements at heights H = [ 30,
50, 70, 90]m above the mean sea level are considered. Wind
speed records have been limited to those 10 min periods with
u between 3 and 25 m s−1 due to their relevance for WT oper-
ation. Values of u(t) outside this range have been neglected.
Moreover, to avoid disturbance from the met mast, data for
wind directions between 275 and 350° are not considered.
As an overview of the complete data set, Fig. 2 shows the
mean u and standard deviation σu calculated over individual
10 min periods at H = 90m.

3 Statistics of Tc for atmospheric turbulent data

3.1 Mean, standard deviation, and maximum value of Tc

As a starting point for the statistical characterization of the
measured CWS periods Tc, we discuss their mean duration
(T c), standard deviation (σTc ), and maximum value (Tc,max).
We define Tc,max as a representative value from a set of the
longest periods measured rather than the absolute and unique
longest event. More details follow in Sect. 3.2. We compare
the statistics of Tc at different heights H . A factor A= 0.3
is chosen as an example to define the threshold ε = A σu for
the CSR, ut∗ ± ε. The results are summarized in Table 1.

As a remark, special attention has to be devoted to the
meaning of the statistical moments T c and σTc calculated

from the data. In certain cases, such as those presented in
Moreno et al. (2022), the probability distribution p(Tc) may
lead to non-converging moments, e.g., mean and variance.
Further details are discussed in Appendix B and C. From the
values in Table 1, comparable T c ≈ 4s and σTc ≈ 3s are ob-
tained for the four heightsH . More interesting are the longest
CWS periods measured Tc,max at each heightH . Periods with
lengths up to Tc ≈ 40σTc that correspond to more than 100s
are measured. The specific values of T c, σTc , and Tc,max are
expected to be dependent on the specific local conditions due
to surface interactions. In particular, stronger differences in
the lengths of CWS periods might arise under onshore con-
ditions, as observed by Kelly (2024) when analyzing coastal
flow accelerations at different heights.

3.2 Probability density function of Tc

Next, in the statistical characterization of the CWS periods,
the probability density functions (PDFs) p(Tc) are discussed.
Figure 3 shows p(Tc) for the data in Table 1 for different
heights H . As mentioned before, we focus our attention on
characterizing very long periods of Tc. Therefore we con-
centrate on the tails of p(Tc). For comparability, the values
of Tc are normalized by the longest period measured at each
H ; more precisely, we use a representative value Tc,max of at
least 10 of the longest periods to become more statistically
robust. The values obtained for Tc,max are those summarized
in Table 1.

The normalized PDFs p(Tc) in Fig. 3 are presented on a
log–log scale. In such a representation, a straight line reveals
power law behavior of the form p(Tc)∝ T −αc , with α as the
characteristic exponent. In Fig. 3, the power laws fitted over
the tails of the distributions are shown by solid lines, with the
same color used for the dots at eachH . This indicates that the
PDFs of CWS periods p(Tc) follow a Pareto-like distribution
for large Tc (Laherrere and Sornette, 1998). We emphasize
that the power laws extend over more than 1 decade. The
corresponding exponents α are calculated following the pro-
cedure proposed by Clauset et al. (2009) and described in
Appendix D. The values of α are given in the legends of the
figure.

The variation in the exponent α for all H is within ±6 %.
This shows that the decay p(Tc)∝ T −αc does not depend

on the height. Moreover, since α ≥ 3 for all H , the second-
order statistical moments of Tc converge, and the results pre-
sented in Table 1 provide meaningful information about the
characteristics of the periods Tc (see Appendix B and C).

The power law behavior observed in the distributions
p(Tc) for the offshore data shown in Fig. 3 agrees with
the data obtained for the two onshore sites investigated by
Moreno et al. (2022), as well as for analyses performed on
data from the mast Wettermast Hamburg (2025). This indi-
cates that the CWS structures Tc are not due to the specific
orographic conditions but rather represent general character-
istics of the ABL. However, as the actual values of the statis-
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Figure 2. Wind velocity statistics of atmospheric FINO data at H = 90m. (a) Mean wind speed u. (b) Standard deviation σu. Each dot in
the plots corresponds to a calculated value over a single 10 min period. The dots are chronologically ordered.

Figure 3. Normalized probability density functions p(Tc/Tc,max)
for FINO data at different heights H . The dots illustrate the results
from the FINO data. The solid lines show the power law decay fit-
ting ∝ T−αc . The value Tc,max for each height is defined as the bin
center containing at least 10 of the longest periods measured after
a binning process. The individual distributions are vertically shifted
for better visualization.

tics of CWS periods (i.e., T c, σTc , Tc,max, α) vary signifi-
cantly between data sets, they should be considered individ-
ually for each location.

3.3 Validity of the power law p(Tc)∝ T−αc

To validate the universality of the power law distribution
p(Tc)∝ T −αc , we investigate the effect of the width of the
CSR, ut∗ ± ε. Different values of the factor A, such as ε =
A σu, are evaluated. The results of T c , σTc , Tc,max , and α for
A= [0.2, 0.3, 0.5, 0.8 ] are summarized in Table 2. Figure 4
shows the normalized PDFs p(Tc) in an analogue represen-
tation, as shown previously in Fig. 3.

The tails of the PDFs in Fig. 4 show a clear power law
decay ∝ T −αc for all values of A. This confirms our hypoth-
esis about the Pareto-like distributions of p(Tc) for large Tc,

Table 2. Mean (T c), standard deviation (σTc ), maximum length
(Tc,max), and exponent α of the Tc periods calculated for differ-
ent values of the factor A. FINO measurements at H = 90m are
analyzed.

A [–] 0.2 0.3 0.5 0.8

T c [s] 3.0 3.6 5.3 9.4
σTc [s] 2.2 3.3 6.2 13.4
Tc,max [s] 89 123 294 463
α 4.1 4.0 3.7 3.6

Figure 4. Normalized probability density functions p(Tc/Tc,max)
for FINO data for different values of A. The power law fittings ∝
T−αc are depicted by the solid lines. Measurements atH = 90m are
considered. The value Tc,max for each value of A is defined as the
bin center containing at least 10 of the longest periods measured
after a binning process. The individual distributions are vertically
shifted for better visualization.

which has already been observed in Fig. 3. Interesting to note
is that the exponent α decreases with increasing width of the
CSR or of the factor A.
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Figure 5. Power spectra E(f ) of normalized wind speed u(t) dur-
ing the Tc periods measured at different heights H . The solid gray
line shows a decay E(f )∝ f−5/3. The spectra are calculated for
each period Tc and then averaged over all periods. A time window
of roughly 5 d was considered to extract the definite time series u(t)
during Tc > 10s.

3.4 Power spectra of u(t) during periods Tc

Further in the characterization of the CWS periods, the spec-
tral features of the wind speed u(t) during the CWS periods
Tc address the question of whether the wind speed is strictly
laminar or is instead turbulent with a low degree of turbu-
lence. The turbulent nature of u(t) is now verified by the
power spectra shown in Fig. 5. The spectra E(f ) are cal-
culated from the time series of u(t) extracted during CWS
periods larger than 10s. The time series u(t) are normalized
by the standard deviation σu of their corresponding 10 min
periods. A time window of roughly 5 d was considered to
extract the definite time series u(t) during Tc > 10s. A de-
cay of the form E(f )∝ f−5/3 is obtained for all heights H .
Accordingly, the wind data embedded along the periods Tc
are not laminar flow sections but periods of turbulence with
smaller amplitudes.

4 Comparison to pure turbulent and synthetic wind
data

4.1 Experimental wind-tunnel turbulence and IEC
standard Gaussian Kaimal

In order to investigate whether the CWS periods are typical
features of turbulent flow or are special features of the ABL,
we investigate the statistics of the CWS periods Tc from ex-
perimental wind-tunnel turbulent data, as well as from syn-
thetic data. The experimental data “Lab” were measured by
Renner et al. (2001) in the central region of a free jet, which is
approximately stationary, homogeneous, and isotropic. The
synthetic data “Kaimal” correspond to IEC standard wind
data based on the well-known Kaimal model, with normally

Figure 6. Normalized probability density functions p(Tc/Tc,max)
for the FINO, Kaimal, and Lab data sets. The power law fittings
∝ T−αc are depicted by the solid lines. The value Tc,max for each
data set is defined after a binning process as the center of a bin con-
taining at least 10 of the longest periods measured. Measurements at
H = 90m are considered for FINO. The threshold ε = A σu for the
CSR is calculated with A= 0.3. The values of σu for Kaimal and
Lab are 0.58 and 0.38m s−1, respectively. In this particular case, as
both data sets are expected to be steady, the standard deviation σu
is calculated over the length of the time series.

distributed amplitudes (Kaimal et al., 1972). The Kaimal data
are generated by the National Renewable Energy Laboratory
(NREL) TurbSim package (Jonkman, 2016). Details about
the parameters and characteristics of the two additional data
sets, Lab and Kaimal, are given in Appendix E.

The analysis of the CWS periods from FINO and Kaimal
can be easily compared, as the wind data sets u(t) have com-
parable IEC standard characteristics in terms of mean wind
speed, standard deviation, sampling frequency, and integral
length scale. However, such a match of parameters to atmo-
spheric data is not possible with the experimental Lab data.
To work out the intrinsic features of the periods of CWS from
these different data, we used two different approaches to nor-
malize the calculated Tc.

Firstly, the normalization is done by Tc,max, analogous to
that in Figs. 3 and 4. The resulting normalized PDFs p(Tc)
for the three wind data sets, FINO, Kaimal, and Lab, are
shown in Fig. 6. For its interpretation, it is important to re-
mark that the number of data points given by the sampling
rate and measured time determines the lowest probability that
can be resolved within the PDF. Accordingly, the minimum
value of p(Tc) for Kaimal data in Fig. 6 is explained by the
smaller amount of data in the sample. Oppositely, the high
probability p(Tc) of shorter periods for Lab data is explained
by a much higher sampling of the data.

Clearly different PDFs are observed for the three data sets
in Fig. 6. The most prominent power law p(Tc)∝ T −αc is
found for the FINO data, with a smaller exponent α or more

Wind Energ. Sci., 10, 347–360, 2025 https://doi.org/10.5194/wes-10-347-2025



D. Moreno et al.: Periods of constant wind speed 353

Figure 7. Normalized p(Tc/Tint) probability density functions for
the FINO, Kaimal, and Lab data sets. The values of Tint are 17 and
0.029s for Kaimal and Lab, respectively (Fuchs et al., 2022). For
FINO, Tint is set to 10s, as a representative value of the atmospheric
data. The power law fittings ∝ T−αc are depicted by the solid lines.
The dotted lines show the power law fittings extended over a range
of Tc larger than the range used for calculating the fitting parame-
ters.

heavy-tailed probabilities. For the Kaimal and Lab data, a
power law is questionable. We nevertheless show power laws
as a reference for comparison between the three data sets. In-
terestingly, the range of periods Tc for which the power law
holds for the FINO data extends over a decade, at least from
Tc = 0.1Tc,max to Tc = Tc,max. In contrast, the power law
range for Kaimal and Lab spreads only from Tc = 0.3Tc,max
to Tc = Tc,max.

The normalization by Tc,max shown in Fig. 6 does not pro-
vide any information regarding the magnitude of the CWS
periods Tc. Therefore, a comparison of absolute values Tc
between the three data sets remains inconclusive. Accord-
ingly, we chose a second approach to normalize the CWS pe-
riods so that their lengths are related to the intrinsic lengths
of the flow. The integral length scale Lint is a measure of
the longest correlations. For ideal turbulence, structures that
are significantly larger than Lint are not to be expected. For
meteorological wind data, the problem arises that at lower
frequencies, no white noise (i.e., zero correlation) is present,
so larger structures than Lint are expected (Sim et al., 2023;
Larsén et al., 2016). Thus, we now normalize the periods
Tc by the large-eddy-turnover time Tint = Lint/u (Monin and
Yaglom, 2007), where u is calculated over the full time series
for Kaimal and Lab data. The resulting PDFs p(Tc) after the
second normalization approach are shown in Fig. 7.

Figure 7 shows that the FINO data have significantly
longer CWS periods Tc. It is observed that the maximal CWS
event of the data from the Gaussian Kaimal model, Tc ≈ Tint,
is around 100 times more frequent for the FINO data than for
the other two data sets. Assuming the extended power law
tails for Kaimal and Lab depicted by the dotted lines and

better visualized in the zoomed plot, a period Tc ≈ 10Tint
would be around 104 times less probable in the Kaimal and
Lab data compared to the measured FINO data. From the 1-
year FINO data, we measured 15 events Tc ≈ 10Tint (with
p(Tc)= 5.7× 10−6). It means that there was an observation
Tc ≈ 10Tint roughly every 24 d. Under the IEC Kaimal Gaus-
sian assumption, this event will appear once every 66×104 d
or 1808 years.

Furthermore, we calculate the standard deviation of the pe-
riods σTc in units of integral lengthsLint. The resulting values
are σTc,Lab = 0.12Lint, σTc,Kaimal = 0.09Lint, and σTc,FINO =

0.31Lint. The estimated values of σTc show in another way
that FINO data tend to have remarkably longer periods com-
pared to Kaimal and Lab data.

4.2 CTRW wind model

We have shown the results of the distributions of CWS peri-
ods p(Tc) in the ABL and their underestimation by the IEC
standard Gaussian Kaimal wind model. Consequently, we fi-
nally show how the observed features of the atmospheric tur-
bulent data can be included in a numeric wind field model.
As a surrogate for the IEC standard Kaimal model, we in-
vestigate non-standard wind velocity time series generated
by the continuous-time random walk (CTRW) model (Klein-
hans, 2008; Ehrich, 2022; Schwarz et al., 2019; Mücke et al.,
2011). The CTRW model generates either Gaussian CTRW-
G ( with G as an abbreviation for Gaussian) or non-Gaussian
CTRW-NG ( with NG as the abbreviation for non-Gaussian)
wind velocity time series. For the CTRW-G, the statistics
of u(t) are entirely Gaussian. On the contrary, the statistics
of u(t) for the CTRW-NG deviate from Gaussianity towards
distributions with heavy tails or higher probabilities of rare
or extreme events.

The CTRW model is based on a skewed Lévy-distributed
stochastic process parameterized by the characteristic expo-
nent αL. The stochastic process defines a time transforma-
tion from the intrinsic scale of the model s to the physical
time t . Such time-scaling transformation allows the genera-
tion of non-Gaussian time series u(t). The characteristic ex-
ponent αL, with 0< αL ≤ 1, specifies the asymptotic behav-
ior of the skewed Lévy distribution. For αL= 1, the resulting
process u(t) is entirely Gaussian. Values of αL→ 0 gener-
ate processes with more pronounced non-Gaussian charac-
teristics. In this case, non-Gaussianity is related to extremely
long waiting times between two successive time steps s. A
very long waiting time in u(s) would then be translated into
a period over which the process u(t) remains constant.

Figure 8 shows an excerpt of u(t) for the Gaussian CTRW-
G and non-Gaussian CTRW-NG realizations. Values of αL =

1 and αL = 0.9 are considered for CTRW-G and CTRW-
NG, respectively. Along the interval between t = 875 and
t = 895s, a period of almost constant wind speed is observed
for the CTRW-NG. For better visualization, a zoomed ver-
sion of the time series is presented in the sub-panel in the
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Figure 8. Excerpt of the wind speed time series u(t) for CTRW-G
and CTRW-NG. A CWS period Tc is visible between 875 and 895 s
in the CTRW-NG. The exponent for the Lévy distribution of the
CTRW-NG is αL = 0.9.

bottom-right corner. Such a structure of the wind, indicated
by the horizontal blue line, agrees with our definition of a
CWS period Tc. The small fluctuations observed within the
CWS period result from the interpolation process between
the intrinsic and the physical times s→ t (Ehrich, 2022).

The fundamentals of the CTRW model as well as further
details on the method for achieving such non-Gaussian fea-
tures are given in Appendix F. The parameters for generating
the time series are provided in Appendix E.

Figure 9a shows the PDFs p(Tc) for the CTRW realiza-
tions and the FINO data. The individual distributions are
vertically shifted for better visualization. The dotted lines
show the Gaussian distributions, with the mean and standard
deviation of the corresponding p(Tc). The gray-shadowed
area illustrates the range of the decay of p(Tc) or slopes α
enclosed by CTRW-G (triangles) with αL = 1 and CTRW-
NG (squares) with αL = 0.9. The distribution of the CTRW-
NG realization shows an overestimation compared to the
FINO data; there is a deviation from Gaussianity towards a
higher probability of very long periods of Tc. This deviation
is visible in Tc ≈ 0.3 Tc,max. On the contrary, the decay of
the CTRW-G is much more pronounced, and the divergence
from the Gaussian distribution is visible only for events
Tc > 0.6 Tc,max. A third realization, CTRW-NG∗ (black cir-
cles), with αL = 0.995 is included. The resulting p(Tc) dis-
tribution for CTRW-NG∗ shows better agreement with the
FINO data. Both distributions, FINO and CTRW-NG∗, lie
inside the gray-shadowed area depicting the slopes enclosed
between the Gaussian CTRW-G and extremely non-Gaussian
CTRW-NG.

Figure 9b shows the resulting exponents α from the decay
p(Tc)∝ T −αc versus the exponent αL from the Lévy distribu-
tion of the CTRW model. The dotted horizontal line depicts
the value of α for FINO in Fig. 9a. As observed, by tuning
the αL parameter of the CTRW model, non-Gaussian real-
izations of u(t) can reproduce the statistics of p(Tc) from
turbulent wind in the ABL. Since the resulting distributions
p(Tc) are quite sensitive to the Lévy exponent αL, a careful
selection of the exponent is required.

5 Conclusions and outlook

We present measurements of the CWS periods (Tc) (periods
with turbulence of a reduced amplitude) from offshore wind
data within the ABL. It is shown that the probability distri-
butions p(Tc) for offshore data exhibit a power law decay
p(Tc)∝ T −αc for very long events (i.e., hundreds of seconds).
This agrees with Moreno et al. (2022), where preliminary
results from onshore cases were reported. However, signif-
icant differences in the values of the exponent α between
offshore and onshore conditions suggest that the lengths of
Tc are indeed influenced by interactions with the surround-
ings. Therefore, the estimated statistics of Tc must be con-
sidered locally for the specific location of interest. Given that
offshore conditions maintain a more unperturbed ABL com-
pared to those onshore, we demonstrated that the periods Tc
are intrinsic features of the ABL rather than structures result-
ing from specific external factors (i.e., mountains, obstacles).
Moreover, the exponent α seems to be quite independent of
the height but changes significantly with the threshold ε. Less
pronounced decays of p(Tc) are obtained with wider thresh-
olds when considering the wind speed to be constant. We
found examples of Tc significantly larger than 100s, which
correspond to spatially extended structures over sizes larger
than 1km, using Taylor’s hypothesis of frozen turbulence.
Such large structures in turbulent wind may be related to
the current hot topic of “turbulent superstructures” (Pandey
et al., 2018; Krug et al., 2020; Käufer et al., 2023).

Based on the spectral properties, we proved the turbulent
nature of the wind speed u(t) during the CWS periods Tc.
This relates our results to the case of the turbulent–turbulent
interfaces (Kankanwadi and Buxton, 2022). However, the
statistics of Tc deviate significantly when comparing differ-
ent turbulent data. Results from experimental homogeneous
isotropic turbulence data suggest that the nature of the pe-
riods Tc is attributed to special structures developing in the
wind inside the ABL. It is still an open question whether
they are caused by special effects of the small-scale turbu-
lence (such as turbulence with or without shear) or whether
they are indeed consequences of larger-scale interactions of
the atmospheric boundary layer, such as phenomena related
to the spectral gap (Larsén et al., 2016).

The frequency of very long events Tc in the ABL is
significantly underestimated by the Gaussian assumptions
in the IEC models. Therefore, the need for an improved
wind model is justified. The continuous-time random walk
(CTRW) model, with its characteristic time mapping (see
Appendix F), is particularly suitable for the incorporation of
the periods Tc measured in the turbulent atmospheric wind.
By tuning the exponent of the intrinsic Lévy distribution, dif-
ferent statistics of very long CWS periods can be obtained.
This surrogate wind model represents an improvement to-
wards more realistic atmospheric wind fields for numerical
simulations. Consequently, results of the WT on the wind
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Figure 9. (a) Normalized probability density functions p(Tc/Tc,max) for the CTRW-G, CTRW-NG, and CTRW-NG∗ and for the FINO
data. The gray area depicts the range of the slopes covered between CTRW-G and CTRW-NG. Measurements at H = 90m are considered
for FINO. The individual distributions are shifted vertically for better visualization. Dotted lines depict Gaussian distributions. (b) Power
law exponents α from p(Tc)∝ T−αc as a function of the characteristic exponent αL from the Lévy distribution of the CTRW model. The
horizontal red line depicts the value of α for the FINO data shown in (a).

when interacting with such disregarded structures might be
better predicted.

From an engineering perspective, very long CWS periods
might be undesirable for the operation of WTs if phenom-
ena such as resonance or critical loading are induced. On the
other hand, they also might be beneficial if conditions such
as constant power production are achieved. Further research
is needed on the detailed effects of CWS periods on loads by
investigating specific WT models.

A very long CWS period might have an increased im-
pact on a WT depending on its spatial location in the plane
of the rotor. The effect of such an event happening in the
outer region of the rotor plane might be higher compared
to the case when it reaches the turbine at the region near
the hub. Accordingly, preliminary investigations (detailed
in Appendix G) suggest that the periods of CWS show a
tendency to be localized at different measurement heights
and, therefore, may become of particular interest for tur-
bines with larger diameters. Future work has to be devoted
to assessing the relevance of the empirically observed power
law behavior of periods of CWS on turbine loading. For
that, the complete statistical parameterization of periods of
CWS, in both the temporal and spatial domains, should be
assessed and improved for the synthetic wind field models
such as the proposed CTRW model (Kleinhans, 2008); the
recently introduced time-mapped Mann model (Yassin et al.,
2023), which can generate long waiting times of u(t) as in
the CTRW model; or the super-statistical model (Friedrich
et al., 2021, 2022) that follows the K62 model of turbulence.
Another interesting aspect for future work would be the

statistical analysis of CWS periods from weather-modeled
data (e.g., the European Center for Medium-Range Weather
Forecasts (ECMWF) and Weather Research and Forecast-
ing (WRF) models). The results would reveal whether such
larger-scale models can reproduce the CWS structures within
atmospheric forecasting.

Appendix A: CWS periods vs. persistence events

In the Introduction (Sect. 1), we referred to the inter-arrival
times of excursions and zero crossings as two general tur-
bulent characteristics within the context of persistence phe-
nomena. Those inter-arrival times might wrongly be assumed
to be intrinsically related to our periods of CWS. As shown
in Fig. A1, fundamental differences arise when comparing
the three events within a turbulent signal. In Fig. A1, a zero-
mean and normalized-by-standard-deviation signal (u(t)−
u)/σu is plotted. The thresholds±U are fixed for considering
the excursions of the signal. The blue area depicts the range
contained inside these thresholds. The excursion events are
depicted by blue crosses. Similarly, the zero crossings are
depicted by red crosses. The gray rectangles depict the mea-
sured CWS periods Tc > 10s. We assume ε = 0.3 for mea-
suring Tc.

In Fig. A1, the length of selected inter-arrival times be-
tween the excursion and zero-crossing events and the peri-
ods Tc are plotted. The lines follow the color code in panel
(a). The selected inter-arrival times are only those longer than
10s, as was assumed for the periods Tc. As an additional cri-
terion for the excursions (blue lines), only inter-arrival times
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Figure A1. Illustration of excursions, zero crossings, and CWS periods (Tc). Panel (a) is a normalized signal (u(t)−u)/σu. The blue crosses
depict the excursions, considering ±U as thresholds. The red crosses correspond to the zero crossings. The gray rectangles mark periods of
CWS Tc > 10s. The blue and red lines in (b) depict a selection of the resulting inter-arrival times for the excursion measured at the upper
limit+U and the zero crossings, respectively. Only the inter-arrival periods longer than 10s are shown. For comparison, the periods Tc > 10s
are re-plotted as black lines.

between successive excursions at the upper limit+U are con-
sidered (i.e., events at −U are neglected). Note that if all the
inter-arrival times were plotted without any distinction, then
the individual blue and red lines would overlap, covering the
entire length of the time series.

As observed, there is no direct correlation between the
occurrence or the length of the CWS periods and the inter-
arrival times, neither between excursions nor between zero
crossings. A CWS period might enclose several inter-arrival
times, and several CWS structures might be embedded inside
an interval between consecutive zero crossings or excursions.

Appendix B: Power law distributions

A general quantity x with a probability distribution p(x) fol-
lows a power law if

p(x)= C x−α (B1)

for x ≥ xmin, with the characteristic exponent α and a con-
stant C = ec. The minimum value xmin holds for the low-
est limit of the power law. The exponent α > 1, otherwise∫
∞

0 xkp(x), does not converge. The estimation of α from em-
pirical data has been extensively discussed in the analysis of
the distributions of a very wide range of applications (New-
man, 2005; Clauset et al., 2009). Since Eq. (B1) is equiva-
lent to lnp(x)=−α lnx+ c, the most simple approach for
the calculation of α comes from a linear regression on the
log–log plot of the histogram of x. However, this procedure
introduces significant errors due to the binning of the data
and the resulting distributions. Such distributions are usu-
ally dominated by a few bins at lower values of x with very
high values of p(x) and several bins in the higher range of
x with very low probabilities of p(x) (Newman, 2005; Dor-
val, 2008). Instead of such a linear regression, a logarithmic
binning process of the data is recommended. Within this ap-
proach, the histogram of x is constructed for k number of

bins with variable widths. More specifically, the bin edges B
are proportional to successive powers of a constant a. Then,

B = (b1,b2, . . .,bk+1)= xc,min(a0,a1, . . .,ak), (B2)

where b1 > 0, k > 1, and xmin is the minimum value of x to
consider the power law behavior. Thus, the ith bin encloses
the interval [bi,bi+1), and the larger edge of the kth is as-
sumed to be +∞.

The value of the lower bound xmin affects the estimation of
the exponent α in p(x)∝ x−α . Analogously, for binned data,
bmin is defined as the minimum bin taken into consideration
for the calculation of α. We follow the algorithm proposed by
Clauset et al. (2009) and Virkar and Clauset (2014) to choose
bmin from binned empirical data. This method is based on a
Kolmogorov–Smirnov (KS) statistic test (Massey, 1951) to
minimize the distance between the distributions of the fitted
model P (b|α,bmin) and the empirical model S(b) above bmin.
Then, the optimized value of b∗min minimizes

D =maxb≥bmin |S(b)−P (b|α,bmin)|. (B3)

Further details about the method for calculating bmin and α
are provided in Appendix D.

Appendix C: Statistical moments of power laws

A power law distribution of a continuous variable x is defined
in Eq. (B1), where α > 1 is the power law exponent, C is
a normalization constant, and xmin is the minimum value at
which the power law holds. Then, the kth statistical moment
of a power law distribution p(x)= C x−α is given by
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〈xk〉 =

∞∫
0

xkp(x)dx =

xmin∫
0

xkp(x)dx

︸ ︷︷ ︸
:=Ã

+

∞∫
xmin

xkp(x)dx = Ã+
C

k+ 1−α

[
x−α+k+1

]∞
xmin

. (C1)

Then, a quantity x with p(x)∝ x−α may have divergent
moments. Its general kth moment exists only if k < α− 1.
The mean value of p(x) or 〈x1

〉 becomes infinite for α ≤ 2.
Furthermore, if α ≤ 3, p(x) has no finite variance, 〈x2

〉. In
such a case, x can take values of x±∞. Many phenomena,
varying from biological to economical, are characterized by
such critical distributions. A few examples are the frequency
of the use of words, the income among individuals, and the
magnitude of earthquakes (Newman, 2005; Marquet et al.,
2005; Powers, 1998).

Appendix D: Estimation of bmin

Here we describe the method introduced in Appendix B for
estimating the minimum bin bmin, above which the power law
p(Tc)∝ T −αc is valid. The method was proposed by Virkar
and Clauset (2014).

For each possible bmin ∈ (b1,b2, . . .,bk/2), we

1. calculate the cumulative binned empirical distribution
S(b) for bins b ≥ bmin,

2. estimate the characteristic exponent α̃ considering b ≥
bmin,

3. calculate the cumulative density function (CDF) for
P (b|α̃,bmin) of the binned power law,

4. calculate the Kolmogorov–Smirnov (KS) test statisticD
defined in Eq. (B3), and

5. select the optimal value b∗min as the value of bmin with
the minimum test statistic D.

The bins b are defined according to Eq. (B2). For the es-
timation of α̃ in step (2), a least-squares linear regression
method is considered.

Appendix E: Further details of experimental
wind-tunnel and synthetic IEC standard wind data

– Kaimal. The data set contains 4× 105 data points with
a frequency of 1Hz. The implementation of the Kaimal
spectrum for the longitudinal component u of the wind
in TurbSim (Jonkman, 2016) follows

Su =
4σ 2
uLu/uH

(1+ 6f Lu/uH)5/3 , (E1)

where σu is the standard deviation, uH is the mean
at the hub height, and f is the frequency. The in-
tegral scale Lu is defined as Lu = 8.103u, with 3u
being the turbulence scale. 3u is calculated as 3u =
0.7 (min{30m,HH}), where HH is the hub height. The
parameters are chosen to be comparable to the aver-
aged values of FINO data (see Sect. 2.2). We assume
a hub height of HH = 90m, a mean wind speed uH of
10m s−1, and a standard deviation σu of 0.58m s−1.
Then, the integral length scale is set to 170m.

– CTRW. Both realizations, CTRW-G and CTRW-NG,
have 4× 105 data points, with a frequency of 1Hz. The
mean wind speed and standard deviation are 9.5 and
1.1m s−1 for both cases. Extended parameters for the
model are ωc = 1.8Hz, αL = [0.9, 1], and c̃ = 350. De-
tails about the definition of the parameters are given in
Appendix F and by Ehrich (2022). The values of the
parameters are chosen to generate data comparable to
FINO measurements (see Sect. 2.2).

– Lab. The velocity in the direction of the flow was mea-
sured by a hot-wire anemometer. The data set consists
of 8.48× 106 data points, with a sampling frequency of
8kHz. The measured integral length scale is reported as
0.067m (Fuchs et al., 2022). Details of the experiment
are found in Renner et al. (2001).

Appendix F: CTRW model for the generation of wind
fields

More detailed descriptions of the model are provided by
Kleinhans (2008), Yassin et al. (2023), Mücke et al. (2011),
and Schwarz et al. (2019). Time series of the wind speed
u

(κ)
i (t) at each point i of a defined grid are based on two cou-

pled Ornstein–Uhlenbeck (OU) stochastic processes, uκr (s)
and uκi (s). Both processes are first generated in an intrinsic
scale s. The super index κ accounts for the three directions of
the wind κ = [x,y,z]. In our case, we generate wind speed
time series only in the longitudinal direction u(x) such that
κ = (x). The two processes are defined as

du(κ)
r (s)
ds

=−γr (u(κ)
r (s)− u(κ)

0 )+
√
Dr0

(κ)
r (s) (F1)

and

du(κ)
i (s)
ds

=−γ (u(κ)
i (s)− u(κ)

r (s))+
√
D

(κ)
i 0(κ)(s), (F2)

where γ and γr are damping constants, D and Dr are diffu-
sion constants, and 0(s) and 0r (s) are Gaussian-distributed
white noise. Next, the resulting Gaussian velocity signals
u

(κ)
i (s) are mapped to the physical timescale t by means of

an additional stochastic process as

dt(s)
ds
= τc̃,αL (s). (F3)
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where τc̃,αL (s) is a Lévy-distributed process with a character-
istic exponent αL and a cutoff value c̃. In the case of αL = 1,
the intrinsic scale s is equivalent to the physical time t such
that u(κ)

i (s)= u(κ)
i (t). The time-mapping process described in

Eq. (F3) allows the key feature of the model, which accounts
for the intermittent behavior of the wind speed time series.
The intermittency is introduced by the Lévy-distributed sizes
of the waiting times for the transformation from s to t .

In Sect. 4, we investigated two CTRW data sets: CTRW-
G and CTRW-NG. For the CTRW-G time series shown in
Figs. 8 and 9a, the Lévy exponent αL is equal to 1 such that
the waiting times of the intrinsic scale s are constant and the
statistics of u(t) are Gaussian. For the CTRW-NG time se-
ries, we assumed αL = 0.9. By doing so, we introduce non-
Gaussian features into the probability distributions. Further
values of the parameters for generating the fields are given in
Appendix E.

Appendix G: Spatial coherence of Tc

The spatial coherence of the CWS periods has been prelim-
inarily investigated. Figure G1 shows the results of evalu-
ating the simultaneity of events Tc > Tmin occurring at dif-
ferent heights of the FINO data and conditioned on a refer-
ence height H̃ . As an example, Fig. G1 shows the case when
considering the reference height H̃ = 90m and Tmin = 30s.
Then, for each event Tc > 30 s at 90 m, the occurrence of si-
multaneous events Tc at the remaining heights H is evalu-
ated. A black line is drawn when an event Tc is measured at
the corresponding H .

The results show that most of the events are not coher-
ent over the four heights H and confirm the appearance of
localized structures. In fact, for the example shown, 37%
of the events at H = 90m are happening simultaneously at
H = 70m. This number decreases to 11 % when compar-
ing the CWS periods between H = 90m and H = 30m. The
same evaluation for coherent events has been performed for
different values of Tmin and reference heights H̃ .

Figure G1. Events Tc > Tmin at different heights, conditioned on
H̃ = 90m. First, the reference height H̃ is defined. Next, for each
i event Tc,i > Tmin at H = H̃ , the occurrence of Tc at the remain-
ing heights H = [70, 50, 30]m is evaluated. Black lines depict the
occurrence of an event. The Tc at all heights H is conditioned
so that Tc > Tmin. For the example in this figure, Tmin = 30s and
H̃ = 90m.
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