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Abstract. The interplay of momentum surrounding wind farms significantly influences wake recovery, affect-
ing the speed at which wakes return to their freestream velocities. Under stable atmospheric conditions, wind
farm wakes can extend over considerable distances, leading to sustained vertical momentum flux downstream,
with variations observed throughout the diurnal cycle. Particularly in regions such as the US Great Plains, stable
conditions can induce low-level jets (LLJs), impacting wind farm performance and power output. This study
examines the implications of wake recovery using long-term observations of vertical momentum flux profiles
across diverse atmospheric conditions. In these observations, several key findings were observed, such as (a) LLJ
heights being altered downstream of a wind farm, especially when the LLJs are below 250 m above ground level;
(b) a notable impact of LLJ height on wake recovery being observed using momentum flux profiles at upwind
and downwind locations, wherein LLJs between 250 and 500 m above ground level resulted in larger momentum
transfer within the wake (i.e., smaller velocity deficit) compared to LLJs below 250 m above ground level; (c) the
largest momentum flux variability being observed during stable atmospheric conditions, with non-negligible
variability observed during neutral and unstable atmospheric conditions; (d) detection of wake effects almost
always being observed throughout the atmospheric boundary layer height; and finally (e) enhancement of wake
recovery being observed in the presence of propagating gravity waves. These insights deepen our understand-
ing of the intricate dynamics governing wake recovery in wind farms, advancing efforts to model and predict
their behavior across varying atmospheric contexts. In addition, the performance of large-eddy-simulation-based
semi-empirical internal boundary layer height model estimates incorporating real-world atmospheric and turbine
inputs was evaluated using observations during LLJ conditions.

1 Introduction

Wind turbine wakes, i.e., velocity deficits due to extraction
of the kinetic energy from an operating wind turbine, are
observed to extend several kilometers during stable atmo-
spheric conditions both onshore and offshore (Hirth et al.,
2012; Banta et al., 2015; Krishnamurthy et al., 2017; Fer-
nando et al., 2019; Ahsbahs et al., 2020; Zhan et al., 2020).
Wind farm wakes from a large cluster of wind turbines in
mesoscale model simulations, and offshore observations can
reach over 50 km downwind under stable atmospheric condi-

tions (Platis et al., 2018; Lundquist et al., 2019, Schneemann
et al., 2020). Large-eddy simulations of large wind farms also
show that wind farm wakes can alter the surface momentum
and heat fluxes (Calaf et al., 2011). Wind farm wakes are
known to impact the local meteorological conditions by, for
instance, increasing or decreasing the temperature and en-
hancing turbulence downwind of a wind farm (Baidya Roy et
al., 2004; Smith et al., 2013; Siedersleben et al., 2018; Miller
and Keith, 2018, Bodini et al., 2021), although the intensity
of the impact depends on atmospheric stability, local atmo-
spheric processes, orientation of the wind farms, downwind
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distance, and the number and operative regimes of wind tur-
bines.

In operational wind farms, intra-farm wakes can result in
significant power losses, and it is important to understand
the dissipation of wakes within a wind farm. The effect of a
wind turbine is to decrease the mean velocity and increase
the turbulent kinetic energy above the rotor layer (the layer
from the bottom of the wind turbine blade tip to the top of
the blade tip; VerHulst and Meneveau, 2014). The turbulent
transport term in a steady-state filtered-energy equation in-
cludes the entrainment of the mean momentum due to turbu-
lence and the entrainment of the turbulent kinetic energy due
to fluctuating velocities (Allaerts and Meyers, 2017). Down-
wind of a wind farm, the recovery of a wind turbine wake
within the rotor layer largely occurs due to enhanced en-
trainment of the vertical momentum flux from the boundary
layer (Abkar and Porté-Agel, 2013; Yang et al., 2014; Ver-
Hulst and Meneveau, 2014; Abkar and Porté-Agel, 2014; Lu
and Porté-Agel, 2015). The maximum energy produced by a
large (>100 MW) land-based wind farm is then constrained
by the momentum flux between the surrounding atmosphere
and the flow within the wind farm. Therefore, measuring the
entrainment of the mean momentum due to turbulence up-
wind and downwind of an operational wind farm can provide
insight into the momentum balance of wakes within a wind
farm. The momentum balance can be a function of various
locally observed atmospheric phenomena, such as low-level
jets (LLJs), gravity waves, and high shear or veer events. At-
mospheric stability is known to impact the extent of wake
propagation downstream (Hansen et al., 2012; Barthelmie
et al., 2012; Hirth et al., 2012; Smith et al., 2013; Krish-
namurthy et al., 2017; Lundquist et al., 2019). In conjunc-
tion with some of the local atmospheric features, the transfer
of momentum within and outside the surrounding wind farm
can show drastic spatial and temporal heterogeneity.

Today’s wind turbines operate within the lowest 300 m of
the atmospheric boundary layer (ABL), and in offshore or
stable atmospheric conditions the ABL can be lower than
300 m (Shaw et al., 2022). Although wind farms operate
within 300 m above ground level, their impacts can be ob-
served through the entire depth of the boundary layer. There-
fore, to accurately assess such impacts, observations of mean
and turbulent characteristics of wind and temperature should
extended up to the top of the ABL. Remote sensing instru-
ments, such as Doppler lidars, are capable of estimating the
mean winds within the ABL (Frehlich, 1994, 2001; Peña et
al., 2009; Krishnamurthy et al., 2013; Newsom and Krish-
namurthy, 2022) as well as turbulence with accuracy com-
parable to sonic anemometers, which are considered a stan-
dard for atmospheric turbulence measurements (Frehlich and
Cornman, 2002; Frehlich et al., 2006; Smalikho et al., 2005;
Krishnamurthy et al., 2011; Sathe et al., 2015; Bonin et al.,
2017; Wildmann et al., 2019). Certain observational studies
have validated the propagation of wakes for long distances
downwind (more than 20 rotor diameters – RDs) using tar-

geted long-range scanning radar measurements (Hirth et al.,
2012; Ahsbahs et al., 2020), satellite-based radar observa-
tions (Djath et al., 2018) and airborne observations (Lam-
pert et al., 2020). But other observations have also shown
that wake deficits are small at larger RDs (∼ 26 RD) down-
stream of a multimegawatt wind farm (Smith et al., 2013).
As wake extent grows laterally downwind of a wind farm,
measuring velocity deficits at larger downwind distances can
get very challenging due to small deficits. Therefore, assess-
ing the impact of wakes purely based on wind speed and
turbulence intensity estimates at targeted observational loca-
tions would not provide a good representation of wake dissi-
pation. Large-eddy simulations have previously shown mo-
mentum deficit estimates within and above the wind farm ro-
tor layer at large downwind distances (Stevens, 2016; Gadde
and Stevens, 2021) and provide more realistic information
about the influence of wind farm wakes on the atmospheric
boundary layer. Therefore, accurately measuring momentum
deficits at various downwind distances of a wind farm, rather
than just mean winds and turbulence intensity profiles, might
provide a better assessment of wind farm wakes. Recent stud-
ies have focused on observing momentum flux variability
around a wind farm using in situ observations on an aircraft
(Syed et al., 2023), but there has not been a study, as per
the authors’ knowledge, looking at any systematic and sta-
tistically significant trends in vertical momentum flux pro-
files under a variety of atmospheric conditions surrounding
an operational wind farm. Therefore, it would be essential
to know under what atmospheric conditions wakes recover
faster, thereby reducing the impact on downwind wind farms
or turbines for optimal siting of wind farms, turbines, and
power production estimates.

Gravity waves and atmospheric bores are ubiquitous in the
Southern Great Plains (SGP) region (Carbone et al., 1990;
Davis et al., 2003; Geerts et al., 2017). Although most fre-
quently observed during nocturnal and stable atmospheric
conditions, they vary significantly in their period and ampli-
tude. These nocturnal convective systems typically accom-
pany high winds, intense rain and/or hail, and sometimes
tornadoes (Maddox, 1980). The forecast skill of such atmo-
spheric events is relatively low in both numerical weather
prediction models and coarse-grid climate models (Davis et
al., 2003; Pritchard et al., 2011). They also typically include
a LLJ within the atmospheric boundary layer, which supports
the moisture transport above the stable boundary layer over
the SGP (Berg et al., 2015; Krishnamurthy et al., 2021a).
Primarily gravity waves create wave-like oscillations in the
atmosphere due to the presence of a density gradient, and
bore disturbances are shown to have a significant upward
displacement of wind within the troposphere (Rottman and
Simpson, 1989; Parsons et al., 2019). Such wave-like distur-
bances when reaching the surface can create undulations in
the mean winds depending on the period and wavelength of
the wave. Mountain waves have previously been known to
impact the power production of a wind farm (Draxl et al.,
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2021), but the impact of propagating gravity waves on wake
recovery is not very well understood.

Wind farms create a step change in surface roughness, and
when the atmospheric boundary layer height (δ) is larger than
the surface momentum roughness (z0 m), an internal bound-
ary layer (δIBL) is developed in the region downstream of
the surface discontinuity (Elliot 1958; Taylor, 1969; Calaf et
al., 2013; Stevens, 2016; Krishnamurthy et al., 2023). The
boundary layer flow is observed to adjust to this new sur-
face condition and grows with downstream distance (x). The
growth of the internal boundary layer is a function of mean
wind, thermal stratification or atmospheric stability, inver-
sion height of the ABL, and surface turbulence characteris-
tics. In the presence of a wind farm, the growth of an internal
boundary layer is also a function of the mean wind turbine
spacing and characteristics of the wind turbine performance
(Calaf et al., 2011; Stevens, 2016; Stevens and Meneveau,
2017). The momentum flux into a wind farm replenishes the
wake of the wind farm, and the height of the internal bound-
ary layer can reach up to δ. During stable atmospheric con-
ditions, δIBL will grow to reach δ within a short distance
from the leading edge of a wind farm, resulting in a fully
developed IBL. While most existing studies have been based
on high-resolution models, limited long-term observations of
δIBL growth are available in the literature. Syed et al. (2023)
showed spatial variability of momentum flux measurements
from in situ sensors on board an aircraft upstream of, above,
and downstream of a wind farm but did not provide a vertical
profile up to the boundary layer. Therefore, estimating pro-
files of momentum flux up to the boundary layer depth can
provide insights into the impact of internal boundary layers
on wind farm dynamics.

Dimensional arguments show that in the far field, i.e.,
large x, as equilibrium conditions prevail the ratio of the
downwind to upwind friction velocity is given as ud

∗/u
u
∗ =

F1(zu
0/z

d
0), where ud
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0 are downwind friction velocity

and roughness length, and F1 is an unknown function, while
the superscript u refers to upwind estimates (Krishnamurthy
et al., 2023). In the presence of a wind farm, the model pre-
sented in Calaf et al. (2011) assumes two constant stress lev-
els, above (u∗, hi) and below (u∗, lo) the wind turbine, with
the difference between those momentum layers given as
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where 〈u〉zh is the horizontally and time-averaged velocity
at hub height, cf t = πCT
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)
, CT is the turbine coef-

ficient of thrust, and lateral and transverse spacing between
the wind turbines is given by Sx and Sy . Using a logarithmic
wind profile formulation (U (z)= u∗ ln (z/z0)/κ), where κ
is von Kármán constant (0.4), a relationship for the wind tur-
bine roughness height of the wind farm (z0,hi) can be esti-
mated (Stevens, 2016). Thereby, the growth of the internal
boundary layer due to a wind farm can be estimated using

(Willingham et al., 2014)
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where, x is the downwind distance, δIBL(0) is the internal
boundary layer height of the wind turbine rotor top at the
first row of the wind farm (equal to the wind turbine blade
upper tip height), z0,hi is the surface roughness due to the
presence of a wind farm, and C1 is a growth constant (0.28)
estimated from large-eddy simulation models (Calaf et al.,
2011; Stevens, 2016). The wind farm surface roughness is
a function of the upwind surface friction velocity, wind tur-
bine and farm parameters, and inflow mean wind conditions
within the wind turbine rotor layer. Existing large-eddy sim-
ulation estimates of internal boundary layers have typically
used idealized conditions, while estimates in real-world at-
mospheric conditions of the IBL might differ considerably
due to competing atmospheric conditions. Therefore, obser-
vations of internal boundary layer growth are important to
understand the impact of wind farms on the ABL and thereby
the momentum balance surrounding a wind farm and associ-
ated wake replenishment.

In this paper we investigate the wake recovery of a wind
farm by investigating the momentum balance (primarily
mean streamwise momentum flux: 〈u′w′〉) surrounding an
operational wind farm near the Atmospheric Radiation Mea-
surement (ARM) program Southern Great Plains (SGP) sites
in Oklahoma during various site-specific atmospheric phe-
nomena. Momentum flux profiles from scanning Doppler li-
dars and surface sonic anemometers are estimated for both
upwind and downwind locations relative to the wind farm.
Information about the field campaign and site characteris-
tics is given in Sect. 2. Momentum flux profiles upwind and
downwind of an operational wind farm during site-specific
atmospheric conditions are discussed in Sect. 3. Wind farm
IBL measurements and comparison of data with theoretical
models are given in Sect. 4, and results are summarized in
Sect. 5.

2 Field campaign and site characteristics

Oklahoma ranks third in the United States for installed wind
capacity, providing over 37 418 GWh of electricity in 2022.
The state generated approximately 44 % of its electricity
from wind energy in 2022, the third-highest in the coun-
try, and provided enough electricity to power millions of US
homes. The landscape and topographic flows around SGP
are relatively simple compared to complex-terrain sites with
low wind speed interannual variability (<3 %) and therefore
are favored by wind farm developers (Krishnamurthy et al.,
2021a).

To investigate the interaction between wind farms and
the ABL and improve our understanding of wind turbine
and wind farm wake effects, the US Department of Energy
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(DOE) funded a field campaign, the American WAKE ex-
periemeNt (AWAKEN), within and adjacent to King Plains
wind farm near Enid, Oklahoma (Debnath et al., 2023;
Moriarty et al., 2024). Figure 1 shows the domain of the
AWAKEN field experiment, various locations with instru-
ments deployed, and operational wind turbines within the
domain. Several remote sensing and in situ sensors were de-
ployed; please see Moriarty et al. (2024) for additional details
of the site setup and layout.

In this article, data from primarily two instrumented sites
are used for data analysis. Site A2 is the inflow site and
site H the outflow site to the King Plains wind farm dur-
ing southerly wind directions. Figure 1 shows a picture of
both the sites and various instruments deployed. Site A2 was
instrumented with a scanning Doppler lidar, short-range ver-
tical profiling lidar, surface sonic anemometer, and surface
meteorological station, while site H had a scanning Doppler
lidar, microwave radiometer, and two disdrometers. Both the
scanning lidars were oriented close to north, like the sonic
anemometers. Azimuth and elevation offsets for the scan-
ning lidars were identified by using the stationary tower near
the wind farm as a hard target. These offsets were used to
correct the observed azimuth and elevation angles from the
scanning lidars (as described in Newsom and Krishnamurthy,
2022). Frequent hard target scans were conducted to evalu-
ate any drift in the leveling of the lidar, and none was ob-
served during the period of study. The internal pitch and roll
of the lidars were constantly below 0.1°. In addition, bound-
ary layer height estimates from a ceilometer at site A1 (also
an inflow site) were used to evaluate the impact of boundary
layer structure on wind farm wake propagation. The wind tur-
bines deployed at the King Plains wind farm are GE 2.8 MW
machines with a hub height of 89 m and a rotor diameter
(RD) of 127 m. The average lateral and transverse distance
in southerly wind directions between wind turbines (over the
eastern sector of the King Plains wind farm, intersecting sites
A1 and H) is approximately 3.15 RD (Sx) and 14.57 RD (Sy).
Site A2 is approximately 40 RD upwind of the first row of
the King Plains wind farm, site A1 is approximately 2 RD
upwind, and site H is approximately 22 RD downwind of the
last row of the King Plains wind farm. Additional details on
various instruments deployed at the AWAKEN site can be
found in Moriarty et al. (2024).

Both scanning lidars installed at A2 and H run a composite
scan routine that includes 20 min of six-beam profiling (Sathe
et al., 2015) and 10 min of vertical stares. Wind profiles from
100 to 3000 m are obtained by applying the well-established
least-squares fit to the radial velocity measurement from the
six beams (Newsom and Krishnamurthy, 2022). Momentum
flux is also estimated through the technique described in Ap-
pendix A2 applied to the upstream and downstream beams
based on the selected wind direction sector of interest (see
Eq. A3). In the following, momentum flux measurements
from the surface sonic anemometer at the respective site are
also combined with the lidar retrieval to extend the observ-

Table 1. Stability classification based on L thresholds.

Stratification L

Very stable 10<L<50
Stable 50<L<200
Near-neutral stable 200<L<500
Neutral |L|>500
Near-neutral unstable −500<L<− 200
Unstable −200<L<− 100
Very unstable −100<L<− 50

able range down to the surface. Measurements only from
southerly wind directions, specifically from 166 degrees to
190°, are considered in this analysis. Additionally, since re-
moving all outliers from lidar observations is challenging,
the median of the sample will be presented in the remainder
of the paper.

Figure 2a shows the wind rose at 105 m above ground level
from Doppler lidar measurements collected from 17 March
to 10 September 2023. Wind directions were predominantly
southerly during the duration of the study. Figure 2b shows
the distribution of various atmospheric stability conditions
as a function of wind direction. Atmospheric conditions were
divided into various classes based on the Obukhov length (L)
scale as provided in Krishnamurthy et al. (2021a) and Table 1
below. The Obukhov length, L, is given by

L= −
u3
∗T

kg〈w′θ ′v〉
, (3)

where T is the air temperature, g is the acceleration due to
gravity, and 〈w′θ ′v〉 is the kinematic heat flux from sonic
anemometers.

At SGP C1 (which is ∼ 21 km north of King Plains wind
farm), stable atmospheric conditions were observed more
than 50 % of the time. During neutral conditions, a larger
percentage of winds were either easterly or northerly. It is
important to note that surface atmospheric stability might not
always be representative of conditions at elevated levels, es-
pecially during transition periods (i.e., during sunset and sun-
rise).

3 Wake recovery observations

To minimize the impacts of wakes from neighboring wind
farms (including the Breckinridge and Armadillo Flats wind
farms shown in Fig. 1) in our analysis and to measure the
impact of wakes from at least three rows of wind turbines,
measurements only from southerly wind directions, espe-
cially from 166 to 190°, are considered. Since the wind direc-
tions are predominantly southerly, sufficient data are avail-
able (1490 10 min samples) to accurately estimate the mean
trends of momentum flux during specific atmospheric con-
ditions. Below, statistics of momentum flux variability under
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Figure 1. (a) Southern Great Plains area with the location of the AWAKEN field campaign (white box) shown. Various sites deployed
(yellow stars and circles) during the AWAKEN field campaign, DOE ARM sites (magenta diamonds), and the wind turbines (black circles)
in the area (Moriarty et al., 2024). (b) Images of instruments deployed at site A2 (inflow to King Plains wind farm for dominant southerly
wind directions) and (c) site H (downwind of King Plains wind farm) are also shown at the bottom.

different atmospheric conditions, such as varying levels of
thermal stratification (stability), the LLJs, high wind shear
and veer conditions, ABL depth, and atmospheric gravity
waves, are assessed.

3.1 Impact of atmospheric stability on wake recovery

As shown in Fig. 2b, when winds are southerly the atmo-
spheric stability is predominantly (>50 %) stable near the
surface, with neutral conditions occurring about 20 % of the
time and unstable conditions observed for the remainder. Fig-
ure 3 shows median momentum flux (〈u′w′〉) profiles from
the downwind (site H) and upwind (site A2) locations dur-
ing stable, neutral, and unstable atmospheric conditions. In
general, we observe higher negative momentum flux upwind
of the wind farm near the surface with an asymptotic be-
havior eventually reaching zero near δ, like a canonical at-
mospheric boundary layer. Downwind of the wind farm, en-
hanced 〈u′w′〉 is observed due to the shear and turbulence
generated by the wind turbines. Stable conditions are ob-

served to show larger deviations in momentum flux down-
wind of the wind farm compared to neutral or unstable atmo-
spheric conditions. The sign of momentum flux is tied to the
vertical wind shear, as for sustenance of turbulence within a
wind farm an increase in wind shear (positive) should result
in negative momentum flux downwind of the wind farm.

Therefore, in stable atmospheric conditions, due to large
(positive) wind shear, the momentum flux must be negative
to create downwind turbulence. As mentioned earlier, the
wind farm wake propagates longer in stable conditions due
to lower ambient turbulence compared to convective condi-
tions. Therefore, at site A2, which is approximately 22 RD
downwind of the last row of the King Plains wind farm,
the region of enhanced vertical momentum flux due to the
wind farm is expected to be more persistent and varies with
the diurnal cycle (Fig. 3a). In Fig. 3b and c, larger momen-
tum flux estimates are observed near the surface during un-
stable and neutral atmospheric conditions compared to sta-
ble conditions. Under neutral conditions, where shear is less
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Figure 2. (a) Wind rose at 105 m a.g.l. from a Doppler lidar at the SGP central facility during all atmospheric conditions. (b) Atmospheric
stability classification as a function of wind direction from 17 March to 10 September 2023. Various atmospheric stability classes are
distinguished based on L and defined in Krishnamurthy et al. (2021a) and Table 1.

positive and ambient turbulence is higher compared to sta-
ble conditions, the momentum flux generated by downwind
wind turbines is anticipated to be lower or less persistent.
Consequently, wakes are not expected to travel as far. But in
Fig. 3b, significant momentum flux deficits are still observed
at 22 RD downwind during neutral conditions. A couple of
possible reasons for this could be due to (a) misclassifica-
tion of atmospheric stability from surface flux measurements,
i.e., surface atmospheric stability at hub height is not repre-
sentative of the true atmospheric state, and (b) higher wind
shear observed during neutral conditions resulting in more
negative momentum fluxes within the wind farm wake. The
larger the vertical momentum flux, the faster the wake veloc-
ity recovers to a freestream value (Syed et al., 2023). During
unstable atmospheric conditions, wakes are expected to dis-
sipate faster (convective mixing of the atmospheric bound-
ary layer), and due to low wind shear, the momentum flux
deficits are expected to be significantly lower. In Fig. 3c,
it is evident that during unstable conditions the momentum
flux deficits are lower but still observed 22 RD downwind.
Overall, momentum flux deficits are greater during unstable
conditions at higher altitudes, while they are larger during

stable conditions at lower heights. One potential reason for
deficits observed during unstable conditions at 22 RD down-
wind could be the impact of convectional updrafts or down-
drafts on the propagation of wake downwind of a wind farm
(Berg et al., 2017; Wang et al., 2020). Additional analysis
is required, ideally using high-resolution large-eddy simula-
tions, to truly evaluate the impact of updrafts and downdrafts
on wind farm wakes. Overall, the median deficit observed
over King Plains wind farm shows that the flow disturbance
downwind of a wind farm can extend long distances (at least
22 RD) in every atmospheric condition. Such differences are
generally not very evident from solely observing wind profile
observations upwind and downwind of a wind farm.

As mentioned earlier, no observations of vertical profiles
of momentum flux have been recorded to date within an op-
erational wind farm; therefore, there is limited knowledge on
the height at which the peak transfer of momentum occurs
downwind of a wind farm. It is well known that the peak
velocity deficit (upwind – downwind velocity) generally oc-
curs at hub height, but there are no observations showing the
peak momentum deficit above the wind farm. Based on large-
eddy simulation results, the peak momentum deficit is ex-
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pected to occur near the upper edge of the wind turbine rotor
layer (Abkar and Porté-Agel, 2015), but based on observa-
tions at King Plains wind farm, in stable conditions, at 22 RD
downwind, peak momentum flux is consistently observed at
∼ 0.36 RD above the wind farm. Therefore, the mean kinetic
energy entrainment height into the wake is observed to occur
higher than in traditional large-eddy simulation (LES) mod-
els. Additional comparisons between LES models and ob-
servations are required to further evaluate the wake recovery
processes within the wind farm wake.

3.2 Impact of LLJs on wake recovery

Stable conditions produce LLJs in the US Great Plains (Berg
et al., 2015; Krishnamurthy et al., 2021a), whose character-
istics can modulate wind farm performance and power out-
put (Gadde and Stevens, 2021). There are several definitions
of low-level jet height (ZLLJ) in the literature (Blackadar,
1957; Bonner 1968; Whiteman et al., 1997; Song et al., 2005;
Kalverla et al., 2019; Debnath et al., 2023), but in this arti-
cle it is defined as per Song et al., 2005. The definition is
based on two criteria: (1) wind speed maximum (i.e., LLJ
nose) is observed within the lowest 2 km and is greater than
at least >10 ms−1, and (2) wind speed drop-off above the jet
nose is observed and above a set threshold (at a minimum
>5 ms−1). Three categories of LLJs were identified based
on varying thresholds of drop-off speeds and maximum nose
wind speed (Song et al., 2005), although in this analysis all
LLJ categories were combined. Figure 4a shows the distri-
bution of various near-surface atmospheric stability classes
during southerly wind directions (from 166 to 190°) during
LLJ events and associated median ZLLJ for each atmospheric
stability class. It can be observed that lower ZLLJ values are
typically associated with very stable or stable near-surface
atmospheric conditions, while higher ZLLJ values are ob-
served when the surface atmospheric stability is not stable,
indicating a decoupled boundary layer (Vanderwende et al.,
2015). Therefore, there could be confounding influences of
the near-surface stability and LLJ influence on the wind farm
wakes during such instances. Figure 4b shows LLJ nose wind
speed as a function of median ZLLJ per wind speed bin and
hub-height wind speed, and Fig. 4c shows ZLLJ as a func-
tion of hub-height wind speed. It is evident that, up to near
rated wind speed (approximately 13 ms−1), a higher ZLLJ re-
sults in a higher jet nose wind speed and a higher hub-height
wind speed. Overall, it is challenging to decipher various pro-
cesses influencing wind farm wake recovery using observa-
tions, but it would be possible to isolate certain common fea-
tures known to influence wind farm recovery (LLJ height;
atmospheric stability, atmospheric boundary layer, or hub-
height wind speed) and study the variability observed during
such select features.

As previously observed using historical measurements
from the ARM SGP site, the ZLLJ generally falls within
500 m above ground level (Debnath et al., 2023). Since

the scanning lidar measurements start from ∼ 100 m above
ground level, in this analysis we only evaluate LLJs ob-
served above the turbine hub height (>110 m). There-
fore, the observations are partitioned into two halves:
(a) 250 m<ZLLJ<500 m and (b) 110 m<ZLLJ<250 m. The
partitioning was driven by selecting a height near the wind
turbine rotor layer (25.5 to 152.5 m) that could be impacted
by the wind turbine, considering the frequency of LLJ events
from southerly wind directions (which peaked around 250 m
above ground level) and the observed peak in momentum
flux during stable conditions, which occurred approximately
250 m above ground level as shown in Fig. 3. Figure 5 shows
vertical profiles of momentum flux and wind speed both up-
wind and downwind of the wind farm for different ZLLJs as
mentioned above and further conditioned to only southerly
wind directions (166 to 190°). During southerly LLJ events
at the King Plains wind farm, it is observed that the transfer
of momentum into the wake of the wind farm is a function
of the LLJ height. Higher ZLLJ is associated with larger mo-
mentum transfer within the wake and lower velocity deficit at
22 RD downwind. In short, the wake recovery is faster when
the LLJ height is higher. This is mainly due to the shear-
generated turbulence below the ZLLJ and the enhanced mo-
mentum deficit developed due to the wind farm. The peak
entrainment height is observed to marginally increase with
higher ZLLJ. These results support some of the hypotheses
from previous LES model results on this topic (Gadde and
Stevens, 2021). One unique feature that is observed when
127 m<ZLLJ<250 m is that the ZLLJ is influenced by the
presence of the wind farm. Downwind (22 RD) of the farm,
the ZLLJ is consistently observed above the wind farm. The
downwind ZLLJ is approximately equal to the height of the
internal boundary layer (δIBL) generated due to the presence
of the wind farm. In addition, during LLJ conditions, ZLLJ is
typically assumed to be the top of the atmospheric boundary
layer (δ, Liu and Liang, 2010), as the turbulence above the
ZLLJ is negligible. Figure 6 shows a schematic of the inter-
action between the wind farm, varying ZLLJs, and growth of
the internal boundary layer due to the presence of the wind
farm. Figure 7 illustrates the probability distribution of LLJ
events at the upwind site (A2) and downwind site (H) of the
King Plains wind farm. The data reveal that the difference
in LLJ height between the upwind and downwind sites is
greater below approximately 250 to 300 m but diminishes at
higher LLJ heights. Notably, there is a reduced frequency of
LLJs observed downwind of the wind farm when LLJs occur
below the rotor layer. Future research will focus on further
analyzing the effects of LLJs that occur beneath the turbine
rotor layer.

3.3 Impact during varying shear and veer (non-LLJ)
conditions on wake recovery

High wind shear and veer conditions are generally observed
within a wind farm, but it is difficult to decouple the effects
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Figure 3. Momentum flux profiles at∼ 40 RD upwind (site A2) and 22 RD downwind (site H) of the King Plains wind farm during (a) stable,
(b) near-neutral, and (c) unstable atmospheric conditions. The vertical extent of the wind turbine rotor layer is also shown with horizontal
dotted black lines. The near-surface Obukhov length (L) is used to differentiate between different stability conditions. Error bars represent
the sample standard deviation at respective heights. Measurements only from southerly wind directions, specifically from 166 to 190°, and
from 17 March to 10 September 2023 are considered in this analysis.

of shear or veer conditions compared to atmospheric stability
conditions. Nonetheless, it would be helpful to observe any
consistent trends during such conditions as they are known
to impact the power production of a wind farm (Murphy
et al., 2020). In addition, such findings may be informative
for wind farm control concepts that yaw wind turbines away
from the predominant wind direction at hub height but do
not currently consider the wind veer within the rotor layer
(Fleming et al., 2019). Figures 8 and 9 show median profiles
of momentum flux and horizontal wind speed both upwind
and downwind of the King Plains wind farm during non-LLJ
events for various shear and veer conditions, respectively.
Estimates associated with positive and negative wind shear
or veer conditions during southerly wind directions are pro-
vided.

Hub-height wind speed (U (H )) and shear exponent (α)
are estimated by fitting a power-law vertical wind profile to
the wind speed data available within the rotor layer (here
from 90 to 153 m due to lack of observations below 90 m).
The power-law fit is conveniently recast into a linear fit
through a log transformation as shown in Eq. (4) below:

logU (z)= logU (H )+αlog
( z
H

)
, (4)

where log
(
z
H

)
and logU (z) are the independent and depen-

dent variables of the linear fit, respectively. Hub-height wind

direction (φ(H )) and veer (β ≡ ∂φ
∂z

) are estimated in a similar
fashion but using a linear wind veer model, as follows:

φ (z)= φ (H )+β(z−H ). (5)

This approach for estimating hub-height quantities has the
advantage of leveraging all the available measurements while
mitigating possible biases due to the lack of data in the lowest
half of the rotor layer.

Certain trends are immediately observed for cases with
positive or negative shear conditions (Fig. 8), where, regard-
less of the wind shear profile, momentum deficits generated
due to the wind farm are observed 22 RD downwind of the
wind farm. But both wind and momentum deficits are higher
during conditions with high wind shear (0.5<α<2) com-
pared to low or negative wind shear (α ≤ 0) cases, although
a lower number of cases were recorded when the wind shear
was low or negative at the King Plains wind farm compared
to high wind shear cases. Median wind speeds at hub height
during both conditions are ∼ 5 ms−1. For cases with nega-
tive wind shear, the median wind speed differences between
upwind and downwind are negligible, but a clear trend in me-
dian momentum flux profiles is observed. Traditionally it is
expected for the wind speed to reach approximately 99 % of
the freestream wind speed, but in cases such as this where
the wind speeds do reach near freestream, it could be erro-
neously assumed that the wind farm wake has completely
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Figure 4. (a) Distribution of various atmospheric stability classes
(VS – very stable, stable, NNS – near-neutral stable, neutral, NNUS
– near-neutral unstable, US – unstable, VUS – very unstable, as per
Sathe et al., 2015) during LLJ events from southerly wind direc-
tions and associated ZLLJ per stability class. (b) Median LLJ nose
wind speed (ULLJnose) as a function of ZLLJ and hub-height wind
speed (Uhub) at the upwind site (site A2). (c) ZLLJ as a function
of Uhub. The error bars indicate 1 standard deviation. Minimum
ZLLJ is 110 m and maximum ZLLJ is 690 m a.g.l. Measurements
only from southerly wind directions, especially from 166 to 190°,
and from 17 March to 10 September 2023 are considered in this
analysis.

been dissipated (Djath and Schulz-Stellenfleth, 2019). In re-
ality, added turbulence due to the presence of a wind farm
is not completely removed downwind of a wind farm under
such circumstances. Additional research is needed to eval-
uate wind farm wake models or parameterization schemes
during such canonical atmospheric conditions.

During cases with positive (β>0.1° m−1) and negative
(β<− 0.1° m−1) wind veer conditions, median wind speeds
are closer to the cut-in wind speeds of the GE 2.8 MW wind
turbines, and therefore no momentum flux deficits are ob-
served (Fig. 9). Both high and low wind veer cases show
that the median wind speeds are relatively low at King Plains
wind farm. It is noted that the wind farm has also been ob-
served to modify the wind direction downwind of a wind
farm (not shown).

3.4 Extent of wake within the ABL

The atmospheric boundary layer height (δ) is an impor-
tant parameter for understanding the exchange of momen-
tum, heat, and moisture between the free troposphere and
the surface. Unfortunately, estimating δ can be challenging
and there is limited consensus on the best approach to es-
timate δ from remote sensing instruments (Kotthaus et al.,
2023). Typically, instruments such as scanning Doppler li-

Figure 5. (a) Momentum flux and (b) horizontal wind speed pro-
files upwind (red, site A2) and downwind (blue, site H) of the
King Plains wind farm during conditions when the ZLLJ is less
than 250 m a.g.l. at the upwind location (dash-dotted) and ZLLJ is
between 250 and 500 m a.g.l. (star dotted). The vertical extent of
the wind turbine rotor layer is also shown with horizontal dotted
black lines. Measurements only from southerly wind directions, es-
pecially from 166 to 190°, and from 17 March to 10 September 2023
are considered in this analysis.

dars or ceilometers are used to estimate δ (Tucker et al.,
2009; Krishnamurthy et al., 2021b; Zhang et al., 2022). A
ceilometer was deployed at the inflow site A1 and is used to
estimate δ during southerly wind directions for this evalua-
tion. The boundary layer (or mixing) height, provided by the
Vaisala CL-31 BL-View software, is based on three differ-
ent algorithms: (a) the gradient method (where the algorithm
detects the gradient in backscatter profile), (b) the profile
method (where the algorithm determines the mixing height
by fitting an idealized backscatter profile to the observed
range-corrected ceilometer backscatter profiles), and (c) the
merged gradient and profile fit method (Zhang et al., 2022).
There are several filters applied to the data, such as cloud
and precipitation filters, and additional outlier removal tech-
niques (due to instrument noise). Figure 10 shows the me-
dian momentum flux and horizontal wind speed profiles dur-
ing southerly wind directions and measurement co-located
when concurrent ceilometer measurements were also avail-
able. The median δ (∼ 540 m) at A1 from the ceilometer is
below the height where the median momentum flux estimates
at sites A2 and H are nearly equal (∼ 760 m). Therefore, it is
observed that the median ceilometer δ does not accurately
predict the height of the atmospheric boundary layer. There
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Figure 6. Schematic of the impact of LLJs on a wind farm boundary layer when (a) 100 m<ZLLJ<250 m and (b) 250 m<ZLLJ<500 m.

Figure 7. Probability distribution of LLJ heights (ZLLJ) upwind
(site A2, yellow bar graph) and downwind (site H, blue bar graph)
of the King Plains wind farm during southerly wind directions.

are several possible reasons for this; for example, (a) the
ceilometer uses the gradient in backscatter aerosol concen-
trations to estimate δ, which might not always be the top of
the boundary layer (Zhang et al., 2022), and (b) upwind and
downwind δ might be different due to the presence of the
wind farm. Therefore, the δ estimated by the ceilometer rep-
resents the δ at the inflow site well (upwind momentum flux
is observed to be close to zero). Above δ, the momentum flux
deficits due to the presence of the wind farm are negligible.
But overall, it is evident that the impact of the wind farms
almost always reaches the top of the atmospheric boundary
layer. Therefore, it is important to model not only the wind
turbine rotor layer with high vertical resolution but also up
to δ to accurately assess the impacts of wind farms and wake
recovery.
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Figure 8. (a) Momentum flux and (b) horizontal wind speed pro-
files upwind (red) and downwind (blue) of the King Plains wind
farm during high (0.5<α<2, observed 53 % of the time) and nega-
tive (α ≤ 0, observed 2 % of the time) wind shear conditions. Mea-
surements only from southerly wind directions, especially from 166
to 190°, and from 17 March to 10 September 2023 are considered
in this analysis.

3.5 Impact of a gravity wave event on wake recovery

Figure 11 shows a time–height cross-section of vertical
velocity as observed near the ARM SGP central facility
Doppler lidar (Newsom and Krishnamurthy, 2022; Krish-
namurthy et al., 2021a) on 24 July 2023 from 03:00 to
04:00 UTC (19:00 to 20:00 local time). The vertical ve-
locity clearly shows wave-like features at approximately
800 m a.g.l., where we observe a positive and negative shift
in vertical velocity. Figure 12 shows median momentum flux
and wind speed both upwind and downwind of the King
Plains wind farm on 24 July 2023 from 03:30 to 04:00 UTC.
The winds were predominantly southerly during this event,
with a veer of 0.0375 ° m−1 from the surface up to the top
of the boundary layer. A nocturnal LLJ was also observed at
approximately 220 m a.g.l. at the inflow site, and the gravity
wave is propagating above the nocturnal stable atmospheric
boundary layer (∼ ZLLJ). The peak-to-peak amplitude of the
gravity wave is observed to be ∼ 600 m, which spans from
400 m above ∼ 1000 m.

As observed in Fig. 12, the momentum flux deficit is
significantly enhanced above and within the wake of the
King Plains wind farm. Estimates of vertical momentum flux
deficits are more than 3 times the median estimates of mo-
mentum flux deficits observed during LLJ conditions (see
Fig. 5). Downwind, as previously noted, the peak of a LLJ is

Figure 9. (a) Momentum flux and (b) horizontal wind speed pro-
files upwind (red) and downwind (blue) of the King Plains wind
farm during high (β>0.1° m−1, observed 28.5 % of the time) and
negative (β<−0.1° m−1, observed 1 % of the time) wind veer con-
ditions. Measurements only from southerly wind directions, espe-
cially from 166 to 190°, and from 17 March to 10 September 2023
are considered in this analysis.

observed to be displaced significantly above the wind farm,
which is a function of the enhanced mixing within the wind
farm rotor layer. The higher the mixing, the larger the en-
trainment and the higher the displacement of the LLJ. Above
the LLJ, the gravity wave is observed to have an inverse ef-
fect, where the momentum flux is positive, indicating that
momentum is transferred upwards to the gravity wave. The
positive or negative transfer of momentum near the gravity
wave probably depends on the updrafts or downdrafts of the
wave, but over the 30 min average observations the overall
transfer of momentum is upwards. The negative wind shear
above the LLJ could also add to the extraction of momentum
from the wind farm. This reduces the intensity of the LLJ
and the extracted momentum results in higher wind speeds
above the LLJ downwind of the wind farm. It is observed
that, in this case, the wind farm has significantly altered the
winds not only within the δ but also above it, modulating the
shape and intensity of the LLJ. Additional analysis would be
needed to see the spatial impact of wind farms during grav-
ity wave propagation and power production. The next steps
would be working towards a climatology of gravity waves in
the region and its impact on wind farm performance.
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Figure 10. (a) Momentum flux and (b) horizontal wind speed pro-
files upwind (red) and downwind (blue) of the King Plains wind
farm for all atmospheric conditions. The median height of the ABL
(δ) from ceilometer measurements is also shown. Measurements
only from southerly wind directions, especially from 166 to 190°,
are considered in this analysis.

4 Comparisons of observed δIBL with theoretical
estimates

As discussed earlier, an internal boundary layer (δIBL) is de-
veloped due to a step change in surface roughness. Turbu-
lence is expected to be higher within the internal boundary
layer (downwind of the surface roughness) compared to in-
flow (upwind of the surface roughness). Wind farms create
a step change in surface roughness and are known to de-
velop internal boundary layers downwind of a wind farm
(Calaf et al., 2011; Stevens and Meneveau, 2017). In addi-
tion to the roughness impacts of the wind turbines, the wind-
farm-developed internal boundary layer is convolved with
the wake of the wind turbines, which create additional mo-
mentum deficits downwind of the wind farm. Internal bound-
ary layers can be estimated from a velocity profile by identi-
fying a kink in the velocity profile (Garratt, 1990). Although
this method provides a general trend, it is known to be not
very accurate. An alternative technique, proposed in Stevens
(2016), is being implemented here, where the difference in
streamwise momentum flux profiles upwind and downwind
of a surface roughness change are used to estimate the growth
of the internal boundary layer. Vertical momentum flux is re-
sponsible for the influx of momentum into the wake of a wind
farm. Larger streamwise momentum flux deficits above the
wind farm are mainly observed due to turbulence and shear

generated by the wind turbines. Wind turbine wakes enhance
vertical mixing above a wind farm, which results in a down-
ward flow of momentum. The internal boundary layer height
(δIBL) is the height when the upwind and downwind momen-
tum flux estimates are approximately within 1 %–5 % of each
other above the wind farm.

Wind farm δIBL is typically capped by δ, but previous LES
modeling results have shown it to penetrate the upwind δ
during LLJs (Gadde and Stevens, 2021). As shown earlier,
model formulations exist to estimate δIBL downwind of a
wind farm (Eq. 2). But the growth constant and wind farm
surface roughness formulations have been fine-tuned based
on large-eddy simulations, and as per the authors’ knowl-
edge, no significant analysis of the validation of such for-
mulations has been conducted so far using real-world obser-
vations. This article does not attempt to do that comparison
in detail but is the start of such comparisons. The model for-
mulations (Eq. 2) are sensitive to surface roughness in the
presence of a wind farm (z0, hi) and the growth constant (C),
which can significantly vary δIBL estimates within the model
(sensitivity analysis not shown for brevity). The model for-
mulations also do not explicitly restrict the growth of δIBL
but are implicitly treated in models where the sub-grid-scale
mixing does not exceed δ, especially during stable atmo-
spheric conditions.

Figure 13 shows the difference in estimates of δIBL from
observations and model formulations (Eq. 2) only during sta-
ble atmospheric conditions and in the presence of a LLJ.
Since we have higher confidence in δIBL during these cases
and δ already represents the top of the LLJ height, this also
avoids introducing additional uncertainty from ceilometer δ
observations. Some of the inputs to model formulations are
provided by real-world observations, such as the lidar 10 min
average wind speed at hub height, inflow surface friction ve-
locity and roughness from sonic anemometers, thrust curve
of the GE 2.8 MW wind turbine, and average wind turbine
spacing in southerly wind directions. Given real-world in-
puts, the median δIBL difference between the model and ob-
servations is approximately 50 m; i.e., the model underesti-
mates the δIBL. During some extreme cases (1δIBL>200 m)
the model does not behave due to inconsistent wind direc-
tions for a sustained period (several hours). Additional re-
search is needed with large-eddy simulations or numerical
weather prediction models with real-world forcing to assess
the recovery and growth of δIBL at an operational wind farm.

5 Conclusions

These novel observations reveal the temporal and spatial
variability of momentum balance within and above wind
farm wakes during region-specific atmospheric conditions.
Profiles also show the growth of the internal boundary
layer and allow quantification of the accuracy of current
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Figure 11. Time–height cross-section of vertical velocity (W ) at the ARM SGP central facility on 24 July 2023 from 03:00 to 04:00 UTC.
The gaps in data every 15 min are when the lidar performs wind profiles (Newsom and Krishnamurthy, 2022).

Figure 12. (a) Momentum flux and (b) horizontal wind speed pro-
files upwind (red) and downwind (blue) of the King Plains wind
farm during a gravity wave event on 24 July 2023 at 03:30 UTC.

large-eddy-simulation-based approximations in estimating
the growth of the internal boundary layer (IBL).

The momentum balance surrounding a wind farm may
impact wake recovery. The greater the momentum flux, the
faster the wake velocity recovers to a freestream value. Wind
farm wakes are known to propagate long distances during
stable atmospheric conditions, and thereby the vertical mo-
mentum flux added due to the presence of the wind farm is

more persistent at downwind locations and varies with the
diurnal cycle. Stable conditions also produce LLJs in the US
Great Plains, which are known to impact the performance
and power output of commercial wind farms. Figure 6 shows
a schematic of the impact of varying ZLLJ on wind farm
wake recovery and modulation of the flow downwind of the
wind farm. Therefore, long-term measurements of vertical
momentum flux upwind and downwind of a wind farm can
provide a holistic view of the physical mechanisms behind
wake recovery during various atmospheric conditions. In this
study, we have evaluated the impact on wake recovery using
long-term observations of vertical momentum flux through
the boundary layer during a variety of atmospheric condi-
tions. Overall, some highlights of the observations are men-
tioned below.

1. Wind farms alter LLJ characteristics downwind of the
wind farm by elevating the height of the jet above the
wind farm (see Figs. 5 and 6).

2. The height of the LLJ significantly impacts wind farm
wake recovery downwind, with higher ZLLJs resulting
in faster wake recovery (see Figs. 5 and 6).

3. Negative wind shear during non-LLJ cases show short
wake propagation at 22 RD downwind of a wind farm.

4. Wind farm wake impacts are observed through the δ
(see Fig. 10).

5. Gravity waves enhance wake recovery and accelerate
winds above the LLJ downwind of a wind farm (see
Fig. 12).

6. Large-eddy-simulation-based theoretical δIBL models
show a large spread given real-world inputs of the at-
mosphere and turbine.

Finally, we have highlighted several areas of research in
this article that still need to be explored to understand the dy-
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Figure 13. Probability distribution of δIBL difference between observations and a semi-empirical model (Eq. 2) during stable atmospheric
conditions and in the presence of a LLJ.

namics of the wind-farm-influenced atmospheric boundary
layer, as mentioned below.

1. Additional comparisons between LES models and ob-
servations are required to further evaluate the wake re-
covery processes within a wind farm wake, since most
mesoscale wake model parameterizations are assessed
using outputs from LES models.

2. It is important to model not only the wind turbine rotor
layer with high vertical resolution but also up to the top
of the δ to accurately assess the impacts of wind farms
and wake recovery (as shown in Fig. 10), as it is im-
portant to understand the entrainment of winds from the
ABL to the wind farm wake boundary layer.

3. Long-term (1 year +) evaluation of wind farm wake
models or parameterizations using long-term atmo-
spheric flux observations through the boundary layer to
assess the true performance of such models is recom-
mended.

4. Analysis would be needed to see the spatial impact of
wind farms during gravity wave propagation and power
production.

5. Research is needed with large-eddy simulations or nu-
merical weather prediction models with real-world forc-
ing to assess the recovery and growth of δIBL at an op-
erational wind farm.

Future work will focus on developing a methodology to
classify gravity waves in the region and assess the power
production impacts in the presence of gravity waves at the
King Plains wind farm site. In addition, comparison of ob-
servations and models will be conducted to refine wind farm
parameterization schemes within numerical weather models.

Appendix A: Flux estimation algorithms and
approach

Herein we provide details of the algorithms used to es-
timate momentum fluxes from surface-based anemometers
and scanning Doppler lidars as well as a methodology to es-
timate the height of the internal boundary layer from upwind
and downwind momentum flux profiles.

A1 Momentum flux estimates from sonic anemometers

Sonic anemometers are considered a standard for esti-
mating atmospheric turbulence parameters (Wilczak et al.,
2001, 2019; Fernando et al., 2019). Three-dimensional (3-
D) acoustic anemometers provide measurements of winds
and temperature at high temporal frequency (>= 20 Hz),
which supports calculation of higher-order statistics with
good accuracy (Cook and Sullivan, 2020). The sign con-
ventions of the 3-D winds vary for different manufacturers
and for Gill sonic anemometers, which were deployed for
this project; the sign conventions are defined as positive for
the upward vertical wind component (w) and upward atmo-
spheric fluxes, the u wind component (north–south) is pos-
itive towards north, and the v wind component (east–west)
is positive towards the west. The raw and flux data files
are generated as per Cook and Sullivan (2020) and con-
tain 30 min of post-processed data and estimates of turbulent
fluxes. The sonic data are post-processed by first applying a
de-spiking procedure (Goring and Nikora, 2002) to remove
any data anomalies, and a two-axis coordinate rotation is per-
formed (Wilczak et al., 2001), which ensures 〈w〉 = 〈v〉 = 0
and 〈us〉 = U , where U is the mean wind speed, us is the
streamwise component, and 〈·〉 is a 30 min temporal aver-
age. To estimate the fluxes, the average of each variable is
estimated over a 30 min (non-overlapping) window, and no
detrending of the data is performed to estimate the velocity
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fluctuations. The stress tensor is then computed using 30 min
measurements of velocity fluctuations and assumed to be sta-
tistically stationary over the averaging window. Momentum
flux estimates from sonic anemometer data were calculated
using the eddy-covariance method (Stull, 1988).

A2 Momentum flux profiles from Doppler lidars

A brief description of the method to estimate momentum flux
profiles from lidars is given below (Eberhard et al., 1989;
Mann et al., 2010). The radial velocity (vr) equation of a
Doppler lidar is given by

vr (R,θ )= u(R) sinϕ cosθ + v(R) sinϕ sinθ

+w(R)cosϕ, (A1)

where R is the range, ϕ is the half-opening angle of the con-
ical scan (30°), θ is the azimuthal direction of the lidar beam
(0° is north), and u, v, and w are the wind components at
each range-gate center. The variance of vr is given by

σ 2 [vr (R,θ )]= σ 2
u sin2ϕcos2θ + σ 2

v sin2ϕsin2θ

+ σ 2
wcos2ϕ+ 2〈u′v′〉sin2ϕ cosθ sinθ

+ 2〈u′w′〉cosϕ sinϕ cosθ + 2〈v′w′〉
cosϕ sinϕ sinθ, (A2)

where u′, v′, andw′ are the velocity fluctuations. One can es-
timate the streamwise momentum flux components (〈u′w′〉)
by calculating the radial velocity variance in the upwind
and downwind directions over 30 min (Eberhard et al., 1989;
Mann et al., 2010), which is then given by

〈u′w′〉 =
σ 2 [vr down]− σ 2 [

vr up
]

2sin2ϕ
, (A3)

where σ 2 [vr down] and σ 2 [
vr up

]
are the radial velocity vari-

ances from the nearest downwind and upwind azimuth angles
relative to the mean wind direction, respectively. The nearest
up and down radial velocities from the azimuth angles are
picked for each 30 min sample and given range-gate wind di-
rection estimate. It can be noted from Eq. (A3) that in a posi-
tively sheared turbulent flow, σ 2(vr up)> σ 2(vr down), i.e., the
upwind variances, are typically larger than downwind vari-
ances. The effect of measurement volume is not considered
in this analysis and has been shown to have a minimal im-
pact on the streamwise momentum flux measurements for
Doppler lidars (Mann et al., 2010).

For evaluating the accuracy of the algorithm, continuous
velocity azimuth display (VAD) scans at the same elevation
and azimuth angles are required to calculate the variance of
the radial velocity along each beam. From 8 October 2020
to 14 January 2021, continuous eight-point planned position
indicator (PPI) scans (1az= 45° and el= 60°) were con-
ducted at the Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) central facility to support an

ongoing field campaign. The mean wind direction (φ) at
each height is calculated using the approach of Newsom et
al. (2017), wherein a chi-square distribution is fit to esti-
mate the horizontal wind vector. Each beam was averaged
for 6 s to provide a robust estimate of radial velocity and
study the effect of noise from individual radial velocity mea-
surements (Frehlich, 2001). This averaging could underesti-
mate the variance observed by the lidar. During this study,
each 360° wind profile was completed in ∼ 1 min. This pro-
vided the ability to calculate the variance of radial veloc-
ity along each beam and the momentum flux profile using
Eq. (A3). Along-wind momentum flux (〈u′w′〉) estimates
from the sonic anemometer at 60 m and lidar at 75 m from
southerly wind directions are shown in Fig. A1a.

Doppler lidar 〈u′w′〉 measurements are observed to corre-
late reasonably well with sonic anemometer 〈u′w′〉measure-
ments, with a slope of 0.85 and a coefficient of determination
of ∼ 78 %. During stable atmospheric conditions, given the
degree of stratification within the lidar probe volume, the li-
dar could be measuring very different atmospheric conditions
compared to a sonic anemometer. Figure A1b shows mea-
surements from southerly wind directions and very stable at-
mospheric conditions (10 m<L<150 m). The coefficient of
determination is observed to be reduced during stable con-
ditions to ∼ 63 %, although the wind speeds are observed
to correlate well under all conditions. The transfer of mo-
mentum is lowest in stable atmospheric conditions and there-
fore smaller momentum flux estimates are observed. From
a purely statistical standpoint, the smaller magnitude of the
fluxes also contributes to reducing the coefficient of determi-
nation, since under these conditions the contribution of in-
strumental and statistical noise to the physical variability is
relatively larger. The scatter between lidar and sonic mea-
surements is primarily due to (a) 15 m vertical and ∼ 250 m
horizontal separations between sonic anemometer and lidar
measurements, (b) low temporal sampling of the lidar mea-
surements, and (c) spatial averaging of the lidar pulse (range
gate 30 m). These effects are amplified during stable atmo-
spheric conditions and result in larger scatter between mea-
surements. Previous observations of momentum flux from
profiling Doppler lidars have shown a similar accuracy when
compared to sonic anemometers at various heights above
ground level (Mann et al., 2010). Overall, the performance
of the algorithm is expected to be adequate for the analysis
being conducted in this article.
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Figure A1. 30 min averaged along-wind momentum flux (〈u′w′〉) measurements from lidar at 75 m and sonic measurements at 60 m a.g.l.
from 8 October 2020 to 14 January 2021 at the ARM SGP central facility for (a) southerly wind directions under all atmospheric conditions
and (b) southerly wind directions under very stable atmospheric conditions (10 m<L<150 m). A linear fit between the measurements
(y =mx+c), the coefficient of determination (R2), and the number of samples (N ) are also shown. The x-axis scaling for panels (a) and (b)
are different.
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