
Wind Energ. Sci., 10, 451–460, 2025
https://doi.org/10.5194/wes-10-451-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Glauert’s optimum rotor disk revisited – a calculus of
variations solution and exact integrals for thrust and

bending moment coefficients

Divya Tyagi and Sven Schmitz
Department of Aerospace Engineering, The Pennsylvania State University, University Park, 16801, PA, USA

Correspondence: Sven Schmitz (sus52@psu.edu)

Received: 3 September 2024 – Discussion started: 30 September 2024
Revised: 29 October 2024 – Accepted: 29 November 2024 – Published: 21 February 2025

Abstract. The present work is an amendment to Glauert’s optimum rotor disk solution for the maximum power
coefficient, CPmax , as a function of tip speed ratio, λ. First, an alternate mathematical approach is pursued towards
the optimization problem by means of calculus of variations. Secondly, analytical solutions for thrust and bending
moment coefficients, CT and CBe, are derived, where an interesting characteristic is revealed pertaining to their
asymptotic behavior for λ→∞. In addition, the limit case of the non-rotating actuator disk for λ→ 0 is shown
for all three performance coefficients by repeated use of L’Hôpital’s theorem, and its validity is discussed in the
context of other works since Glauert.

1 Introduction

The original work of Glauert consisted of a closed-form
solution describing the optimum performance of a rotating
actuator disk (Glauert, 1935), where the simplified actua-
tor disk concept for infinitely bladed propellers (Betz, 1919;
Lanchester, 1915) was extended to wake rotation of energy-
extracting rotors; see also Okulov and van Kuik (2012) for a
review on the early history of momentum theory. In order for
Glauert to close the basic equations of rotor disk theory, ad-
ditional assumptions had to be applied that utilized a simple
relationship between the induced velocity components and
pressure jump at the rotor disk (Sørensen, 2016). At the time
of Glauert, it was assumed that the kinetic energy required for
wake rotation was extracted from the freestream (Goldstein,
1929), and this assumed wake energy and a constant pressure
jump across the rotor disk remain the fundamental assump-
tions in Glauert’s theory. In this regard, Glauert’s model dif-
fered from that of Joukowski (1918), which was built on the
assumption of constant circulation across the rotor disk (Bur-
ton et al., 2011; Sørensen, 2016). Also, de Vries (1979) ques-
tioned the validity of ignoring the static pressure drop caused
by wake rotation. Indeed, an additional pressure drop is re-
quired to balance the centrifugal force of rotating air parcels

as a function of radial location on the disk; see also Sharpe
(2004) for a discussion of a general momentum theory. A
complete and comprehensive summary of the validity of all
rotor disk theory models can be found in Sørensen (2016). In
the end, various rotor disk models all approach the accepted
Betz limit for maximum rotor power coefficient at high tip
speed ratio. To date, however, no exact integrals have been
presented for thrust and bending moment coefficients based
on Glauert’s optimum solution for axial and angular induc-
tion factors.

The objective of the present work is to determine the exact
integrals for thrust and bending moment coefficients, serv-
ing as an addendum to Glauert’s original work deriving op-
timum power coefficients. In doing so, an elegant solution
by means of calculus of variation reveals itself, recovering
Glauert’s optimum distributions for axial and angular induc-
tion factors. Exact integrals for thrust and bending moment
coefficients are then derived, including proper limit behavior
of performance coefficients for low and high tip speed ratio.
This work is organized as follows: Sect. 2 introduces clas-
sical rotor disk theory and relevant dimensionless parame-
ters. Section 3 discusses Glauert’s optimum solution for the
maximum power coefficient, as well as an alternate optimiza-
tion approach by means of calculus of variation, and a for-
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mal asymptotic behavior of induction factors. Sections 4 and
5 detail the mathematics uncovering the exact integrals for
thrust and bending moment coefficients, respectively. Sec-
tion 6 summarizes the analytical solutions for all three per-
formance coefficients and discusses the limitations with re-
spect to validity at very low tip speed ratio. Section 7 con-
tains some concluding remarks highlighting results obtained
within the context of the typical range of tip speed ratio for
modern wind turbines.

2 Rotor disk theory – axial/angular induction factors
and power coefficient

The classical rotor disk formulation according to Glauert
(1935) has been documented in various texts (Wilson et al.,
1976; Hansen, 2008; Manwell et al., 2009; Burton et al.,
2011; Wood, 2011; Schaffarczyk, 2014; Sørensen, 2016;
Schmitz, 2019). In the following, only the primary relations
relevant to this work are summarized.

Consider an axi-symmetric streamtube model that encom-
passes a wind turbine. The cross section, where the rotor
is located, can be represented by a thin rotor disk of area,
A= πR2, where R is the disk radius. The axial induction
factor, a, determines the reduction in wind speed, V0, at the
disk. This coefficient is defined as

a = 1−
u

V0
, (1)

where u is the axial speed at the rotor disk. As a consequence
of rotor thrust, there exists a discontinuity in pressure,1p, at
the disk. Therefore, Bernoulli’s equation is applied both up-
stream and downstream of the disk. Adding these two equa-
tions together allows solving for 1p, i.e. the pressure jump
arising from disk theory,

1p = 2ρV 2
0 a(1− a), (2)

in terms of the fluid density, ρ, V0, and a as shown. Next,
disk rotation is added at an angular speed, �. The wake an-
gular velocity component, ω, just downstream of the disk,
however, is affected by a rotor disk torque in the circumfer-
ential direction. The angular induction factor, a′, relates the
wake angular velocity to the angular speed of the rotor disk:

a′ =
ω

2�
. (3)

Bernoulli’s equation is applied once more upstream and
downstream of the rotor disk. Note that in Glauert’s theory,
the assumption is that the same pressure jump, 1p, that gen-
erates thrust also generates rotor torque and power. The re-
sulting 1p equation arising from added wake rotation be-
comes

1p = 2ρV 2
0 a
′(1+ a′)λ2

r . (4)

A practical relation between a and a′ is obtained by equat-
ing Eqs. (2) and (4) such that

λ2
r =

a(1− a)
a′(1+ a′)

, (5)

where λr =
r
R
λ is the local tip speed ratio, with r

R
being

the non-dimensional blade radius and λ= �R
V0

being the tip
speed ratio. In rotor disk theory, the rotor power coefficient,
CP = P/( 1

2ρV
3
0 A), with P being rotor power, is obtained by

the following integral:

CP =
8
λ2

λ∫
0

a′(1− a)λ3
r dλr. (6)

3 Glauert’s original optimum solution

In 1935, aerodynamicist Hermann Glauert approached the
mathematical optimization problem of maximizing CP as a
function of λ. Glauert’s formal definition of the objective
function f is given as

f (a,a′)= a′(1− a). (7)

For the sake of brevity, Glauert’s detailed derivation is
not presented here but is included in modified form in Ap-
pendix A. It concludes in a third-order polynomial for a(λr):

16a3
− 24a2

+ (9− 3λ2
r )a+ (λ2

r − 1)= 0, (8)

which can be solved iteratively using, for example, a
Newton–Raphson algorithm. Glauert also found a simple ex-
pression for a′(a) that reads

a′ =
1− 3a
4a− 1

. (9)

Next, Glauert substituted the optimum solutions for a(λr)
and a′(a) back into Eq. (6) and solved for the exact integral
for the maximum power coefficient, CPmax , as a function of
tip speed ratio, λ:

CPmax =
1
λ2 ·

(
2
9

)3

[
64
5
x5
+ 72x4

+ 124x3
+ 38x2

− 63x− 12lnx−
4
x

]x1=
1
4

x2=1−3a2

. (10)

where a2 is the corresponding solution of a(λr) when evalu-
ating Eq. (8) at λ. The exactCPmax integral from Eq. (10) con-
verges to the theoretical Betz limit at 16

27 ≈ 0.5926 for high λ.
The reader is referred to Appendix A for details.

In the present paper, Glauert’s work is amended first by
finding a simple alternative solution based on calculus of
variations and formally showing the behavior for low and
high λ and then by deriving corresponding exact integrals
for thrust and bending moment coefficients, CT and CBe.

Wind Energ. Sci., 10, 451–460, 2025 https://doi.org/10.5194/wes-10-451-2025



D. Tyagi and S. Schmitz: Glauert’s optimum rotor disk revisited 453

3.1 A calculus of variations solution for CPmax

A Lagrangian function, L(a,a′,X ), is defined as

L(a,a′,X )= f (a,a′)+Xg(a,a′), (11)

where f (a,a′)= a′(1− a) is the objective function from
Eq. (7), g(a,a′)= a(1−a)−a′(1+a′)λ2

r is the equality con-
straint from Eq. (5), and X is the Lagrange multiplier. To
maximize f (a,a′) under the equality constraint of g(a,a′)=
0, the stationary points of L(a,a′,X ) must be determined by
setting all partial derivatives of L with respect to a, a′, and
X equal to 0. Those partial derivatives become

∂L
∂a
=−a′+X (1− 2a)= 0, (12)

∂L
∂a′
= 1− a−Xλ2

r (1+ 2a′)= 0, (13)

∂L
∂X
= a(1− a)− a′(1+ a′)λ2

r = 0. (14)

The goal is to solve this system of equations for polyno-
mials a(λr) and a′(λr). This can be done multiple ways; how-
ever, a simple method involves equating X from Eqs. (12)
and (13). The resulting expression is then substituted into the
final partial derivative in Eq. (14). After some algebraic ma-
nipulation, a factored polynomial for a(λr) reads

(16a3
− 24a2

+ (9− 3λ2
r )a+ (λ2

r − 1)) · (a− 1)= 0, (15)

where its factor of third order recovers Glauert’s original
polynomial from Eq. (8).

The same system of equations can be solved instead to
compute a polynomial for a′(λr). This time, a′ from Eqs. (12)
and (13) is equated, and the resulting expression for a is then
substituted into the partial derivative from Eq. (14). After
some algebraic simplification, a third-order polynomial for
a′(λr) is obtained:

16λ2
r (a′)3

+ 24λ2
r (a′)2

+ (9λ2
r − 3)a′− 2= 0. (16)

The relations presented in Eqs. (15) and (16) were com-
puted by means of calculus of variations, a methodology dif-
ferent from Glauert’s original approach. However, both ap-
proaches produce identical results for the optimum flow con-
ditions. Note that a calculus of variations approach for lightly
loaded propellers has been documented in Breslin and An-
dersen (1994).

3.2 Limiting case of a & a′ for low and high tip speed
ratio

Next, it is of interest to determine the limiting case for a as
λr tends to both 0 and∞. As λr→ 0, Eq. (15) becomes

16a3
− 24a2

+ 9a− 1= (a− 1)(4a− 1)2
= 0, (17)

which has the trivial roots a = 1
4 ,1. Here, the physical solu-

tion of a = 1
4 is consistent with Glauert’s original work. As

for the upper limit of λr→∞ for Eq. (15), the equation can
be recast to obtain

1
1+ λ2

r
=

1− 3a
−2(2a− 1)3 , (18)

where it becomes apparent that as the left-hand side of
Eq. (18) tends to zero for λr→∞, the right-hand side can
only reconcile this for a→ 1

3 . This result is again consistent
with Glauert’s original solution. Alternatively, the factoriza-
tion in Eq. (17) can be used to restate the third-order factor
in Eq. (15) to obtain

1
λ2

r
=

1− 3a
(1− a)(1− 4a)2 , (19)

which concludes the same for λr→ 0, ∞ and is in fact a
relation used by Glauert in the exact integral for CPmax (see
Appendix A) and is used in Sect. 3 for the exact integrals of
CT and CBe. For completeness, the limiting case for a′ as λr
tends to both 0 and ∞ is also determined. Equation (16) is
rearranged to

1
λ2

r
=

(4a′+ 3)2

2+ 3a′
a′. (20)

For added wake rotation a′ > 0, the left-hand side of
Eq. (20) tends to ∞ for λr→ 0. This can be reconciled on
the right-hand side by a′→∞. Likewise, as the limit of the
left-hand side of Eq. (20) becomes 0 for λr→∞, the right-
hand side will only be satisfied with a physical solution of
a′→ 0. Both behaviors are consistent with Glauert’s solu-
tion (see Appendix A).

3.3 Limiting case of CPmax for low and high tip speed
ratio

The limiting case of the CPmax integral for λr→ 0 is not eas-
ily shown and in fact was not explicitly stated in Glauert’s
original work. It is added here as part of the amendment. To
better illustrate the behavior, the substitution x = 1− 3a is
used along with the practical relation from Eq. (19) at the
integration bound a2 such that Eq. (10) becomes

CPmax =
(1− 3a2)

(1− a2)(1− 4a2)2 ·

(
2
9

)3

[
− 10.5082−

(64
5

(1− 3a2)5
+ 72(1− 3a2)4

+ 124(1− 3a2)3

+ 38(1− 3a2)2
− 63(1− 3a2)− 12ln(1− 3a2)−

4
(1− 3a2)

)]
. (21)

It is evident that for λr = 0, where a2 =
1
4 , there exists a

singularity for CPmax . Therefore, a limit for CPmax as λr→ 0,
or as a2→

1
4 , must be taken and results in the following:

lim

a2→
1
4

CPmax =
0
0
. (22)
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Since evaluating this limit results in the indeterminate
form of 0

0 , the mathematical theorem known as L’Hôpital’s
rule can be applied to determine the true limit using deriva-
tives:

lim

a2→
1
4

f (a2)
g(a2)

= lim

a2→
1
4

f ′(a2)
g′(a2)

= lim

a2→
1
4

f ′′(a2)
g′′(a2)

. (23)

For ease of reference, the functions f and g extracted from
Eq. (21) are explicitly stated below:

f (a2)=
(

2
9

)3[
− 10.5082−

(
64
5

(1− 3a2)5
+ 72(1− 3a2)4

+ 124(1− 3a2)3
+ 38(1− 3a2)2

− 63(1− 3a2)

− 12ln(1− 3a2)−
4

(1− 3a2)

)]
,

(24)

g(a2)=
(1− a2)(1− 4a2)2

1− 3a2
. (25)

Applying the limit of a2→
1
4 (or λr→ 0) does result in

the following:

lim

a2→
1
4

f ′(a2)
g′(a2)

= lim

a2→
1
4

24(64a6
2−224a5

2+308a4
2−212a3

2+77a2
2−14a2+1)

(3a2−1)2

6(4a2−1)(4a2
2−4a2+1)

(3a2−1)2

=
0
0
.

(26)

Applying L’Hôpital’s rule twice, however, proves the fol-
lowing:

lim

a2→
1
4

f ′′(a2)
g′′(a2)

= lim

a2→
1
4

96(192a6
2 − 600a5

2 + 742a4
2 − 467a3

2 + 159a2
2 − 28a2+ 2)

12(24a3
2 − 24a2

2 + 8a2− 1)

= 0.

(27)

Thereby the intuitive result that CPmax → 0 as λr→ 0 has
been formally shown. Note that the high tip speed ratio limit
of Eq. (21) for a2→

1
3 (or λr→∞) is more readily shown

with

lim

a2→
1
3

CPmax = lim

a2→
1
3

4
(1− a2)(1− 4a2)2 ·

(
2
9

)3
=

16
27
, (28)

which indeed recovers the known Betz limit. Next follows an
additional amendment to Glauert’s work by means of analyt-
ical derivations for thrust and bending moment coefficients,
CT and CBe, based on optimum a and a′ distributions.

4 Exact integral of the thrust coefficient CT based
on Glauert’s optimum solution

The pressure jump, 1p, generates a rotor thrust, T =1p A,
across the rotor disk in the axial direction. In differential
form, this becomes dT =1p dA= 4πρV 2

0 a(1− a)rdr , us-
ing the definition of 1p from Eq. (2) and dA= 2πrdr . A
dimensionless rotor thrust coefficient is then defined as

CT =
T

1
2ρV

2
0 A

. (29)

The incremental thrust coefficient, dCT, can be computed
by dividing the incremental thrust, dT , by 1

2ρV
2
0 A, resulting

in the following expression for dCT:

dCT = 8a(1− a)
r

R
d(
r

R
). (30)

Recall that the definition for local tip speed ratio is λr =
r
R
λ. Substituting the expression for non-dimensional blade

radius, r
R

, into Eq. (30) leads to the final expression for dCT:

dCT =
8
λ2 a(1− a)λrdλr. (31)

To write CT exclusively in terms of a, differentiating
Eq. (19) yields a relation for λrdλr with

λrdλr =
3(4a− 1)(1− 2a)2

(1− 3a)2 da, (32)

such that an integral for CT can be written as

CT =
8
λ2

λ∫
0

a(1− a)λr dλr

=−
24
λ2

λ∫
0

a(1− a)(1− 4a)(1− 2a)2

(1− 3a)2 da. (33)

The same substitution as used by Glauert is carried
through, where x = 1− 3a, resulting in

CT =
1
λ2 ·

8
243

x1∫
x2

[
(1− x)(2+ x)(1− 4x)(1+ 2x)2

x2

]
dx

=−
1
λ2 ·

8
243

x2∫
x1

(
16x3
+ 28x2

− 20x− 25−
1
x
+

2
x2

)
dx, (34)

which can be easily integrated to yield the following:

CT =
1
λ2

·
8

243

[
4x4
+

28
3
x3
− 10x2

− 25x− lnx−
2
x

]x1=
1
4

x2=1−3a2

. (35)
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To better understand the behavior of the CT integral,
Eq. (35) is rewritten again in terms of a. The integration
bounds x1 and x2 are substituted in as 1

4 and (1− 3a2), re-
spectively, where λ2

= λ2
r |a2 such that

CT =
(1− 3a2)

(1− a2)(1− 4a2)2 ·
8

243

[
− 13.3272−

(
4(1− 3a2)4

+
28
3

(1− 3a2)3
− 10(1− 3a2)2

− 25(1− 3a2)

− ln(1− 3a2)−
2

(1− 3a2)

)]
.

(36)

As λr→ 0, or a2→
1
4 , there exists a singularity and CT

is not defined (note: a similar behavior was found earlier for
CPmax ). Indeed the limit for CT as λr→ 0, or a2→

1
4 , be-

comes

lim

a2→
1
4

CT =
0
0
. (37)

Since evaluating this limit results in the indeterminate
form of 0

0 , L’Hôpital’s rule can be applied to determine the
true limit. The theorem equates the following limits, where
functions f and g are differentiable:

lim
a2→c

f (a2)
g(a2)

= lim
a2→c

f ′(a2)
g′(a2)

. (38)

For ease of reference, the functions f and g extracted from
Eq. (36) are explicitly stated below:

f (a2)=
8

243

[
− 13.3272−

(
4(1− 3a2)4

+
28
3

(1− 3a2)3

− 10(1− 3a2)2
− 25(1− 3a2)− ln(1− 3a2)

−
2

(1− 3a2)

)]
,

(39)

g(a2)=
(1− a2)(1− 4a2)2

1− 3a2
. (40)

Applying L’Hôpital’s rule once results in the following as
a2 approaches 1

4 :

lim

a2→
1
4

f ′(a2)
g′(a2)

= lim

a2→
1
4

−24a2(16a4
2−36a3

2+28a2
2−9a2+1)

(3a2−1)2

6(4a2−1)(4a2
2−4a2+1)

(3a2−1)2

=
0
0
. (41)

It is valid to apply L’Hôpital’s rule a second time, as func-
tions f and g are differentiable. This yields

lim

a2→
1
4

f ′′(a2)
g′′(a2)

= lim

a2→
1
4

−80a4
2 + 144a3

2 − 84a2
2 + 18a2− 1

12a2
2 − 10a2+ 2

=
3
4
, (42)

where it is interesting to note that the thrust coefficient, CT,
converges to 0.75 as λ→ 0. Though seemingly a surprising
result at first, it will be reconciled with actuator disk theory
in a later section.

Note again that the high tip speed ratio limit of Eq. (36)
for λr→∞ (or a2→

1
3 ) is more readily shown with

lim

a2→
1
3

CT = lim

a2→
1
3

2
(1− a2)(1− 4a2)2 ·

8
243
=

8
9
, (43)

which is also fully consistent with actuator disk theory, as
will be shown further below.

5 Exact integral of the bending moment coefficient
CBe based on Glauert’s optimum solution

The bending moment, Be, is an important structural param-
eter when assessing the loading of wind turbine blades. A
dimensionless bending moment coefficient is defined as

CBe =
Be

1
2ρV

2
0 AR

. (44)

In differential form, dBe is essentially the product of thrust
dCT and lever arm r

R
of the local annulus such that

dCBe = dCT ·
r

R

=
8
λ2 a(1− a)λrdλr ·

r

R

=
8
λ3 a(1− a)λ2

r dλr, (45)

where Eq. (31) was used. The exact integral for the total
bending moment coefficient, CBe, is hence defined as

CBe =

λ∫
0

dCBe =
8
λ3

λ∫
0

a(1− a)λ2
r dλr. (46)

Substituting a combination of Eqs. (19) and (32) yields

CBe =−
24
λ3

λ∫
0

a(1− a)3/2(1− 4a)2(1− 2a)2

(1− 3a)5/2 da. (47)
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Once more, the integration substitution is performed,
where x = 1− 3a, so that CBe can be solved analytically to

CBe =−
1
λ3 ·

8

243 · 271/2

x2∫
x1

(1− x)(2+ x)3/2

(1− 4x)2(1+ 2x)2

x5/2 dx

=
1
λ3 ·

8

243 · 271/2

[
− 24ln((x+ 2)1/2

+ x1/2)

−

(x+ 2)1/2(192x6
+ 408x5

− 532x4

−890x3
+ 585x2

− 260x+ 20)
15x3/2

]x1=
1
4

x2=1−3a2

. (48)

To better understand the behavior of the CBe function,
Eq. (48) is rewritten solely in terms of a. This means sub-
stituting λ3

= λ3
r |a2 in the denominator by raising Eq. (19),

which is evaluated at the integration bound a2, to the power
3
2 such that

λ3
=

(1− a2)
3
2 (1− 4a2)3

(1− 3a2)
3
2

. (49)

The values for x1 and x2 are substituted in as well, being
1
4 and (1− 3a2), respectively, where a2 is simply a(λr) such
that

CBe =−
(1− 3a2)3/2

(1− a2)3/2(1− 4a2)3 ·
8

243 · 271/2[
2.5457−

(
− 24ln[(3− 3a2)1/2

+ (1− 3a2)1/2
]

−

(3− 3a2)1/2
· (192(1− 3a2)6

+408(1− 3a2)5
− 532(1− 3a2)4

− 890(1− 3a2)3)
15 · (1− 3a2)3/2

−
(3− 3a2)1/2

· (585(1− 3a2)2
− 260(1− 3a2)+ 20)

15 · (1− 3a2)3/2

)]
. (50)

As λr→ 0 (or a2→
1
4 ), the bending moment coefficient,

CBe, yields the following indeterminate form:

lim

a→
1
4

CBe =
f (a2)
g(a2)

=
0
0
. (51)

For ease of reference, the functions f and g extracted from
Eq. (50) are explicitly stated below:

f (a)=
8

243 · 271/2[
2.5457−

(
(−24ln[(3− 3a2)1/2

+ (1− 3a2)1/2
]

−

(3− 3a2)1/2
· (192(1− 3a2)6

+408(1− 3a2)5
− 532(1− 3a2)4

− 890(1− 3a2)3)
15 · (1− 3a2)3/2

−
(3− 3a2)1/2

· (585(1− 3a2)2
− 260(1− 3a2)+ 20)

15 · (1− 3a2)3/2

)]
,

(52)

g(a)=−
(1− a2)3/2(1− 4a2)3

(1− 3a2)3/2 . (53)

Using L’Hôpital’s rule once leads to the indeterminate
form of 0

0 with

f ′(a2)=

3359232a7
2 − 11757312a6

2 + 16166304a5
2 − 11127456a4

2
+4041576a3

2 − 734832a2
2 + 52488a2

3
13
2 (1− 3a2)

5
2 (3− 3a2)1/2

,

g′(a2)=
9(1− a2)1/2(4a2− 1)2 (4a2

2 − 4a2+ 1
)

(1− 3a2)
5
2

,

and

CBe = lim

a2→
1
4

f ′(a2)
g′(a2)

=
0
0
. (54)

Applying L’Hôpital’s rule a second time still results in the
indeterminate form of 0

0 as

f ′′(a2)=

120932352a8
2 − 519001344a7

2 + 925888320a6
2 − 893765664a5

2
+509553504a4

2 − 175414896a3
2 + 35429400a2

2 − 3779136a2 + 157464

3
13
2 (1− 3a2)

7
2 (3− 3a2)3/2

,

g′′(a2)=
3456a5

2 − 7776a4
2 + 6624a3

2 − 2736a2
2 + 558a2− 45

(1− 3a2)7/2(1− a2)1/2 ,

and

CBe = lim

a2→
1
4

f ′′(a2)
g′′(a2)

=
0
0
. (55)

Differentiating functions f and g a third time results in a
definite value for the limiting case of CBe with

f ′′′ (a2 )=

3265173504a9
2 − 16597965312a8

2 + 36147435840a7
2 − 44231007744a6

2 + 33530384160a5
2

−16363658880a4
2 + 5158048248a3

2 − 1017532368a2
2 + 114791256a2 − 5668704

3
13
2 (1− 3a2 )

9
2 (3− 3a2 )

5
2

, (56)

g′′′(a2)=

10368a6
2 − 31104a5

2 + 36288a4
2

−21312a3
2 + 6642a2

2 − 1026a2+ 63

(1− 3a2)
9
2 (1− a2)

3
2

, (57)

and

CBe = lim

a2→
1
4

f ′′′(a2)
g′′′(a2)

=
1
2
. (58)
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Figure 1. Power CPmax , thrust CT, and bending moment CBe co-
efficients as functions of tip speed ratio, λ, for optimal a and a′

distributions.

Note again that the high tip speed ratio limit of Eq. (50)
for λr→∞ is more readily shown with

lim

a2→
1
3

CBe = lim

a2→
1
3

−(3− 3a2)
1
2 ·

4
3

(1− a2)
3
2 (1− 4a2)3

·
8

243 · 27
1
2
=

16
27
.

(59)

For the high λr limit, the value of CBe approaches 16
27 ≈

0.5926. Here it is interesting to note that both CPmax and CBe
tend to the Betz limit as λr→∞, which is reconciled in the
next section.

6 Summary of coefficients derived from Glauert’s
optimum model

Figure 1 shows the three coefficients of interest, CPmax , CT,
and CBe, and their tabulated values over a range of design tip
speed ratios between 0 and 10. Note that Glauert’s original
work showed exclusively CPmax based on optimum flow con-
ditions. Exact analytical solutions for CT and CBe, on the
other hand, constitute an amendment to Glauert’s original
work.

Beginning with the high tip speed ratio limit of λ→∞,
both power and bending moment coefficients,CPmax andCBe,
converge to the Betz limit 16

27 ≈ 0.5926. This may at first
seem surprising for CBe; however, it is a direct consequence
of the respective limit for the thrust coefficient, CT. In fact,
CT→

8
9 for λ→∞, which describes the limit of actua-

tor disk theory with CT = 4a(1− a)= 8
9 for the optimum

a→ 1
3 . In addition, one consequence of a constant pressure

jump, 1p, across the rotor disk is a linear thrust distribution
dT =1p 2πr dr , whose center of pressure is known to be
at 2

3
r
R

. From this simple thought experiment, it is indeed un-
derstood that CBe =

2
3 CT =

16
27 (Betz limit) for λ→∞.

For the low tip speed ratio limit of λ→ 0, it is known that
CPmax → 0; however, it has been formally proven for the first
time as part of this amendment using L’Hôpital’s theorem.

On the other hand, thrust and bending moment coefficients,
CT and CBe, tend towards non-zero values. The thrust coef-
ficient, CT, remains consistent with a non-rotating actuator
disk such that CT = 4a(1− a)= 3

4 for a→ 1
4 . The center of

pressure stays at 2
3
r
R

in the limit such that CBe =
2
3 CT =

1
2 ,

all of which is consistent with Fig. 1 and the limit of ac-
tuator disk theory. Note, however, that for rotor disk theory
where 0< λ <∞, the ratio CBe/CT ≈

2
3 , though not exactly,

as a(λr) 6= constant in Glauert’s solution (see Fig. A1).

6.1 Validity of classical Glauert theory

In his approach, Glauert assumed the pressure in the wake
to be approximately equal to the freestream pressure and the
azimuthal velocity in the wake to be approximately equal to
the azimuthal velocity immediately behind the rotor plane
(Sørensen, 2016). The first assumption has been questioned
by others (de Vries, 1979) due to the pressure gradient re-
quired to maintain swirl. Generally, areas of improvement
have been identified within Glauert’s work for low tip speed
ratio that include refinement of the blade model, swirl ef-
fects, tip correction, the optimization routine, and considera-
tions for atmospheric and rotor conditions (van Kuik, 2018).
In this context, the greatest variation among different aerody-
namic rotor models is present within the optimum flow con-
ditions, a(λr) and a′(λr), for low tip speed ratio (λ < 4). For
example, Wood and Hammam (2022) investigated the opti-
mal performance of actuator disk models for horizontal-axis
turbines. By implementing thrust from the Kutta–Joukowski
equation, dependence on pressure within the wake is avoided.
Their results highlighted that optimal performance at low λ

is constrained as a measure to avoid recirculation in the wake
– something that was not captured in Glauert’s theory. While
apparent effects on CPmax are small at low tip speed ratio,
the thrust coefficient CT for the limit λ→ 0 computed by
Wood and Hammam (2022) is less than half compared to
the computed value of 0.75 in Fig. 1. At λ= 1, however, CT
from Wood and Hammam (2022) equals 0.738 compared to
0.8458 in Fig. 1, and CPmax is 0.4381 compared to 0.4155 in
Fig. 1. Overall, results obtained using Glauert’s theory are
impressive given the inherent assumptions.

7 Concluding remark

This work derived several amendments to Glauert’s original
optimum rotor disk solution. First, an alternative approach
by means of calculus of variations was pursued to solve the
underlying classical objective function for CPmax in wind tur-
bine aerodynamics. Second, Glauert’s optimum rotor disk so-
lution was used to derive exact solutions for the thrust and
bending moment coefficients, CT and CBe. Here, L’Hôpital’s
theorem was employed to determine the convergence behav-
ior of all three coefficients for λ→ 0, while the high tip
speed ratio limit of λ→∞ was more readily shown. Some
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surprising results included that both power and bending mo-
ment coefficients, CPmax and CBe, approach the Betz limit for
λ→∞ and that thrust and bending moment coefficients, CT
and CBe, have non-zero values for λ→ 0. Using a simple
thought experiment, it was shown that all observations are in-
deed consistent with the limit of a uniformly loaded (constant
pressure jump) rotor disk, whose validity holds for tip speed
ratios typical of modern utility-scale wind turbines but has,
due to its inherent assumptions, limited validity at very low
tip speed ratio as discussed. Nevertheless, this work presents
an interesting addendum to one of the pioneering works in
wind turbine aerodynamics.

Appendix A: Glauert’s original CPmax derivation

The following analysis is adjusted from Glauert’s original
derivation (Glauert, 1935) and consistent with other versions
published in various textbooks (Burton et al., 2011; Hansen,
2008; Manwell et al., 2009; Schaffarczyk, 2014; Sørensen,
2016; Wilson et al., 1976; Wood, 2011; Schmitz, 2019). The
function to be optimized is

f (a,a′)= a′(1− a). (A1)

To determine the maximum of f , one must differentiate
both sides of the objective function f with respect to the axial
induction factor, a. The result is equated to 0 in order to find
the appropriate stationary point, as shown:

df
da
=

da′

da
(1− a)− a′ = 0. (A2)

Rearranging the equation above yields a new condition
which must be satisfied at maximum CP:

da′

da
=

a′

1− a
. (A3)

Now, a second look is taken at the pressure relation from
Eq. (5) which was known to Glauert. A derivative with re-
spect to a is taken on the left- and right-hand sides of the
equation, resulting in the following:

1− 2a = λ2
r (1+ 2a′)

da′

da
. (A4)

The right-hand side of Eq. (5) is substituted in for the λ2
r

term, and the right-hand side of Eq. (A3) is substituted in for
the differential term above, simplifying to the following:

1+ a′

1+ 2a′
=

a

1− 2a
. (A5)

Upon algebraic rearranging of this intermediate step in
Eq. (A5), the optimum relationship between a and a′ is re-
vealed:

a′ =
1− 3a
4a− 1

. (A6)

This solution for a′ can be substituted into the pressure
relation from Eq. (5) to obtain a relationship between λr and
a:

λ2
r =

(1− a)(1− 4a)2

1− 3a
. (A7)

Equation (A7) is then rearranged into a third-degree
polynomial representing the optimal axial induction factors
across the rotor disk as a function of local tip speed ratio, λr,
as shown below:

16a3
− 24a2

+ (9− 3λ2
r )a+ (λ2

r − 1)= 0. (A8)

A Newton–Raphson algorithm is employed to iteratively
solve Glauert’s third-order polynomial, with

ai+1 = ai −
f (ai)
f ′(ai)

. (A9)

The resulting optimum function a(λr) has been tabulated
and plotted in Fig. A1 for λr ranging from 0 to 10. A formal
proof of CP exhibiting a maximum, i.e. via d2f

da2 < 0, has only
been shown recently (Schmitz, 2019).

Figure A1. Glauert’s theoretical solutions for optimum axial and
angular induction factors, a and a′, respectively, as a function of
local tip speed ratio, λr.

With optimum flow conditions known for a and a′ as a
function of λr, Glauert was able to determine the exact so-
lution for CPmax . Returning to Eq. (6), there is a λ3

r dλr term
that must be addressed in order to fully solve CPmax in terms
of a. The approach taken by Glauert involved taking a sec-
ond look at Eq. (A7). Upon differentiating both sides of this
equation, a new expression for 2λrdλr is found, relating dλr
and da such that

2λrdλr =
6(4a− 1)(1− 2a)2

(1− 3a)2 da. (A10)

The λ3
r dλr term of interest can then be broken into a λ2

r
and λrdλr term, for which Eqs. (A7) and (A10) can be sub-
stituted in. Now, the integral for the maximum power coeffi-
cient, CPmax , can be defined by just one unknown, i.e. a, as
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shown below:

CPmax =
8
λ2

λ∫
0

a′(1− a)λ2
r · λr dλr

=
24
λ2

a2∫
a1

(1− a)2(1− 4a)2(1− 2a)2

(1− 3a)2 da. (A11)

Note that the limits of integration have been modified to
account for the variable substitution from λr to a. The value
of the lower bound, a1, can be calculated by setting λr equal
to 0 in Eq. (A8) and solving for a such that a1 =

1
4 ; the upper

bound, a2, is the solution to Eq. (A8) for a variable input of
λr. Through integration by substitution, a new variable x =
1− 3a is introduced to allow solving for CPmax . The exact
integral can now be expressed in terms of only x.

CPmax =−
1
λ2 ·

8
729

x2∫
x1

[
(x+ 2)(4x− 1)(2x+ 1)

x

]2

dx (A12)

Here the integration bounds must be adjusted to account
for the substitution from a into terms of x such that x2 =

1−3a2 and x1 = 1−3a. Expanding the integrand and switch-
ing the integration bounds to avoid representing the exact in-
tegral as a negative expression yields the following:

CPmax =
1
λ2 ·

(
2
9

)3 x1∫
x2

[
64x4
+ 288x3

+ 372x2

+ 76x− 63−
12
x
+

4
x2

]
dx. (A13)

Integration of Eq. (A13) results in

CPmax =
1
λ2 ·

(
2
9

)3[64
5
x5
+ 72x4

+ 124x3
+ 38x2

− 63x

− 12lnx−
4
x

]x1=
1
4

x2=1−3a2

.

(A14)

These results for CPmax , representing Glauert’s optimum
model, are plotted over a range of tip speed ratio, λ, as a
solid line in Fig. A2.

The dotted horizontal line represents the theoretical Betz
limit at 16

27 = 0.5926. A more compact form of Glauert’s so-
lution can be found in Durand’s review (Glauert, 1935) and
other texts.

Data availability. The data can be provided on request by contact-
ing the authors.

Figure A2. Maximum power coefficient, CP, for Glauert’s actuator
disk model and Betz’s theoretical limit.
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