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Abstract. The operational management of offshore wind farms includes inspection and maintenance (I&M)
of the wind turbine support structures. These activities are complex and influenced by numerous uncertain fac-
tors that affect their costs. The uncertainty in the I&M costs should be considered in decision value analyses
performed to optimize I&M strategies for the turbine support structures. In this paper, we formulate a proba-
bilistic parametric model to describe I&M costs for the common case in which a wind farm is serviced and
maintained using a workboat-based strategy. The model is developed based on (a) interviews with a wind farm
operator, engineering consultants, and operation and maintenance engineers, as well as (b) scientific literature.
Our methodology involves deriving the probabilistic models of the cost model parameters based on intervals
representing a subjective expert opinion on the foreseeable ranges of the parameter values. The probabilistic cost
model is applied to evaluate the total I&M costs, and a sensitivity analysis is conducted to identify the main cost
drivers. The model can be utilized to optimize I&M strategies at the component, structural system, and wind farm
level. To illustrate its potential use, we apply it in a numerical study in which we optimize I&M strategies at the
structural system level and identify and demonstrate a simplified approach of capturing uncertain I&M costs in
the optimization. The simplified approach is generalized and made available for maintenance cost optimization
of offshore wind turbine structures.

1 Introduction

The harsh offshore environment in combination with the ro-
tor dynamics affects the condition and integrity of the wind
turbine (WT) support structures in offshore wind farms. To
improve the condition of deteriorated structural components
and, consequently, to prevent failures of the WT support
structures, wind farm operators perform condition-based or
possibly predictive maintenance. Maintenance is classified as
condition-based when scheduled based on the current com-
ponent or system condition which is inferred from inspec-
tion and monitoring outcomes and predictive when carried
out based on the predicted component or system condition

where the model-based predictions are informed by the avail-
able inspection and monitoring outcomes and the previously
performed maintenance actions.

Wind farm operators typically conduct separate inspection
and maintenance (I&M) campaigns to first collect informa-
tion on the condition of the deteriorating WT support struc-
tures and to subsequently improve it if necessary. Within this
context, an inspection campaign is characterized by the cam-
paign time and inspection method, the number of inspected
WT support structures, and the number and location of the
inspected components in a WT support structure. In the case
that the wind farm is serviced by boats operating from a port
base, an inspection campaign is additionally influenced by
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the distance from the port to the wind farm, the choice of
vessel, the number of personnel, the required equipment, the
mobilization and demobilization activities, and the time to
complete an inspection work package. Like inspection cam-
paigns, a maintenance campaign is characterized by the cam-
paign time and maintenance method. In addition, a mainte-
nance campaign is influenced by the component location, the
time to complete a maintenance intervention on site, the re-
quired equipment, preparations and materials, the distance
between the port and the wind farm, the choice of vessel, the
number of personnel, and the effort involved in engineering
a maintenance intervention (i.e., designing and testing of a
maintenance solution).

Clearly, I&M of deteriorating WT support structures in
an offshore wind farm is associated with costs, and the to-
tal lifetime I&M costs depend on the adopted I&M strategy,
which determines the time and scope of each I&M campaign
based on the available system information. Condition-based
and predictive maintenance strategies can be optimized at
the beginning of the planned and/or extended lifetime of an
offshore wind farm and adapted during its (extended) life-
time using pre-posterior analysis from Bayesian decision the-
ory (e.g., Sorensen, 2009; Nielsen and Sorensen, 2011; Flo-
rian and Sorensen, 2017; Farhan et al., 2021; Bismut and
Straub, 2021). In such an analysis, probabilistic models of
(a) the governing deterioration processes including the effect
of maintenance, (b) the structural performance, and (c) the
inspection and monitoring performance are employed to pre-
dict the following:

– the condition of the structural components, inspection
and monitoring outcomes, and maintenance actions and

– the structural component and system reliability condi-
tional on the predicted component condition, inspection
and monitoring outcomes, and maintenance actions.

In addition, a cost model is utilized to quantify the costs
of inspections and monitoring as well as maintenance and
the monetized consequences of structural failures. Based on
these models, the expected lifetime I&M costs and the life-
time risk of structural failure can be estimated for a given
I&M strategy. A cost and risk optimal I&M strategy then bal-
ances the expected lifetime I&M costs with the lifetime risk
of structural failure.

In the existing literature, normalized cost ratios or de-
terministic cost models are utilized as a basis for optimiz-
ing I&M of deteriorating structural systems using decision-
theoretical approaches (e.g., Schneider et al., 2018; Bismut
and Straub, 2021; Morato et al., 2023). Although determin-
istic cost models enable an optimization of I&M activities,
they lack the ability to capture the effect of the I&M cost un-
certainties in the decision analysis, especially in applications
in which I&M costs are included in the underlying models
on a nonlinear basis. Importantly, probabilistic parametric
cost modeling facilitates sensitivity analyses (beyond local

derivative-based sensitivity analyses) to understand the ef-
fect of the various uncertain cost-affecting factors on the to-
tal I&M costs. With regards to optimizing I&M of WT sup-
port structures in offshore wind farms, comprehensive and
explicit consideration of probabilistic I&M costs in the de-
cision analysis is – to the best of the authors’ knowledge –
something which has not been explored previously. In addi-
tion, this issue is also relevant, since – from our experience
– wind farm operators commonly highlight the need to con-
sider the uncertainties in the I&M costs in the optimization
of I&M strategies.

Motivated by this, we develop a probabilistic parametric
cost model of I&M of WT support structures in offshore
wind farms. In particular, we focus on wind farms which
are serviced and maintained using a workboat-based strat-
egy, where the workboats operate from a port base. The cost
model is derived based on interviews with a wind farm opera-
tor, engineering consultants, and operation and maintenance
engineers, as well as scientific literature. Subsequently, we
employ the model to (a) quantify the uncertainties in the total
I&M costs and (b) perform a variance-based sensitivity anal-
ysis to better understand the key cost drivers. The model can
be applied to optimize I&M at the component, structural sys-
tem, and wind farm level. To demonstrate a potential appli-
cation, we apply the cost model in a cost- and risk-informed
decision value analysis to optimize I&M strategy for a steel
frame subject to fatigue.

The paper is organized as follows: Sect. 2 presents a
generic decision-theoretical framework, which forms the ba-
sis for optimizing I&M of WT support structures in offshore
wind farms. The presentation of the material follows our pre-
vious work (Farhan et al., 2021). However, compared to our
previous work, our current contribution explicitly considers
the uncertainties in the I&M costs in the decision analysis. In
Sect. 3, different types of I&M methods for support struc-
tures in offshore wind farms are discussed. Subsequently,
different uncertain parameters are identified that influence
the overall costs of an I&M strategy. Furthermore, ranges of
these parameters are also presented, as estimated based on
expert knowledge. To quantify the overall cost of the consid-
ered I&M activities, a deterministic cost model is first for-
mulated in Sect. 4.1. Subsequently, in Sect. 4.2 a probabilis-
tic I&M model is constructed by combining the deterministic
cost model with a probabilistic model of its uncertain param-
eters. Section 5 presents the uncertainty quantification and
sensitivity analysis. Section 6 summarizes the numerical ex-
ample. A summary and concluding remarks are provided at
the end of the paper in Sect. 7.
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2 Utility-informed optimization of I&M of turbine
support structures in offshore wind farms
considering probabilistic I&M costs

2.1 Decision analysis

The identification of an optimal I&M strategy for turbine
support structures in offshore wind farms is a decision prob-
lem under uncertainty and risk (Farhan et al., 2021). This
type of problem can be solved based on Bayesian decision
theory (Raiffa and Schlaifer, 1961) and graphically repre-
sented by the generic decision tree shown in Fig. 1. Each
branch of the decision tree corresponds to a realization of
decisions represented by square nodes and random events or
random variables represented by circular nodes. As an ex-
ample, the lower branch in the decision tree in Fig. 1 corre-
sponds to a realization of (a) a decision i concerning the in-
spection and monitoring regime, (b) the corresponding prob-
abilistic inspection and monitoring outcomes Zi , (c) the de-
cisions a concerning the maintenance actions, (d) the prob-
abilistic parameters Y influencing the effect of the mainte-
nance actions a, (e) the probabilistic parameters X influenc-
ing the system state, and (f) the probabilistic parameters W
influencing the utility. Each of these realizations is associ-
ated with a utility U and an index representing the analysis
type, depicted by the diamond-shaped leaves of the decision
tree. According to utility theory (Von Neumann and Mor-
genstern, 1947), the maximization of the expected value of
the utility U quantifies the optimality of decisions. From this
it follows that the optimal decisions concerning inspection
and monitoring as well as maintenance can be determined by
maximizing the expected utility.

The utility U0 associated with the upper branch of the de-
cision tree can be described by the following generic utility
function:

U0 (X,W )= B (X,W )−CF(X,W ), (1)

where B (X,W ) and CF(X,W ) describe the lifetime eco-
nomic benefits from operating the wind farm and lifetime
costs of structural failures as a function of X and W . Based
on the utility function U0 (X,W ) and the prior probability
distributions of X and W , the expected utility E [U0] can be
computed as described in Appendix A1. This quantity is pri-
marily required as a reference value in the decision value
analysis presented below in Sect. 2.2. In the literature, the
evaluation of E [U0] is referred to as system state analysis
(SS-A) (Thöns and Kapoor, 2019).

Next, the utilityU1 associated with the center branch of the
decision tree can be generically expressed by the following
utility function:

U1 (a,Y ,X,W )= B (a,Y ,X,W )−CM(a,Y ,X,W )

−CF(a,Y ,X,W ), (2)

where B (a,Y ,X,W ), CM(a,Y ,X,W ), and CF(a,Y ,X,W )
are the lifetime economic benefits, maintenance costs, and

failure costs as a function of a, Y , X, and W . The opti-
mal maintenance actions a∗ are identified by maximizing
the conditional expected utility E [U1|a], which is computed
based on the utility function U1 (a,Y ,X,W ) and the prior
probability distributions of Y , X, and W , as outlined in Ap-
pendix A2. Identifying a∗ in this way (i.e., without consider-
ing inspection and monitoring to inform decisions on mainte-
nance actions) is referred to as prior decision analysis (Raiffa
and Schlaifer, 1961) or predicted action decision analysis
(PA-DA) (see also Thöns and Kapoor, 2019).

Finally, the utility U2 associated with the lower branch
of the decision tree can be generically written as (see also
Sorensen, 2009)

U2 (i,Zi, a,Y ,X,W )= B (i,Zi, a,Y ,X,W )

−CSHM (i,Zi, a,Y ,X,W )−CI (i,Zi, a,Y ,X,W )
−CM (i,Zi, a,Y ,X,W )−CF (i,Zi, a,Y ,X,W ) , (3)

where B (i,Zi, a,Y ,X,W ), CSHM (i,Zi, a,Y ,X,W ),
CI (i,Zi, a,Y ,X,W ), CM(i,Zi, a ,Y ,X,W ), and
CF(i,Zi,a ,Y ,X,W ) are the lifetime economic bene-
fits, monitoring costs, inspection costs, maintenance costs,
and failure costs as a function of i, Zi , a, Y , X, and W . The
optimal information acquisition regime (or inspection and
monitoring regime) i∗ is determined by maximizing the con-
ditional expected utility E [U2|i], which is determined based
on U2 (i,Zi,a,Y ,X,W ) and the probabilistic models of Zi ,
Y , X, and W as detailed in Appendix A3. As discussed in
Appendix A3, this maximization jointly optimizes decisions
on inspection and monitoring as well as maintenance actions
based on (a) predicted information on the system condition
and performance, (b) predicted maintenance actions, and
(c) corresponding benefits and costs. This analysis is referred
to as pre-posterior decision analysis (Raiffa and Schlaifer,
1961) or predicted information and predicted action decision
analysis (PIPA-DA) (see also Thöns and Kapoor, 2019).

From Eqs. (2) and (3) it can be seen that a model for quan-
tifying the inspection and monitoring as well as maintenance
costs is a key component of the utility functions required to
measure the optimality of decisions concerning I&M of WT
support structures in offshore wind farms. Such a cost model
should be formulated as a function of the uncertain parame-
ters influencing the I&M costs in order to capture the uncer-
tainties in these costs in the decision-making.

2.2 Decision value analysis

The root node in the decision tree in Fig. 1 represents the
basic decision concerning the implementation of an integrity
management strategy (Thöns, 2018). This decision can be in-
formed by a decision value (DV) analysis. Following Thöns
and Kapoor (2019), three different DVs may be formulated
based on the decision tree shown in Fig. 1. The first DV,
V PIPA-DA

PA-DA , is defined as the difference between the maxi-
mum expected utility resulting from the PIPA-DA, E

[
U2|i

∗
]
,

https://doi.org/10.5194/wes-10-461-2025 Wind Energ. Sci., 10, 461–481, 2025



464 M. Farhan et al.: Probabilistic cost modeling as a basis for optimizing I&M

Figure 1. Generic decision tree for modeling decisions on inspection and monitoring as well as maintenance of turbine support structures
in offshore wind farms (adapted from Thöns, 2018; Farhan et al., 2021). The tree consists of square nodes representing decisions, circular
nodes representing random events or random variables, and diamond-shaped nodes representing utility.

and the maximum expected utility resulting the PA-DA,
E
[
U1|a

∗
]
, i.e.,

V PIPA-DA
PA-DA = E

[
U2|i

∗
]
−E

[
U1|a

∗
]
, (4)

where E
[
U2|i

∗
]

and E
[
U1|a

∗
]

are determined as described
in Appendix A.

The second DV, namely the predicted value of information
and actions V PIPA-DA

SS-A , is defined as the difference between
the maximum expected utility resulting from the PIPA-DA,
E
[
U2|i

∗
]
, and the expected utility resulting from the SS-A,

E [U0]:

V PIPA-DA
SS-A = E

[
U2|i

∗
]
−E [U0] . (5)

The third DV, i.e., the predicted value of actions V PA-DA
SS-A ,

is the difference between the maximum expected utility re-
sulting from PA-DA and the expected utility provided by the
SS-A given as

V PA-DA
SS-A = E

[
U1|a

∗
]
−E [U0] . (6)

Essentially, an integrity management strategy should be
implemented if the value of V PIPA-DA

PA-DA , V PIPA-DA
SS-A , or V PA-DA

SS-A
is positive.

3 I&M of turbine support structures in offshore wind
farms

3.1 I&M methods

Inspections are performed to obtain information on the con-
dition of structural components. Concerning offshore wind
turbine support structures, they look for (indicators of) dete-
rioration (e.g., corrosion and/or fatigue cracks), which has an
effect on the integrity of the structural systems. In this contri-
bution, a probabilistic cost model is developed for I&M ac-
tions performed to detect and repair fatigue cracks in welded

connections in steel support structures of wind turbines in
offshore wind farms (e.g., monopiles, jackets). In such struc-
tural systems, the welded components can be located above
and below water level. The components located above water
are typically part of the turbine tower, transition piece, main
access platform, and access systems, which can be inspected
via rope access and getting closer to the structure, while in
the areas of the transition piece and substructure below wa-
ter, inspections are carried out by a diver or by utilizing a re-
motely operated vehicle (ROV). The location of the inspected
welded component thus has an effect on the required person-
nel, vessels, equipment, and logistics.

Two types of inspection methods to identify fatigue dam-
age in welded components located above and/or below water
level are considered: visual inspection and electromagnetic
(EM) inspection methods such as eddy current (EC), mag-
netic particle inspection (MPI), and alternating current field
measurement (ACFM). Visual inspection is a coarse method
capable of detecting only relatively large surface breaking
defects in welds or fatigue failures of welded connections.
It can be performed with the help of a camera mounted on
an ROV or by naked-eye observation. In contrast, EM in-
spection methods detect smaller surface breaking defects in
welds. They can also be applied by a diver below water.

After an inspection campaign, if any fatigue damage is de-
tected, a subsequent maintenance action (e.g., a repair) is per-
formed based on the inspection outcomes. Depending on the
criticality of the identified fatigue damage, the maintenance
campaign is launched in the same year or the following year.

During an inspection campaign, the length and depth of
a detected surface breaking defect are measured to inform
decisions on the repair methods. With regards to possible re-
pairs for welded joints, we consider two methods. The first
repair method is referred to as welding (Rodriguez-Sanchez
et al., 2011). In this method, the welded joint is repaired by
removing a surface crack through grinding and subsequent
filling of the resulting groove with wet welding. This method
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is applied if the measured depth of the surface crack is greater
than a defined percentage of the section thickness. Any sur-
face crack with a measured depth less than the defined per-
centage of the section thickness may be repaired by grinding,
which is the second repair method (Rodriguez-Sanchez et al.,
2004).

3.2 Factors affecting I&M costs

There are several factors that influence the total cost of in-
specting and maintaining support structures in an offshore
wind farm. In this contribution, the influencing factors are
identified, and their costs are estimated based on the exist-
ing scientific literature and interviews with I&M experts: a
wind farm operator, engineering consultants, and operation
and maintenance engineers – whose expertise does not nec-
essarily cover all types of offshore wind farms. These experts
are, however, able to provide sufficiently detailed informa-
tion on established operational procedures and approximate
estimates of I&M costs. The precise figures of I&M costs al-
ways depend on the actual wind farm type and the existing
operational constraints. In this study, we consider the com-
mon case in which the wind farm is serviced by workboats
operating from a nearby port base. Therefore, other forms of
wind farm access such as helicopters are not considered in
this contribution.

Accessibility is the main factor influencing the cost of
I&M of turbine support structures in offshore wind farms.
Depending on the location of the offshore wind farm, the
type and location of the I&M activity (above water level
(AW) and/or below water level (BW)), and the duration of
the I&M activity, a certain type of vessel is employed. The
choice of vessel for port-based operations could be a crew
transfer vessel (CTV) or a service operation vessel (SOV).
CTVs are usually used for frequent operations and are gen-
erally small aluminum catamarans employed to transfer per-
sonnel to and from offshore sites on a daily basis. CTVs do
not have sufficient dynamic positioning redundancies to keep
still during rough sea conditions. Their carrying capacity is
usually 12 crew members who do 12 h shifts. SOVs are larger
vessels designed and equipped to be present for a longer du-
ration at the offshore wind farm for subsea or extensive I&M
operations. These vessels have a capacity of around 40 tech-
nicians and can perform 24 h operations with multiple shifts
(each shift is 12 h), which means that they come back to port
only approximately once every 2 weeks (Martinez-Luengo
and Shafiee, 2019). Table 1 shows the range of mobilization
and demobilization costs as well as costs per shift for CTV
and SOV.

The mobilization and demobilization costs of the vessels
cover several aspects like the commuting time to the offshore
wind farm, fuel consumption of the vessel, equipment and
material costs, and project management costs, which account
for logistics organization and reporting. The vessel cost per
shift captures the number of people involved in the operation,
the personnel costs, and the operational cost of the vessel
during the I&M activity.

I&M also includes the additional effort for engineering the
required repairs. This effort is associated with costs as sum-
marized in Table 2. The engineering costs are usually depen-
dent on the type of repair. In the case of grinding, the extra
cost of engineering and preparation entails the design of the
repair and laboratory tests among other factors. In the case
of welding, the cost entails the design of the repair, cham-
bers for underwater repair work if required, and laboratory
tests. This additional cost is ideally incurred once during the
service life of a wind farm because the type of hotspots and
components is known; thus, if any repair is performed, the
implementation of the repair has already been planned for
the specific type of hotspot in the support structures.

The duration to complete an I&M activity is another fac-
tor that strongly influences the total I&M cost. It depends,
for example, on the weather conditions, the experience of the
personnel, the condition of the asset, and the existence of
marine growth. The total time to complete an I&M activity
usually entails transit time between WTs, the time required to
complete the work package once stationed at a WT, and addi-
tional weather downtime due to unfavorable weather condi-
tions. An increase in I&M activity time due to the aforemen-
tioned factors can lengthen the offshore time within a cam-
paign. While this may not seem crucial, the time increase has
an effect on other costs, such as the costs of the deployment
of a vessel, personnel, and equipment. Table 3 shows the esti-
mation of the time that each of the I&M activities takes for a
single component in a support structure. A component is de-
fined here as a hotspot in a welded connection (i.e., a certain
section of a weld).

Weather downtime is mostly dependent on the type of ves-
sel utilized and is given in Table 4. In the case of CTVs, the
weather downtime is usually higher because they are small
in size and lighter compared to SOVs and can easily lose
position, especially if there are large waves and strong cur-
rents, while SOVs can safely withstand the harshest condi-
tions even in winter.

The transit time between turbines also influences the
inspection maintenance cost. It is estimated here based
Martinez-Luengo and Shafiee (2019) and usually varies be-
tween 15 and 30 min.
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Table 1. Estimates of vessel costs.

Type of vessel

Type of vessel cost CTV SOV

Mobilization/demobilization (EUR) 2000–20 000 15 000–80 000
Vessel cost per shift (EUR/shift) 1000–15 000 10 000–50 000

Table 2. Estimates of engineering costs.

Type of repair Engineering cost (EUR)

Grind repair 5000–35 000
Weld repair 10 000–100 000

Table 3. I&M activity: type, location, and estimates of the duration
per component.

Type of activity Location Hours per component

Weld repair
Above water 50–58
Below water 60 – 70

Grind repair
Above water 14–18
Below water 24–30

Visual inspection
Above water 1–2
Below water 5–8

EM inspection
Above water 4–6
Below water 10–15

4 Parametric model of I&M costs

4.1 Deterministic model

Based on the discussion of the factors affecting I&M costs in
Sect. 3.2, we develop a deterministic parametric cost model
to describe the total cost of I&M of WT support structures
in an offshore wind farm. This cost can be generally bro-
ken down into a campaign cost CC, engineering cost CE, and
operational cost COp. In the case that inspection and mainte-
nance are performed simultaneously (mixed I&M), the total
cost CI&M is given as

CI&M = CC+CE+COp. (7)

In the usual case where inspections and maintenance are
performed in separate campaigns, the total cost of inspection
CI and the total cost of maintenance CM are given by

CI = CC+CI,Op

CM = CC+CE+CM,Op. (8)

The campaign cost CC corresponds to the fixed one-time
cost of initiating the I&M activities, which includes the cost
of commuting to the wind farm and back, the cost of the

Table 4. Estimates of weather downtime as a function of the vessel
type.

Type of vessel Weather downtime

CTV 30 %–40 %
SOV 10 %–15 %

equipment and materials required for the planned activities,
fuel costs, and project management costs. These cost com-
ponents are included in the mobilization and demobilization
cost of the vessels (see Table 1). As discussed in Sect. 3.2,
a CTV or SOV can be selected as a vessel for the planned
I&M activities depending on their nature and extent. In the
case of maintenance, an additional cost for planning and en-
gineering repairs CE has to be considered. This cost depends
on the chosen repair method (welding or grinding).

Moreover, CI,Op and CM,Op are the operational costs of in-
spection and maintenance, which are the costs of conducting
the inspection or maintenance operation when the vessel is
at the offshore wind farm. The total operational costs further
depend on the time to complete the operation, the vessel type,
and its shift pattern. The total time to complete the operation
depends on the extent of the I&M activity and where it is car-
ried out, i.e., above or below water. The operational cost of
inspection CI,Op and maintenance CM,Op activity is given by

CI,Op =
tI,Op

tshift
·Cshift

CM,Op =
tM,Op

tshift
·Cshift, (9)

where Cshift is the cost of the vessel (CTV or SOV) per shift,
tshift is the duration of a shift (in hours) (see Sect. 3.2), tI,Op
is the total time (in hours) to complete the overall inspection
operation, and tM,Op is the total time to complete the overall
maintenance operation. The total operational time for I&M
is estimated as

tI,Op =
[[∑nI,WT

i=1
nI,C,i · tI,C

]
+
(
nI,WT− 1

)
· ttransit

]
· (1+WD)
tM,Op=

[[∑nM,WT

i=1
nM,C,i · tM,C

]
+
(
nM,WT− 1

)
· ttransit

]
· (1+WD) ,

(10)
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where nI,WT is the total number of WTs to be inspected in an
offshore wind farm during an inspection campaign, nM,WT is
the total number of WTs to be repaired in the offshore wind
farm during a maintenance campaign, nI,C,i is the number of
components to be inspected in the ith WT support structure
in the offshore wind farm, nM,C,i is the number of compo-
nents to be repaired in the ith WT support structure in the
offshore wind farm, ttransit is the transit time between the dif-
ferent WTs, tI,C is the time to inspect a component above
or below the water, and tM,C is the time to repair a compo-
nent above or below water. Furthermore, WD is the weather-
related downtime, which is defined here relative to the over-
all operation time. This parameter also depends on the vessel
type.

4.2 Probabilistic model

The model developed in Sect. 4 provides deterministic es-
timates of the I&M costs. However, due to the uniqueness
of each operation and the complexity of the individual ac-
tivities involved, the different parameters governing Eqs. (7),
(8), (9), and (10) – i.e., the campaign cost, the vessel costs,
the engineering costs, the inspection duration, the repair du-
ration, the transit time, and the weather downtime – are un-
certain and their values are typically only known in terms
of intervals, as estimated in Sect. 3.2. To capture these un-
certainties, the parameters of the cost model are modeled as
random variables. By probabilistically modeling the uncer-
tainties in the parameters and propagating them through the
deterministic cost model, a probabilistic description of the
I&M costs is obtained.

Let W generically denote the vector of random variables
influencing the total I&M costs. Based on Eqs. (8), (9), and
(10), the probabilistic cost model of inspection CI (W ) can
now be written as

CI (W )= CC+[[∑nI,WT
i=1 nI,C,i · tI,C

]
+
(
nI,WT− 1

)
· ttransit

]
· (1+WD)

tshift
·Cshift. (11)

Similarly, the probabilistic cost model of maintenance
CM (W ) is formulated as

CM (W )= CC+CE

+

[[∑nM,WT
i=1 nM,C,i · tM,C

]
+
(
nM,WT− 1

)
· ttransit

]
· (1+WD)

tshift

·Cshift. (12)

Given the lack of empirical data on the uncertain param-
eters of the cost models W , their probabilistic models are –
in a Bayesian sense – chosen based on the available expert
knowledge. It should be emphasized up front, however, that
these probabilistic models can be updated using Bayesian
methods if data on the parameters W become available.

As a first step in the probabilistic model building, the
parameters in W are assumed to be independent and their

Figure 2. Lognormal distribution fitted based on the lower and up-
per bound on the corresponding cost model parameter. The lower
and upper bounds represent the 1 % and 95 % quantile of the pa-
rameter values.

marginal distributions are assumed to follow a lognormal dis-
tribution. The first assumption is made as no information on
the correlation of the different parameters is available. The
second assumption is supported for the following reasons.
First, each parameter of the cost models only takes non-
negative values, and their statistical distribution is typically
expected to be unimodal; i.e., one range of values in the dis-
tribution occurs more frequently than other ranges of values.
A lognormal distribution is commonly chosen to probabilis-
tically model such quantities as it is bounded by zero, has
no upper limit, and is unimodal. Second, a lognormal distri-
bution is skewed to the right with a long tail capturing rare
extreme values of the cost model parameters. Third, the as-
sumption that the parameters are lognormally distributed can
be partially explained by the central limit theorem. Assum-
ing that each parameter of the cost model itself derives from
a multiplicative process, the sum of the logarithms of the fac-
tors in the underlying process approaches a normal distribu-
tion and their product approaches a lognormal distribution as
the number of factors becomes large. For these reasons, a log-
normal distribution is a plausible probabilistic model for the
different cost model parameters (see also Moy et al., 2015).

As a second step in the model building, the statistics of the
different lognormal distributions are determined based on the
lower and upper bounds of each cost model parameter speci-
fied in Sect. 3.2. These bounds represent the available expert
knowledge on the ranges of the parameter values. Based on
additional expert judgement, the lower and upper bounds are
assumed to characterize the 1 % and 95 % quantile of the pa-
rameter values. Using this information, the different lognor-
mal distributions are fitted as illustrated in Fig. 2. The result-
ing mean and coefficient of variation (CoV) of each proba-
bilistic parameter of the cost models are summarized Table 5.
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Table 5. Mean and coefficient of variation (CoV) of the probabilistic parameters of the cost model.

Parameter Description Unit Distribution Mean CoV

CC,CTV Campaign cost (CTV) [EUR] lognormal 9111.04 0.63
CC,SOV Campaign cost (SOV) [EUR] lognormal 43771.22 0.44
Cshift,CTV Vessel cost per shift (CTV) [EUR/shift] lognormal 6220.67 0.78
Cshift,SOV Vessel cost per shift (SOV) [EUR/shift] lognormal 27744.47 0.42
tEM,BW Duration of component inspection (EM, below water) [h] lognormal 12.73 0.10
tEM,AW Duration of component inspection (EM, above water) [h] lognormal 5.10 0.10
tV,BW Duration of component inspection (visual inspection, below water) [h] lognormal 6.63 0.12
tV,AW Duration of component inspection (visual inspection, above water) [h] lognormal 1.53 0.17
CE,weld Engineering cost (welding) [EUR] lognormal 45719.43 0.63
CE,grind Engineering cost (grinding) [EUR] lognormal 17584.96 0.51
tweld,BW Duration of component repair (welding, below water) [h] lognormal 65.74 0.03
tweld,AW Duration of component repair (welding, above water) [h] lognormal 54.59 0.03
tgrind,BW Duration of component repair (grinding, below water) [h] lognormal 27.41 0.05
tgrind,AW Duration of component repair (grinding above water) [h] lognormal 16.24 0.06
ttransit Transit time between turbines [h] lognormal 0.38 0.17
WDCTV Weather downtime (CTV) – lognormal 0.35 0.07
WDSOV Weather downtime (SOV) – lognormal 0.12 0.10

5 Quantification of uncertainties in I&M costs and
sensitivity analysis

5.1 Uncertainty quantification

The probabilistic cost models for I&M of turbine support
structures in the offshore wind farm defined in Eqs. (11) and
(12) can be applied for different combinations of input pa-
rameters. The different combinations are defined by the ves-
sel type, the inspection and repair methods, the number of in-
spected and/or repaired components above and/or below wa-
ter level, and the number of inspected and/or repaired wind
turbine support structures. For illustration, the probabilistic
total I&M costs are in the following quantified at wind farm,
wind turbine, and component level.

First, the total I&M costs are estimated at wind farm
level. To this end, it is assumed that nI,C,BW = 1 compo-
nents of nI,WT = 10 support structures are inspected below
water. In addition, it is assumed that nM,C,BW = 5 compo-
nents of nM,WT = 5 support structures are repaired below
water. Inspections are performed using EM and visual in-
spection methods, while welding and grinding are applied as
repair methods. Moreover, a CTV is utilized as a workboat
in each scenario. For each considered scenario, the proba-
bilistic distributions of the total I&M costs are determined
using Monte Carlo (MC) simulations with nMC = 106 sam-
ples of the corresponding model parameters. In the analysis,
the model parameters are assumed to be statistically indepen-
dent. The resulting empirical probability distributions of the
total I&M costs are shown in Fig. 3.

Second, the total I&M costs are estimated at turbine level.
In this case, it is assumed that 10 components of a support
structure are inspected below water level, i.e., nI,WT = 1,
nI,C,BW = 10, and 5 components in a support structure are re-

paired below water level, i.e., nM,WT = 1, nM,C,BW = 5. The
assumptions regarding inspection and repair methods and the
choice of vessel are the same as in the previous scenario con-
sidering I&M at wind farm level. The estimated empirical
probability distributions of the total I&M costs together with
their expected value and CoV are shown in Fig. 4.

Finally, the total I&M costs are estimated at the element
level. In this scenario, nI,C,BW = 1 components of nI,WT = 1
turbines are inspected below water. The same is assumed for
the maintenance campaign; i.e., only nM,C,BW = 1 compo-
nent of nM,WT = 1 turbine support structure is repaired be-
low water. The assumptions regarding inspection and repair
methods and the choice of vessel are the same as in the sce-
nario considering I&M at wind farm level. The empirical
probability distributions of the total I&M costs are shown in
Fig. 5.

From Figs. 3 to 5, it can be seen that propagating the uncer-
tainties in the cost model parameters through the cost models
defined in Eqs. (11) and (12) provides a probabilistic descrip-
tion of the total I&M costs. In each considered scenario, the
total I&M costs exhibit an approximate lognormal distribu-
tion. The statistics of the total I&M costs shown in Figs. 3
to 5 are summarized in Table 6. Note that the coefficients of
variation (CoVs) of the total I&M costs indicate that in each
scenario certain parameters dominate the uncertainty in the
total I&M costs. As an example, in Fig. 3a (wind-farm-level
analysis considering EM inspection), the CoV of the total
I&M costs is similar to the CoV of the vessel cost per shift.
This finding is further substantiated by the variance-based
sensitivity analysis in Sect. 5.2.1, where in Fig. 6 we observe
that the vessel cost per shift has a sensitivity index close to 1
for the same inspection scenario.
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Figure 3. Empirical probability distributions of the total I&M costs: (a) 10 components in each group of 10 support structures are inspected
below water with EM inspection technique, (b) 10 components in each group of 10 support structures are visually inspected below water, (c)
5 components in each group of 5 support structures are repaired below water by welding, and (d) 5 components in each group of 5 support
structures are repaired below water by grinding.

Table 6. Summary of the statistics of the total I&M costs.

Wind farm Wind turbine Component

EM inspection
Expected value (EUR 106) 0.899 0.097 0.018
CoV 0.77 0.70 0.50

Visual inspection
Expected value (EUR 106) 0.473 0.055 0.014
CoV 0.76 0.66 0.49

Weld repair
Expected value (EUR 106) 1.200 0.283 0.100
CoV 0.73 0.63 0.45

Grind repair
Expected value (EUR 106) 0.505 0.122 0.046
CoV 0.73 0.60 0.39

5.2 Sensitivity analysis

As discussed in Sects. 3 and 4, the total I&M costs are in-
fluenced by numerous uncertain parameters W . To study the
importance of each model parameter Wi , a variance-based
sensitivity analysis is performed (Sobol, 1993), which quan-
tifies the effect of Wi on the variance of the inspection and

maintenance costs in terms of the following first-order mea-
sure:

Vi = VarWi
{
EW−i [C(W )|Wi]

}
, (13)

where C (W ) can be the probabilistic model of the inspec-
tion costs defined in Eq. (11) or the probabilistic model of

https://doi.org/10.5194/wes-10-461-2025 Wind Energ. Sci., 10, 461–481, 2025



470 M. Farhan et al.: Probabilistic cost modeling as a basis for optimizing I&M

Figure 4. Empirical distributions of the total I&M costs: (a) 10 components of a turbine support structure are inspected below water with
the EM inspection technique, (b) 10 components of a turbine support structure are visually inspected below water, (c) 5 components of a
turbine support structure are repaired below water by welding, and (d) 5 components of a turbine support structure are repaired below water
by welding.

the maintenance costs defined in Eq. (12), EW−i [C(W )|Wi]

is the expected value of the inspection or maintenance costs
with respect to all parameters exceptWi whose value is fixed,
and VarWi

{
EW−i [C(W )|Wi]

}
is the variance of this average

model. Normalizing Vi with the variance Var[C (W )] pro-
vides the first-order sensitivity index Si (Sobol, 1993):

Si =
Vi

Var[C (W )]
=

VarWi
{
EW−i [C(W )|Wi]

}
Var[C (W )]

, (14)

in which Var[C (W )] is the variance of the inspection or
maintenance costs. Si is evaluated here using an MC ap-
proach (Sobol, 2001).

5.2.1 Inspection costs

The first part of the sensitivity study analyzes the effect of
the campaign cost Cc, vessel cost per shift Cshift, and inspec-
tion operation time tI,Op on the total inspection costs based
on the probabilistic cost model defined in Eq. (11), where the
inspection operation time depends on the duration of a com-

ponent inspection, the transit time between turbines, and the
weather downtime.

For the inspection campaign, we perform a sensitivity
analysis assuming that inspections are performed using the
EM inspection method via a CTV. The study explores various
scenarios related to component location (above or below wa-
ter), the number of inspected turbine support structures, and
the quantity of inspected components within each structure.
Figure 6 illustrates these scenarios, with columns represent-
ing the number of inspected turbines and rows correspond-
ing to component location. Each panel displays sensitivity
indices for campaign cost, vessel operation cost, and inspec-
tion operation time as functions of the number of inspected
components.

Figure 6 reveals that the vessel cost per shift exerts the
most significant impact on total inspection cost throughout
various scenarios, while the inspection operation time has
the smallest effect. Campaign costs only become significant
when a few components are inspected in one WT support
structure. We obtain similar results when considering visual
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Figure 5. Empirical distributions of the total I&M costs: (a) EM inspection of a component in a support structure below water level, (b) visual
inspection of a component in a support structure below water level, (c) welding repair maintenance of a component repaired below water
level for a support structure, and (d) grinding repair maintenance of a component repaired below water level for a support structure.

inspections as the inspection method and an SOV as a work-
boat.

5.2.2 Maintenance costs

The second part of our sensitivity study evaluates the impact
of the campaign cost Cc, the engineering costs CE, the ves-
sel cost per shift Cshift, and repair operation time tM,Op on
the maintenance costs defined by Eq. (12). In the analysis,
we assume that welding is used as the repair method and a
CTV is utilized as the workboat. The study considers var-
ious scenarios related to the component location (above or
below water), the number of repaired turbine support struc-
tures, and the number of repaired components within each
support structure.

In Fig. 7, we observe that at the turbine level the engineer-
ing costs have the greatest impact on the total maintenance
costs, while the other parameters only have a small influ-
ence. Additionally, the influence of the vessel cost per shift
increases with the number of repaired turbines and compo-
nents, while the impact of the engineering costs decreases.

Similar results are obtained when considering grinding as the
repair method and an SOV as a workboat.

6 Numerical example

In the following, the probabilistic cost model formulated in
Sect. 4 is applied in a cost- and risk-informed optimization
of an I&M strategy for the two-dimensional steel frame re-
sembling a jacket support structure of an offshore wind tur-
bine (see Fig. 8). The optimization is performed at the be-
ginning of its lifetime based on information from the design
phase. The frame has been studied in numerous publications,
and in the following we provide a summary of the underly-
ing models and assumptions. A more detailed description of
the frame can be found in Schneider et al. (2017), Schneider
(2020), and Eichner et al. (2023).

The steel frame is made of welded tubular sections. Its
planned lifetime is 25 years, which is divided into j =

1, . . ., m intervals of 1 year length. During the operational
phase, the frame is exposed to a time-dependent lateral force
representing a storm load. This load is modeled by its an-
nual maximum Lmax,j . In addition to storm loads, the frame
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Figure 6. Sensitivity indices of the campaign cost Cc, vessel cost per shift Cshift, and inspection operation time tI,Op as a function of the
location of the inspected components (above or below water), the number of inspected turbine support structures, and the number of inspected
components in each support structure. Inspections are performed using the EM inspection method via a CTV.

Figure 7. Sensitivity indices of the campaign cost Cc, the cost of engineering repairs CE, the vessel cost per shift Cshift, and the repair
operation time tM,Op as a function of the location of the repaired components (above or below water), the number of repaired turbine support
structures, and the number of repaired components in each support structure. Repairs are performed using the welding repair method and a
CTV.
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– like a jacket support structure of an offshore wind turbine –
is subject to fatigue due to dynamic excitations. In the current
analysis, the welded connections of the frame contain 22 crit-
ical fatigue hotspots, which are indicated as red dots in Fig. 8.
The hotspot fatigue demand is quantified by the correspond-
ing distributions of the fatigue stress ranges. Typically, these
distributions are derived from an overall dynamic response
analysis. In the current example, they are – as described in
Straub (2004) – determined based on the available design in-
formation (i.e., the hotspot fatigue lives and the applied SN
curves).

Fatigue deterioration of the hotspots is described by proba-
bilistic Paris–Erdogan fatigue crack growth models. The sta-
tistical dependence among the fatigue behavior of different
hotspots is captured by introducing correlations among the
uncertain parameters of the hotspot fatigue models. This cor-
relation influences the system reliability and has an impact
on the (optimal) inspection and maintenance regime.

The hotspots are inspected with MPI via a CTV and re-
paired by welding if required. The applied repair model is
documented in detail in Farhan et al. (2021). It is assumed
that hotspots 1 to 8 are located above water, while hotspots
9 to 22 are located below water. The location of the hotspots
(above or below water) influences the cost of inspections and
repairs.

The time-dependent failure probability is computed by
coupling the probabilistic fatigue deterioration models with
a probabilistic structural performance model utilized to eval-
uate the system failure probability conditional on the hotspot
condition. Inspection information is included in the estima-
tion of the system failure probability through Bayesian up-
dating of the probabilistic fatigue models. Further informa-
tion regarding the applied fatigue, structural performance,
and inspection models as well as the methods employed
to compute the (updated) time-variant failure probability of
the frame is documented (Schneider et al., 2017; Schneider,
2020; Eichner et al., 2023).

In the current application, all consequences (costs of
inspections and repairs as well as failure consequences)
are expressed as monetary costs C to facilitate quantita-
tive DV analyses. Furthermore, as discussed in Nielsen and
Sorensen (2021), the economic benefits from the existence
of the wind turbine may be assumed to be independent of the
structural reliability and I&M actions. In this case, they are
constant and, consequently, can be neglected in the optimiza-
tion of I&M of the WT support structure. It follows that the
utility U introduced in Sect. 2.1 is proportional to −C.

6.1 System state analysis

The SS-A determines the expected total lifetime cost E [C0]
assuming that no inspections and no maintenance actions are
performed during the lifetime of the support structure. E [C0]
is equal to the expected total lifetime cost of system failure

Figure 8. Steel frame with 22 fatigue hotspots indicated as red dots
(adapted from Schneider et al., 2017).

E [CF] (lifetime risk of failure), i.e.,

E [C0]= E [CF]=
m∑
j=1

cF · γj ·
[
Pr
(
Fj
)
−Pr

(
Fj−1

)]
, (15)

where cF = EUR2× 107 is the failure cost, which is as-
sumed here to be deterministic and equal to the investment
cost of one wind turbine (Thöns et al., 2017); Pr

(
Fj
)

is the
cumulative probability of failure up to the end of year j ;
Pr
(
Fj
)
−Pr

(
Fj−1

)
is the probability of failure in year j ; and

γj is the discounting function, which discounts the failure
cost cF occurring in year j back to the present. The discount-
ing function is defined as γj = 1/(1+ r)j , wherein r = 0.02
is the discount rate. The expected total lifetime cost E [C0] of
the case study related to the steel frame is EUR 7× 105.

6.2 Predictive information and predictive action decision
analysis considering probabilistic I&M costs

The PIPA-DA for jointly optimizing I&M is performed us-
ing the heuristic cost- and risk-informed approach proposed
in Luque and Straub (2019) and Bismut and Straub (2021),
which corresponds in essence to the normal form of the pre-
posterior decision analysis. We adopt this approach as it is
computationally tractable compared to the extensive form
of analysis described in Appendix A3. In this approach, an
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I&M strategy, generically denoted by S, is defined by pa-
rameterized rules that specify what, when, and how to in-
spect and repair based on the available system information
(i.e., inspection outcomes and corresponding repairs as well
as the predicted system failure probability conditional on the
inspection outcomes and previously performed repairs). In
the current application, the parameterized rules are defined
as follows (see also Bismut et al., 2017; Eichner et al., 2023;
Schneider, 2019).

1. Inspection campaigns are performed at fixed intervals
1t .

2. nI,C hotspots are inspected during each inspection cam-
paign.

3. Hotspots are prioritized for inspection according to a
metric proposed by Bismut et al. (2017), which is a
function of a parameter η as well as the structural im-
portance and fatigue reliability of each hotspot.

4. An additional inspection campaign is launched if the
predicted annual system failure probability exceeds a
threshold pth.

5. A maintenance campaign is launched if fatigue cracks
are indicated and measured to be deeper than aR .

Note that rules 4 and 5 have the following implication: in-
spection information obtained at one hotspot contains in-
direct information on the fatigue state of the remaining
hotspots as their fatigue behavior is correlated due to com-
mon influencing factors (see Straub and Faber, 2004, for a
detailed discussion). Now consider the case in which a fa-
tigue crack is unexpectedly indicated at one hotspot and mea-
sured to be deeper than aR . Conditional on this inspection
information, the probability that fatigue deterioration of the
remaining hotspots has progressed faster than expected in-
creases. Consequently, the system failure probability also in-
creases. If it exceeds the threshold pth, additional inspections
and possibly repairs are performed as prescribed by rules 4
and 5. Because of these two rules and the explicit modeling
of the dependence among the fatigue behavior of different
hotspots, the current optimization of I&M of the frame cap-
tures scenarios in which the inspection and repair effort has
to be increased due to accelerated fatigue deterioration.

From the above list of parameterized rules, it follows that
the I&M strategy S is fully defined here by the parameters
θ =

[
1t,pth,nI,C,η,aR

]T . To highlight the dependence of
S on θ , we write Sθ in the following.

The utility function – or more precisely the cost function
– underlying the current optimization is (generically) defined
as

C2 (Sθ ,X, Y , Z,W )= CI (Sθ ,X, Y , Z,W )

+CM (Sθ ,X, Y , Z,W )+CF (Sθ ,X, Y , Z,W ) , (16)

where C2 (Sθ ,X, Y , Z,W ) is the total lifetime cost,
CI (Sθ ,X, Y , Z,W ) is the total lifetime inspection cost,
CM (Sθ ,X, Y , Z,W ) is the total lifetime maintenance cost,
and CF (Sθ ,X, Y , Z,W ) is the total lifetime cost of struc-
tural failure. These costs are defined as a function of the I&M
strategy Sθ , the uncertain parametersX influencing the time-
dependent system failure probability, the uncertain param-
eters Y influencing the effect of repairs, and the uncertain
parameters of the I&M cost model W =

[
W T

1 , . . .,W
T
m

]T ,
where W j represents the uncertain parameters influencing
the I&M costs in year j as defined in Table 5. The total I&M
costs occurring in each year j are evaluated based on the
parametric cost models described in Sect. 4. It is assumed
here that the different W j , j = 1, . . .,m values are indepen-
dent and identically distributed. Note that this assumption is
not a limitation, as the model can be extended to account for
dependent and non-identically distributed cost model param-
eters.

The optimal strategy Sθ∗ characterized by the
optimal heuristic parameters θ∗ minimizes the ex-
pected value of the total lifetime cost E [C2|Sθ ]=
EX,Y ,Z,W [c2 (Sθ ,X, Y , Z,W )]. It follows that the op-
timal heuristic parameters θ∗ can be determined as

θ∗ = argmin
θ

E [C2|Sθ ] . (17)

E [C2|Sθ ] is evaluated as described in Appendix B1.
The optimal heuristic parameters θ∗ are identified here
by conducting an exhaustive search across the follow-
ing sets of parameter values: 1t ∈ {4, 8}

[
years

]
, pth ∈{

5× 10−4,10−3}, nI,C ∈ {1, . . .,22}, η = 1, and aR =

1 [mm]. The estimated expected total lifetime cost E [C2|Sθ ]
as a function of θ is shown in Fig. 9.

All strategies with nI,C = {3,4,5,6} result in a similar
expected total lifetime cost. This provides some flexibility
to the decision-maker to choose a strategy based on their
specific requirements regarding the inspection interval and
structural reliability. Notably, both strategies with 1t = 4
years exhibit similar expected costs for nI,C > 7 regardless
of the reliability threshold. When considering strategies with
1t = 8, the reliability threshold has an impact on the ex-
pected total lifetime cost: a lower threshold results in more
unscheduled inspections between regular inspections. In our
current example the optimal strategy Sθ∗ is characterized by
θ∗ =

[
1t = 8, pth = 1× 10−3,nI,C = 6,η = 1,aR = 1

]T
.

Figure 10 shows the decomposed expected total life-
time cost E

[
C2|Sθ

]
as a function of the heuristic pa-

rameters θ=
[
1t = 8, pth = 1× 10−3,nI,C = 1, . . .,22,η =

1,aR = 1
]T . This cost is composed of the expected val-

ues of the failure cost, inspection campaign cost, inspection
operation cost, repair campaign cost, repair operation cost,
and engineering cost for repairs. As the inspection effort in-
creases (i.e., more hotspots are inspected during each inspec-
tion campaign), the expected value of the system failure cost
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Figure 9. Expected total lifetime cost E
[
C2|Sθ

]
as a function of

θ =
[
1t,pth,nI,C,η,aR

]T determined based on the probabilistic
I&M cost model.

Figure 10. Decomposed expected total lifetime cost E
[
C2|Sθ

]
as a function of θ =

[
1t = 8, pth = 1×10−3,nI,C = 1, . . .,22,η =

1,aR = 1
]T .

(i.e., the risk of structural failure) decreases, and – as ex-
pected – the expected values of the inspection and repair
costs increase. This nicely illustrates the impact of the risk
mitigation measures on the structural risk of failure. Note that
the engineering cost for repairs is constant in this case study
since it is incurred here only once at the beginning of the op-
erational phase as repair solutions are engineered proactively
before the frame is commissioned. Consequently, they could
be neglected in the current optimization, as they only shift
the expected total lifetime costs upwards by a fixed value.

To support the decision on whether one should implement
an I&M strategy, the predicted value of information and ac-
tions is computed by the difference between the expected to-
tal lifetime cost E [C0] and the expected total lifetime cost
E [C2|Sθ ]. By normalizing this difference with respect to
E [C0], the relative V

PIPA-DA
SS-A (θ ) is obtained (Farhan et al.,

Figure 11. Relative DV V
PIPA-DA
SS-A

(
θ
)
=
(
E
[
C0
]
−

E
[
C2|Sθ

])
/E
[
C0
]

together with the expected lifetime costs
E
[
C2|Sθ

]
as a function of θ =

[
1t = 8, pth = 1× 10−3,nI,C =

1, . . .,22,η = 1,aR = 1
]T and E[C0].

2021):

V
PIPA-DA
SS-A (θ )=

E [C0]−E [C2|Sθ ]
E [C0]

. (18)

Figure 11 shows the V
PIPA-DA
SS-A as a function of the pa-

rameters θ =
[
1t = 8, pth = 1× 10−3,nI,C = 1, . . .,22,η =

1,aR = 1
]T , where 1t = 8 and pth = 1× 10−3 are the opti-

mal inspection interval and reliability threshold. The dashed
blue line corresponds to the expected total lifetime cost
E [C0] determined by the SS-A. The dashed–dotted blue line
corresponds to the expected total lifetime cost E [C2|Sθ ]. No-
tably, V

PIPA-DA
SS-A is positive for nI,C = 1, . . .,22. This result

indicates that it is a rational decision to inspect and main-
tain the frame. As expected, the highest V

PIPA-DA
SS-A is obtained

when implementing the optimal strategy Sθ∗ with an optimal
number of inspected hotspots in each inspection campaign
nI,C = 6.

6.3 Predictive information and predictive action decision
analysis considering expected I&M costs

The numerical example considers only a single turbine sup-
port structure. In this case, the cost models defined in
Eqs. (11) and (12) can be expressed as linear functions of
the number of inspected and repaired hotspots as follows:

CI = CC+ nI,C ·CI,Op with

CI,Op =
tI,C · (1+WD) ·Cshift

tshift
(19)

and

CM = CC+CE+ nM,C ·CM,Op with

CM,Op =
tM,C · (1+WD) ·Cshift

tshift
. (20)
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Figure 12. Expected total lifetime cost E
[
C2|Sθ

]
as a function of

θ =
[
1t,pth,nI ,η,aR

]T determined based on the expected values
of the parameters of the I&M cost model.

The expected lifetime cost E [C2|Sθ ] can now be esti-
mated based on the expected values of the parameters of the
I&M cost model as described in Appendix B2. Subsequently,
the optimal heuristic parameters θ∗ are identified based on
Eq. (17) by again conducting an exhaustive search across
the following sets of parameter values: 1t ∈ {4, 8}

[
years

]
,

pth ∈
{
5× 10−4,10−3}, nI,C ∈ {1, . . .,22}, η = 1 and aR =

1 [mm]. The estimated expected total lifetime cost E [C2|Sθ ]
considering expected I&M costs is shown in Fig. 12.

It can be seen that the current analysis provides the same
results as the analysis considering the probabilistic I&M
costs (see also Fig. 9) and thus the same optimal strat-
egy Sθ∗ with θ∗ =

[
1t = 8, pth = 1× 10−3,nI,C = 6,η =

1,aR = 1
]T . Consequently, the current analysis illustrates

that the I&M costs can be considered deterministically as ex-
pected values in the DV analysis if they are included in the
optimization on a linear basis.

Aligning with existing works, we utilize the probabilistic
I&M cost model to derive deterministic or normalized cost
ratios. In the literature, such a normalization is typically per-
formed with respect to the failure cost or expected campaign
cost due to their significant contribution to the overall life-
time costs. Applying the same methodology, we obtain the
normalized cost models summarized in Tables 7 and 8. These
models can subsequently be used to optimize I&M of off-
shore wind turbine support structures if the costs are included
in the underlying models on a linear basis.

7 Summary and concluding remarks

This paper formulates and applies a probabilistic cost model
to support the planning of I&M of the turbine support
structures in offshore wind farms. It provides a decision-
theoretical basis for optimizing I&M activities, with an em-
phasis on integrating the probabilistic cost model in the deci-

sion analysis. The probabilistic cost model is derived based
on a discussion of (a) the types of I&M of turbine support
structures and (b) the parameters that influence the overall
I&M cost. Subsequently, variance-based sensitivity analy-
ses are performed based on the probabilistic cost model to
quantify the influence of the different cost model parameters
on the overall I&M costs. Finally, the proposed probabilis-
tic cost model is applied in a numerical example in which
the I&M regime is optimized for a frame with steel mem-
bers which resembles a jacket support structure of an off-
shore wind turbine. As part of the example, an SS-A, PIPA-
DA, and DV analysis is performed. The SS-A determines the
lifetime risk of structural failure when no information is col-
lected, and no maintenance actions are performed throughout
the structure’s lifetime. The PIPA-DA optimizes a heuristic
I&M strategy defined by parameterized rules that guide the
actions to be taken based on the available system informa-
tion. The analysis is first performed based on the probabilis-
tic model of the I&M costs. Subsequently, it is performed
based on the expected values of the I&M costs. This is possi-
ble here since the costs are included in the model on a linear
basis. Both analyses yield the same optimal heuristic I&M
strategy. Finally, to determine the cost-effectiveness of the
identified optimal I&M strategy, a DV analysis is carried out
considering the probabilistic I&M cost model.

Based on our work, the following conclusions can be
drawn.

1. The generic framework described in Sect. 2 facilitates
an optimization of I&M regimes for turbine support
structures in offshore wind farms taking into account
the uncertainties in the I&M costs.

2. The proposed probabilistic cost model can be utilized
to quantify I&M costs at wind farm, structural system,
and component level, which can be updated when new
data on the parameters governing the I&M costs become
available during the operation of wind farms.

3. The sensitivity analyses showed that, at component
level, the campaign cost and engineering cost have the
highest influence on the overall I&M cost, while the
vessel cost per shift has the highest impact on the overall
I&M costs at structural system and wind farm level.

4. The decision analysis described in the numerical exam-
ple identifies a cost and risk optimal I&M strategy for a
steel frame subject to fatigue based on the probabilistic
cost model. An optimal inspection interval of 1t = 8
years is obtained from the PIPA-DA and DV analy-
sis. Furthermore, if the annual system failure probabil-
ity exceeds a threshold of pth = 1× 10−3 yr−1, an ad-
ditional inspection campaign is launched. In each cam-
paign, six prioritized hotspots are inspected, and a repair
campaign is launched if fatigue cracks are indicated and
measured to be deeper than aR = 1 mm.
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Table 7. Cost model normalized with respect to the expected campaign cost.

Cost parameter Ratio Normalized value

Campaign cost cC 9.11× 103/9.11× 103 1.00
Failure cost cF 2.00× 107/9.11× 103 2193.77
Engineering cost cE 4.55× 104/9.11× 103 5.00
Inspection cost below water with EM cI,Op 8.87× 103/9.11× 103 0.97
Inspection cost above water with EM cI,Op 3.54× 103/9.11× 103 0.38
Repair cost below water with welding cM,Op 4.58× 104/9.11× 103 5.02
Repair cost above water with welding cM,Op 3.80× 104/9.11× 103 4.17

Table 8. Cost model normalized with respect to the failure cost.

Cost parameter Ratio Normalized value

Failure cost cF 2.00× 107/2.00× 107 1.0
Campaign cost cC 9.11× 103/2.00× 107 4.55× 10−4

Engineering cost cE 4.55× 104/2.00× 107 2.28× 10−3

Inspection cost below water with EM cI,Op 8.87× 103/2.00× 107 4.43× 10−4

Inspection cost above water with EM cI,Op 3.54× 103/2.00× 107 1.77× 10−4

Repair cost below water with welding cM,Op 4.58× 104/2.00× 107 2.29× 10−3

Repair cost above water with welding cM,Op 3.80× 104/2.00× 107 1.90× 10−3

5. With the help of the numerical example, it is demon-
strated that the I&M costs can be considered determin-
istically as expected values in the decision analysis if
they are included in the optimization on a linear basis.

6. The expected I&M costs at the structural system level
depend solely on the number of campaigns and compo-
nents involved in the I&M operations as well as on the
expected campaign, engineering, and operational cost,
which therefore can be normalized and used in decision
analyses to optimize the I&M regime of support struc-
tures at the structural system level. In the future, we will
research similar concepts to derive deterministic (nor-
malized) cost models for I&M planning at wind farm
level.

Appendix A: Expected utilities and optimal I&M
decisions

As described in Sect.2.1, the expected utilities E [U0],
E [U1|a], and E [U2|i] form the basis for utility-informed op-
timizations of inspection and monitoring as well as main-
tenance of WT support structures in offshore wind farms.
This Appendix briefly summarizes the evaluation of these ex-
pected utilities. The summary assumes that the correspond-
ing utility functions and the probability distributions of their
input parameters are available. In addition, the Appendix
shows in more detail how decisions on inspection and mon-
itoring as well as maintenance are optimized by maximizing
the corresponding expected utilities.

A1 System state analysis

As part of the system state analysis (SS-A), the expected util-
ity E [U0] is evaluated as follows:

E [U0]= EX,W [U0 (X,W )]

=

∫
X

∫
W

U0 (x ,w) p (x,w) dw dx, (A1)

where EX,W [U0 (X,W )] is the expected value of the utility
function U0 (X,W ) defined in Eq. (1) with respect to ran-
dom variables X and W , which influence the system state
and the I&M costs, and p (x,w) is the joint prior probability
distribution of X and W .

A2 Predicted action decision analysis

In the predicted action decision analysis (PA-DA), the ex-
pected utility E [U1|a] is evaluated. This expected utility is
conditional on a possible choice of maintenance actions a
and computed with respect to the random variables Y ,X, and
W . These random variables influence the outcome of the as-
sociated maintenance actions, the system state, and the I&M
costs. In a generic format, E [U1|a] is determined as

E [U1|a]= EY ,X,W [U1 (a,Y ,X,W )]

=

∫
Y

∫
X

∫
W

U1 (a,y, x,w) p (y, x,w) dw dx dy, (A2)

where EY ,X,W [U1 (a,Y ,X,W )] is the expected value of the
utility function U1 (a,Y ,X,W ) defined in Eq. (2) with re-
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spect to Y , X, and W , and p (y, x,w) is the joint prior prob-
ability distribution of Y , X, and W .

The optimal maintenance actions a∗ are identified by max-
imizing the conditional expected value of U1 as

a∗ = argmax
a

E [U1|a] . (A3)

Finally, the expected value of U1 conditional on the opti-
mal maintenance actions a∗ can be defined as

E
[
U1|a

∗
]
= EY ,X,W

[
U1
(
a∗ ,Y ,X,W

)]
. (A4)

A3 Predicted information and predicted action decision
analysis

A predicted information and predicted action decision analy-
sis (PIPA-DA) is performed to jointly optimize decisions on
inspection and monitoring as well as maintenance (see also
Thöns and Kapoor, 2019). In this analysis, the expected value
of the utility U2 is maximized based on predicted inspection
and monitoring outcomes and predicted maintenance actions.
When applying the extensive form of the analysis based on
the lower branch of the decision tree in Fig. 1 (Raiffa and
Schlaifer, 1961), the optimization is progressed from the leaf
of the branch towards the node representing the decision on
the inspection and monitoring regime i. The analysis starts
by determining the expected value of U2 conditional on a
choice of the inspection and monitoring regime i, a real-
ization of the corresponding inspection and monitoring out-
comes Zi = zi , and a possible choice of maintenance actions
a as follows:

E [U2|i,zi,a]= EY ,X,W |Zi=zi [U2 (i,zi,a,Y ,X,W )]

=

∫
Y

∫
X

∫
W

U2 (i,zi ,a,Y ,X,W ) p (y, x,w |zi) dw dx dy. (A5)

where EY ,X,W |Zi=zi [U2 (i,zi,a,Y ,X,W )] is the
conditional expected value of the utility function
U2 (i,zi,a,Y ,X,W ) defined in Eq. (3) with respect to
Y , X, and W conditional on Zi = zi , and p (y, x,w |zi) is
the joint posterior probability distribution of Y , X, and W
given Zi = zi , which is determined using Bayesian analysis.

Subsequently, the optimal maintenance actions a∗
|i, zi

con-
ditional on a certain choice of the inspection and monitor-
ing regime i and a corresponding realization of the inspec-
tion and monitoring outcomes Zi = zi can be determined by
maximizing E [U2|i,zi,a] as

a∗
|i,zi
= argmax

a
E [U2|i,zi,a] . (A6)

Given that the decision-maker upon knowing the inspec-
tion and monitoring outcomes Zi = zi will always make the
optimal maintenance decisions a∗

|i,zi
, the expected value of

the utility U2 conditional on a choice of the inspection and

monitoring regime i is computed as

E
[
U2|i

]
= EZi

[
EY ,X,W |Zi

[
U2
(
i,Zi ,a

∗

|i,Zi
,Y ,X,W

)]]
=

∫
Zi

[
max
a

EY ,X,W |Zi = zi
[
U2
(
i,zi ,a,Y ,X,W

)]]
p
(
zi
)
dzi , (A7)

where EZi [·] is the expectation with respect to Zi , and p (zi)
is the marginal probability distribution of the probabilistic
inspection and monitoring outcomes Zi . The optimal inspec-
tion and maintenance regime i∗ is then obtained by maximiz-
ing E [U2|i] as

i∗ = argmax
i

E [U2|i] . (A8)

Finally, the maximum expected value of U2 conditional on
i∗ is obtained as

E
[
U2|i

∗
]

= EZi∗
[
EY ,X,W |Zi∗

[
U2

(
i∗,Zi∗ ,a

∗

|i∗,Zi∗
,Y ,X,W

)]]
. (A9)

From Eqs. (A6), (A7), and (A8) it can be seen that a PIPA-
DA cannot be summarized in a single optimization problem
if the extensive form of the analysis is applied. As shown in
Eq. (A6), the optimal decisions on the maintenance actions
a∗
|i,zi

can in this case only be determined conditional on a
certain realization of the inspection and monitoring outcomes
Zi = zi .

Appendix B: Expected total lifetime cost conditional
on a heuristic I&M strategy

The expected value of the total lifetime cost E [C2|Sθ ] condi-
tional on a heuristic I&M strategy Sθ is required to identify
the cost- and risk-informed optimal heuristic I&M strategy
Sθ∗ as described in the numerical example in Sect. 6. In the
following, we outline the evaluation of E [C2|Sθ ] considering
probabilistic and expected I&M costs.

B1 Probabilistic I&M costs

The expected total lifetime cost E [C2|Sθ ] considering prob-
abilistic I&M costs is defined as

E [C2|Sθ ]= EX,Y ,Z,W [C2 (Sθ ,X, Y , Z,W )]

=

∫
X

∫
Y

∫
Z

∫
W

C2 (Sθ ,X, Y , Z,W ) p (x ,y ,z|Sθ )

p (w|Sθ ) dx dy dzdw, (B1)

in which p (x ,y ,z|Sθ ) p (w|Sθ ) is the joint probability den-
sity function (PDF) of X, Y , Z, and W . Equation (B1) im-
plies that the uncertain parameters W governing the I&M
costs are modeled as statistically independent of the uncer-
tain parameters X influencing the system failure probabil-
ity, the uncertain parameters Y affecting the repair outcomes,
and the probabilistic inspection outcomes Z.
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Equation (B1) can be rewritten as

E [C2|Sθ ]=
∫
Z

∫
W

E [C2|Sθ ,z,w]p (z|Sθ )p (w|Sθ )dzdw, (B2)

where E [C2|Sθ ,z,w] is the expected total lifetime cost con-
ditional on the inspection outcomes Z = z, and correspond-
ing repairs as prescribed by strategy Sθ and p (z|Sθ ) repre-
sent the marginal PDF of the lifetime inspection outcomes.
E [C2|Sθ ,z,w] is computed as

E [C2|Sθ ,z,w]= EX,Y |Z=z,W=w [C2 (Sθ ,X, Y , z, w)]

=

∫
X

∫
Y

C2 (Sθ ,X, Y , z, w) p (x ,y|Sθ ,z) dx dy, (B3)

where p (x ,y|Sθ ,z) is the conditional PDF ofX and Y given
Z = z. E [C2|Sθ ,z,w] can be decomposed as

E [C2|Sθ ,z,w]= E [CI|Sθ ,z,w]+E [CM|Sθ ,z,w]

+E [CF|Sθ ,z] , (B4)

where E [CI|Sθ ,z,w] is the conditional expected lifetime in-
spection cost, E [CM|Sθ ,z,w] is the conditional expected
lifetime maintenance cost, and E [CF|Sθ ,z] quantifies the
conditional expected lifetime failure costs over the lifetime
of the structure. Note that the latter does not depend on the
I&M cost model parameters as shown in Eq. (B7) below.

The conditional expected lifetime inspection cost
E [CI|S,z,w] is computed as

E [CI|Sθ ,z,w]=
m∑
j=1

CI,j (Sθ ,z,w)

· γj ·
[
1−Pr

(
Fj |Sθ ,z

)]
, (B5)

where the j th term represents the inspection costs in year
j given that failure has not occurred up to the end of that
year; CI,j (Sθ ,z,w) is the inspection cost in year j , which
is estimated based on the model defined in Eq. (11); and 1−
Pr
(
Fj |Sθ ,z

)
is the probability of survival of the system up to

the end of year j conditional on the inspection outcomesZ =
z and corresponding repairs as determined by the strategy S.

Similarly, the conditional expected lifetime maintenance
cost E [CM|Sθ ,z,w] is given by

E [CM|Sθ ,z,w]=
m∑
j=1

CM,j (Sθ ,z,w) · γj

·
[
1−Pr

(
Fj |Sθ ,z

)]
, (B6)

where CM,j (Sθ ,z,w) is the maintenance cost in year j ,
which is determined based on the model defined in Eq. (12).

The conditional expected lifetime failure cost
E [CF|Sθ ,z,w] is evaluated as

E
[
CF|Sθ ,z

]
=

m∑
j=1

cF · γj ·
[
Pr
(
Fj |Sθ ,z

)
−Pr

(
Fj−1|Sθ ,z

)]
, (B7)

where cF is the deterministic failure cost and Pr
(
Fj |Sθ ,z

)
−

Pr
(
Fj−1|Sθ ,z

)
is the probability of failure for year j given

Z = z (see also Eq. 15).
E [C2|Sθ ] is estimated here using an MC approach:

E [C2|Sθ ]=∫
Z

∫
W

E [C2|Sθ ,z,w]p (z|Sθ )p (w|Sθ )dzdw

≈
1
n

n∑
i=1

E
[
C2|Sθ ,z(i),w(i)

]
, (B8)

in which
{
z(i)}n

i=1 represents samples of the probabilistic in-
spection outcomes Z conditional on the heuristic strategy
Sθ , which are generated as discussed by Bismut and Straub
(2021);

{
w(i)}n

i=1 represents samples of the uncertain cost

model parameters W =
[
W T

1 , . . .,W
T
m

]T , where W j repre-
sents the probabilistic parameters influencing the I&M costs
in year j as defined in Table 5. As described in Sect. 6.2,
it is assumed that the different W j , j = 1, . . .,m values are
independent and identically distributed. Thus, the joint PDF
p (w|Sθ ) can simply be written as p (w|Sθ )= p (w1|Sθ ) · . . . ·
p (wm|Sθ ). It is further assumed that repair solutions are pre-
engineered before the frame is commissioned. Thus, the en-
gineering costs are only incurred once at the beginning of the
lifetime.

The expected lifetime cost E [C2|Sθ ] is in this contribution
estimated using MCS with 400 samples of the inspection out-
come Z and cost model parameters W .

B2 Expected I&M costs

Based on Eq. (19), the conditional expected lifetime inspec-
tion cost can be formulated such that it only depends on the
inspection outcomes Z = z and corresponding repairs as de-
termined by the strategy Sθ , i.e.,

E [CI|Sθ ,z]= EW |Z=z [CI|Sθ ,z,W ]

=

m∑
j=1

EW |Z=z
[
CI,j (Sθ ,z,W )

]
· γj ·

[
1−Pr

(
Fj |Sθ ,z

)]
(B9)

with

EW |Z=z
[
CI,j (Sθ ,z,W )

]
= nC,j (Sθ ,z) ·E [CC]

+ nI,C,j (Sθ ,z) ·E
[
CI,Op

]
, (B10)

where nC,j (Sθ ,z) and nI,C,j (Sθ ,z) are the total numbers of
inspection campaigns and component inspections in year j .

Equivalently, based on Eq. (20), the conditional expected
lifetime maintenance cost can be expressed as

E [CM|Sθ ,z]= EW |Z=z [CM|Sθ ,z,W]=
m∑
j=1

EW |Z=z
[
CM,j (Sθ ,z,W )

]
· γj ·

[
1−Pr

(
Fj |Sθ ,z

)]
(B11)
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with

EW |Z=z
[
cM,j

(
Sθ ,z,W

)]
= nC,j

(
Sθ ,z

)
·
(
E
[
CC
]

+E
[
CE
])
+ nM,C,j

(
Sθ ,z

)
·E
[
CM,Op

]
, (B12)

where nC,j (Sθ ,z) and nM,C,j (Sθ ,z) are the number of re-
pair campaigns and component repairs in year j . Note that
the models defined in Eqs. (B10) and (B12) do not explicitly
account for the inspection and repair location or methods to
simplify the notation.

Based on Eqs. (B7), (B9), and (B11), the expected total
lifetime cost can now be written to depend only on the heuris-
tic I&M strategy Sθ and the inspection outcomes Z = z:

E [C2|Sθ ,z]= E [CI|Sθ ,z]+E [CM|Sθ ,z]+E [CF|Sθ ,z]. (B13)

After evaluating the expected total lifetime cost condi-
tional on the inspection outcomes Z = z, E [C2|Sθ ] can be
computed as

E [C2|Sθ ]=
∫
Z

E [C2|Sθ ,z] p (z|Sθ )dz . (B14)

The integral in Eq. (B14) can be solved using an MC ap-
proach similar to Eq. (B8).
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