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Abstract. The US West Coast holds great potential for wind power generation, although its potential varies due
to the complex coastal climate. Characterizing and modeling turbine hub-height winds under different weather
conditions are vital for wind resource assessment and management. This study uses a two-stage machine learning
algorithm to identify five large-scale meteorological patterns (LSMPs): post-trough, post-ridge, pre-ridge, pre-
trough, and California high. The LSMPs are linked to offshore wind patterns, specifically at lidar buoy locations
within lease areas for future wind farm development off Humboldt and Morro Bay. While each LSMP is as-
sociated with characteristic large-scale atmospheric conditions and corresponding differences in wind direction,
diurnal variation, and jet features at the two lidar sites, substantial variability in wind speeds can still occur within
each LSMP. Wind speeds at Humboldt increase during the post-trough, pre-ridge, and California-high LSMPs
and decrease during the remaining LSMPs. Morro Bay has smaller responses in mean speeds, showing increased
wind speed during the post-trough and California-high LSMPs. Besides the LSMPs, local factors, including the
land–sea thermal contrast and topography, also modify mean winds and diurnal variation. The High-Resolution
Rapid Refresh model analysis does a good job of capturing the mean and variation at Humboldt but produces
large biases at Morro Bay, particularly during the pre-ridge and California-high LSMPs. The findings are an-
ticipated to guide the selection of cases for studying the influence of specific large-scale and local factors on
California offshore winds and to contribute to refining numerical weather prediction models, thereby enhancing
the efficiency and reliability of offshore wind energy production.

1 Introduction

With over 6000 megawatts (MW) of potential offshore
wind-generating capacity in the development and operational
pipeline, the US West Coast is next in line following the
success of offshore wind deployment along the US Atlantic
Coast (Musial et al., 2023). The growth of wind power gener-
ation increases the dependence of the power system on vari-
able weather and climate (Meenal et al., 2022). As wind en-
ergy sources are highly intermittent and variable, accurate
weather forecasts are essential to mitigating the related un-
certainties (Frías-Paredes et al., 2017), improving decision-

making, and reducing cost (Turner et al., 2022; Jeon et al.,
2022).

As of October 2023, five wind energy lease areas were
established off the California coast – two off Humboldt
County and three off Morro Bay (BOEM, 2024). Observa-
tional datasets are ideal for assessing and characterizing the
wind resource. The US Department of Energy funded the in-
stallation of two research buoys in these areas, equipped with
lidar and other instruments to collect wind measurements for
resource assessment and model evaluation (Krishnamurthy
et al., 2023). However, due to the challenges associated with
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deploying and maintaining offshore equipment, these mea-
surements remain limited.

The wind energy sector has greatly benefited from the
use of numerical weather prediction. The High-Resolution
Rapid Refresh (HRRR) model, operational at NOAA/NCEP
since 2014, is a convection-permitting implementation of the
Advanced Research version of the Weather Research and
Forecasting (WRF-ARW) model with hourly data assimila-
tion (Dowell et al., 2022). The 2023 National Offshore Wind
dataset (NOW-23) is the latest wind resource dataset for off-
shore areas in the US, lunched by the National Renewable
Energy Laboratory (NREL) (Bodini et al., 2024). The NOW-
23 dataset delivers an updated and cutting-edge product to
stakeholders.

The HRRR model has been proven to provide skillful fore-
casts of near-surface winds, leading to potential cost sav-
ings of USD 14.3–46.6 million yearly when more advanced
model configurations were applied (Fovell and Gallagher,
2022; Turner et al., 2022; Jeon et al., 2022). Despite its over-
all promise, the HRRR model’s capabilities vary across loca-
tions and under different weather conditions (e.g., Pichugina
et al., 2020). Liu et al. (2024) found that HRRR tends to over-
estimate the turbine hub-height wind speed over complex ter-
rain in the southeastern US, while Pichugina et al. (2019)
reported that the HRRR model underestimated strong wind
speeds ( > 12 m s−1). Most of the evaluations focused on on-
shore wind energy applications due to general lack of high-
quality wind profile measurements offshore (Banta et al.,
2013; Myers et al., 2024; Shaw et al., 2019; Wilczak et al.,
2019). Banta et al. (2017) evaluated HRRR model wind fore-
casts against offshore Doppler lidar measurements along the
US Atlantic coast. They found an average of 1.5 to 2 m s−1

in model error at 100 to 500 m above mean sea level (m.s.l.).
Both onshore and offshore evaluations suggest that mean

wind speed and the model bias are sensitive to weather con-
ditions (Bianco et al., 2019; James et al., 2017, 2018). The
wind speed and/or model biases tend to be larger in win-
ter than summer in the contiguous US, Pacific Northwest,
Great Plains, southeastern US, and the US offshore Atlantic
(Berg et al., 2021; James et al., 2018, 2017); however, an op-
posite trend is observed along the California offshore coast
(Liu et al., 2024; Krishnamurthy et al., 2023). In addition to
large-scale weather patterns, offshore wind profiles and en-
ergy production are influenced by local factors such as frontal
passages, sea breezes, and low-level jets (LLJs) (Kalverla et
al., 2019; Liu et al., 2024; Sheridan et al., 2024; Gaudet et
al., 2022). Specifically, sea breeze circulations entail diur-
nal variations in wind speed due to thermal contrast between
land and sea (e.g., Gilliam et al., 2004; Burk and Thompson,
1996). During summer, this thermal contrast can cause diur-
nal variations in wind speed via thermal wind effect, without
significant changes in wind direction (e.g., Liu et al., 2024).
The presence of the North Pacific High (NPH) system and
the interaction with thermal wind forcing, shallow marine
boundary layer (MBL), and local topography often lead to

a maximum wind speed at the top of the MBL (near turbine
height), resulting in the formation of LLJs (Burk and Thomp-
son, 1996).

While local factors can have a pronounced impact on near-
surface winds, model biases during a period characterized by
multiple weather conditions can mask local factors and ulti-
mately lead to overlooking their impacts (Ohba et al., 2016;
Liu et al., 2022; Spassiani and Mason, 2021). For instance,
the approach of a large-scale trough and ridge induces re-
spective southerly and northerly winds. Averaging over these
two periods cancels individual effects. In this study, first, we
use a two-stage clustering method to identify the predomi-
nant large-scale meteorological patterns (LSMPs) influenc-
ing the California offshore environment. Then, we character-
ize the wind resources under each LSMP before evaluating
the HRRR model’s simulated winds under these LSMPs.

2 Data and method

2.1 Lidar buoy data

The US Department of Energy, in collaboration with the
Bureau of Ocean Energy Management, placed two buoys
equipped with Doppler lidars along the California coastline
to directly observe the offshore wind resource. These buoys
were positioned in the wind energy lease areas off the coasts
of Humboldt and Morro Bay (Krishnamurthy et al., 2023).
Over a full year, the buoys gathered data on wind patterns
and turbulence from 40 to 240 m above mean sea level, sur-
face meteorology, sea surface temperature, solar radiation,
two-dimensional wave spectra, and ocean current profiles in-
cluding speed and direction.

The lidar on the Humboldt buoy temporarily required ser-
vicing due to a power system failure, and as a result, its ob-
servations are only available from October to December 2020
and from June to December 2021. In contrast, the Morro
Bay buoys operated consistently throughout these periods
(i.e., from October 2020 to December 2021). Any impact on
the accuracy of lidar measurements caused by precipitation
events and foggy conditions remains a subject of ongoing
research. Upon detailed examination of the carrier-to-noise
ratio and horizontal wind speed depicted in the time–height
plots during the analyzed periods, no consistent issues with
the observations were identified.

2.2 HRRR analysis

The HRRR dataset, which is accessible through Ama-
zon Web Services, is available in both hybrid and pres-
sure vertical coordinates with a 3 km horizontal grid spac-
ing (https://registry.opendata.aws/noaa-hrrr-pds/, last access:
20 June 2024). We obtain the wind speed and direction from
HRRR at 80 m above mean sea level from October 2020 to
December 2021. The hourly wind components are interpo-
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lated horizontally, aligning with the locations of observation
sites.

2.3 Meteorological variables describing weather
patterns

Atmospheric patterns over the North Pacific influence coastal
winds, but the HRRR model’s western boundary is too
close to the coastline to effectively capture these circula-
tions. To address this, the European Centre for Medium-
Range Weather Forecasts 5th Generation Reanalysis (ERA5,
Hersbach et al., 2020), with its global coverage, is used to
perform the weather pattern classification. The hourly vari-
ables for the period of 2019–2022 at a horizontal resolution
of 0.25°× 0.25° are obtained from https://www.ecmwf.int/
en/forecasts/dataset/ecmwf-reanalysis-v5 (last access: Jan-
uary 2024). The 500 hPa geopotential height (Z500) and sur-
face pressure (Psfc) are obtained to describe the large-scale
pressure gradient, and the 2 m temperature (T2) is used for
land–sea thermal contrast.

2.4 Large-scale meteorological weather pattern
clustering

The two-stage clustering method consists of a self-organizing
map (SOM; Vesanto and Alhoniemi, 2000; Kohonen, 1982)
analysis to reduce the dimension of the input vectors (Z500,
Psfc, and T2) and a K-means cluster to further group the
SOM prototypes into fewer LSMPs (Liu et al., 2023). In the
first stage, we train an SOM to generate a low-dimensional
discretized representation of the data in the original feature
space while preserving the topological properties (relative
position between the SOM nodes) of the data. In the sec-
ond stage, we use the SOM prototypes as input to train the
K-means method for final clustering. The SOM is a widely
used clustering analysis tool (Ohba et al., 2016; Huang et al.,
2022; Liu et al., 2022) that performs a topology-preserving
mapping. Directly using K-means for clustering is not rec-
ommended, as K-means is highly sensitive to the positions
of the initial nodes and outliers and is not suitable for high-
dimensional datasets (Mingoti and Lima, 2006; Misra et al.,
2020). As a result, this two-stage procedure approach com-
bines the strengths of both SOMs and K-means while ad-
dressing their individual shortcomings. It is important to note
that the success of the clustering process heavily depends
on the distinctions present in the data. While directly using
SOMs in this study generally captures the LSMPs, one pat-
tern is not represented (figure not shown). This highlights
the risk of missing significant patterns and generating poten-
tially artificial symmetric results. As a result, the two-stage
approach provides a reliable clustering and is used in this
study.

The numbers of prototypes and LSMPs are prescribed de-
pending on the scale of meteorological patterns. We choose a
large map size, 10× 10 SOM prototypes, which is sufficient

to represent all possible mesoscale variations (on the order of
100 km) such as sea breezes, squall lines, and mesoscale con-
vective complexes. Then, the silhouette score (SS) is used to
determine the number of LSMPs (on the order of 1000 km)
in the K-means analysis. The SS measures the separation
distance between the resulting clusters: a larger SS indi-
cates larger distinctions among the clusters (Shutaywi and
Kachouie, 2021). We test 3 to 14 clusters and find that the
5-cluster classification produces the largest SS (figure not
shown), which therefore is chosen to perform the K-means
clustering analysis. Before performing the two-stage proce-
dure, we calculate the anomalies of input vectors by subtract-
ing the climatological hourly mean from the time series at
each grid point so that the annual and monthly variations are
excluded. The SOM analysis is performed over 30–45° N,
130–118° W, which is chosen to include the Pacific jet exit
(Athanasiadis et al., 2010).

We also compared the results of direct five-SOM cluster-
ing with our two-stage method. The average silhouette coef-
ficient is 0.12 for the two-stage method compared to 0.09 for
the direct five-SOM clustering. The larger SS indicates that
the resulting clusters are more well-defined and distinct.

2.5 Low-level jet identification

An LLJ is typically a local maximum in wind speed at al-
titude from near the surface up to about 2 km, yet there
is no standard method for quantifying LLJs. The “fall-off”
method, commonly used to determine the height of peak
wind speeds (the height of the jet core), involves identifying
where wind speed decreases after reaching its maximum (the
jet-core speed). An LLJ is recognized if the difference be-
tween the jet-core speed and the next local minimum above
it exceeds a certain threshold, which varies among studies
(Carroll et al., 2019; Kalverla et al., 2019; Hallgren et al.,
2020). Following Sheridan et al. (2024), a study that com-
prehensively evaluated West Coast LLJs using the same ob-
servational dataset, this study uses a 2 m s−1 fall-off thresh-
old to define LLJs, without specifying the vertical distance
between the jet core and the threshold height as long as it is
within the observational limit of 240 m above mean sea level.
Note that due to the height limitation of 240 m, this definition
will underestimate the actual number of LLJs, which will be
discussed below. We only calculate LLJs from observations
since HRRR provides too few near-surface points in the ver-
tical direction for LLJ detection.

3 Results

Before exploring the LSMPs, we review the meteorologi-
cal systems influencing near-surface winds offshore of Cal-
ifornia. The strength and location of the NPH system are
the major contributors to the LSMP (Burk and Thomp-
son, 1996). In summer, the NPH and a thermal low over
the southwest US create an enhanced cross-coastline pres-
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sure gradient, which primarily drives the prevailing northerly
winds offshore (Brewer et al., 2012). The subsidence within
the NPH induces a pronounced air temperature inversion
that is most intense and lowest near the coast, capping the
MBL and limiting its vertical extent. Along the coastline, a
northerly to northwesterly LLJ is typically observed at the
top of the MBL, resulting from the thermal wind due to
significant coastal baroclinicity superimposed on the gener-
ally northerly flow (Burk and Thompson, 1996). During the
day, the land is typically warmer than the ocean. Above the
MBL, the thermal wind is southerly aloft, so the geostrophic
winds become more northerly closer to the surface, increas-
ing northerly wind speed until surface friction slows it down
within the MBL, at around 500 m (e.g., Liu et al., 2024). In
contrast, during winter, the NPH weakens, leading to dis-
tinct synoptic-scale weather conditions including storms and
fronts originating from the Gulf of Alaska. The propagation
of these systems can drive strong winds and a wind direc-
tion shift from northwest to southeast. The MBL also deep-
ens during this season, influenced by the changing dynamics
of the NPH.

3.1 SOM prototypes

In the first-stage clustering, 10× 10 SOM prototypes resem-
ble the large-scale circulation modified by mesoscale pertur-
bations (Fig. 1). Viewing Fig. 1 from left to right, the pro-
gression shows a 500 hPa high moving from west to east,
coinciding with highs and lows generally rotating clockwise
in the upper half of the SOMs and counterclockwise in the
lower half. From top to bottom, a 500 hPa high moves from
north to south, with systems rotating counterclockwise in the
left half of SOMs and clockwise in the right half. This re-
flects the typical pattern evolution seen in large-scale sys-
tems though localized variation can occur. Changes in the
mid-level atmosphere correspond to surface alterations. The
Psfc generally resembles the similar patterns of Z500, leading
to a range of Psfc gradients that drive variable surface winds
(figure not shown). Mid-level high pressure, often associated
with downdrafts, inhibits cloud formation, thereby increas-
ing surface solar radiation and temperature (Dadashazar et
al., 2020). Conversely, mid-level low pressure can induce op-
posite changes. Meanwhile, land exhibits larger temperature
variations than ocean due to its smaller heat capacity. As a
result, positive and negative T2 anomalies are found over the
land area underlying respective positive and negative Z500
anomalies.

3.2 Dominant large-scale meteorological weather
patterns and associated wind patterns

In the second-stage clustering, the K-mean analysis produces
five LSMPs. The first two LSMPs, each accounting for 17 %
of the total hours during the study period, resemble large-
scale ridges and troughs centered over the western US, with

the buoys located behind (west of) those systems (Fig. 2a, b).
For the post-trough weather pattern, the passing of the mid-
level trough and the following ridge of high pressure inten-
sify the cross-coastline pressure gradient, which enhances the
northerly winds offshore. Although the cold northerly winds
cool the land surface, the land–sea thermal contrast still ex-
ists and further accelerates the northerly winds through the
thermal wind effect. Consequently, the post-trough LSMP
drives strong offshore winds along the coast, with enhanced
expansion fans (an area of high wind speed) downwind of
Cape Mendocino and Point Conception (Fig. 3a).

The second LSMP, namely post-ridge, is associated with
blocking systems over the western US; this is an elon-
gated area of relatively high atmospheric pressure. The high-
pressure systems are associated with subsiding air, which dis-
courages cloud formation and leads to stable weather con-
ditions. The inland surface temperature can be higher due
to the increased solar radiation and the general downward
motion of air, which warms adiabatically as it descends. Un-
der post-ridge conditions, the weakened cross-coastline pres-
sure gradient decreases the prevailing surface northerly wind
(Fig. 3b). In contrast, the enhanced land–sea thermal con-
trast along the Oregon coast tends to increase offshore winds
through the thermal wind theory (Liu et al., 2024), which
mitigates the overall decrease in offshore wind speed.

The third and fourth LSMPs resemble large-scale ridges
and troughs centered over the Pacific Ocean, and the buoys
are located ahead (east) of those systems (Fig. 2c, d), ac-
counting for 26 % and 28 % of the total hours, respectively.
Like the post-ridge pattern, the pre-ridge pattern is associated
with high-pressure systems favorable to subsidence, warm
land surface, and decreased offshore winds (Fig. 3c). In con-
trast, the pre-ridge pattern features an anomalous north-to-
south pressure gradient at 500 hPa and a strong surface pres-
sure gradient centered offshore of northern California and
Oregon, accelerating wind speed. Meanwhile, the warmer
land surface over the northern California mountains further
increases the offshore winds. As a result, the pre-ridge in-
creases (decreases) wind speed off northern (southern) Cali-
fornia.

For the fourth LSMP, namely pre-trough, the buoys are
located ahead (east) of a mid-level trough, where the dynam-
ics can create conditions favorable for a cold front and strong
convection. The enhanced NPH over California and the Aleu-
tian Low intensify the pressure gradient at 500 hPa and the
surface, which often is associated with a cold front approach-
ing California from the northeast Pacific Ocean. As a cold
front approaches, the tightened pressure gradient can lead to
an increase in wind speeds and change the wind direction
to south or southwest (Fig. 3d). This occurs more frequently
offshore of northern California and thus has less impact on
the wind speed in the south.

The fifth LSMP, namely California high, accounts for
11.4 % of the hours and exhibits an anomalous high at
500 hPa centered offshore of California (Fig. 2e). The mid-
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Figure 1. Composite anomalies of Z500 and T2 for each SOM prototype. The red shading and solid contours indicate positive anomalies,
and blue and dashed contours indicate negative anomalies. The colored lines outline the five LSMPs: post-trough (blue), post-ridge (green),
pre-ridge (orange), pre-trough (gray), and California high (purple).

level and surface pressure and temperature patterns are sim-
ilar to the pre-ridge LSMP, except they have larger magni-
tudes. Therefore, the area with accelerated winds extends
from northern California to the south (Fig. 3e).

3.3 80 m wind regimes at buoy locations

Wind patterns at Humboldt and Morro Bay exhibit dis-
tinct responses to LSMPs and smaller-scale atmospheric dis-
turbances as recognized by the SOM prototypes. Figure 4
presents the average 80 m wind speed for each SOM proto-
type. The features of each LSMP are summarized in Table 1.
Post-trough conditions reveal stronger northerly to north-
westerly winds along the coast. The Humboldt buoy, situated
at the boundary of the northern expansion fan, experiences a
pronounced horizontal wind speed gradient (Fig. 3a), leading
to a wide range of mean wind speeds from 1 to 14 m s−1. In
contrast, the Morro Bay buoy consistently records high wind
speeds.

Under post-ridge conditions, anomalous southerlies are
most intense offshore of northern California, significantly re-
ducing wind speeds at Humboldt and potentially causing a
wind direction change when the southerly anomaly is greater

than the prevailing north wind. It is interesting to note that
wind speeds observed in certain SOM prototypes, such as
the high values in the top-right cluster for Humboldt, result
from the interaction between the prevailing wind direction
and the anomalies induced by the LSMP. Typically, the pre-
vailing winds in this region are northerly, while the LSMP
tends to induce a southerly wind anomaly. In most cases, this
anomaly reduces wind speed by counteracting the northerly
flow. However, when the southerly anomaly is strong enough,
it can either shift the wind direction to the south or surpass
the strength of the prevailing northerly winds, leading to an
increase in wind speed. As such, when the mid-level ridge
intensifies, these offshore winds can become southerlies with
speeds exceeding 15 m s−1 in extreme cases. At Morro Bay,
wind speeds generally weaken to 6–11 m s−1.

The pre-ridge LSMP results in increased mean wind
speeds off northern California and decreased speeds to
the south. This wind pattern is manifested by anomalies
in surface temperature. The dominance of NPH-induced
clear skies leads to warmer land temperatures that enhance
the land–sea thermal contrast, thereby accelerating offshore
winds. Across the SOM prototypes, the wind speed at Hum-
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Figure 2. Spatial distributions of the mean (contour) and anomalies (shading) of 500 hPa geopotential height (GPH) (a–e), surface pres-
sure (f–j), and T2 (k–o). The value at the top of each column indicates the frequency of each LSMP. The purple dots in panel (a) indicate the
lidar buoy locations at Humboldt in the north and Morro Bay in the south.

boldt ranges from 6–15 m s−1, while the Morro Bay buoy
records a range of 4–10 m s−1.

Pre-trough conditions, marked by an approaching mid-
level trough, generate moderate to high winds (7–15 m s−1)
at Humboldt, with wind directions shifting from northwest
to southwest during surface frontal passages. The impact of
the mid-level trough on the Morro Bay buoy is minimal,
with prevailing northwesterlies under the influence of the
NPH. However, if the trough deepens, wind speeds at Morro
Bay may transition from weaker northwesterlies to stronger
southwesterlies.

During California-high conditions, both Humboldt and
Morro Bay record increased wind speeds due to an enhanced
NPH and the amplified land–sea thermal contrast. The mean
wind speed exceeds 12 m s−1 at Humboldt and 10 m s−1 at
Morro Bay.

It is important to note that the classification of LSMPs does
not imply that each LSMP is associated with a narrowly de-
fined wind speed. Rather, each LSMP reflects a dominant
synoptic environment under which the prevailing direction
and magnitude of offshore winds are modulated. Within any
single LSMP, a range of mesoscale and local factors (e.g.,
frontal passages, varying thermal contrasts, topographic in-
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Figure 3. Spatial distributions of the mean (contour) and anomalies (shading and vector) of 80 m wind speed and direction from HRRR. The
red dots in panel (a) indicate the lidar buoy locations at Humboldt in the north and Morro Bay in the south.

Table 1. Summary of LSMPs and the associated wind patterns.

LSMP Frequency (%) Weather pattern Wind pattern

Post-trough 17.0 500 hPa trough centered over western
US land. Intensified cross-coastline sur-
face pressure gradient. Weakened land–
sea thermal contrast.

Strong northerly to northwesterly winds
with expansion fans downstream of the
capes.

Post-ridge 17.4 500 hPa ridge centered over western US
land. Weakened cross-coastline surface
pressure gradient. Enhanced land–sea
thermal contrast.

Decreased overall wind speeds offshore
of northern California.

Pre-ridge 26.4 500 hPa ridge centered over the North
Pacific Ocean. Anomalous north-to-
south surface pressure gradient, with
enhanced cross-coastline surface pres-
sure gradient offshore of northern Cali-
fornia and decreased pressure gradient
in the south. Enhanced land–sea ther-
mal contrast.

Increased northerlies offshore of north-
ern California and decreased wind
speed in the south.

Pre-trough 27.9 500 hPa trough centered over the North
Pacific Ocean. Anomalous south-to-
north surface pressure gradient, with
decreased cross-coastline surface pres-
sure gradient offshore of northern Cal-
ifornia and decreased pressure gradient
in the north. Decreased land–sea ther-
mal contrast.

Reduced northerlies offshore of north-
ern California and increased wind speed
in the south.

California high 11.4 500 hPa high centered over California.
Enhanced cross-coastline surface pres-
sure gradient. Increased land–sea ther-
mal contrast.

Strong northerly winds offshore of cen-
tral and northern California.

fluences, and boundary layer structures) can lead to substan-
tial variability in observed wind speeds. For instance, un-
der post-ridge conditions, most SOM prototypes show a de-
crease in wind speed due to the induced southerly anomaly;
however, a few prototypes exhibit unexpectedly high wind

speeds when the southerly anomaly surpasses the prevailing
northerly flow. This illustrates that while the LSMP frame-
work provides a useful synoptic-scale context, it is primarily
a classification tool rather than a deterministic method and
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thus cannot eliminate the inherent complexity and spread in
the local wind speed distributions.

3.4 Observed and modeled diurnal variation

The diurnal variation in surface heating alters the wind speed
and direction via the thermal wind effect. The thermal wind
effect results in northerly winds relative to the free tropo-
sphere during the day and southerly winds at night. The max-
imum speed occurs a few hours after the peak of baroclinic-
ity in the mid-afternoon as the inertial turning of the land–
sea breeze circulation to the free-troposphere wind direction
through the thermal wind effect (Burk and Thompson, 1996).

At Humboldt, the prevailing free-tropospheric wind di-
rection varies across the LSMPs, showing a northerly trend
during the post-trough, pre-ridge, and California-high condi-
tions and a southwesterly shift during the post-ridge condi-
tions (Fig. 5). The maximum speeds are observed near mid-
night (09:00–12:00 UTC) under northerly free-troposphere
wind conditions and in the afternoon (00:00 UTC) during
southwesterly conditions. Large-scale cold fronts primarily
influence the winds during pre-trough conditions, resulting in
small diurnal variations. In contrast, at Morro Bay, the max-
imum speed is observed from evening to midnight (00:00–
06:00 UTC) due to the prevailing northerly to northwesterly
winds throughout all LSMPs.

The diurnal variations in 80 m wind speed modeled by
HRRR are compared with observations (Fig. 5). HRRR does
a good job of capturing the mean wind speed at Humboldt,
with biases ranging from −0.5 to 0.1 m s−1. The HRRR ef-
fectively captures diurnal variations during post-trough and
post-ridge LSMPs but underestimates the variation during
pre-ridge conditions. At Morro Bay, the HRRR produces
small biases during post-trough, post-ridge, and pre-trough
conditions, while it largely overestimates the daily mean dur-
ing the pre-ridge LSMP by 2.2 m s−1 and California-high
LSMP by 2.6 m s−1. The overestimation may be connected to
frequent LLJs occurring during these two LSMPs, which re-
sults in a large vertical wind speed gradient. Liu et al. (2024)
also reported that an overpredicted land–sea thermal con-
trast can lead to an overestimation of wind speed. Generally,
HRRR tends to reproduce the diurnal variations with a slight
delay during most LSMPs except for pre-trough, where the
model shows no diurnal changes.

3.5 Observed low-level jet

The LLJ offshore of California is often characterized by a
strong vertical wind speed gradient, which can introduce sig-
nificant biases in modeled wind speed at 80 m (Liu et al.,
2024). We examine the occurrence, jet-core height, and jet-
core wind speed across various LSMPs (Fig. 6). Out of all
the lidar observations, 1107 (4 %) and 1911 (4 %) record LLJ
occurrences at Humboldt and Morro Bay, respectively, con-
sistent with the findings by Sheridan et al. (2024) using the

same lidar dataset. At Humboldt, the pre-ridge LSMP has
the highest LLJ occurrence (406 LLJs), with the occurrence
of jet-core height peaking at 160 m. The pre-ridge and pre-
trough LSMPs record 309 and 238 LLJs, respectively, with a
bimodal distribution of occurrence of jet-core height peaking
near 140 and 220 m for both LSMPs. Interestingly, the post-
trough and California-high LSMPs record few LLJs despite
being associated with high-speed winds. This is likely be-
cause high-speed winds consistently appear throughout the
lidar measuring range of 40–240 m without forming a jet
structure.

The mean jet-core wind speed at Humboldt varies be-
tween 9.7 and 11.4 m s−1 across all LSMPs and generally
increases to its height with a maximum at 200 m (figure
not shown). Larger variations appear associated with indi-
vidual LSMPs. The California-high LSMP has the largest
mean jet-core wind speed of 18.3 m s−1 at 220 m. For other
LSMPs, the maximum mean jet-core speed ranges from 13.9
to 16.5 m s−1 at various heights.

Similar jet characteristics are observed at Morro Bay dur-
ing most LSMPs, except for the California high, which
records the most LLJ occurrences (663 LLJs) at Morro
Bay. The discrepancy between the two locations during the
California-high LSMP may be connected to the typically
lower MBL at Morro Bay compared to Humboldt (Zhou
et al., 2020), resulting in lower jet cores peaking at 160 m,
within the lidar range. The maximum mean jet-core wind
speed varies from 12.5 to 17.4 m s−1. Despite the opposite-
sign anomalous 100 m wind speed at two locations during the
pre-ridge and pre-trough LSMPs (Fig. 3c, d), minor differ-
ences are observed in jet characteristics. This supports pre-
vious literature reporting that the LLJ is a mesoscale phe-
nomenon modified by local meteorology and topography.

It is important to note that the lidar’s maximum measure-
ment height limitation (220 m) likely results in an underrep-
resentation of LLJ occurrence at heights above 220 m. The
consistent increase in mean wind speed with height suggests
potential jet cores above the highest measurement. To the
best of our knowledge, long-term LLJ measurements do not
exist in this region. Therefore, it is difficult to know the true
frequency of LLJ conditions. Nonetheless, we anticipate that
the limited range of the lidar contributes to an underestima-
tion of LLJ frequency, which reanalysis and global climate
models estimate to be∼ 20 %–30 % annually off the Califor-
nia coastline (e.g., Lima et al., 2022, Juliano et al., 2025).

4 Conclusion

In this study, we use a two-stage clustering method to identify
the LSMPs influencing near-surface winds off the Califor-
nia coast. The 10× 10 SOM prototypes resemble the evolu-
tion of weather systems such as high-pressure systems mov-
ing eastward and southward (Fig. 1), driving variations in
wind speed and direction at the Humboldt and Morro Bay
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Figure 4. Mean 80 m wind speed of each SOM prototype at Humboldt (a) and Morro Bay (b). The colored lines outlined the five LSMPs:
post-trough (blue), post-ridge (green), pre-ridge (orange), pre-trough (gray), and California high (purple).

Figure 5. Diurnal variations of wind speed at Humboldt (a–f) and Morro Bay (g–l). Observed mean wind speed associated with each
LSMP (a, g) and box plot comparison for individual LSMPs (b–f, h–l). The line in the center of each bar indicates the mean value, and the
limits of the bars indicate the first quartile (Q1) to the third quartile (Q3) of the data.
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Figure 6. Observed wind speed profile (filled box), occurrence of jet-core height (shading), and jet-core wind speed (open box) at Hum-
boldt (a–e) and Morro Bay (f–j) for each LSMP. The value in the lower left indicates the number of LLJ events observed during each LSMP.
The box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a dashed line showing the mean. The whiskers extend
from Q1− 1.5× (Q3−Q1) to Q3+ 1.5× (Q3−Q1).

buoys. The SOM prototypes are aggregated using the K-
means method into five LSMPs: post-trough, post-ridge, pre-
ridge, pre-trough, and California high (Fig. 2). The post-
trough and post-ridge LSMPs resemble west-to-east mid-
level and surface anomalies, enhancing and reducing the
cross-coastline pressure gradients, respectively, leading to
accelerated and decelerated offshore winds (Fig. 3). The pre-
ridge and pre-trough LSMPs resemble north-to-south mid-
level and surface anomalies with an intensified anomalous
surface pressure gradient offshore of northern California and
Oregon. The pre-ridge LSMP increases wind speed at Hum-
boldt and slightly decreases wind speed at Morro Bay. Oppo-
site changes are observed in mean wind speed at the two lo-
cations associated with pre-trough LSMP. However, a strong
surface front can drive relatively strong southwesterly winds
that are larger in magnitude than the prevailing northerly
winds. Nonetheless, these results should not be interpreted to
mean that each LSMP strictly enforces a single wind speed
regime. A wide range of wind speed outcomes can occur, in-
fluenced by local and mesoscale processes.

The offshore near-surface winds are modified by the diur-
nally varying land–sea thermal contrast (Fig. 5). The max-
imum wind speeds occur a few hours after peak baroclin-
icity in the afternoon and vary with the prevailing free-
tropospheric wind direction, which is influenced by differ-
ent LSMPs. The HRRR model generally captures these vari-
ations well at Humboldt, with minor biases, but it overes-
timates mean wind speeds at Morro Bay during pre-ridge
and California-high LSMPs, possibly due to frequent LLJ
occurrences and an overpredicted land–sea thermal contrast.
HRRR also tends to show a slight delay in reproducing diur-
nal variations and does not reflect changes during pre-trough
conditions.

At Humboldt, the highest LLJ occurrence is during the
pre-ridge LSMP, with jet-core heights peaking at 160 m,
while at Morro Bay, the California-high LSMP records the
highest number of LLJs (Fig. 6). The mean jet-core wind
speed at Humboldt ranges from 9.7 to 11.4 m s−1, increasing
with height, and the California-high LSMP shows the high-
est mean speeds up to 18.3 m s−1. Despite some differences
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in wind speeds and LLJ characteristics between Humboldt
and Morro Bay, the general consistency between the two lo-
cations (800 km apart) suggests that the LLJ is a meso-alpha-
scale phenomenon modified by local conditions.

The identified model biases have significant implications
for wind farm development, particularly in offshore envi-
ronments where accurate wind resource assessments are es-
sential. For instance, the overestimation of wind speeds in
certain LSMPs, such as pre-ridge and California-high condi-
tions, could result in overestimating potential energy output.
To address this, data users should approach HRRR model
outputs cautiously under these conditions and incorporate
model uncertainties into their assessments. Beyond the mean
status of wind speed, future studies could link the wind power
features like ramp frequency and intensity to LSMPs. Prac-
tical measures, such as utilizing ensemble forecasts or com-
bining multiple models, can help mitigate the effects of these
biases on wind farm siting and design decisions.

This study introduces a new approach to characterizing
offshore winds and associated model biases, linking them to
LSMPs. The methodology used for evaluating HRRR per-
formance under different LSMPs can be applied to other nu-
merical weather prediction models. This approach not only
identifies model strengths and weaknesses but also provides
valuable insights into how environmental factors influence
airflow, aiding predictive studies. By connecting model per-
formance to LSMPs, this method promotes mechanism anal-
ysis, fostering studies on a deeper understanding of the phys-
ical processes behind wind patterns. Furthermore, the results
are anticipated to guide the selection of cases for studying the
influence of specific large-scale and local factors on winds
off the California coast, which will aid in refining numerical
weather prediction models, thereby enhancing the efficiency
and reliability of offshore wind energy production.

In addition to the LSMP-based classification used in this
study, there is potential for an alternative approach that clus-
ters directly on 80 m wind speeds before identifying the cor-
responding large-scale meteorological patterns. This reverse
classification method could better capture the variability in
wind speeds that is particularly relevant for practical appli-
cations, such as wind farm development. By focusing on the
wind resource itself, this approach may provide improved
insights into local wind speed patterns and reduce the oc-
currence of outliers within clusters. Our team is actively ex-
ploring this method to complement the current LSMP-based
analysis and further refine wind resource assessment tech-
niques.
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