
Wind Energ. Sci., 10, 497–510, 2025
https://doi.org/10.5194/wes-10-497-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

A machine-learning-based approach for active
monitoring of blade pitch misalignment in wind turbines

Sabrina Milani1, Jessica Leoni1, Stefano Cacciola2, Alessandro Croce2, and Mara Tanelli1
1Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,

Piazza L. Da Vinci 32, Milan, 20133, Italy
2Dipartimento di Scienze e Tecnologie Aerospaziali (DAER), Politecnico di Milano,

Via La Masa, 34, Milan, 20156, Italy

Correspondence: Sabrina Milani (sabrina.milani@polimi.it)

Received: 2 August 2024 – Discussion started: 2 September 2024
Revised: 19 November 2024 – Accepted: 17 December 2024 – Published: 7 March 2025

Abstract. In recent years, timely anomaly detection in wind turbine operations, especially offshore, has be-
come critical. Yet, promptly identifying faults and damage remains a significant challenge, leading to costly
maintenance and consumption of resources. Rotor blade pitch misalignment constitutes an essential issue,
causing downtime and reduced energy production. Traditional inspection methods are resource-intensive, time-
consuming, and also struggle to identify the specific misaligned blades. In addition, their accuracy degrades in
the case of small misalignments and strongly depends on the wind regimes, as they are less reliable in turbulence.
The absence of an effective automatic solution persists, requiring costly on-site verification.

To tackle this challenge, this paper introduces a novel machine-learning-based approach that relies on the com-
bination of random forest classifier instances and linear regression for automatic pitch misalignment detection
and localization. This approach not only localizes the affected blades but also detects small misalignments as
low as 0.1°. Validation using virtual data coming from a state-of-the-art simulator shows the approach’s ability
to detect and localize misalignment accurately, even with multiple misaligned blades and in different turbulence
conditions, achieving an F1 score exceeding 93 %. Additionally, regression analysis proves the capability of the
framework to detect misalignments as low as 0.1° with a root mean square error of 5.48 %. The methodology
relies on features extracted from a limited set of sensors already integrated into modern wind turbine systems.
Specifically, the extracted indicators are designed to effectively integrate frequency and time domain information
on turbine operating conditions, enabling high detection performance even in turbulent wind regimes.

The approach is validated across an extended operational envelope using data gathered from a state-of-the-art
simulation model commonly used for designing and certifying commercial wind turbine systems.

1 Introduction

Persistent vibrations due to misalignment in blade pitches
may impact the residual life of a wind turbine, leading to
system failure through the mechanical degradation of fun-
damental components such as gearboxes, electronic boards,
sensors, motors, and blades. The standards for design and
certification of wind turbines (IEC 61400-1 Ed.3., 2004)
prescribe the expected loading status of a machine to be
quantified including a mild misalignment equal to ± 0.3°

in two blades. Hence, it is expected that unbalanced condi-
tions do not represent an issue unless the aerodynamic im-
balance does not exceed 0.3°. As discussed in Saathoff et al.
(2021), pitch angle misalignments lower than 0.3° are gen-
erally considered acceptable during wind turbine operation.
The same study, however, showed through an analysis of em-
pirical data that about 34.8 % of wind turbines experience a
greater degree of misalignment, with values ranging between
0.6 and 2.0°. These represent more significant imbalances as
they may substantially impact the performance and structural
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health. Another study on an onshore farm (Astolfi, 2019) re-
ported that a maximum pitch imbalance of 4.5° was detected,
a value significantly higher than those generally accepted. Fi-
nally, in Yang et al. (2014), the pitch system is associated
with one of the highest failure rates experienced by wind tur-
bines.

System failure due to imbalances can result in reduced en-
ergy production and increased fatigue loads on turbine com-
ponents, which are considerable limitations that require peri-
odic inspections to monitor the pitch actuator status (Wilkin-
son et al., 2010). Maintenance interventions on such systems
are costly and challenging, especially considering offshore or
remotely located machines. Indeed, scheduled maintenance
can prove inefficient, resulting in failures between interven-
tions due to sparse intervals or unnecessary interventions
from overly short intervals. Consequently, transitioning to
condition-based scheduling is pivotal. However, to facilitate
this transition, an automatic diagnostics algorithm is neces-
sary. It would enable continuous health monitoring, promptly
detecting early faults and promoting timely interventions to
prevent irreversible damages.

Various approaches have been proposed to identify pitch
misalignment conditions, typically falling into two cate-
gories: model-based and machine-learning methods. Model-
based approaches compare expected and actual turbine be-
havior, attributing deviations to faults. Machine-learning
methods, on the other hand, learn from extensive sets of nor-
mal and abnormal operating data to identify general and ro-
bust patterns that allow them to distinguish the two condi-
tions. However, regardless of category, these approaches suf-
fer from one or more of these main limitations.

– They require data from sensors that are currently chal-
lenging to implement on commercial turbine blades.

– They lose accuracy in turbulent wind conditions or with
minor misalignments.

– They only detect overall turbine misalignment without
being able to identify the specific misaligned blades.

– They are too complex to allow for an exhaustive inter-
pretation of their decision-making processes, resulting
in predictions that are not useful as they are uncorre-
lated with the physics of the system.

1.1 First-principle model approaches

In the literature, several works such as Dalsgaard et al.
(2009), Tang et al. (2021), Axelsson et al. (2010), and Kus-
nick et al. (2015) propose model-based techniques to iden-
tify and locate pitch and load misalignment anomalies. These
techniques, though, tend to be tailored to the specific appli-
cation as a physical model of the system is required, harm-
ing the generality of the method. Furthermore, the proposed
methods analyze signals from sensors that could be diffi-
cult to install on a real system and are focused more on the

analysis of biases and faults of the sensors describing the
anomaly of the misalignment of the blades. In addition, these
approaches are intended to be effective and efficient in con-
stant wind regime conditions, typically far from what is ex-
perienced in a real environment.

Other model-based techniques have been proposed in
Desheng et al. (2021), Cacciola et al. (2016), Cacciola and
Riboldi (2017), Cacciola et al. (2018), Bertelè et al. (2018),
and Bertelè and Bottasso (2022), where the focus is to iden-
tify the presence of rotor imbalances and target them through
a load compensation technique or via suitable control ac-
tions.

These techniques, though, do not propose a method to
specifically localize the anomaly or require a modification
of the turbine control system, a task practically unfeasible in
the case of existing turbines featuring a certified controller.

Conversely, the method presented in this paper is efficient
in every wind regime condition, being more general and ap-
plicable in a real scenario, where typically turbulent wind
conditions are present. In addition, the proposed approach is
capable of identifying and locating the presence of the mis-
alignment in a single or multiple blades, without interfering
with the nominal functioning of the wind turbine.

1.2 Machine-learning approaches

Given the high performance achieved by machine-learning
approaches in anomaly detection applications for mechan-
ical systems (Lei et al., 2020), in the last decades, novel
methods have been presented in the literature, focused on
detecting pitch misalignment (Zhong and Fei, 2022; Kusiak
and Verma, 2011). Often, such methodologies require a huge
number of signals or consider sensors rarely available on
standard machines (e.g., force signals). In addition, most ap-
proaches, such as the one in Kusiak and Verma (2011), are
not capable of estimating the severity of the misalignment
or of locating the blades affected by the anomaly. In Milani
et al. (2024), the potential of machine-learning methods for
detecting pitch misalignment was analyzed with the aim of
developing a real-time detection method using a machine-
learning classifier. The approach demonstrated robust perfor-
mance even in turbulent wind conditions and with mild mis-
alignment angles. However, while misalignment levels can
be classified as small, medium, or high, the methodology
lacked localization capability and addressed only cases with
a single blade misaligned.

Conversely, deep learning techniques, such as that dis-
cussed in Cacciola et al. (2016), can detect and locate mis-
alignments, even in turbulent conditions, with satisfactory
performance. However, their complex structure prevents in-
terpretability, thus hindering their reliability.

If a detection strategy pinpoints an anomaly without pro-
viding a plausible reason, it would be challenging to take cor-
rective actions. For example, detecting the presence of a mis-
alignment is certainly useful, but understanding how the dif-
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ferent measurements contributed to the detection can guide
more informed maintenance decisions, reducing downtimes
and operator interventions.

1.3 Novel contribution

To overcome state-of-the-art limitations, in this paper we
introduce an automatic machine-learning-based diagnostic
framework to detect pitch misalignment in wind turbines.
Building upon our prior work (Milani et al., 2024), this
framework utilizes a minimal set of sensors commonly avail-
able in wind turbine systems and employs specialized signal
processing techniques to extract relevant features tailored to
the physical behavior of the monitored system. Specifically,
they have been designed to describe the vibrational behavior
and load distribution of the system, as they both are known
to be affected in the case of misalignment. In particular, the
following measurements were employed for the analysis and
features extraction: flap-wise and edge-wise blade root mo-
ments, nodding and yawing moments at the main bearing,
and wind speed and rotor azimuth angle. Similar to our previ-
ous method, real-time feature extraction is performed within
a fixed and limited number of rotor revolutions, with subse-
quent classification using a random forest algorithm to cate-
gorize misalignment levels as low, medium, or high.

However, in this work, we extend our dataset to include
scenarios with multiple misaligned blades, demonstrating
that the approach still achieves high performance. Addition-
ally, we enhance the original framework architecture by de-
signing a hierarchical classification structure. Specifically,
after the initial layer, aimed at reporting the presence of
a misalignment, our novel methodology integrates an addi-
tional layer comprising a random forest classifier to local-
ize the specifically affected blade in the case that misalign-
ment is detected. Last, to further enhance detection accuracy,
we also propose an alternative classification approach for the
first layer that leverages linear regression to precisely quan-
tify misalignment severity. Evaluation results validate the ef-
fectiveness of our approach, showcasing exceptional accu-
racy in misalignment classification, regression, and localiza-
tion, even under realistic turbulent wind conditions.

To summarize, significant progress beyond existing solu-
tions in the field includes the following.

1. Precise detection of pitch misalignment. The presented
method is capable of detecting misalignment conditions
even in the case that multiple blades are misaligned,
also reporting the exact entity of the misalignment, even
when deviations are as minimal as 0.1°. According to
regulations, turbine design tolerates a misalignment of
up to 0.3°. Hence, our method provides a finer detec-
tion capability, capturing misalignments down to 0.1°,
ensuring optimal performance and preventative mainte-
nance within the operational limits.

2. Accurate localization of affected blades. By considering
the same minimal set of sensors, the proposed approach
is also capable of precisely localizing the misaligned
blades. This innovation minimizes the complexity of
fault localization, enabling swift and targeted mainte-
nance interventions.

3. Interpretability and robustness. In our prior research
(Milani et al., 2024), we stressed the need for physics-
based features to maintain robustness, even in turbu-
lent wind conditions. This ensures consistent diagnos-
tic accuracy across different operational scenarios, in-
cluding cases with turbulent winds. Additionally, by
combining these features with an interpretable machine-
learning technique like random forest and linear re-
gression, we developed a method with an explainable
decision-making process. This allows us to rank feature
importance, providing insights to domain experts on key
indicators influencing the detection process.

The designed approach performance has been validated con-
sidering data from an extensive simulation campaign, which
encompasses a wide range of different wind conditions and
pitch misalignment, affecting both one blade and multiple
blades. To enhance the reliability of the results, we employ a
state-of-the-art simulation model commonly used for design-
ing and certifying commercial wind turbine systems.

The article is divided as follows: Sect. 2 compares the ex-
pected physical behavior of a wind turbine affected by pitch
misalignment on single or multiple blades to the experimen-
tal evidence obtained by analyzing an extensive set of simu-
lation data referring to both nominal and anomalous condi-
tions. Section 3 details the adopted techniques to extract sig-
nificant and effective features in the time and frequency do-
main and the designed machine-learning methods. Then, the
achieved results are presented and discussed in Sect. 4. Last,
in Sect. 5 the main achievements of the proposed work are
underlined and possible future developments are proposed.

2 Preliminary analysis

This section compares the theoretical and experimental be-
havior of a wind turbine in healthy and faulty conditions to
look for informative patterns that can be extracted to quan-
tify the misalignment and locate the affected rotor blades.
The available dataset is described as well.

2.1 Rotor system behavior

In a balanced rotating system, loads are conveyed to the fixed
frame by the rotor only at the harmonics that are multiples of
the number B of blades (i.e., for a three-bladed rotor only
the 3×Rev, 6×Rev, and 9×Rev are transmitted, where
“Rev” stands for the rotor frequency). On the other hand,
when the rotor is unbalanced, loads are transmitted at all har-
monics, with 1×Rev being the most energetic and deceptive
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Figure 1. Hub coordinate system: x in the direction of the rotor
axis, z upwards perpendicular to x, and y horizontally sideways.
In the figure the relevant moments My (nodding moment) and Mz
(yawing moment) are depicted.

frequency. The most significant signals that reveal the pres-
ence of the 1×Rev harmonic contribution in a misaligned
scenario are the rotor moments in the fixed reference frame
along the lateral and vertical axes, as well as nodding mo-
ment My and yawing moment Mz, forces, and accelerations
along the same axis. In Fig. 1 the mentioned signals of inter-
est in the fixed reference frame are represented.

Given the considered realistic scenario of wind turbines,
where typically force sensors are impractical to be installed,
the focus in this work is on the blade root bending, nodding,
and yawing moment signals, whose sensing is less demand-
ing, even though the following considerations hold for both
acceleration and force signals. As already shown in Cacciola
et al. (2016), Cacciola et al. (2018), and Bertelè et al. (2018)
in stationary conditions, the loads exerted on the blades of a
balanced three-bladed rotor are periodic and shifted by 120°,
where the period is associated with the rotor speed,�. When
transmitted to the fixed frame, blade loads compensate for
each other such that fixed frame measurements feature only
harmonics at frequencies equal to nB�, where n is an in-
teger number and B is the number of blades. As soon as a
blade shows a pitch misalignment, the contribution is seen in
both the amplitude of the 1×Rev harmonic conveyed to the
fixed reference frame, providing insights into the severity of
the misalignment by its amplitude, and the affected blade by
its phase.

When turbulence wind conditions are considered, the
blade moments are not exactly periodic. Yet, when a suffi-
ciently long time window is analyzed, the turbulence effects
tend to compensate and balance, and only secondary 1×Rev
harmonic contributions can be seen in a healthy balanced ro-
tor.

Figure 2. Power curves associated with a healthy (blue line) and
an unbalanced (red line) case. The unbalanced case refers to a pitch
offset of 2° applied to the first blade. The maximum power loss is
experienced at V = 13 m s−1 and is approximately equal to 167 kW.

Therefore, when analyzing the harmonic response of the
rotor in the fixed frame, the presence of the 1×Rev har-
monic is a clear indication of the presence of the anomaly.
The amplitude of this contribution is linearly dependent on
the severity of the anomaly – thus the higher the amplitude,
the more severe the anomaly – and its phase is an indicator
of the affected blade.

These considerations hold whenever a fixed wind velocity
is considered for different anomaly cases. When considering
different wind velocities, the amplitude of the harmonic re-
sponse changes, and the higher the velocity the higher the
amplitude of the peak at the 1×Rev harmonic. In addition,
the position of the peak shifts along the spectrum frequen-
cies, according to the velocities as explained in more detail
in the next paragraphs.

Through extensive simulation studies, we can state that
even mild pitch misalignment angles may induce significant
vibratory issues, while their impact on overall power out-
put and annual energy production remains limited. To better
show this, in Fig. 2, we show the power curve, extracted from
10 min turbulent simulations, for the healthy turbine (blue
line) and the unbalanced one (red line), where blade no. 1
is misaligned by 2.0°. The effect of pitch misalignment on
power production can only be seen around a rated speed of
V = 13 m s−1 associated with a loss of ∼ 167 kW equal to
about 3.5 % of the power produced at the same speed. In the
full-power region, i.e., above 15 m s−1, the pitch misalign-
ment does not seem to impact power because the controller
compensates for it by collectively pitching the blades.

2.2 Collected dataset structure

Before detailing the proposed method, our initial endeavor
was to generate a dataset of wind turbine virtual measure-
ments aligned with what is expected in a realistic operational
condition. To achieve this, we harnessed an extensive dataset
gathered from virtual experiments conducted through the
software Cp-Lambda, a high-fidelity simulation multibody
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tool (Bottasso and Croce, 2009–2018). Within this simula-
tor, the flexible elements of the turbine (e.g., tower, blades,
shaft) are modeled as kinematically exact beams with pre-
defined 6× 6 sectional stiffness properties (Bauchau, 2011).
The classical blade element momentum theory is used for ro-
tor aerodynamics, whereas lifting lines are employed for ren-
dering the aerodynamic forces and moments exerted on the
blades, tower, and nacelle. The rotor aerodynamic model im-
plemented in Cp-Lambda was recently validated against data
from an 80 m diameter wind turbine in sheared and yawed
inflow conditions (Boorsma et al., 2023).

A multibody model of the NREL 5 MW baseline was im-
plemented in Cp-Lambda and used for all simulations. The
turbine is a realistic three-bladed, variable pitch-controlled
machine with a diameter of 126 m that is thoroughly de-
scribed in Jonkman et al. (2009).

This simulation environment also possesses the ability to
replicate an array of inflow types, including steady and turbu-
lent wind conditions, and can reliably simulate misalignment
scenarios of different severity across one blade or multiple
blades concurrently.

The considered turbulent wind conditions are reproduced
according to a normal turbulence model (NTM), as defined
in the standards (IEC 61400-1 Ed.3., 2004), with air density
ρ = 1.225 kg m−3.

In particular, the whole simulated dataset is divided into
77 cases, 6 of which are considered to be in healthy condi-
tions and 71 are included in the anomaly. Among all anomaly
cases, seven consider misalignment in multiple blades, while
the remaining ones are related to a single misaligned blade.
Each case comprises 12 simulations of 10 min length, con-
ducted at varying averaged wind speeds to cover all operative
turbine statuses ranging from cut-in speed at v = 3 m s−1 to
cut-out at v = 25 m s−1. The overall dataset is then divided
into two subsets employed for classification and regression
analysis. More specifically, the regression analysis is per-
formed on cases featuring a misalignment angle up to 1°,
including healthy conditions, whereas classification is per-
formed on cases featuring misalignment angles ranging from
0.1 to 2°.

More details on the dataset can be found in Tables 1 and 2,
where the two subsets of the dataset exploited for classifica-
tion and regression are described.

Moreover, in order to gather realistic information, all sce-
narios, healthy and anomaly, were simulated using turbulent
inflows featuring a different seed. As previously mentioned,
a minimal set of sensors is utilized in this study, encompass-
ing the following measurements:

– flap-wise (Myi ) and edge-wise (Mzi ) blade root mo-
ments (with i = (1,2,3) according to the considered
blade), sampled to capture the averaged values over a
rotor revolution, providing insights into the loads expe-
rienced by the blades;

– nodding (My) and yawing (Mz) moments at the main
bearing, sampled to capture both the amplitude and
phase of the oscillation at rotor frequency, allowing for
an in-depth analysis of the dynamic behavior of the tur-
bine;

– wind speed, sampled to capture averaged values over
10 min; and

– rotor azimuth angle, sampled to perform the demodula-
tion of nodding and yawing moments, enabling the sep-
aration of rotor-related periodic effects.

2.3 Spectral analysis

The harmonic analysis of the blade moments, when a healthy
scenario is considered, exhibits different amplitude peaks
according to the spectrum harmonics. As stated previously,
only multiples of B are conveyed by the rotor on the fixed
reference frame (in the case under study, B = 3). Therefore,
in the healthy scenario, only harmonic peaks at 3×Rev,
6×Rev, 9×Rev, and so on are expected to be seen in the
spectrum. As soon as an anomaly arises, the 1×Rev har-
monic amplitude increases, as shown in the spectrum, with
higher amplitude associated with more severe pitch misalign-
ment on the affected blade.

The previous considerations hold in different wind turbu-
lence conditions and at different wind velocities. However,
as previously mentioned, it is necessary to deal with the dif-
ference in amplitude and position of the peak in the spectrum
due to the rotor velocity. To avoid dependency on the wind
velocity, Fourier transformation applied to the signals of in-
terest (blade mechanical moments) is performed concerning
the azimuth signal. In such a way, the harmonic response is
characterized by a dependency on the rotor frequency revo-
lutions only.

Figure 3 displays the spectrum of the yawing moment Mz

in a condition where blade no. 1 is misaligned. The two
curves refer to the output of two simulations at V = 7 m s−1

and V = 13 m s−1, respectively associated with a rotor speed
equal to 8.1 and 12RPM. As shown in the upper plot of the
figure, when computing the power spectrum using the time-
based Fourier transform, the expected peak at the rotor fre-
quency shifts following the average rotor speed. On the other
side, computing the azimuth-based transformation the peak
associated with the 1×Rev clearly remains in the same po-
sition.

In this context, the area subtended below the peak at the
1×Rev harmonic is a fundamental indicator to distinguish
between healthy and nominal rotor behavior, characterized
by a negligible peak amplitude, and the misaligned rotor
cases in which the increment of the peak amplitude leads to
higher area values. As reported in Fig. 4, the power spec-
tra of the nodding and yawing moments were simulated in
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Table 1. Overall combinations of simulations exploited in the “misalignment classification”.

Misaligned blade(s) Misalignment angle [°] Total number of simulations

Blade no. 1 ± (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2) 24
Blade no. 2 ± (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 20
Blade no. 3 ± (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 20

Blade nos. 1 and 2 +0.3, −0.3 1
Blade nos. 1 and 3 +0.6, −0.6 1
Blade nos. 2 and 3 −0.3, +0.3 1

Blade no. 1, no. 2, and no. 3 0.5, −1, 0.3 2

Table 2. Overall combinations of simulations exploited in the “misalignment regression”.

Misaligned blade(s) Misalignment angle [deg] Total number of simulations

Blade no. 1 ± (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 20
Blade no. 2 ± (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 20
Blade no. 3 ± (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) 20

Figure 3. In this figure the same signal, namely the yawing mo-
ment, is analyzed in the frequency domain when blade no. 1 is
misaligned. In panel (a), the expected peak at 0.2 Hz changes po-
sition when considering two different wind speeds (V13 refers to a
wind speed of V = 13 m s−1 and V07 to V = 7 m s−1), while it re-
mains centered around the 1×Rev for the azimuth-based spectrum
in panel (b).

three different cases: a nominal one and two affected by mis-
alignment on a single blade and three blades at a time. Each
case is simulated for the same wind velocity (a medium wind
speed of v = 15 m s−1). The healthy case is characterized by
no peak at 1×Rev, while the other two cases show a peak

whose amplitude has a dependency on the anomaly magni-
tude. Indeed, signals reported in the figure refer to the fol-
lowing cases:

– a case where only blade no. 2 is affected by a misalign-
ment of 0.5° in light blue and

– a case where all blades are displaced by 1.0, −0.5, and
0.3°, reported in darker blue and as a dashed line.

Indeed, for this latter case, the peak has a greater amplitude
than the former one, as shown in the figure.

Moreover, as stated before, the phase of this harmonic is an
equivalently important indicator for the location of the pitch
misalignment and hence the single blade or multiple blades
affected by the anomaly. The phase has been computed by
employing a one-revolution moving window to demodulate
sine and cosine components at the 1×Rev component of the
signals. Subsequently, a 10 min averaging process has been
applied to both components, and then the phase was deter-
mined by calculating the arctangent function on the averaged
sine and cosine amplitudes.

In Fig. 5, the 1×Rev phase harmonics are displayed for
both nodding and yawing moments in each case. As reported
in the figure, there are 10 clusters that can be easily grouped.
Phases of the cases where blade 1 is affected by a nega-
tive misalignment are separated into two different groups on
the graph. However, they can be considered a single one as
they differ in location on the graph according to the sign of
the My signal phase. There are two clusters associated with
each single misaligned blade (for both positive and negative
pitch misalignment). Additionally, one cluster is dedicated
to cases in which two blades are misaligned simultaneously,
and lastly, one final group encompasses cases in which all
blades are misaligned. Notably, when two blades are simul-
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Figure 4. In this figure the mechanical moment signal spectra are
analyzed in the frequency domain in the case of healthy conditions
and two anomaly cases. The peak at 1×Rev is present only in the
anomalous cases.

Figure 5. In this figure the mechanical moment signal 1×Rev
harmonics phases are reported. Cases in which the same blade
is affected by the anomaly are represented with the same color,
while a different marker for the same color represents a differ-
ent misalignment sign for the same blade. Different instances of
the same symbol with the same color shading from a lighter to a
darker tone represent different phases for the same case but con-
sidering different wind velocities. Specifically, the wind velocity
increases from the minimum to the maximum considered speed
(Vmin = 3 m s−1

−Vmax = 25 m s−1) as the bar on the right reports.
For the sake of conciseness, the bar is only reported for the case in
which blade 1 is misaligned; the same meaning holds for the other
cases and colors.

taneously misaligned, their phase clusters are positioned be-
tween the phase clusters related to the individual misalign-
ment of blade cases. In other words, the phases of the cases in
which blade no. 1 and blade no. 2 are misaligned fall between
the phases of cases in which only blade 1 and only blade 2 are

misaligned according to the sign of the misalignment. Hence,
the areas subtended below the peak at the 1×Rev harmonics
for both nodding and yawing moments are paramount indi-
cators to be computed as is the phase of these harmonics.

As a further contribution to the isolation of the affected
blade, an additional analysis is presented. Considering the
blade moment signals on the rotating reference frame when
a balanced rotor scenario is considered, the moments are pe-
riodic and overall exhibit similar behavior, oscillating around
the same average value. As soon as a single blade is affected
by the misalignment, the anomalous blade moment outdis-
tances the other signals. The higher the misalignment, the
more significant the distance with the other signals. In addi-
tion, the direction towards which the anomalous signal shifts
is an indicator for the misalignment sign (i.e., positive or neg-
ative misalignment). The same considerations hold for the
cases when two or more blades are affected by the misalign-
ment, as the overall distribution of the signals in the time
domain changes concerning the expected behavior.

Therefore, the average values of the blade moments in
the time domain are important indicators as well to identify
the affected blades. Furthermore, in the case that more than
one blade is affected, the distance between average values is
needed as well.

2.4 Features extraction

Given the insight derived from the comparative analysis of
the physical system behavior in healthy and misaligned con-
ditions, we define a set of physically informative features to
extract from each available simulation. Specifically, we con-
sidered the following.

1. Area subtended below the peak at the 1×Rev for both
nodding and yawing moments: A(My),A(Mz)

2. Phases of these harmonics: φ(My),φ(Mz)

3. Average values of the blade moments in the rotating ref-
erence frame and in the time domain: M(Myi ),M(Mzi ),
with i being the blade index

4. The absolute difference of the average values 1Mi,j =

Mi −Mj , where M stands for the mean values of the
considered signal, while i and j are the considered
blade indices (e.g., i = {1,2,3} and j = {1,2,3})

As discussed in Sect. 1, we choose to extract the features us-
ing a moving window approach to enable real-time classifica-
tion. To determine the optimal window size, we conducted a
fine-tuning procedure, selecting a fixed number of rotor rev-
olutions N instead of a time duration. This novel approach
aligns with our decision to perform the power spectrum anal-
ysis based on the azimuth signal. Proper sizing of the window
is crucial to prevent extracting irrelevant features. Thus, we
perform fine-tuning taking into account both the simulation
lengths (600 s each, according to industrial standards; IEC
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61400-1 Ed.3., 2004) and wind velocity ranges, resulting in
an optimal window size of 40 azimuth revolutions. This size
ensures robust Fourier transform performance across varying
wind speeds. Along the size of the chosen window, a sliding
factor of one azimuth revolution has been selected. In this ap-
proach, the sliding factor determines the frequency of shift-
ing the analysis window along the dataset. A smaller sliding
factor, such as one revolution, facilitates a more detailed ex-
amination of the data, capturing fine-scale variations, while
ensuring a continuous and comprehensive analysis.

3 Hierarchical misalignment detection and
localization classification architecture

This section outlines the hierarchical classification architec-
ture we designed for detecting and isolating pitch misalign-
ment. As described in Sect. 1, our classification pipeline fea-
tures two layers: the first identifies misalignment, categoriz-
ing its severity as low, medium, or high using the classifi-
cation model, or precisely predicting the amount using the
regression one based on user preferences. The second layer,
given that a misalignment is detected, localizes the affected
blades. Both layers rely on random forest models for clas-
sification, while linear regression is applied for precise es-
timation of misalignment severity. These models have been
chosen for their robustness, accuracy, and interoperability.
Specifically, this algorithm combines the output of multiple
shallow binary tree classifiers, which splits data according
to specific criteria, minimizing the differences in the child
nodes at each iteration. Accuracy, precision and Gini index
(Ceriani and Verme, 2012) are the most common criteria
taken into account when performing the splitting procedure.
This structure makes random forest models extremely ro-
bust and effective, representing the state of the art consid-
ering bagged-tree-based classification techniques. In Fig. 6
a scheme of the employed hierarchical architecture is pro-
posed.

3.1 Pitch misalignment detection

As previously discussed, the first classification layer aims to
identify misalignment conditions using the features detailed
in Sect. 2. Specifically, this layer considers the areas under
the peaks in the spectra of nodding and yawing moments,
A(My) and A(Mz), to be key features.

3.1.1 Misalignment classification

In our prior study (Milani et al., 2024), we trained a random
forest classifier to learn patterns within the given features to
assign each instance, consisting of a set of features corre-
sponding to 40 turbine revolutions, to one of four misalign-
ment conditions:

– 0° misalignment: healthy cases

– 0.1°≤ p < 0.6° misalignment: anomaly case with low
misalignment p

– 0.6°≤ p < 1.5°: anomaly case with medium misalign-
ment p

– p ≥ 1.5° misalignment: anomaly case with high mis-
alignment p

Here, p is the actual value of detected misalignment. Specifi-
cally, this model was composed of four trees, each with depth
10.

3.1.2 Misalignment detection

In this study, we expand upon previous research by intro-
ducing and evaluating the performance of a linear regression
model. This model, trained using the same set of features
employed in the misalignment classification, offers precise
quantification of misalignment severity considering default
hyperparameters.

Similarly to the random forest classifier, linear regression
provides an interpretable decision-making process, enabling
users to understand how the model determines the extent of
misalignment. However, choosing this regression model in-
stead of the classifier offers users an additional tool for ac-
curately assessing misalignment severity, particularly when
precise knowledge of misalignment extent is required. How-
ever, it is important to note that classification may be enough
unless continuous monitoring of progressive misalignment
evolution is required.

3.2 Misaligned blade localization

If a misalignment condition is detected, the instance is passed
to the second layer, where another random forest classifier
is employed to localize the affected blades. This classifier
considers additional features specific to that window frame,
specifically the average values of the mechanical moments
and their distances (1Mi,j and M(My), M(Mz)). These in-
dicators have been identified as crucial based on domain ex-
pertise and analysis discussed in Sect. 2.

In this case, the possible output classes are as follows.

– Blade no. 1 misaligned

– Blade no. 2 misaligned

– Blade no. 3 misaligned

– Two blades simultaneously misaligned

– All blades simultaneously misaligned

In this second instance of random forest, a different selection
for the hyperparameters has been set; in particular, the num-
ber of trees has been set to 10 with maximum depth 7. Given
the higher complexity of this second task, a larger number of
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Figure 6. Hierarchical detection and localization architecture.

trees has been set with respect to the previous instance of the
random forest classifier (the higher the number of trees the
better in terms of accuracy, yet higher computational time is
expected, increasing with the depth of the trees). Therefore,
the selected number of trees and the related depth have been
chosen as a trade-off between accuracy and computational
time.

4 Evaluation and discussion of results

In this section, the experimental results obtained by apply-
ing the hierarchical classification architecture described in
Sect. 3 to the dataset illustrated in Sect. 2 are discussed. To
ensure the robustness and consistency of the reported results,
we adopt a hold-out validation approach, using 70 % of the
dataset as a training set and the remaining 30 % for the val-
idation. The dataset has been randomly divided. In evaluat-
ing our approach, we rely on commonly employed metrics in
the machine-learning field. Specifically, for classification, we
consider precision, recall, and F1 score. Precision measures
the accuracy of predictions within a specific class, while re-
call (or sensitivity) assesses the proportion of correctly pre-
dicted instances within that class out of all instances belong-
ing to the class. Last, the F1 score combines recall and pre-
cision, providing a balanced measure that is often regarded
as the harmonic mean of the two metrics. Additionally, we
report the support, representing the number of instances used
to compute the metrics. On the other hand, for evaluating
the performance of the regression model, we employ the root
mean square error (RMSE), which quantifies the deviation
between predicted and actual misalignment for continuous
output.

4.1 Misalignment detection results

Initially, we extract the features described in Sect. 2 from
the dataset and we provide the resulting instances in the first

Table 3. Metrics computed from the fault and quantification out-
put. Precision focuses on the accuracy of positive predictions, recall
emphasizes the ability to capture all positive instances, the F1 score
balances precision and recall, and support provides context by indi-
cating the frequency of each class in the dataset.

Classification report

Label Precision Recall F1 score Support

Healthy 0.95 0.94 0.95 119
Low 0.92 0.91 0.93 555
Medium 0.93 0.95 0.94 539
High 0.93 0.87 0.90 57

classification layer. The outcomes provided by the classifica-
tion model are illustrated in Fig. 7, depicting the normalized
area under the peak in the spectra for the test instances and
comparing their true and predicted class of misalignment.
The normalization scales the data based on the minimum and
maximum values within each test of wind velocities from 0
to 1. The presented results indicate that the majority of in-
stances have been correctly classified. These outcomes are
further described in Table 3, which highlights the high per-
formance of the first layer based on key metrics in the field,
including precision, recall, and F1 score. Specifically, the ap-
proach achieves an average F1 score of 93.0 %.

Concerning the linear regression model, Fig. 8 compares
the true and predicted misalignment values. The results
demonstrate the accuracy and reliability of the regression
model, suggesting it is a viable alternative to the classifica-
tion model when a more precise diagnosis of misalignment
severity is needed. Additionally, Fig. 9 displays the distribu-
tion of predicted misalignment values for each degree of true
misalignment. Notably, the precision of the regression is re-
markable. The average values of the boxes closely align with
the diagonal of the graph, indicating that predicted misalign-
ments closely match actual values. Furthermore, the sepa-
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Figure 7. Fault and quantification output; in the top left panel are the healthy cases in the dataset and the predicted ones are reported, while in
the other panels, low, medium and high misaligned cases are reported, considering both the misaligned cases in the dataset and the predicted
ones.

ration of values at the 25th and 75th percentiles in each box
plot demonstrates the model’s ability to differentiate between
various misalignment levels.

4.2 Misaligned blade results

Once misalignment detection is completed, the next step
is to localize the misaligned blades. Figure 10 illustrates
a comparison between the true condition and predictions
made by the second-layer random forest classifier. Instances
are reported in the three-dimensional feature space, with
each point representing a specific instance based on the
distribution along the nodding moment average value dis-
tances (1M12, 1M13, 1M23). These results prove the ef-
fectiveness of our approach in accurately localizing the mis-
aligned blades. Additionally, Table 4 provides a quantitative
overview of these results, presenting metrics computed for
the second classification phase. Specifically, the average F1
score assessed by the model is 97.0 %.

To provide further insights concerning the predictive pro-
cess underlying the isolation phase, Fig. 10 reports differ-

Table 4. Metrics computed from the fault isolation output.

Classification report

Label Precision Recall F1 score Support

Blade no. 1 0.99 0.99 1 188
Blade no. 2 1 0.99 1 77
Blade no. 3 0.99 1 0.98 94
Two blades 0.91 0.91 0.94 20
Three blades 0.94 0.96 0.97 90

ent perspectives of the feature space in the considered cases,
along with their actual class of belonging. Notice that the
cases where two blades are simultaneously affected by mis-
alignment are placed on the plot between the related single
misaligned blade distributions. In other words, as reported in
Fig. 11 the points referring to the case in which blade no. 2
and blade no. 3 are simultaneously misaligned are between
the cases of single misaligned blade no. 2 and single mis-
aligned blade no. 3. Notice that this behavior is consistent
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Figure 8. Fault and quantification output from linear regression: in each plot a different misalignment instance is considered.

Figure 9. Fault and quantification output from linear regression:
box plot distribution for nominal and anomaly cases.

with the considerations previously reported in the phase anal-
ysis illustrated in Fig. 5, where phase distributions of cases
in which two blades are misaligned are placed in between the
related phase groups of the single misaligned blade phases.
This study significantly advances the current understanding
of pitch misalignment in wind turbines by addressing a crit-
ical aspect that has been conspicuously absent in the exist-
ing literature. Notably, the issue of misalignment in multi-
ple blades has been historically overlooked in prior research.
Our findings bring forth a pioneering perspective, shedding
light on the complexities associated with this previously un-
explored dimension. By introducing a comprehensive anal-
ysis of misalignment in systems with multiple blades, this

research fills a notable gap in the current body of knowledge
and provides valuable insights that are crucial for industrial
applications as well.

5 Final considerations and future work

In this work, we propose an automatic machine-learning-
based framework for detecting pitch misalignment in wind
turbines. Using a minimal set of signals and processing tech-
niques, our framework extracts features tailored to the sys-
tem’s behavior, ensuring robustness across various turbu-
lence conditions and promoting the interpretability of the
decision-making process. In more detail, the designed hier-
archical classification architecture employs, in the first layer,
either a random forest classifier or a linear regression model
to detect misalignment. Upon detection, in a second layer, a
random forest classifier identifies the misaligned blades.

Validation using data simulated from a state-of-the-art
simulator confirms the approach’s ability to accurately detect
and localize misalignment, even with multiple misaligned
blades and in different turbulence conditions, achieving an
F1 score exceeding 93 %. Regression outcome analysis also
proves the framework’s capability to detect misalignments
as low as 0.1° with a root mean square error of 5.48 %. This
level of precision is significant, especially considering that
standards for the design and certification of wind turbines al-
ready consider misalignment angles of up to 0.3° in turbine
design.

While we recognize the reliability of the simulator used
for simulating the data, we acknowledge that a limitation of
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Figure 10. Fault isolation output from different perspectives of the feature space for the considered cases. The plots illustrate how cases with
two simultaneously misaligned blades (light blue points in the plots) are positioned between the distributions of the outputs related to the
corresponding single misaligned blades. For example, the points representing simultaneous misalignment of blade no. 1 and blade no. 3 are
placed between the distributions of single misaligned blade no. 1 and single misaligned blade no. 3.

Figure 11. Fault isolation output: insights. In this figure, the case
where blade no. 2 and blade no. 3 are simultaneously misaligned
(light blue points in the plot) is reported. The lines are placed in
between the single misaligned blades: blade no. 2 (purple square
markers) and blade no. 3 (red diamond markers).

our work lies in the lack of validation with real data. There-
fore, future work will concentrate on assessing the system
performance using data gathered from operational turbines,
despite the associated challenges, such as the lack of mis-
alignment occurrences and the difficulty of accessing turbine
data due to their remote locations. Indeed, we believe that
this validation is crucial for assessing the framework’s ro-
bustness to real-world conditions. At the same time, we are
expanding the simulated data conditions by broadening the
range of misalignment resolutions and wind degrees consid-
ered. This effort aims to further evaluate the robustness of
our approach and gain insights into its performance across a
wider spectrum of conditions.

Moreover, to practically make the proposed methodology
more flexible for real field applications, one may consider the
use of acceleration measurements instead of load ones, given
the fact that accelerometers are typically more often avail-
able and easier to install, calibrate, and maintain than strain
gauges. This investigation falls out of the scope of the present
paper and will be included in a forthcoming publication.

Finally, the proposed algorithm, relying on imbalance-
induced loads, cannot detect situations in which three blades
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of the same entity are collectively misaligned. To also detect
collective misalignment, the ML model could be integrated
with additional features, e.g., power data. Such a possibility
represents an extension of the proposed methodology, which
is currently under investigation.
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