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Abstract. Wind turbine wakes affect power production and loads but are highly turbulent and therefore complex
to model. Proper orthogonal decomposition (POD) has often been applied for reduced-order models (ROMs),
as POD yields an orthogonal basis optimal in terms of capturing the turbulent kinetic energy content. POD is
typically used to understand flow physics and reconstruct a specific flow case. However, reduced-order models
have been proposed for predicting wind turbine wake aerodynamics by applying POD on multiple flow cases
with different governing parameters to derive a global basis intended to represent all flows within the parameter
space. This article evaluates the convergence and efficiency of global POD bases covering multiple cases of
wind turbine wake aerodynamics in large wind farms. The analysis shows that the global POD bases have better
performance across the parameter space than the optimal POD basis computed from a single dataset. The error
associated with using a global basis across the parameter space of reconstructions decreases and converges as
the dataset is expanded with more flow cases, and there is a low sensitivity as to which datasets to include. It
is also shown how this error is an order of magnitude smaller than the truncation error for 100 modes. Finally,
the global basis has the advantage of providing consistent physical interpretability of the highly turbulent flow

within wind farms.

1 Introduction

The proper orthogonal decomposition (POD) is a classic
data-driven method for decomposing fluctuations of turbu-
lent flows into orthogonal modes, which provide an optimal
linear decomposition in terms of the variance (Lumley, 1967;
Berkooz et al., 1993). POD has been applied to a vast range
of flow scenarios, and the POD modes are typically used for
one of two main applications. One, the modes can provide
a physical interpretation of dominant coherent structures in
complex turbulent flow (e.g., Sirovich, 1987; George, 1988;
Neumann and Wengle, 2004; Meyer et al., 2007). Two, a
truncated set of the modes can be used to construct reduced-

order models (ROMs) (e.g., Smith et al., 2005; Noack et al.,
2011; Semaan et al., 2016; Taira et al., 2017).

However, an optimal reconstruction in terms of variance
might not always be the most desirable basis for creating
ROMs. Alternative bases can for instance be derived by
changing the norm to optimize other quantities instead of
variance, e.g., enthalpy, enstrophy, and dissipation (Colonius
et al., 2002; Lee and Dowell, 2020; Olesen et al., 2023). Em-
phasis can also be on the spectral content by performing POD
in the frequency domain using spectral POD (Sieber et al.,
2016) or the related dynamic mode decomposition (Schmid,
2010), which does not provide orthogonal bases. Further-
more, nonlinear bases can be formed using autoencoders,
which constitute a nonlinear generalization of POD through
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an artificial neural network (ANN) (Hinton and Salakhutdi-
nov, 2006; Vinuesa and Brunton, 2022). Autoencoders are
specifically designed to reduce the number of degrees of free-
dom required to describe a dataset but might lack physical
interpretability.

Irrespective of the decomposition method, the resulting
bases are typically applied to data from a single flow case,
which corresponds to a single point in parameter space. A
single flow case would in the present content correspond to
the inflow to a particular wind turbine in a wind farm op-
erating at a single Ct value (Andersen et al., 2014; Deb-
nath et al., 2017; Bastine et al., 2018; Hamilton et al., 2018).
However, efforts have been made to transition between dif-
ferent bases to cover different flow cases in parametric stud-
ies (Christensen. et al., 1999; Stankiewicz et al., 2017; Xiao
etal.,2017). Conversely, recent developments (Andersen and
Murcia Leon, 2022; Fu et al., 2023; Nony et al., 2022; Bu-
oso et al., 2022) employ a single global basis constructed by
applying POD on a combination of multiple flow cases. The
global basis maintains the benefits of POD, namely orthogo-
nality and physical interpretability (VerHulst and Meneveau,
2014; Andersen et al., 2017; De Cillis et al., 2021). Using a
global basis for constructing generic ROMs enables consis-
tent physical analysis across different flow conditions using
the same basis. It therefore holds the potential for construct-
ing more robust POD models (Bergmann et al., 2009) includ-
ing diverse forms of interpolation across parameter space to
predict unseen flow cases.

Previously, Andersen and Murcia Leon (2022) qualita-
tively compared the resulting global POD modes to local
POD modes derived from individual flow cases, but the effi-
ciency of these bases was not compared. This article quanti-
fies the efficiency of the global POD modes in reconstructing
wind turbine wake aerodynamics compared to a local basis
for a single flow case. Furthermore, a global POD basis is ex-
pected to converge as more flow cases are added (Haasdonk,
2013; Hesthaven et al., 2016), but the selection of which
flow cases to include to ensure fast convergence is uncer-
tain. Here, the convergence of the global basis is investigated
in accordance with previous studies (Haasdonk et al., 2011;
Hesthaven et al., 2016; Quarteroni et al., 2016). The analy-
sis uses a database of large eddy simulations (LESs) of wind
turbine wake dynamics, which are particularly challenging as
they are highly turbulent and include a vast range of turbulent
scales in the atmosphere. Therefore, this work contributes by
explicitly showcasing the advantages and characteristics of
global bases in ROMs applied in a practical yet complex sce-
nario.

2 Methodology

2.1 Flow solver and turbine modeling

The LES database is the same as used for creating the pre-
dictive and stochastic reduced-order model of wind turbine
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Figure 1. Simulation layout.

wakes (Andersen and Murcia Leon 2022), where the simula-
tions were generated using the incompressible finite volume
flow solver EllipSys3D (Michelsen, 1992; Michelsen, 1994;
Sgrensen, 1995). A third-order QUICK scheme is used for
the convective terms, and a second-order implicit method is
used for time stepping. The pressure correction equation is
solved with an improved version of the SIMPLEC algorithm
(Shen et al., 2003), and pressure decoupling is avoided using
the Rhie—Chow interpolation technique. LES applies a spa-
tial filter on the Navier—Stokes equations, where the smaller
scales are modeled through a sub-grid-scale (SGS) model to
achieve turbulence closure. The Deardorff SGS model is used
(Deardorff, 1980).

The turbines are modeled using the actuator disc (AD)
method, which imposes body forces in the flow equations
(Mikkelsen, 2004). Initially, the velocities are passed from
EllipSys3D to Flex5 (@ye, 1996), which computes the forces
and deflections through a full aero-servo-elastic computation
and transfers these back to EllipSys3D (Sgrensen et al., 2015;
Hodgson et al., 2021). The turbine modeling does not include
the effects of the nacelle or tower, but this only has a minor
influence on the wake-generating thrust (Zahle and Sgrensen,
2008).

2.2 Simulation setup

The wind farm is simulated with 14 turbines aligned as
shown in Fig. 1. The computational domain is 192R x 20R x
20R in the streamwise, lateral, and vertical directions, re-
spectively. The grid is structured and has 3392 x 192 x 128 =
83x10° grid cells. The grid is equidistant from the inlet to the
turbines and in the vicinity of the turbines, where it expands
+ 4R on each side of the turbine center, as well as 4R ver-
tically. This equidistant region has a resolution of approxi-
mately 20 cells per blade radius, which is highly resolved for
AD simulations (Hodgson et al., 2023). The grid is stretched
towards the lateral, top, and outlet boundaries.

The turbines are separated by 12R in the streamwise
direction, and 20R in the lateral direction. Cyclic bound-
ary conditions are imposed on the lateral boundaries to
mimic an infinitely wide wind farm. The modeled turbine
is the NM8O0 turbine, which has a radius of R =40.04m,
hub height of zo=80m, and rescaled rated wind speed
of Usgted = 14 ms~1, with a corresponding rated power of
Prated = 2.75 MW (Aagaard Madsen et al., 2010).
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The neutral atmospheric boundary layer (ABL) inflow to
the farm is modeled in a prior precursor simulation (Ander-
sen and Murcia Leon, 2022). The initial precursor simula-
tion has a roughness of zp =0.05m and a friction velocity
of uy, =0.4545ms~!, which resulted in an average shear ex-
ponent of o =0.14. The rough-wall boundary layer can be
rescaled to model different wind speeds (Castro 2007).

The flow database consists of vertical planes of inflow to
each rotor, which captures the wake aerodynamics generated
by the upstream wind turbine(s). Therefore, the three veloc-
ity components are extracted in vertical planes of 2R x 2R
located one radius upstream of each turbine to reduce the
turbine-specific influence of induction (Troldborg and Meyer
Fosting, 2017); see Fig. 1. This corresponds to a grid of 39 x
42 points in the y—z plane. The time step is 0.1 s for simula-
tions with U =8, 12, 15ms~! and 0.05s for U =20 ms~!.
The data are extracted every 0.1s during 27 time steps,
which is approximately 3.64 h of simulated flow.

2.3 Parameter space and flow characteristics

The database is designed to cover the majority of the oper-
ational range for this particular wind farm and therefore the
parameter space governing the turbulent wake flow. The most
important parameter for wind turbine wakes is the thrust co-
efficient Ct (van der Laan et al., 2020):

C ! ey
T % DA

where T is the turbine’s thrust, p is the air’s density, A is
the rotor’s area, and U is a representative velocity, typically
the mean freestream axial velocity. This coefficient is a rel-
ative measure of the force exerted by the turbine with re-
spect to the momentum of the incoming wind. For low wind
speeds, the turbine extracts as much energy as possible, and
the thrust coefficient is typically around 0.8, which is con-
sidered high. Significantly higher values can result in flow
reversal as the turbine enters propeller mode (Sgrensen et al.,
1998). For high wind speeds, the turbine typically pitches its
blades to reduce power extraction and thrust force.

Four simulations were performed for different average in-
coming wind speeds, which cover a significant range of op-
erating thrust coefficients. A second parameter inherently
present in a wind farm is the turbine number (TN). As the
flow enters the wind farm, the incoming wind for the first
turbine is undisturbed, but the second turbine operates in the
wake of the first turbine. Further inside the wind farm, multi-
ple wakes can be present concurrently. Wakes have a signif-
icant impact on the performance of wind farms, as the wind
speed is lower and the turbulent intensity is higher, causing a
reduction in power production and increased fatigue loads on
turbines operating in the wake (Vermeer et al., 2003; Porté-
Agel et al., 2020).

The parameter space covered by the database is visual-
ized in Fig. 2. It consists of two parameters: turbine num-
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Figure 2. Parameter space from the large eddy simulations. Cr is
shown for the upstream turbine for each mean wind speed in the
simulation inlet and turbine number.

ber (2-14) of turbines operating in wake conditions and four
wind speeds at hub height for the front turbine (8, 12, 15, and
20ms™! ). Combined, these parameters are associated with a
time-averaged Ct of the upstream wind turbine, which gen-
erates the wake. Cr is higher for low wind speeds until the
turbine starts pitching. Cr is approximately constant through
the wind farm at 0.8 and 0.3 for the cases of U =8 ms~! and
U=20ms"!, respectively. However, for U = 12-15 ms~ 1,
there is a gradual transition in Ct from the first turbine to the
turbines further into the farm. Eventually, the flow will reach
a balance between extracted power and wake recovery (Calaf
et al., 2010). This is often referred to as the fully developed
or “infinite” wind farm and is typically reached after the first
five to six wind turbines (Andersen et al., 2020). Reaching
the fully developed wind farm flow essentially means that
there is no discernible difference between the inflow to tur-
bines operating deep inside the wind farm, and therefore a
data point in the parameter space does not necessarily of-
fer additional information. In total, Fig. 2 shows 52 differ-
ent combinations of the four wind speeds (U) and 13 tur-
bine numbers (TN), where each combination corresponds to
a dataset of inflow to a given turbine, V(y, z, t).

2.4 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a classic tech-
nique for dynamic flow analysis, which decomposes a tur-
bulent flow into modes of spatial variability. These modes
are orthogonal and, given the norm used to perform the de-
composition, optimal in terms of capturing the variance of
the fluctuating flow (Lumley, 1967; Berkooz et al., 1993).

The velocity field (V) is described as the sum of the mean
flow (V) and the fluctuating flow (V’), as in Eq. (2).

V(}’»Z»I)=V(y,Z)+V/(va,t) (2)

POD is then applied to the three fluctuating velocity com-
ponents of V’ (u’, v/, and w’), where each time step is rep-
resented as a column vector, and N, time steps are aggre-
gated into a matrix M =[V/,..., VI/V;]' The auto-covariance
of M is computed as R = MTM, and the eigenvalue prob-
lem RG = GA is solved, where A is a matrix of real and
positive eigenvalues and G is a matrix of orthonormal eigen-
vectors G =[g1, ..., gn,_,]. The dimensionality has been re-

Wind Energ. Sci., 10, 597-611, 2025




600 J. F. Céspedes Moreno et al.: Convergence and efficiency of global bases

duced by 1 due to the extraction of the mean flow, and
the orthonormality of the global modes is given using the
standard inner product, {(a;b) = a;b;, across all flow com-
ponents: (g;; g;) = J;;. Finally, the modes are organized ac-
cording to the eigenvalue decay, i.e., in descending order ac-
cording to variance, representing the turbulent kinetic energy
contribution of each mode. Collectively, all modes form a
new set of basis functions spanning the dataset.

The original flow can be reconstructed by projecting the
flow into each mode with a standard inner product, which
results in its contribution as a function of time (¢;). Subse-
quently, as shown in Eq. (3), the modes multiplied by their
contribution over time can be summed to reconstruct the
flow.

Vi~ Y 1 gy i) 3)

An approximated reconstruction of the flow can be ob-
tained by only including a limited number of modes (K <
Ne—1).

2.5 Global POD basis

POD is traditionally applied on an individual flow case,
i.e., on a “local” dataset in the parameter space. Therefore,
applying POD on a single dataset is referred to as a local
POD basis in the present work. The local basis contains the
modes, which optimally represent the variance of that par-
ticular dataset. Conversely, a global POD basis is formed by
including multiple datasets in the decomposition (Andersen
and Murcia Leon, 2022).

The global basis can be computed by including g different
datasets and adding Nt snapshots from each flow dataset to
the matrix M before applying POD:

_ ’ ’ / /
M= [Vl 1o Voo Vi Vi | )

Consequently, the global POD basis is sub-optimal at cap-
turing the variance for a particular dataset, but it is expected
to provide a better representation across the entire parameter
space.

2.6 Convergence of global POD basis

The expected sub-optimality of a global POD basis raises
several questions on how effective a global basis is compared
to a local basis — for example, how many datasets should
be used and which datasets should be included to create a
global basis with high-quality performance across the pa-
rameter space compared to a local basis. Here, the parameter
space contains 52 datasets. This means that for any number

of datasets k composing a global base, there are ( 5k2 ) pos-

sible global basis, so there are 215(2:1 ( 5k2 > =4.5x 107
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possible combinations to generate a global basis, which ef-
fectively excludes the option of evaluating all of them. Con-
sequently, the global POD bases are constructed in an itera-
tive manner. First, a POD basis is based on a single dataset
(one flow case in the parameter space), and its performance
is evaluated across all flow cases of the parameter space.
Secondly, a new flow case is added, and POD is applied to
find the corresponding new basis, which is “global” because
it was formed with more than one dataset. The new global
basis is again evaluated across all flow cases before a new
dataset can be added. In each iteration, the next dataset added
to the decomposition corresponds to the flow case with the
maximum error across the parameter space, thereby maxi-
mizing the reduction of the overall error. The iterative proce-
dure means that only 52 different combinations exist, as each
dataset can be chosen as the initial starting point.

3 Results

3.1 Flow cases

The wake flows change considerably across the parameter
space. Figure 3 shows the normalized average streamwise
velocity and the turbulence intensity for the four corners of
parameter space (Fig. 2).

Figure 3a shows a significantly larger deficit and a more
circular wake when Cr is high (U =8ms™!) and a less sig-
nificant wake and more dominant shear profile from the at-
mospheric boundary layer when Cr is low (U =20ms™ ).
Furthermore, the spatial gradients are less pronounced late
in the wind farm (TN = 14), which is a consequence of the
increased mixing due to the presence of multiple wakes. Fig-
ure 3b shows the streamwise turbulence intensity (o (u)/U),
which ranges from 12 % up to 23 %, with the largest val-
ues in flows with a high thrust coefficient. The highest tur-
bulence intensity is located in the upper half of the domain,
where more momentum is exchanged between the wake and
the surrounding atmospheric flow.

Figure 4 shows the streamwise velocity spectra taken at
the rotor center for the four corners of the parameter space.
This exemplifies how turbulent dynamics depend on both the
thrust coefficient and turbine number. The total turbulent ki-
netic energy is larger for the high wind speed, as expected.
The spectra tend to shift at the low frequencies, particularly
for high CT, as the largest turbulent length scales are broken
down as they move through the wind farm (Andersen et al.,
2017).

3.2 Global modes

POD is applied to compute the local and global POD bases.
Figure 5 shows the first eight local modes calculated with one
dataset from the parameter space, 1P. The figure also shows
eight global POD modes derived using nine datasets, 9P. The
local and global modes are clearly similar and are therefore
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Figure 3. Flow characteristics at the four corners of the parameter space. The circle on each plot represents the rotor. (a) Mean wind speed

in the streamwise direction. (b) Turbulence intensity.
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Figure 4. Fourier spectra of u’ at hub height for the four corners of
the parameter space.

capable of capturing the same coherent structures. However,
the ordering of individual modes might change as they cover
an increasingly large parameter space. This is an important
point of the global basis. For instance, global mode 9P g7 is
not shown as it qualitatively corresponds to local mode 1P
g9, while global modes 9P g7 and 9P gg are more impor-
tant over the parameter space. As shown by Andersen and
Murcia Leon (2023), this means that the contribution of vari-
ance captured by each mode might change over the parameter
space.

Although the local and global modes are qualitatively
comparable, the global basis must be both efficient and rep-
resentative of the entire parameter space. Figure 6 shows in-
stantaneous flow fields for all velocity fluctuations U’, V',
and W’ for LES and reconstructions using the first 20 modes
of P1 and P9 for flow case U =20ms~! and the fifth wind
turbine, corresponding to the bases visualized in Fig. 5. The
filtering effect of POD is clearly seen in the reconstructions
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for both P1 and P9 for all velocity components, as the details
of the LES are not reconstructed with only 20 modes. How-
ever, the overall structures of the reconstructed flow fields are
comparable, particularly for the streamwise fluctuations U’.
The region of positive fluctuations (red) in W’ is slightly
larger in P1, while P9 has a larger region without fluctu-
ations (white) of W’. The figure also shows the difference
in the instantaneous fluctuations from LES and the two re-
constructions. The error fields of the two reconstructions are
basically indistinguishable, with only minor differences. Ap-
pendix A shows the reconstructions and the corresponding
errors using 8, 50, and 100 modes. The similarity in both re-
constructed velocities and errors clearly shows that the two
different bases are equally efficient at reconstructing the flow
for all practical purposes.

3.3 Global modes convergence

In order to quantify the efficiency, a given basis is evaluated
against the full LES flow using a velocity error E¢ defined
in Egs. (5) and (6). The metric takes, for every velocity com-
ponent, the average in space (y, z) of the ratio between the
root mean square error of the velocity field and its standard
deviation over time. The error is normalized by the standard
deviation because it is a direct measure of the variance in the
original flow. Subsequently, E\¢ corresponds to the norm of
the errors from the three velocity components. This results
in a single value for each point in the parameter space that
represents the total error of the reconstruction with respect to
the original flow.

The velocity error is shown in Fig. 7a, where the top-left
figure corresponds to the local basis using one dataset of
U =8ms~! and TN = 14, indicated by the white number.
This basis is evaluated across the entire parameter space us-
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Figure 5. Streamwise component of the first modes using one and nine points from parameter space, 1P and 9P, respectively. The circle on

each mode represents the turbine rotor.
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Figure 6. Flow fields of LES, reconstruction using P1 and P9, and error computed as the difference between LES and the reconstructed
flows using 20 modes for the fifth turbine and U =20 ms~!. The top row shows streamwise velocity fluctuations U’, the center row shows
lateral velocity fluctuations V', and the bottom row shows vertical velocity fluctuations W’.

ing 100 modes; i.e., the basis derived from the one dataset is
applied on all flows. It reveals that the velocity error is largest
at the first turbines for U = 8 ms~!. However, the error of the
reconstructed flow compared to the LES is low for the high
wind speed. Hence, the global basis provides efficient recon-
struction for significantly different flow cases.

E, = mean, ,

x \/mean, (1503 2. 1) = oy 2. 0] ©)
std; [u] g5 (v, 2,0)] ’

Eva = EL+E%+EZ,. (6)

The velocity error (Eye]) corresponds to the total error
with respect to LES, but this has two components: a trun-

Wind Energ. Sci., 10, 597-611, 2025

cation error due to the number of modes included and a ba-
sis error Epggis due to the use of a global basis, which is
a non-optimal basis locally. The basis error arises because
the global basis is sub-optimal compared to the local basis,
which in principle is capable of reconstructing a larger por-
tion of the flow with the same number of modes. Therefore,
in order to isolate and quantify the basis error, the velocity
error from the local POD bases (Evel-1ocal POD) 1S subtracted
from Ee], as shown in Eq. (7).

Evasis = Evel — Evel-local POD (7)

The basis error is shown in Fig. 7b. In contrast to the ve-
locity error Eye, the largest basis errors correspond to the
low Ct. Hence, the dataset for U =20ms~! and TN =2
with the largest basis error is added to improve the global

https://doi.org/10.5194/wes-10-597-2025
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Figure 7. (a) Velocity error, Ey,, and (b) basis error, Ep,gis. Calculated using 100 modes across the parameter space for a basis including 1,

4, and 9 datasets.

Table 1. Initial datasets from parameter space.

Coordinates Name

A B C D E

Ums™ 1] 8§ 20 8 20 15
TN 2 2 14 14 5

basis. The same error estimates are computed with the up-
dated global basis, and the procedure is iterated to reduce the
overall error of the global basis.

Figure 7 shows the evolution of errors using four and nine
datasets. The white numbers indicate the order of adding the
different datasets to the global basis. The average errors are
clearly reduced when more datasets are included. Addition-
ally, the largest basis errors remain at low Crt, and the differ-
ence of including one or four datasets is significantly larger
than using four or nine datasets, which suggests the conver-
gence of the global basis.

Figure 7 uses U =8ms™! and TN =14 as the initial
dataset for the iterative procedure. Table 1 shows five differ-
ent starting points. The first four initial datasets correspond
to the four corners of parameter space, and the fifth is a point
in the middle of the domain.

https://doi.org/10.5194/wes-10-597-2025

Figure 8 shows the evolution of the average velocity error
(Eve1) across parameter space as a function of the number of
datasets in the global basis for the five different initial condi-
tions. As seen, all five initial conditions (A—E) yield the same
trend of decreasing the mean velocity error as more datasets
are included. On average the mean velocity error decreases
6 % from one to nine datasets. Effectively, the choice of the
initial dataset increasingly loses importance as more datasets
are included. For instance, with one dataset, the relative dif-
ference between the best- and worst-performing global basis
18 3.9 %, but with nine datasets it is reduced to 0.4 %. Further-
more, after including three datasets, the iterations starting at
points B and D (those which started at U =20ms~!) con-
tain the same datasets, which means that from that point they
yield the same results.

The examined bases A-E include 512 snapshots per
dataset, and the flow reconstruction was truncated at
100 modes. The horizontal lines in Fig. 8 indicate the average
error when each flow in the parameter space is reconstructed
with 100 modes of the corresponding local basis, computed
using 512, 1024, and 2048 snapshots, respectively. The per-
formance of these bases depends on the number of snapshots
before achieving convergence, and the number of indepen-
dent snapshots is limited, at around 2048, by the span of a
single dataset. Independence is here based on snapshots be-
ing separated according to the integral length scales. On the
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Figure 8. Mean error E,. across the parameter space using
100 modes vs. the number of datasets included in the global basis.

other hand, a global basis can include more data because it is
extracted from different datasets, i.e., different flows, which
makes the snapshots independent.

Consequently, global bases can be directly compared to
local bases when computed with the same amount of data.
Table 2 compares the values of the horizontal lines in Fig. 8
(local bases error) with the average result from curves A-E
at the corresponding number of snapshots. As more datasets
are included, the performance of the global bases gets closer
to the theoretical minimum error of the local bases, where
four datasets correspond to a relative difference in the error
of 2.8 % truncated at 100 modes.

For the dependence of the number of truncation modes,
Fig. 9 shows the velocity error for two local and three global
bases truncating at different numbers of modes. Overall,
the error decreases as more modes are included. Here, it
is also possible to compare the truncation error to the ba-
sis error. The basis error is approximately 1 order of mag-
nitude smaller than the truncation error. For instance, using
100 modes, the error of the global basis using 1 dataset is
0.523, and the error of the best bases, i.e., local bases 2048, is
0.469, which is a relative difference of approximately 10 %.

It is noteworthy, especially for a global basis with a low
number of datasets, that the basis error increases as more
modes are included for the number of modes plotted. This
is attributed to the fact that each additional mode from the
optimal basis adds more information to the flow than a mode
from the sub-optimal base. However, any of these bases are
capable of completely reconstructing the flow if all modes
are included. Therefore, it is expected that as more modes
are included, the optimal bases start to saturate, while the
sub-optimal bases eventually will catch up and the basis er-
ror gap will reduce.

3.4 Case study with stochasticity

The physical and statistical implications of employing a
global basis are investigated using the stochastic engine PS-
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starting point C from Table 1.
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Figure 10. Distributions of spectral errors for the streamwise ve-
locity at the rotor’s center related to the stochasticity and relative
to turbine number 14 through the wind farm using 30 stochastic
realizations and 100 global POD modes for the simulation case
U=12ms 1.

ROM. The chosen global basis is generated based on four
datasets shown in Fig. 7, which yield a basis error of 2.8 %;
see Table 2. The global basis is tested on the unseen flow
case of U=12ms"!; i.e., the employed global basis does
not contain information from this flow scenario.

The inherent stochastic variability is assessed by generat-
ing N = 30 stochastic realizations and cross-comparing all
realizations against themselves for a single flow case. This

yields a total of < N = 435 stochastic flow realizations.

2
A general spectral error metric Es of two spectrums is de-
fined in Eq. (8):

j(&-—ﬁj)df

_ 8
[S;df ®

Es_;j=

where §; and S; are the two spectrums to compare. S; is
S; filtered with a rolling mean using an averaging window
varying logarithmically in size to smooth out higher frequen-
cies.
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Table 2. Mean velocity error comparison between local bases and global bases (average of curves A-E) with the same total number of

snapshots using 100 modes.

Total number of  Local bases

Global bases Relative error

snapshots error  Number of datasets  Average error  difference [%]
512 0.494 1 0.527 6.7
1024 0.477 2 0.499 4.6
2048 0.467 4 0.480 2.8

The spectral error is utilized in two ways, where the anal-
ysis is shown for the streamwise velocity at hub height.

First, the variability of the 30 stochastic realizations is es-
timated to provide stochastic error distributions, as shown in
Fig. 10 for each turbine. The red distributions are all centered
around zero and show the stochastic variability of the 30 re-
alizations relative to themselves, i.e., how much can a single
realization of a constructed flow scenario vary relative to nu-
merous realizations of the same flow. The distributions tend
to narrow further into the wind farm, which indicates how
the deep farm flows become increasingly self-organized and
governed by the wakes (Andersen et al., 2017).

Second, the development can also be examined by com-
paring the spectral error between different flows, i.e., com-
paring 30 stochastic flow realizations at each turbine against
the inflow to a specific turbine. Here, the last turbine
(TN =14) is chosen to represent the fully developed wind
farm. The spectral error given by Eq. (8) is also used for this
comparison, which yields N* = 900 error samples since both
flow cases have N =30 stochastic realizations. The corre-
sponding errors are shown as green distributions in Fig. 10.
The distributions for the first turbines are significantly offset
with a negative error but initially narrower than the stochastic
distributions in red. Eventually, the green distributions grad-
ually become centered around zero. Hence, the distributions
of the stochastic spectral error and the spectral error relative
to the 14th turbine can be compared directly to determine
if there is a statistical difference between inflow to a given
turbine relative to the last turbine. If the error distributions
are reflections of each other, it implies that there is no sta-
tistical difference between the velocity spectra at the center
of the domain between the turbine number in question and
turbine number 14. This is particularly useful when trying to
determine if the flow dynamics have reached the fully devel-
oped wind farm conditions, where the statistical distributions
no longer change as the turbine number increases (Andersen
et al., 2015). This is the case from approximately TN = 9 for-
wards.

The contribution of individual modes to the different flow
cases can also be compared. Figure 11 shows similar spectral
error distributions for global modes 2, 5, 12, and 20. Modes 2
and 5 show a gradual evolution reminiscing of Fig. 10, where
the distributions gradually become increasingly similar. In
contrast, higher modes, such as 12 and 20, present a more
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scattered behavior, with lower errors and mean values vary-
ing between positive and negative for TN > 2, indicating
more stochastic behavior. This suggests that the transition to
a deep wind farm state is primarily dictated by changes in the
first global modes, which are associated with the largest tur-
bulent scales. This trend corroborates the findings of Ander-
sen and Murcia Leon (2023), where it was clearly shown how
different global modes are active in different locations within
the wind farm to capture different flow scenarios, e.g., tur-
bines operating in freestream conditions, turbines operating
in single wake, or turbines operating in fully developed con-
ditions.

3.5 Discussion

Employing a global POD basis allows the use of the same
modes for an entire parameter space but introduces the ba-
sis error in the flow reconstructions (Eq. 7). The basis error
emerges because the global basis is not as efficient at recon-
structing a particular flow as the local POD basis. However, it
was shown that this error is reduced as more datasets are in-
cluded in the global basis, and it is approximately 1 order of
magnitude smaller than the truncation error for 100 modes.

The convergence of the global POD basis as a function of
the number of datasets has a parallel with the convergence
of the local POD basis. A local POD basis converges when
enough snapshots of the flow are included, so it contains
information about all the dynamics that occur in the flow
(Hekmati et al., 2011). Consequently, it is an optimal basis
in terms of variance, and including more snapshots would
not improve its performance. Similarly, the global POD ba-
sis will converge as more datasets are added to cover differ-
ent flow dynamics across parameter space. Eventually, the
performance of the basis will no longer improve by adding
more datasets.

The inclusion of more datasets in the global basis implied
adding more data in total, as the number of snapshots per
dataset was kept constant. An alternative would be to keep
the amount of snapshots constant and hence include fewer
snapshots per dataset, which would reduce the time to com-
pute the modes that scale quadratically with the number of
snapshots. This is an unexplored scenario, but it is specu-
lated that it would only be useful as long as there are enough
snapshots per dataset to generate an acceptable local POD
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Figure 11. Distributions of spectral errors for four modes related to the stochasticity and relative to turbine number 14 through the wind
farm using 30 stochastic realizations for the simulation case U =12 m s—L

basis with them, which would imply that there is enough in-
formation per dataset to capture its dynamics.

The systematic process of including addition datasets is
focused on minimizing the basis error (Eq. 7) with respect to
the local bases’ performance. The iterative procedure partic-
ularly identifies that more datasets from flows corresponding
to low Ct should be included. However, additional datasets
could be identified using alternative metrics, e.g., the veloc-
ity error, which would prioritize adding datasets of low tur-
bine numbers and high Ct. Applying such alternative met-
rics, or simply selecting datasets arbitrarily in the parameter
space, also results in a reduction of the error as the number of
datasets increases, and therefore the global basis will even-
tually converge on multiple error metrics. However, it might
be impractical to perform a detailed and systematic conver-
gence study of the global basis for all applications. Yet, the
present analysis shows how global bases are relatively in-
sensitive to which datasets are used. It is therefore generally
recommended to select multiple datasets that represent vari-
ous key flow phenomena. Selection of datasets a priori would
typically require domain knowledge to identify key scenarios
with different physics, e.g., single wake, multiple wakes, and
different Ct values.

Furthermore, the case study highlights a number of ben-
efits of employing a global basis. The global basis enables
detailed and quantifiable physical interpretation of how the
flow changes within the parameter space, as also seen in An-
dersen and Murcia Leon (2023), where the modal statistics
of a global POD basis applied on a full wind farm clearly
reveal three main flow regimes of atmospheric inflow, single
wake, and multiple wakes. The expansion of the parameter
space reveals new insights compared to Andersen and Mur-
cia Leon (2022). For instance, it is clearly seen how the spec-
tral error distributions converge further into the wind farm,
indicating when fully developed wind farm flow dynamics
are achieved and how this is linked to the first few modes
(Fig. 11). The method also enables modelers to estimate both
the impact and uncertainty of different flow realizations as
well as different modes when generating synthetic turbulent
flows. Additionally, the analysis reveals how wind turbine
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wakes are relatively coherent flows, which can be covered by
approximately 100 modes. Although, the consistently larger
basis error for U =20 ms~! also highlights how more modes
are required to reduce the errors for undisturbed atmospheric
flows, where the influence of the turbines is negligible.

Finally, the global bases are used to model and analyze
highly turbulent wind turbine wakes, and the present work
expands the parameter space to cover two dimensions com-
pared to the single parameter in Andersen and Murcia Leon
(2022). In principle, there are no limits to the number of
dimensions. However, it is speculated that the efficiency of
global bases will significantly decrease if the parameter space
covers multiple dimensions with very different flow cases. If
so, more modes would be required for the flow generation.
However, the efficiency and convergence of the linear global
POD bases also promise that it is possible to utilize nonlinear
dimensional reduction techniques, such as autoencoders, to
increase efficiency further, i.e. reduce the number of modes
required (Brunton and Kutz, 2019; Lee and Carlberg, 2019).
Therefore, global bases are expected to be generally applica-
ble for dimensional reduction within fluid dynamics.

4 Conclusions

Wind turbine wake aerodynamics are inherently complex and
chaotic, thus making accurate modeling and analysis of their
dynamics particularly challenging. One approach is to de-
compose the flow using POD, which gives an orthogonal ba-
sis of spatial modes. The spatial modes can provide physical
insights into the largest coherent structures, and the modes
can be used to develop reduced-order models. The modes are
optimal in terms of capturing the variance, and the original
flow can be reconstructed as the sum of a truncated set of
modes, which fluctuate over time. However, different flows
can result in different modes, which makes it difficult to con-
struct general reduced-order models as well as compare dif-
ferent flows to provide insights into the physical differences.
These caveats can be overcome by utilizing a global basis,
where multiple flow cases are combined.
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Global POD bases are shown to efficiently capture wind
turbine wake aerodynamics for a parameter space covering
all wake-affected turbines in a large wind farm during dif-
ferent operating conditions (thrust coefficients). The perfor-
mance of the global basis has a basis error with respect to
the optimal local POD basis. However, the error is 1 order
of magnitude smaller than the truncation error, which can
be remedied by including a few additional modes. Most im-
portantly, the basis error is significantly reduced, and the ef-
ficiency convergence towards the local POD basis as more
datasets are included to construct a global basis.

The efficiency is shown to be rather insensitive to the se-
lection of flow cases to include in the construction of the
global basis, especially when the basis error is compared to
the truncation error of the flow reconstruction or the stochas-
tic variability of flow realizations. However, it is recom-
mended to include key features from the different flows in
the parameter space.

Global bases also provide a consistent baseline for direct
comparison of different flow cases and thereby enable physi-
cal interpretability of the flow behavior across the parameter
space. For example, the evolution of the modes through the
wind farm reveals that only the first few modes are responsi-
ble for the transition to a deep wind farm state, while higher
modes corresponding to smaller turbulent structures mainly
provide stochastic variations.

The convergence and benefits of global bases are illus-
trated here in the context of analyzing wind turbine wake
flows with reduced-order models. However, the results are
expected to generally apply to other turbulent flow scenarios;
physical interpretation and model development are challeng-
ing.
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Appendix A: Flow reconstruction and errors
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Figure A2. Figure 6 using 50 modes.
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Figure A3. Figure 6 using 100 modes.
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