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Abstract. The development of large wind turbines and airborne wind energy (AWE) systems requires reliable
wind speed datasets at heights above the atmospheric surface layer. Traditional measurement approaches relying
on met masts (meteorological masts) fall short of addressing these needs. In this study, we validate three different
model-based datasets, namely the 3 km Norwegian Hindcast archive (NORA3), the New European Wind Atlas
(NEWA), and ECMWF Reanalysis v5 (ERAS), using Doppler wind lidar data from several locations in Norway
and the North Sea. The validation focuses on altitudes from 100 to 500 m above ground, covering the operational
range of large wind turbines and AWE systems. Our findings indicate that ERAS and NORA3 perform similarly
well in offshore locations in terms of bias, correlation coefficient, root-mean-square error, and Earth mover’s
distance. The choice of an appropriate wind speed database depends on the topography, altitude and error metrics
of interest. However, NORA3 outperforms the other two models in two coastal sites and one complex-terrain
site. In most cases, the agreement between the models and lidar measurements increases with height.

1 Introduction

The hub height and rotor diameter of wind turbines have
been continuously increasing for the past 20 years (Jahani
et al., 2022; Jiang, 2021), reaching up to 150m and over
200 m, respectively. This trend is driven by the need to cap-
ture stronger and steadier winds to reduce the levelised cost
of energy (Wiser et al., 2021). In the near future, the top
tip height of such wind turbines may exceed 300 m (Rogers,
2024).

Airborne wind energy (AWE) systems harness wind en-
ergy using tethered aircraft operating at altitudes between
200 and 600 m. At these heights, wind speeds are generally
stronger and steadier than near the surface. Since the 2010s,
AWE systems have made significant advances (Vermillion

et al., 2021; Fagiano et al., 2022; Eijkelhof and Schmehl,
2022). Prototypes with capacities up to 600 kW have been
developed, and scaling to multi-megawatt systems has been
proposed (Vermillion et al., 2021; Kruijff and Ruiterkamp,
2018). Despite this progress, AWE systems are still in the
early stages of development compared to conventional wind
turbines.

Two main concepts dominate current AWE designs:
ground-generation systems and onboard-generation systems.
Ground-generation systems, or “pumping mode” systems,
generate energy on the ground using a winch and genera-
tor. In this case, the tethered aircraft alternates between the
energy-generation and recovery phases. Aircraft for this con-
cept include soft kites and semi-rigid and rigid wings. Each
type offers trade-offs between adaptability and durability.
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Onboard-generation systems, in contrast, produce energy in
the air using onboard turbines and transmit energy to the
ground via conductive tethers. These systems typically use
rigid-wing aircraft, quadrotors, or toroidal aerostats (Cheru-
bini et al., 2015). While ground-generation systems are rel-
atively efficient, they require advanced automation for con-
tinuous operation (Fechner and Schmehl, 2018; Vermillion
et al., 2021; Fagiano et al., 2022). Onboard-generation sys-
tems are better at harnessing high-altitude winds but face
challenges in weight optimisation and tether design. Soft
wings are adaptable to varying wind conditions but are less
durable. Conversely, rigid wings provide higher power out-
put but have greater mechanical complexity and costs (Fa-
giano et al., 2022). Key challenges remain for AWE sys-
tems, including managing wind variability, tether dynamics,
and autonomous operation. A major limitation lies in the re-
liance on oversimplified wind speed approximations, due to
the lack of detailed wind speed data at altitudes above 200 m
(Sommerfeld et al., 2019). Addressing this gap by collecting
wind speed profile data in the first 500 m above the surface is
essential for optimising AWE system design and unlocking
their full potential for large-scale deployment.

Traditional methods for estimating horizontal mean wind
speed profiles rely on mast-based measurements, which are
primarily applicable to studying the atmospheric surface
layer (ASL). The ASL constitutes approximately the low-
est 10 % of the atmospheric boundary layer (ABL). Un-
der neutral and unstable thermal stratifications of the atmo-
sphere, the depth of the ASL ranges from 50 to 300 m (Hen-
nemuth and Lammert, 2006; Pal and Lee, 2019; Davis et al.,
2020, 2022). Under stable atmospheric conditions, the ASL
becomes shallow, sometimes reaching a depth below 30m
(Berstrom and Smedman, 1995). Traditional logarithmic and
power-law mean wind speed profiles, such as those used in
IEC 61400-1 (IEC, 2005), are limited to the ASL and are
likely inadequate for wind turbine design with hub heights
of 150 m or more (Tieo et al., 2020; Cheynet et al., 2024).
For wind resource assessment, the height-dependent Weibull
parameters (Kelly et al., 2014) require the characterisation
of wind speed profiles above 200 m. Therefore, the develop-
ment of both AWE systems and future offshore wind turbines
necessitates information on the mean wind speed at heights
several hundred metres above the surface.

Tall wind speed profiles, as defined here, cover at least the
initial 500 m above the surface, and their characterisation re-
mains a significant challenge (Veers et al., 2019). The term
“tall wind profile” is in line with its use in boundary-layer
meteorology (e.g. Pefia et al., 2014; Kelly et al., 2014). Tradi-
tional tall masts often fall short of this definition, as they are
typically lower than 100 m. Only a limited number of masts
exceeding 200 m exist globally (Ramon et al., 2020), and
these are exclusively onshore masts (Table 1). Although tall
wind speed profiles can also be collected using piloted air-
craft (e.g. Zemba and Friehe, 1987) or drones (Egger et al.,
2002; Reuder et al., 2009; Palomaki et al., 2017; Shimura
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Table 1. Examples of tall met masts (meteorological masts) with
top height above 200 m documented in Ramon et al. (2020) and in
the scientific literature. None of these masts are offshore. The list
includes both current and former masts.

Tower name Top sensor  Country

(m)
Walnut Grove 488 USA
Park Falls 396 USA
West Branch 379 USA
South Carolina 329 USA
Beijing Meteorological Tower 325 China
Gartow 341 Germany
Obninsk 301 Russia
Boulder Observatory 300 USA
Boseong 300  South Korea
Hamburg 280  Germany
Steinkimmen 252 Germany
Dsterild 250 Denmark
KIT 200  Germany
Cabauw 200  the Netherlands

et al., 2018), this approach has not been adopted for wind
resource assessment, which requires several years of data. In
offshore locations, the collection of tall wind speed profiles is
further complicated by the harsh marine environment as well
as the high costs of installation and maintenance of sensors
and their supporting structure (Shaw et al., 2022).

Tall wind speed profiles are generally measured using re-
mote sensing technologies (Emeis, 2011), such as Doppler
wind radar (Lehmann and Brown, 2021), sodar (Bianco,
2011), and lidar (Pichugina et al., 2012). As commercial
Doppler wind lidars (DWLs) have become the standard in-
strumentation for wind energy applications, we have based
our study on corresponding available lidar datasets. Commer-
cial DWL profilers measure wind speed and direction up to
approximately 300 m above the surface (Pefia et al., 2009).
They use the aerosol backscatter from emitted laser beams
to determine the wind speed at various heights. Scan modes
such as the Doppler beam swinging (DBS) or velocity az-
imuth display use multiple beams at different azimuths and
a fixed elevation angle to calculate the average wind speed
within the encompassed scan volume, showing good perfor-
mance against tall met masts (Knoop et al., 2021). Commer-
cial DWL profilers, both ground-based and mounted on fixed
platforms, have been used in wind energy research for over a
decade, both onshore (Smith et al., 2006; Kumer et al., 2016;
Brune et al., 2021) and offshore (Pefia et al., 2009, 2015;
Brune et al., 2021). In the 2010s, floating wind lidar profil-
ers deployed on buoys (Gottschall et al., 2017; Peiia et al.,
2022) and ships (Rubio et al., 2022) began to complement
traditional offshore met masts, offering cost reductions (Kr-
ishnamurthy et al., 2013).
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Most commercial DWL wind profilers are still limited to
studying the mean wind flow up to 300 m above the sur-
face. Scanning DWLs possess a more powerful laser than li-
dar profilers, allowing them to collect data up to 3 km along
the scanning beam under good aerosol conditions (Kumer
et al., 2014). This technology, used in atmospheric research
for over 2 decades (Pichugina et al., 2012; Banta et al., 2013;
Dias Neto et al., 2023), saw commercial adoption mainly in
the early 2010s (Vasiljevic, 2014; Kumer et al., 2014). Scan-
ning DWLs with hemispherical scanning capabilities can ad-
just both azimuth and elevation angles and can be set to
mimic profiler modes for direct atmospheric profiling. De-
spite their potential, scanning lidars are underused in devel-
oping AWE systems or next-generation multi-megawatt off-
shore wind turbines. Notable examples of wind speed data
collection with such instruments for tall wind profile anal-
ysis include Kumer et al. (2014) in coastal terrain, Reuder
et al. (2024) at the FINO1 offshore platform, Péaschke et al.
(2015) and Sommerfeld et al. (2019) in Germany, or Mariani
et al. (2020) in the Arctic.

Recently, open-source datasets from wind hindcast or re-
analysis databases such as the 3km Norwegian Hindcast
archive (NORA3) (Haakenstad et al., 2021), the New Eu-
ropean Wind Atlas (NEWA) (Hahmann et al., 2020), and
ECMWEF Reanalysis v5 (ERAS) (Hersbach et al., 2020) have
provided model-based wind speed profiles within the first
500 m above the surface. A hindcast is a numerical model
simulation of a historical period without data assimilation,
unlike a reanalysis. Reanalysis uses modern data assimila-
tion techniques over decades, combining observations with
models to create a consistent picture of weather and cli-
mate, even in areas without direct observations. NORA3 and
ERAS appear adequate for wind resource assessment and
structural design, for which a climatological description of
wind conditions spanning at least 30 years is necessary. Al-
though these databases can complement measurements, they
require proper validation for wider use in wind energy. Por-
tions of these databases have undergone validation against
near-surface measurements (e.g. Ramon et al., 2019), mast
measurements at levels below 100 m (Olauson, 2018; Jour-
dier, 2020; Solbrekke et al., 2021; Cheynet et al., 2022), or
tall-mast measurements up to 200m (Knoop et al., 2020;
Gualtieri, 2021). Additional validation has been conducted
using Doppler wind lidar technology for heights up to 300 m
above the surface (Pronk et al., 2022; Hallgren et al., 2024).
The comparison of lidar wind speed profiles with hindcast or
reanalysis products at higher altitudes remains, however, lim-
ited. This motivates our study to bridge this identified knowl-
edge gap.

In this study, we validate datasets from ERAS5, NEWA, and
NORA3 against measurements from DWL systems across di-
verse terrain locations in the North Sea and Norway to eval-
uate their accuracy in capturing tall wind speed profiles. We
also aim to quantify the performance of these databases as a
function of altitude using multiple error metrics. The selec-
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tion of different sites provides an opportunity to examine the
impact of topography on local wind conditions. The novelty
of this study lies in the gathering of lidar tall wind speed pro-
files and their comparison with various hindcast and reanal-
ysis wind databases at altitudes up to 500 m, a topic that has
received little attention to date. Moreover, this study explores
the use of wind-energy-related metrics, such as the capacity
factor of hypothetical modern wind turbines and AWE sys-
tems to evaluate the wind speed databases. This research is
believed to be valuable for both the wind energy and wind
engineering communities, as tall wind speed profiles can be
used for both wind resource assessment (Schelbergen et al.,
2020) and the analysis of wind loading on structures (Kent
etal., 2018).

This study is organised as follows. Sect. 2 introduces
the datasets extracted from the ERAS, NORA3, and NEWA
databases, as well as the DWL data. Section 3 presents the
metrics used for the error analysis and the data processing to
collocate the modelled and measured data in space and time.
Section 4 examines how site selection and measurement
height affect the errors between wind atlases and remote-
sensing measurements. Our findings underscore NORA3’s
and ERAS’s reliability offshore, especially above 100 m.
However, in coastal areas and complex terrains, regional
model-based datasets and microscale wind models may be
required to accurately capture local wind conditions. Sec-
tion 4 also presents how the selection of the wind atlas im-
pacts the estimation of the capacity factor of modern wind
turbines and AWE systems. Finally, Sect. 5 discusses the
need for more powerful DWL profilers and the complemen-
tary role of mesoscale and microscale simulations for im-
proved wind resource assessment.

2 Data collection and wind models

This section outlines the wind models and measurement cam-
paigns considered to assess tall wind speed profiles. NEWA,
NORA3, and ERAS wind atlases are introduced with their
spatial and temporal resolutions. Five lidar campaigns across
offshore, coastal, and complex-terrain sites provide valida-
tion data for the analysis.

2.1 Model data

A state-of-the-art wind atlas is defined herein as a climate
dataset that provides the mean wind speed and mean wind
direction at multiple heights above the surface. It provides
a horizontal spatial resolution on the kilometre scale, a time
resolution of 1h or finer, and temporal coverage of at least
30 years. The definition of a wind atlas employed here re-
lates to a hindcast or reanalysis database that is usable for
wind resource assessment or the design of wind energy sys-
tems, including extreme value analysis. In this study, they
are regional downscaling products of the ERAS reanalysis
(Hersbach et al., 2020), covering overlapping areas in Eu-
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Figure 1. Illustration of the regions covered by NEWA and
NORAZ3. ERAS has global coverage and is thus not shown here.

rope (Fig. 1). Consequently, ERAS data are also included
in this analysis. Although wind atlases are sometimes de-
fined as databases with microscale spatial resolution finer
than 1km, we choose to adopt a broader definition that in-
cludes model-based wind data with a kilometre-scale res-
olution. Hereinafter, z denotes the height in metres above
the surface, and u represents the horizontally averaged mean
wind speed at height z.

The ERAS5 reanalysis product from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) super-
seded ERA-Interim in 2019 (Dee et al., 2011). ERAS of-
fers climate data with global coverage, a horizontal spa-
tial resolution of approximately 31km, and an hourly out-
put (extending from 1940 onward). As a reanalysis prod-
uct, ERAS uses a 4D-Var (4D-Variational) data assimilation
scheme (Courtier et al., 1994) within a 12 h assimilation win-
dow, incorporating both in situ measurements and satellite
observations (Hersbach et al., 2020). The ERAS temporal
resolution and coverage are valuable for wind energy re-
search globally (Olauson, 2018), including the analysis of
annual and decadal wind variability and potential trends due
to climate change (Chen, 2024; Antonini et al., 2024; Mar-
tinez and Iglesias, 2024). Researchers and engineers in the
wind energy sector increasingly rely on ERAS for both his-
torical analysis and future project planning (Olauson, 2018;
Gualtieri, 2021; Hayes et al., 2021).

NEWA is an open-access European wind atlas released
in 2019 and developed through collaboration among 30 Eu-
ropean academic and industrial partners (Hahmann et al.,
2020; Dorenkdamper et al., 2020). NEWA uses the Weather
Research and Forecasting model and utilises the ERAS re-
analysis as forcing, without further data assimilation. NEWA
covers the period from 1989 to 2018 and aims to provide a
detailed wind climatology of Europe with a spatial resolution
of approximately 3 km and a temporal resolution of 30 min.
In this study, data on mean wind speed and direction from the
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Table 2. Metadata of the wind atlas datasets. Only z levels above
100 m are shown and used hereinafter. ERAS data were collected
using the 100 m z-level with additional height levels retrieved using
pressure levels and the geopotential height. A/ is the horizontal
spatial resolution, and At is the temporal resolution in minutes.

Ah (km) Atr (min) z levels (m)
NORA3 3 60 100, 250, 500, 750
NEWA 3 30 100, 150, 200, 250, 500
ERAS 31 60 100, geopotential heights

mesoscale output of NEWA were retrieved at eight altitudes,
ranging from 10 to 500 m above mean sea level.

NORAZ3 is a regional downscaling of the ERAS reanal-
ysis and utilises the HARMONIE-AROME non-hydrostatic
regional numerical weather prediction model for its produc-
tion (Haakenstad et al., 2021). The downscaling consists of
9h short integration runs initiated every 6 h, employing the
last run as the initial state for the new cycle. Surface obser-
vations in the CANARI-OI-Main assimilation system adjust
the first guess (Giard and Bazile, 2000; Taillefer, 2002), with
ERAS forcing applied in the free atmosphere following the
boundary relaxation method (Radnoti, 1995; Termonia et al.,
2018). NORA3 is built on NORA10’s legacy, which has been
used by the offshore industry in the North Sea for over a
decade (Furevik and Haakenstad, 2012). Validations of the
NORA3 database against atmospheric data include compar-
isons with wind measurements from oil and gas platforms,
as well as offshore masts in the North Sea and Norwegian
Sea (Solbrekke et al., 2021). NORA3 provides wind data
once per hour with a 3 km spatial resolution. A specific sub-
set, released in 2021 by the Norwegian Meteorological In-
stitute, has been selected for this study. This subset presents
mean wind speed and direction data at seven heights, from
10 to 750 m above sea level, extending from 1961 onward,
as reflected in the database status at the end of 2024. Ta-
ble 2 details the metadata for the different models, illustrating
the variability in spatial and temporal resolutions, as well as
available height levels above 100 m among NORA3, NEWA,
and ERAS.

2.2 The measurement sites

The measurement data were collected by reference DWL in-
struments within the area covered by ERAS5, NORA3, and
NEWA (Fig. 2). Two lidar campaigns were conducted in the
marine ABL (FINO1 and FINO3 platforms), two others at
coastal sites (Sola and Lista airports in Norway), and one in
complex mountainous terrain (Bjerkreim, Norway) — char-
acterised by rocky terrain and sparse vegetation. FINO1’s
proximity to wind farms enables an examination of discrep-
ancies between lidar measurements and wind atlases due to
wake effects. Analysing data from both the FINO1 and the
FINO3 platforms highlights the challenges of assessing wind
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resources in such areas and underscores the need for cautious
application of wind atlases near wind farms.

Table 3 summarises the locations and measurement peri-
ods of the five campaigns selected for the validation of wind
atlases. Figure 2 geolocalises the five measurement cam-
paigns and provides a close-up of the three onshore loca-
tions. The offshore sites are situated more than 40 km away
from the coast. The coastal sites are located inland only a
few kilometres from the shore and are characterised by sharp
roughness changes as the terrain transitions from open wa-
ter to flat, agricultural land with sparse vegetation. These
abrupt roughness changes generate internal boundary layers,
which can be challenging to capture accurately with hindcast
and reanalysis databases. The complex-terrain site Bjerkreim
is mountainous, with steep slopes and limited vegetation or
trees. While distinct from the fjord-like landscapes found in
other parts of Norway, this complex terrain features signifi-
cant elevation changes that contribute to non-homogeneous
wind conditions, particularly within the atmospheric surface
layer.

The first measurement campaign took place in Bjerkreim,
Norway, from March to May 2010. A WindCube V1 DWL
(Leosphere) was deployed to capture wind profiles from 40
to 300m above the surface. Approximately 799 h of mean
wind speed data were collected with a temporal resolution
of 10 min. The records were subsequently validated against
sodar measurements taken 300 m from the lidar’s location.

The second measurement campaign was conducted at Sta-
vanger Airport, Sola, Norway, from March to June 2013
(Kumer et al., 2014). The objective was to evaluate the ca-
pability of a long-range scanning pulsed lidar instrument in
measuring mean wind speed at altitudes beyond the reach
of traditional meteorological masts. A first-generation Wind-
Cube 100S lidar was deployed, operating in DBS scanning
mode and capturing 10 min mean wind speed profiles at a
minimum height of 133 m above the surface. This campaign
resulted in the collection of approximately 525 h of data. The
lidar measurements were compared against radiosonde data,
demonstrating a strong correlation with a Pearson coefficient
R > 0.95, which improved with increasing altitude (Kumer
et al., 2014).

The third measurement campaign took place at the off-
shore platform FINO3 (located at 55.195°N, 7.158°E in
the North Sea), about 80 km off the Danish coast. The plat-
form hosted a Leosphere WLS70 DWL profiler (Cariou
et al., 2009) which operated from September 2013 to Oc-
tober 2014. This resulted in the collection of approximately
7997 h of data with a temporal resolution of 10 min. The low-
est measurement height of 125 m above sea level ensured no
significant mast-induced flow distortion. The collected wind
speed and direction data were validated and detailed in Pefa
et al. (2015).

The fourth measurement campaign was conducted at the
FINOL1 offshore platform (located at 54.015° N, 6.588°E in
the southern North Sea), approximately 45 km north of the

https://doi.org/10.5194/wes-10-733-2025

island of Borkum, Germany. The platform hosted a Wind-
Cube 100S (Leosphere) long-range scanning DWL from
June 2015 to October 2016 (Reuder et al., 2024). The lidar
operated in DBS scan mode with a fixed elevation angle of
70°, performing scans twice per hour to collect 10 min mean
wind speed profiles. In total, approximately 1353 h of data
were recorded, with the lowest measurement height at 78 m
above sea level. A preliminary comparison with a reference
cup anemometer mounted at the top of the FINO1 mast at
100 m above sea level (Fig. 3) showed excellent agreement,
with a squared Pearson coefficient (R?%) of 0.98, similar to
results from a study conducted at the FINO3 platform (Pefia
et al., 2015).

The fifth measurement campaign took place at Farsund
Airport (Lista, Norway) from November 2020 to Septem-
ber 2021, focusing on the study of the ABL for airborne
wind energy applications. A WindCube WLS70 lidar was de-
ployed and operated in DBS mode with measurement heights
ranging from 100 to 2000 m above the surface. The measure-
ments resulted in the collection of approximately 6912h of
data with a temporal resolution of 10 min.

It should be noted that the measurements at Bjerkreim and
Sola were conducted over short time periods and are there-
fore not representative of the typical, annual wind variations
at these sites. Instead, the data should be interpreted within
the context of this study, which aims to compare tall wind
speed profiles from wind atlases with lidar observations.

Figure 4 displays the lidar data availability as a function of
the altitude, which decreases substantially above 500 m due
to low clouds and low aerosol content. The data availability
is defined here by the carrier-to-noise ratio (CNR). Data with
a CNR below —27.5 dB for the scanning lidar instrument and
below —22 dB for the DWL profiler were excluded. A thresh-
old of —27.5dB allows for increased data availability and is
empirically robust for scanning Doppler wind lidar (Cheynet
et al., 2017). For simplicity, specific methods, e.g. those pre-
sented by Beck and Kiihn (2017), Valldecabres et al. (2018),
Cheynet et al. (2021), or Duscha et al. (2023), to recover data
with even lower CNR are not considered here, as only the
mean wind speed was of interest.

All lidar instruments operated in DBS mode with an open-
ing angle of 30°. This mode reconstructs horizontal wind
speed and direction from the radial velocities of four beams.
It also incorporates two volume-averaging effects: one over
the range gate of each beam and another across the scan hor-
izontal area, which increases with height. The DBS mode as-
sumes horizontal homogeneity of the mean flow, a condition
typically met in flat and homogeneous terrain but violated in
highly complex terrain (Pauscher et al., 2016) or near obsta-
cles, such as in the wake of a wind turbine. As the altitude
increases, the flow tends to become more homogeneous and
horizontal (Emeis, 2013), making DBS scanning suitable for
measuring tall wind speed profiles.

Wind Energ. Sci., 10, 733-754, 2025
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Figure 2. Locations of the five measurement sites in the North Sea and along the Norwegian coast (left panel), with a detailed view of the
onshore sites (right panel). The right panel includes a digital elevation model of the three onshore measurement sites, generated using the

toolbox by Beauducel (2024).

Table 3. Metadata of datasets from five lidar measurement campaigns. The lidar range gate denotes the along-beam spatial resolution.

FINO1 FINO3 Lista Sola Bjerkreim

Latitude (N) 54.015 55.195 58.104 58.885 58.595
Longitude (E) 6.588 7.158 6.631 5.631 5.955
Terrain type Offshore Offshore Coastal Coastal Complex
Device WindCube 100S  WLS70 WLS70 WindCube 100S  WindCube V1
Start date (dd/mm/yyyy)  01-06-2015 10-09-2013  20-11-2020  04-03-2013 30-03-2010
End date (dd/mm/yyyy)  05-10-2016 06-10-2014  06-09-2021  30-06-2013 06-05-2010
Hours collected 1353 7997 6912 525 799
Min height (m) 78 125 100 133 40
Max height (m) 3528 2025 2000 2641 300
Range gate (m) 25 50 100 66 20

3 Methods the measured and modelled wind speeds. The bias quanti-

This section outlines the methods used to compare lidar
wind speed data with predictions from NORA3, NEWA, and
ERAS. It covers the four error metrics employed, data pre-
processing techniques, and the evaluation of power curves
and capacity factors for wind turbines and airborne wind en-
ergy systems.

3.1 Error metrics

To quantify discrepancies between mean wind speed data ob-
tained from lidar instruments and those predicted by wind at-
lases, four metrics are employed: the R? coefficient, the bias,
the root-mean-square error (RMSE), and the first Wasserstein
distance — also known as the Earth mover’s distance (EMD).
The R? coefficient measures the linear correlation between

Wind Energ. Sci., 10, 733-754, 2025

fies the average difference between the predicted and ob-
served values, providing a measure of systematic error. The
root-mean-square error (RMSE) quantifies the average mag-
nitude of the error. The EMD quantifies the dissimilarity be-
tween two probability distributions, making it well-suited for
analysing wind atlases that represent the climatology of a site
in terms of the probability distribution of mean wind speed
and direction (Hahmann et al., 2020). For brevity, only the
EMD equation is introduced, as the equations for the R? co-
efficient, RMSE, and bias are assumed to be familiar to the
reader. For one-dimensional distributions, the EMD can be
represented by the area between two cumulative distribution

https://doi.org/10.5194/wes-10-733-2025
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Figure 4. Data availability during the five measurement campaigns
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functions, F] and F»:

+00
EMD = / |F1(x) — Fa(x)| dx. D

—00

To complement these metrics, the Taylor diagram (Tay-
lor, 2001) provides a summary of model performance by in-
tegrating the correlation coefficient, standard deviation, and
RMSE into a single plot. This graphical representation is par-
ticularly useful for comparing multiple models against ob-
served data in a visually intuitive way.

3.2 Data preprocessing

Wind atlas data were initially interpolated from their orig-
inal horizontal grid to the GPS coordinates of the lidar
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campaign locations at each vertical height level. The inter-
polation scheme follows the method described in Amidror
(2002), specifically a linear scattered data interpolation, as
the data from the wind atlases are not necessarily on a Carte-
sian grid.

The NORA3 and NEWA datasets are provided at specific
height levels (Table 2). The ERAS data were collected at five
pressure levels (1000, 975, 950, 925, and 900 hPa), as well
as at 10 and 100 m above the surface. Combining height and
pressure levels ensured robust data retrieval and high vertical
resolution. The pressure levels were converted into geopo-
tential height levels using the geopotential variable available
in the ERAS database. Geopotential height differs slightly
from geometric height as it accounts for variations in Earth’s
gravity, while geometric height is the actual vertical distance.
This study focuses on wind speed data within the first 500 m
above the surface, where the two heights are approximately
equivalent.

The wind atlas data were linearly interpolated to the mea-
surement heights of each lidar range gate. Since each lidar
has different range gates, the comparison cannot always be
conducted at the exact same altitude across all sites. Alterna-
tive non-linear interpolation schemes were also tested, such
as spline, piecewise cubic Hermite interpolating polynomial
methods, and the modified Akima method (Akima, 1974),
but they yielded similar results while being less robust than
the linear interpolation. Appendix A presents the error met-
rics quantified at specific heights and as vertical profiles us-
ing a non-linear regression. The non-linear regression shows
minor differences in the error metrics compared to linear in-
terpolation but does not change the conclusions of the study.
The comparison in Appendix A supports our decision to use
linear interpolation for additional height levels in this study.

Following the spatial collocation, the model data were then
temporally collocated with the lidar data. The lidar data con-
sist of 10 min averaged time series, while the model data are
provided at 60 or 30 min resolutions. The first approach (ap-
proach A) involves a temporal interpolation of the model data
to align with the 10 min averages from the lidar. An alterna-
tive approach (approach B) would be to interpolate the lidar
data to an hourly time step. However, approach B is more
complex than approach A and did not yield significant dif-
ferences. Therefore, for simplicity and to avoid overprocess-
ing the data, approach A was adopted. Finally, for the lidar
data, the initial outlier detection and removal method relied
on CNR threshold values of —27.5 dB for the scanning DWL
and —22 dB for the DWL profiler. This method was found to
be sufficiently effective, eliminating the need for additional
outlier tests.

3.3 Power curves and capacity factor

This subsection outlines the methodology used to evaluate
how data from different wind atlases influence the estimated
capacity factors of wind turbines and AWE systems at the
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five selected sites. The wind turbine models examined in-
clude the National Renewable Energy Laboratory (NREL)
5 MW (90 m hub height, 126 m rotor diameter), International
Energy Agency (IEA) 15MW (150 m hub height, 240 m ro-
tor diameter), and NREL 18 MW (156 m hub height, 263 m
rotor diameter), the details of which are provided by NREL
(2020). The power curves for these turbines are defined by a
rated wind speed typically between 10 and 12ms~!, a cut-in
speed of 3 to 4ms~!, and a cut-out speed of approximately
25ms~!. Capacity factor calculations in this study are based
on wind speed at hub height. While modelling rotor-averaged
(or equivalent) wind speed, which accounts for shear, turbu-
lence intensity, and wind veering (Wagner et al., 2009; An-
toniou et al., 2009; Murphy et al., 2020), could yield more
realistic capacity factor estimates, such an analysis falls out-
side the scope of this work.

The power curve for AWE systems depends on flight
height and trajectory, complicating the estimation of an-
nual energy production and capacity factors. To address this
challenge, various approaches are possible, such as cluster-
ing methods for faster computation of AWES production
(Schelbergen et al., 2020; Sommerfeld et al., 2023) or sim-
plified power curves (Eijkelhof and Schmehl, 2022; Ran-
neberg et al., 2018). In this study, we opted to use simpli-
fied power curves as we focus primarily on validating tall
wind speed profiles using scanning lidar instruments, with-
out delving into AWE system flight trajectory optimisation.
Two simplified power curves for AWE systems are consid-
ered: one developed for a 3 MW rigid body (Eijkelhof and
Schmehl, 2022) and one for a smaller 100kW AWE sys-
tem (Ranneberg et al., 2018). The power curves of the 3 MW
and 100 kW systems are displayed in the middle and bottom
panels of Fig. 5, respectively. These power curves represent
a balance between simpler ones, such as those used in Vos
et al. (2024), where the rated power remains constant above
the rated wind speed, and more advanced path-dependent ap-
proaches studied in Eijkelhof and Schmehl (2022) or Som-
merfeld et al. (2023).

In the middle panel of Fig. 5, we smoothed the 3 MW
power curve using non-linear regression with smoothing
splines, leading to cut-in and cut-out operating wind speeds
of 9.0 and 29.9 m s~ !, respectively. These values slightly dif-
fer from those in the study by Eijkelhof and Schmehl (2022),
which were based on 10 optimised flight paths. Notably, we
adopted a lower cut-in wind speed of 9ms~!, compared
to their 10ms~!. This distinction may be significant in the
North Sea, where median wind speeds at 250 m above the
surface typically range from 9 to 11ms~! (Cheynet et al.,
2024). The smoothed power curve for the 3 MW AWE sys-
tem does not account for negative power output at the low-
est wind speed of 8 m s~! because we assume that the AWE
system will not operate at such wind speeds. For the 100 kW
AWE system, we averaged two power curves computed at
200 and 300 m above the surface based on Ranneberg et al.
(2018), resulting in a cut-in wind speed of 2 m s~! a cut-out
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Figure 5. Power curves of the wind turbines investigated (a), the
3MW airborne wind energy system presented in Eijkelhof and
Schmehl (2022) (b), and power curves for the 100 kW AWES from
Ranneberg et al. (2018) with averaged operating value between 200
and 300 m (c).

wind speed of 20m s, and a rated wind speed of 7.5ms~!.

Unlike a wind turbine, the rated power in this curve decreases
with increasing wind speed due to power consumption dur-
ing the retraction phase (Eijkelhof and Schmehl, 2022). Note
that because the two power curves for the AWE systems dis-
play significantly different rated wind speeds, they lead to
large differences in capacity factors, which is discussed in
Sect. 4.

In this study, the wind speed values used for the power
curve of the AWE systems (Fig. 5) are based on the spatial
average of mean wind speeds recorded at altitudes between
200 and 500 m. A similar approach was adopted in Vos et al.
(2024) using a single height of 350 m above the surface. At
the complex-terrain site of Bjerkreim, however, the profiler
lidar’s maximum scanning height was 300 m, so measure-
ments in this case were limited to the 200-300 m range. The
choice of averaged wind speed values from altitudes between
200 and 500 m serves a dual-purpose. Firstly, these altitudes
align with the operational heights of large AWE systems (Ei-
jkelhof and Schmehl, 2022). Secondly, this selection facili-
tates the approximation of capacity factors for AWE systems,
avoiding the time-consuming task of calculating an optimal
flight path for each wind speed profile.

At each site, a reference capacity factor was calculated us-
ing lidar data. This reference was then compared to the ca-
pacity factors estimated from the wind atlases, providing a
measure of the accuracy of these models in capturing the
wind energy potential. The capacity factor (CF) represents
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the ratio of the expected output power to the maximum or
nominal power output Pnax. It can be calculated using time-
averaged power output as

P(1)

Pmax

CF

, (©))

where the overline denotes the temporal average, and Ppygax
is the nominal power output. If enough data are collected to
construct reliable probability density functions, the capacity
factor can be derived by integrating the product of the wind
speed’s probability density function fpar(1) and the power
curve P(u) across all possible operating wind speeds:

1
CF=

o0

/fpdf(u) - P(u)du. 3
Pmax
0

In this study, Eq. (2) was used for simplicity but also be-

cause some of the data collected were recorded over only
5 weeks, which may be insufficient to construct robust prob-
ability density functions as required by Eq. (3).

4 Results

This section presents the key findings from the comparison
between lidar wind speed measurements and model datasets.
The analysis includes the five sites, each representing dif-
ferent wind conditions. We first examine the collected wind
speed time series and their alignment with model predic-
tions. We then assess the performance of NORA3, ERAS,
and NEWA for each site using vertical profiles of error met-
rics and capacity factor estimates.

4.1 Error metrics across sites

Figure 6 presents the time series data collected from li-
dar measurements and model databases during distinct
campaigns at FINO1 (offshore, 2015-2016), FINO3 (oft-
shore, 2013-2014), Bjerkreim (complex terrain, 2010), Sola
(coastal terrain, 2013), and Lista (coastal terrain, 2020—
2021). Each time series corresponds to wind speed data col-
lected at the range gate closest to 200m. NEWA does not
cover the period of lidar data collection at Lista, limiting the
comparative analysis to NORA3 and ERAS. A qualitative
analysis of the time series shows that the agreement between
the lidar measurements and wind atlases is generally good,
with the best match observed at the offshore sites FINO1 and
FINO3 but also the coastal site Lista. At the coastal site Sola
and the complex-terrain site Bjerkreim, NORA3 seems to
perform better than NEWA and ERAS, partly because it was
specifically designed for applications in Northern Europe.
Figures 7 and 8 compare four error metrics describing
the discrepancies between measurements and modelled mean
wind speed data across the five sites at range gates closest to
150 and 300 m, respectively. These results complement the
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profiles shown in Fig. 9. Notably, the variability in these met-
rics across the models observed in Figs. 7 and 8 aligns with
trends at other altitudes, reinforcing the consistency of our
findings.

In terms of bias, ERAS5 tends to underperform in coastal
and complex terrains (Fig. 7 and 8 panels m and q), while
NORA3 consistently shows the lowest bias across all the
sites except at FINO1, where it is approximately 0.3 ms™!.
This differs from earlier studies, such as those by Solbrekke
et al. (2021), which reported a smaller bias with a value of
0.14ms™! at the same site. A similar bias of 0.11 ms~! was
obtained by Cheynet et al. (2022) for 2009 alone at 100 m.
The positive bias at FINOI1 represents an underestimation
of the wind speed by the wind atlases. This bias is also
found when replacing the lidar data with the cup anemometer
data at 100 m above sea level. This larger-than-expected bias
may be attributed to the local depletion of wind resources
caused by the construction of multiple wind farms around
the mast since 2009. This finding is consistent with the study
by Podein et al. (2022), which identified an increased wind
speed bias between modelled wind speeds and measurements
at FINOL1 after 2009, coinciding with the start of wind farm
development in the area.

In panels b and f of Figs. 7 and 8, NORA3 and ERAS
demonstrate good performance metrics for offshore sites,
achieving R? coefficients close to 0.9, consistent with find-
ings from Cheynet et al. (2022). In complex terrain, NORA3
surpasses NEWA and ERAS, providing the most accurate
wind speed estimates as indicated by the highest R? coef-
ficients, which range from 0.7 to 0.8 for NEWA and ERAS
(Figs. 7 and 8 panel j). NORA3 also provides, on average,
one of the lowest RMSE values across different types of ter-
rains. For the two offshore sites, ERA5 and NORA3 perform
nearly equally well in terms of RMSE (Figs. 7 and 8 pan-
els ¢ and g). Thus, NORA3’s performance is fairly consis-
tent across diverse topographies, whereas ERAS may be re-
liably applied at far offshore sites, particularly where region-
specific wind atlases are not available.

The fourth column of Figs. 7 and 8 displays the EMD.
Offshore, NEWA exhibits the lowest EMD at FINO1 and
the highest at FINO3 (panels d and h). Although NEWA was
specifically engineered with this error metric in mind (Hah-
mann et al., 2020), the inconsistent EMD values at these two
offshore sites may be attributed to the presence of multiple
offshore wind farms around FINO1 at the time of data col-
lection. At the coastal sites (Sola and Lista) and complex-
terrain site (Bjerkreim), NORA3 often achieves the lowest
EMD, underlining its potential in heterogeneous topogra-
phies (Figs. 7 and 8 panels 1, p, and t). As expected, ERAS
shows significantly higher EMD values than the other two
models onshore, which is attributable to its lower horizontal
spatial resolution.

The choice of the best model database is not straightfor-
ward as it depends on the specific error metrics and the lo-
cation being analysed (Figs. 7 and 8). Furthermore, these er-
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Rows represent sites, and columns represent error metrics.

ror metrics are influenced by the height at which measure-
ments are taken, further challenging the selection of an opti-
mal database for specific applications (Fig. 9).

Figure 9 displays the vertical profiles or bias, R? coeffi-
cient, RMSE, and EMD of the wind speed for the five sites

https://doi.org/10.5194/wes-10-733-2025

(FINOL1, FINO3, Sola, Bjerkreim, and Lista) using the three
model databases (NEWA, NORA3, and ERAS) at heights up
to 500 m. We remind the reader that the data collection was
limited to 300 m at the complex-terrain site Bjerkreim and
that data from NEWA were not available during the lidar

Wind Energ. Sci., 10, 733-754, 2025




744 E. Cheynet et al.: Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations

campaign at Lista. In most cases, the agreement between the
models and lidar measurements improves with height. How-
ever, this trend is not consistently observed at coastal and
complex-terrain sites, where deviations can occur, depend-
ing on the error metric and model database.

In Fig. 9, the bias profiles generally decrease with height
at all sites except Bjerkreim, where the results are more
nuanced (panel i); NORA3’s bias decreases significantly,
nearing zero at higher elevations, whereas NEWA’s bias in-
creases. In contrast, ERAS’s bias is strongly dependent on
height. For the R? and RMSE metrics, NORA3 and ERAS
demonstrate closely matched results at the offshore sites
FINOI1 and FINO3 across all heights, likely due to NORA3’s
utilisation of ERAS inputs as forcing. At the coastal site Sola,
NORA3 consistently outperforms NEWA and ERAS in R?
values at every height. In the complex terrain of Bjerkreim,
NORA3 generally exhibits the lowest RMSE. Meanwhile,
NEWA and ERAS show varying RMSE results based on
height, complicating the choice of the most appropriate wind
atlases. The analysis of EMD further challenges the selection
process. If the EMD is chosen as the preferred error metric,
ERAS emerges as an excellent option offshore, especially for
taller wind turbines with hub heights near 150 m. However,
in complex terrain such as Bjerkreim, ERAS performs worst,
probably due to its low horizontal spatial resolution. In these
areas, NEWA performs best below 100 m, but NORA3 out-
performs it at higher altitudes.

Figure 10 presents Taylor diagrams, which provide an
alternative indicator of the models’ performance with re-
spect to the lidar data. These diagrams visualise the stan-
dard deviation and correlation coefficient of modelled mean
wind speed data compared to measurements at the five sites.
In this figure, NORA3 typically shows the best agreement
with the measurements, as its marker is closest to the ref-
erence marker representing the observed data, particularly
in complex-terrain and coastal areas. However, ERA5 and
NORA3 perform nearly equally well offshore.

The selection of the most suitable wind atlas depends on
the topography, the measurement heights, and the desired er-
ror metrics. ERAS can be considered a versatile choice for
offshore wind energy applications, extending beyond Euro-
pean waters. NEWA may be appropriate when focusing on
specific error metrics like EMD, and NORA3 may deliver
consistently high performance at the Norwegian onshore and
offshore sites. It should also be noted that the variability in
model performance across the sites may partly be attributed
to the different lidar instruments. The DWL profiler deployed
in Bjerkreim in 2010 was a now-discontinued WindCube V1;
a scanning lidar WindCube 100S was used at the coastal site
Sola and the FINO1 platform, and a discontinued WindCube
WLS70 was deployed at the offshore site FINO3 and the
coastal site Lista. Furthermore, each lidar’s performance is
inherently unique due to the fine-tuning of the hardware dur-
ing the manufacturing and calibration process, the discus-
sion of which is outside the scope of this study. The dis-
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crepancy between the modelled wind speed data and lidar-
based measurements in the complex-terrain site Bjerkreim
or the coastal sites Sola and Lista is also influenced by the
higher occurrence of non-homogeneous flow fields at on-
shore sites compared to offshore, particularly within the first
300 m above the surface, which can exacerbate the measure-
ment uncertainties of lidar retrievals using DBS or velocity-
azimuth display scanning modes (Klaas-Witt and Emeis,
2022).

4.2 Capacity factor estimates

This section analyses the CFs of the turbine models and AWE
systems (Sect. 3.3) at the five sites. The estimates are de-
rived from time series of wind speed measured by lidars and
provided by the three wind atlases. Hereinafter, wind speeds
from both the lidar instruments and the wind atlases are in-
terpolated to the hub height of the wind turbines or spatially
averaged over the operational height of the airborne wind en-
ergy (AWE) systems, ranging from 200 to 300 m above the
surface (Fig. 5).

Each row of Fig. 11 represents a specific location, while
each column refers to a different turbine type. For the coastal
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Figure 11. Estimated capacity factors for different turbine models (NREL 5 MW, IEA 15 MW, and NREL 18 MW) at the five sites, using

lidar and three model datasets as wind inputs.

and complex-terrain sites, we calculated capacity factors for
turbines with larger nameplate capacities than typical on-
shore models. Also, the CFs presented are not indicative
of the sites’ climatology, as the measurement campaigns
were significantly shorter than the standard 30-year period.
Thus, the CF should serve solely for comparison between
the model and the measurement data and not for evaluating
the wind energy potential at these sites.

The offshore site FINO3 (Fig. 11 panels d, e, and f)
demonstrates the best agreement between model datasets and
lidar measurements in terms of CF. However, the NREL
5MW and the IEA 15 MW wind turbines exhibit substantial
differences in CF, largely due to variations in hub heights.
For the 15 MW wind turbines at FINO3, the estimated CFs
differ by a maximum of 0.03 between measurements and
ERAS. At FINO1 (Fig. 11 panels a, b, and c), the discrepan-
cies between the model and measurements are greater than
at FINO3, which might be due to the presence of wind farms
around the lidar.

At the coastal sites Sola and Lista (Fig. 11 panels j—o),
the NORA3 database provides nearly identical CFs to the li-
dar data. At Sola, ERAS significantly overestimates the CF
by about 40 % for the NREL 5 MW wind turbine and 38 %
for the IEA 15 MW wind turbine. In contrast, ERAS slightly
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underestimates the CF of all turbine models at Lista. The
NEWA hindcast also overestimates the CF at Sola but to a
lesser extent: about 16 % for the NREL 5 MW turbine and
14 % for the IEA 15 MW turbine.

At the complex-terrain site Bjerkreim (Fig. 11 panels g,
h, and i), the NORA3 and ERAS datasets slightly underes-
timate the CFs for the NREL 5 MW wind turbine. However,
NEWA provides CFs that are closest to those measured by
lidar. This finding is supported by Fig. 9, which indicates
that the EMD, a good metric for wind resource assessment,
is lower for NEWA than that for ERAS and NORA3 below
100 m at Bjerkreim.

Figure 12 shows the CFs for the 3 MW and 100 kW AWE
systems at the five sites of interest. Offshore, the CFs range
from 0.13 to 0.22 for the 3 MW system and from 0.66 to
0.71 for the 100 kW system. This significant difference arises
from the 100 kW system’s lower cut-in (2ms~!) and rated
(7ms~!) wind speeds compared to the 3 MW system’s cut-
in Oms~!) and rated (22ms~!) wind speeds. Trevisi et al.
(2021) used a less conservative power curve for a 3 MW
AWE system with a cut-in wind speed of 2ms~! and a rated
wind speed between 7 and 8 ms~!, which led to a CF of
0.64. Although the 3 MW system used in our study displays
a higher cut-out wind speed (30 ms~') than the 100 kW sys-
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Figure 12. Estimated capacity factors for the 3 MW (top panels) and the 100 kW (bottom panels) AWE system at the five sites, using lidar

and three wind atlases as wind inputs.

tem, it does not sufficiently compensate for the lower CF.
Therefore, the economic success of larger AWE systems may
depend on incorporating lower cut-in and rated wind speeds.

At the offshore sites FINO1 and FINO3 (Fig. 12 panels a,
b, f, and g), the CFs of AWE systems derived from wind
atlases and lidar datasets show similar values, whereas larger
differences emerge when using wind turbine data (Fig. 11).
The small CF discrepancies between simulated and lidar data
at FINO1 for AWE systems suggest that measurements at
higher altitudes effectively reduce the influence of wind farm
wake on wind flow. Figure 12 also implies that discrepancies
between measured and modelled wind speed in terms of CF
may decrease with increasing altitude.

For the coastal sites Sola and Lista (Fig. 12 panels d, e, i,
and j) and the complex-terrain site Bjerkreim (Fig. 12 pan-
els ¢ and h), the discrepancies in CF for the 3 MW AWE sys-
tem are also minor. This is likely because wind speeds below
9ms~!, which fall below the system’s cut-in speed, are not
included in the CF calculation. This avoids erroneous flow
modelling at moderate and low wind speeds, which some-
times reflect strongly stable atmospheric boundary layers that
are not always well captured by wind atlases (Holtslag et al.,
2013). Deviations between models and measurements are
also documented at wind speeds above 20m s, either near
the surface (Bentamy et al., 2021; Gandoin and Garza, 2024)
or within the first 100 m above the surface (Solbrekke et al.,
2021). Nevertheless, such deviations may have a limited im-
pact on the CF of wind energy systems with a relatively low
cut-out speed of around 20 to 25ms~!.

Although this subsection primarily examines the CF,
which is tied to the levelised cost of energy, it represents just
one of several metrics used to assess the performance of in-
termittent renewable energy systems (Simpson et al., 2020).
Alternative metrics, such as the Gini coefficient (Malz et al.,
2020) and the correlation coefficient between different re-
newable energy sources such as solar and wind (Malz et al.,
2020; Jurasz et al., 2020), also provide valuable insights into
the variability of power output in AWE systems and wind
turbines. However, examining the complementarity of AWE
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systems with other energy sources, such as wind and solar,
falls outside the scope of this study.

5 Discussions

This section explores the challenges and opportunities for
improving wind energy assessment for airborne wind energy
systems and large wind turbines with a nameplate capacity
of 15 MW or more. We first address the need for more capa-
ble wind profilers to meet the demands of larger turbines and
AWE systems. We then discuss the limitations of mesoscale
models in complex and coastal terrains and the potential ben-
efits of combining them with microscale models. These con-
siderations suggest some pathways for improving wind flow
simulations and instrument design in future research.

5.1 A need for more powerful wind profilers?

When commercial DWL profilers became available in the
2000s, wind turbines had a nominal capacity of about 5 MW,
with tip heights around 150 m. This made the typical pro-
filer lidar scanning range of 200—300 m sufficient at the time.
However, wind turbine sizes have grown significantly since
then. For instance, in 2024, Mingyang Smart Energy installed
a 20 MW turbine with a tip height potentially reaching 300 m
(Casey, 2024). This growth, coupled with the rising inter-
est in AWE systems operating at heights between 200 and
600 m, underlines the need for a new generation of DWL
instruments capable of reliably profiling winds up to 500 m
above the surface or even higher. While scanning lidars can
extend profiling range, they are often heavier, more expen-
sive, and less reliable, as they contain more moving parts and
are not specifically designed for wind profiling. Profiler li-
dars with a range exceeding 300 m remain uncommon among
commercial lidar producers. One notable exception is Halo
Photonics by Lumibird, which has developed the BEAM 6X
series, capable of measuring wind speeds up to 500 m (Halo
Photonics, 2024). To date, however, we could not find any
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studies that demonstrate the validity of measurements from
this lidar.

5.2 Mesoscale limitations and microscale needs

Wind simulations for wind energy applications are typically
performed using two types of models: mesoscale models,
which provide wind speed data over spatial scales ranging
from a few kilometres to hundreds of kilometres, and mi-
croscale models, which operate at smaller scales, from a few
metres to a few kilometres. While these models are comple-
mentary, microscale models are particularly useful in cap-
turing wind flow variability in complex terrain, where topo-
graphic features, infrastructure or wind farms significantly
influence wind conditions.

This study primarily focuses on mesoscale-derived wind
speed data, which can be limited in capturing fine-scale flow
features in complex terrains or near coastal sites. For off-
shore sites like FINO3, microscale effects are likely neg-
ligible. However, for coastal sites such as Sola and Lista,
and the complex terrain at Bjerkreim, microscale modelling
may improve the agreement between simulated and mea-
sured wind speeds. At Bjerkreim, computational fluid dy-
namics (CFD) models could help capture complex phenom-
ena, such as flow recirculation and detached downslope flow,
which are prevalent in mountainous terrain like southeastern
Norway. At FINO1, microscale flow simulations may also be
needed to model wake effects on wind speed measurements.
Future studies should investigate the benefits of coupling
mesoscale and microscale models to enhance performance
metrics at coastal and complex-terrain sites. The comparison
conducted in this study remains valuable because microscale
models, while potentially more precise than mesoscale mod-
els in complex terrain, depend on accurate initial and bound-
ary conditions that can be provided by the mesoscale models.

6 Conclusions

This study examines the capability of three wind atlases,
NORA3, NEWA, and ERAS, in modelling wind speed pro-
files up to 500 m above the surface for wind energy appli-
cations. Reference wind speed profiles were obtained from
Doppler wind lidar (DWL) measurements conducted at five
distinct sites in northern Europe. These sites encompass di-
verse topographies such as flat coastal terrain, mountain-
ous regions, and offshore environments. The study aims to
broaden the validation scope to altitudes critical for large
wind turbines and airborne wind energy (AWE) systems.
This study addresses a significant challenge in wind energy,
as there has been relatively limited investigation into tall
wind speed profiles using scanning DWL in profiler modes
for wind resource assessment at heights up to 500 m above
the surface.

The study found that the three wind atlases perform well
in offshore locations, with ERAS and NORA3 showing the
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closest correlation to lidar data. More specifically, NORA3
and ERAS5 perform almost equally well in terms of correla-
tion coefficient, root-mean-square error (RMSE), and Earth
mover’s distance (EMD). However, ERAS has a lower bias
above 200 m. Onshore, NORA3 outperforms ERAS and
NEWA at all heights for most error metrics. While the agree-
ment between the models and lidar measurements generally
improves with height, this trend is less consistent at coastal
and complex-terrain sites, where significant deviations occur,
especially for ERAS and NEWA.

In terms of wind turbine capacity factor (CF), all datasets
show good agreement with CF derived from lidar data off-
shore, particularly for the largest turbines. However, at the
FINOL site, the three models overestimate the CF, likely due
to local wind resource depletion from surrounding offshore
wind farms. In coastal terrain, NORA3 provides excellent CF
agreement with lidar data, NEWA performs reasonably well,
but ERAS overestimates the CF. In complex terrain, NEWA
and NORA3 both perform well, while ERAS substantially
underestimates the CF.

For AWE systems, the CF was fairly consistent across all
the wind atlases but showed considerable dependency on the
AWE design. Smaller AWE systems with lower cut-in and
rated wind speeds achieved higher CFs, whereas the larger
3MW AWE system considered in this study was penalised
by its high cut-in and rated wind speeds. Therefore, design-
ing larger AWE systems with lower cut-in wind speeds is
essential to reduce their levelised cost of energy. Finally, the
development of DWL technology must keep pace with the
growing size of wind turbines, requiring more powerful pro-
filers to avoid the increased costs associated with the deploy-
ment of scanning lidar instruments for tall wind profiles.

This study was based on relatively limited datasets: the
temporal coverage is insufficient to represent a full climatol-
ogy timescale, and the spatial coverage is restricted to a few
locations in Norway and the North Sea. Although the sites se-
lected in this study provide a diverse range of topographies,
having more locations from additional countries would en-
hance the robustness of the findings. Additionally, the wind
atlases have a limited temporal resolution of 30 to 60 min,
which may not adequately capture short-term variations in
wind speed profiles. Finally, it should be noted that wind
speed profiles established by DWLs are typically validated
against anemometers mounted on met masts. However, such
comparisons become impractical at altitudes above 200 m.
Consequently, the accuracy of wind speed profiles at these
heights, as measured by profiler lidar or scanning lidar in
profiler mode, requires further evaluation.

The general conclusion is that NORA3 excels onshore,
while ERAS, with its global coverage, performs equally
well offshore. Onshore data quality is slightly lower for all
datasets due to the complexity of wind patterns over land.
In particular, ERAS shows significant height-dependent er-
rors, possibly due to its lower spatial resolution compared
to NEWA and NORA3. These findings highlight the impor-

Wind Energ. Sci., 10, 733-754, 2025




748 E. Cheynet et al.: Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations

tance of selecting the appropriate wind atlas and error metrics
to improve wind resource assessment. This selection should
be tailored to the specific wind energy system, site, and op-
erating height.

Appendix A: Error metrics with non-linear wind
speed regression

A non-linear regression was also tested as an alternative to
interpolation for smoothing the vertical wind speed profiles
up to 500m for NEWA, NORA3, and ERAS. The regres-
sion relies on fitting a modification of the wind profile model
by Deaves and Harris (1982). This modified analytical func-
tion combines a classic logarithmic profile with a third-order
polynomial function and is expressed as

i(z) = 2 In (i> +p(2), with (A1)
K 20
p(D)=a1z+amz> + a3z, (A2)

where z is the height above the surface, x &~ 0.4 is the
von Karmdn constant, and z¢ is the roughness length. The
coefficients represented by a;, where i = {1,2,3}, are de-
termined empirically by a least-squares fit (Cheynet et al.,
2024). For the coastal and complex-terrain sites, the rough-
ness length is approximated by the values 0.01 and 0.1 m,
respectively, following the traditional roughness length clas-
sification onshore (Wieringa, 1980, 1986). These values are
realistic enough to ensure a reasonable fit in the lower part
of the ABL. Above the ocean, the roughness length is es-
timated using Charnock’s relationship (Charnock, 1955),
which quantifies the dependency of the roughness length on
the sea state:

a
20 = —u?, (A3)
g

where g =9.81 ms~2 is the gravitational acceleration, and
a ~0.014 is an empirical coefficient (Kraus and Businger,
1994). Equation (A3) is combined with the neutral logarith-
mic wind speed profile (Kaimal, 1994),

) = X (i> , (A4)
K 20
into a new equation:
al «ku(z,) i|2
200——|————| =0, (A5)
g [ln(zr/zo)

which is solved for z, = 10 m and provides an estimate of the
roughness length in the marine ABL.
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Figures Al and A2 present the wind speed error metrics
used to evaluate the performance of the wind atlases against
lidar measurements, both at the range gate nearest to 150 m
and across multiple heights up to 500m at the five investi-
gated sites. The non-linear regression produces smooth pro-
files of error metrics but does not necessarily minimise the er-
ror metrics themselves. Several thousand samples were used
to compute these ensemble-averaged error metrics, which
help smooth out potential discrepancies caused by linear in-
terpolation. Consequently, when sufficiently large datasets
are available, the linear interpolation of vertical wind speed
profiles at additional height levels yields reliable results and
was identified as the most robust approach in this study.
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Figure A1. Error metrics at the range gate closest to 150 m for measured and modelled mean wind speeds across five sites (FINO1, FINO3,
Sola, Bjerkreim, and Lista). Rows represent sites, and columns represent error metrics: bias, R2, RMSE, and EMD. Wind speed profiles were
aligned using non-linear regression instead of linear interpolation.
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