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Abstract. Power production of offshore wind farms depends on many parameters and is significantly affected
by wake losses. Due to the variability in wind power and its rapidly increasing share in the total energy mix,
accurate forecasting of the power production of a wind farm becomes increasingly important. This paper presents
a novel data-driven methodology to construct a fast and accurate wind farm power model. The deep learning
model is not limited to steady-state situations but captures the influence of temporal wind dynamics and the farm
power controller on the power production of the wind farm. With a multi-component pipeline, multiple weather
forecasts of meteorological forecast providers are incorporated to generate farm power forecasts over multiple
time horizons. Furthermore, in conjunction with a data-driven turbine power model, the wind farm model can also
be used to predict the wake power losses. The proposed methodology includes a quantification of the prediction
uncertainty, which is important for trading and power control applications. A key advantage of the data-driven
approach is the high prediction speed compared to physics-based methods, enabling its use in applications that
require forecasting multiple scenarios in real time. It is shown that the accuracy of the proposed power prediction
model is better than for some baseline machine learning models. The methodology is demonstrated for two large
real-world offshore wind farms located within the Belgian–Dutch wind farm cluster in the North Sea.

1 Introduction

Over the last decades, renewables have been expanding
quickly, but the global energy crisis has kicked them into
an new phase of even faster growth. Global wind capacity
is expected to almost double in the upcoming 5 years, with
offshore projects accounting for one-fifth of the growth (IEA,
2022).

Due to the rapidly increasing share of wind power in the
total energy mix and its variable and intermittent nature, ac-
curate forecasting of the power production of wind farms is
becoming increasingly important for wind farm operators,
balancing responsible parties (BRPs) and transmission sys-
tem operators (TSOs). In addition, as wind turbines and wind
farms are getting larger in scale, their influence on the wind

flow and the resulting wake effects is becoming more pro-
nounced.

The energy production of a wind farm is influenced by
many factors (Lee and Fields, 2021). First of all, the energy
production of an individual wind turbine depends on many
parameters. The type of the turbine (with its specific me-
chanical and electrical design and control systems) and the
wind speed are the most important parameters. Also wind
turbulence and air density have an important influence on the
power production. Furthermore, a turbine can be derated due
to technical reasons or be limited in power by a wind farm
power controller.

Secondly, the energy production of a wind farm can be
significantly reduced by wake losses. Wind turbines mod-
ify the airflow for downstream turbines, resulting in velocity
deficits and increased turbulence. Reduced velocity of the air
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results in power losses, whereas increased turbulence results
in a faster recovery of the velocity deficit (Sanderse et al.,
2011). The magnitude of wake losses depends mainly on the
layout of the wind farm (distance between the turbines, ori-
entation of turbine rows and length of the cross-section of
the farm) and the wind direction (Barthelmie et al., 2009) but
also on other parameters, such as the wind turbulence inten-
sity, atmospheric stability and surface roughness. The power
loss of a downstream turbine can reach 40 % in full-wake
conditions (Barthelmie et al., 2009). When averaged over
all different wind directions and wind speeds, annual power
losses of a complete farm due to wake can range between 5 %
and 20 %. Studies indicate that active wake control by apply-
ing yaw and/or induction control on the turbines may reduce
wake losses and hence increase the power production of the
farm (Boersma et al., 2017; Verstraeten et al., 2021). How-
ever, validation of the possible power gain under real-world
conditions in a wind farm is still an active field of research
(Bossanyi and Ruisi, 2021; Fleming et al., 2016, 2020).

Thirdly, the characteristics of the wind inflow into a wind
farm (wind speed, wind direction, turbulence intensity, air
density) are influenced by the environment surrounding the
wind farm. Upstream wind farms may cause a reduction in
the wind speed and an increase in the turbulence intensity
(Porté-Agel et al., 2020; Pettas et al., 2021). Wind blockage
by neighbouring farms and the wind farm itself may also re-
duce the inflow speed and deflect the inflow direction (Porté-
Agel et al., 2020; Bleeg et al., 2018; Strickland et al., 2022).
Also the proximity of coastlines can exert a significant in-
fluence on the wind characteristics, primarily attributable to
differences in roughness and heat capacity between sea and
land (Van Der Laan et al., 2017).

1.1 Wind and wake flow modelling

The modelling of wind and wake flows within wind farms
is challenging and has been an active field of research for
decades. In addition to affecting the power production, wake
turbulence also impacts the loading of the turbines (Nejad
et al., 2022). A wide range of different models have been de-
veloped. Based on the amount of detail they capture, they
can be classified into three classes: low-fidelity, medium-
fidelity and high-fidelity models. Each of these types of
models have some advantages and drawbacks. Low-fidelity
models describe only the dominant wake characteristics and
are mostly limited to steady-state simulations and homo-
geneous 2D wind inflows. These models are usually rela-
tively fast (on the order of seconds on a personal computer
(PC) for a steady-state simulation) but need tuning of some
hyper-parameters and have a lower accuracy (Jensen Park
model, Jensen, 1983; FLOw Redirection and Induction in
Steady State, FLORIS, NREL, 2025b; curled wake model,
Martínez-Tossas et al., 2019, 2021; and TurbOPark, Nygaard
et al., 2020). In recent years, some further developments have
made it possible to also model some heterogeneous and dy-

namic environmental conditions (e.g. FLORIDyn, Gebraad
and Van Wingerden, 2014; Becker et al., 2022; UFLORIS,
Foloppe et al., 2022). On the other side of the spectrum, high-
fidelity models, based on the 3D Navier–Stokes equations,
describe flows in high detail. Large-eddy simulations (LESs)
resolve these equations on a coarse mesh and approximate
smaller-scale eddies with subgrid models (Sanderse et al.,
2011). The main drawback of this type of model is the high
computing load (on the order of days on a computing clus-
ter). Some examples of high-fidelity simulators are SOWFA
(NREL, 2025c), PALM (University of Hannover, 2021) and
SP-Wind (Sood et al., 2022). Finally, medium-fidelity mod-
els (such as DWM, Larsen et al., 2007; FAST.Farm, NREL,
2025a; and WAKEFARM, Schepers, 1998) are based on sim-
plifications of the Navier–Stokes equations. Despite the sim-
plifications, the computing time for medium-fidelity mod-
els remains significant (on the order of minutes on a PC)
(Boersma et al., 2017).

In contrast to physics-based models, data-driven tech-
niques are not based on prior knowledge about the physical
behaviour of the turbines or the airflow. Instead, they focus
on fitting a general model with data. Recent developments
related to deep learning resulted in a significant leap forward
in the modelling of large and complex data sets (LeCun et al.,
2015).

Wind farm operators usually have huge amounts of his-
torical supervisory control and data acquisition (SCADA)
data acquired by the instrumentation on their turbines. These
data can be leveraged by machine learning techniques (Ver-
straeten et al., 2019). Taking advantage of this large amount
of detailed information, accurate models of the wind farm
and turbines can be built depending solely on this farm-
specific data and not on any other, often less specific or
less accurate, data sources such as theoretical turbine power
curves and weather forecast data.

Commercial weather forecast service providers (e.g. Stor-
mGeo; Koninklijk Meteorologisch Instituut van België,
KMI) nowadays provide weather forecasts for specific geo-
graphical locations. However, forecasts by distinct providers
can differ between each other significantly, as they can be
based on different weather models and data. In addition, al-
though they provide forecasts for a specific geographical lo-
cation such as the position of an offshore wind farm, they
typically do not take into account the influence of the imme-
diate surroundings of the wind farm, such as the presence of
neighbouring offshore wind farms and the influence of coast-
lines. Moreover, they may not be able to provide all weather
parameters that are required as inputs for an accurate wind
farm power model, and the provided variables may be cali-
brated differently than the instrumentation data used during
the training phase of the data-driven model.
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1.2 Problem statement

The problem statement that this paper addresses is construct-
ing a fast and accurate farm power forecasting model which
captures the temporal dynamics of the wind inflow as well as
the behaviour of the farm power controller. A deep learning
nowcasting power model is trained solely with SCADA data
from the wind farm itself. Therefore, this farm power model
is unique and independent of any weather forecast data. In a
multi-component pipeline, this single farm power model can
be interfaced with multiple weather forecast services (from
third-party providers) to forecast the wind farm power over
multiple time horizons. The proposed model is capable of
forecasting the farm power in a few milliseconds on PC, with
an accuracy that surpasses the accuracy of other state-of-the-
art data-driven models. This demonstrates that the proposed
farm power forecasting model can be used for applications
that require both simulation of the farm power controller and
fast power forecasting, such as, for example, in a reinforce-
ment control setting where fast evaluations of many possible
controller actions are required.

1.3 State of the art of data-driven wind power
forecasting

This work distinguishes itself from other publications about
data-driven wind power forecasting in several aspects.

In the literature, many models can be found for the power
prediction of an individual turbine (Perez-Sanjines et al.,
2022; Zehtabiyan-Rezaie et al., 2023; Ti et al., 2021; Kisvari
et al., 2021; Lin and Liu, 2020; Daenens et al., 2024)
(whether or not they were superposed afterwards onto a
farm). The model proposed in this paper predicts the power
of a complete wind farm as a whole, without the need for a
model for the individual turbines.

Whereas wind farm operators typically possess huge
amounts of SCADA data, due to confidentiality reasons, such
data are rarely accessible to the research community. Conse-
quently, in many publications about wind farm power and
wake modelling, simulation data are generated with physics-
based models (low-fidelity static model Floris, Yin and Zhao,
2019; Park and Park, 2019; mid-fidelity models, Zehtabiyan-
Rezaie et al., 2023; Ti et al., 2021), often only for relatively
small virtual wind farms and for a limited set of wind con-
ditions. In contrast, the data used in this paper are SCADA
data from two large real-world offshore wind farms.

Many data-driven models in the literature have only a lim-
ited set of input features (e.g. restricted to wind speed, Perez-
Sanjines et al., 2022; restricted to wind direction or historic
wind power series, Wang et al., 2017), whereas the wind farm
power model presented in this paper includes many more
input parameters, all having a direct physical influence on
the farm power (among others, air density, turbulence inten-
sity, wind direction variance, wind farm power set point and
power limitations due to technical reasons). It is shown that

adding these additional input parameters significantly im-
proves the accuracy of the model.

Data-driven wind farm power models found in the litera-
ture are often based on data with a relatively coarse time res-
olution (10 min or 1 h) (Liu et al., 2021; Kisvari et al., 2021;
Wang et al., 2021). However, in this work, the wind farm
power prediction model is trained with time series of 1 min
SCADA data in order to be able to capture the temporal dy-
namics of the inflow wind and the effect of set point changes
of the farm power controller (for which 1 min SCADA data
were available for this work). In particular, the influence of
inflow wind speed variations on the farm power production
is analysed in this work.

A multi-horizon data-driven wind power forecasting
method based on time series forecasting is proposed by
Pombo et al. (2021). This method results only in good pre-
dictions for short-time-horizon forecasting. In order to ob-
tain long-term multi-horizon forecasts, the multi-component
pipeline proposed in this work incorporates weather fore-
cast data for multiple time horizons as a separate component,
without modification of the nowcasting farm power model
trained solely with SCADA data from the wind farm. An-
other advantage of the multi-component pipeline is that the
sensitivity to multiple physical input features can be anal-
ysed. This is not possible for a model that consists of one
single black box. Sensitivity plots can be interpreted easily
by wind energy professionals and increase the interpretabil-
ity and explainability of the model.

In contrast to most other publications about farm power
forecasting, the methodology proposed in this paper also in-
cludes a quantification of the prediction uncertainty. Indeed,
not only is the accuracy of the model essential for trading
applications and to ensure reliable operation of wind farms
being safety-critical systems, but also insight into the uncer-
tainty in the power predictions is crucial (Meyers et al., 2022;
Braun et al., 2024).

In addition to farm power forecasting, in this work it
is demonstrated also how farm-internal and farm-external
power losses can be identified based on machine learning
(ML) models.

The paper is organized as follows. First, the modular data-
driven methodology is described in Sect. 2. Then, the results
of the methodology applied to two offshore wind farms are
presented and discussed in Sect. 3. Finally, the main conclu-
sions of the paper are summarized in Sect. 4.

2 Methodology

The proposed modular data-driven methodology is based on
data from multiple data sources and integrates several deep
learning models with each other. The used data are described
in Sect. 2.1, while the modular structure of the approach is
presented in Sect. 2.2. The machine learning models incorpo-
rated into the modular pipeline are detailed in Sect. 2.3. Sec-
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tion 2.4 explains how the farm-internal wake is quantified.
Finally, in Sect. 2.5, some baseline models are introduced to
benchmark the performance of the wind farm power model
proposed in this paper.

2.1 Data

The proposed data-driven approach is based on multiple data
sources: SCADA data from the wind turbines, from the wind
farm power controller and from a weather station located
in the wind farm, as well as weather forecasts from multi-
ple weather forecast providers. Typically, such data sources
have different time resolutions and accuracy levels. Measure-
ment data from local measurements are typically more accu-
rate than forecast data. Indeed, the accuracy of the former
depends solely on the accuracy of the measurement instru-
ments, whereas forecast data depend on large-scale models
and observations with a wide spacial grid that may be wider
than a complete wind farm. The time resolution of the data
sources used for the showcases in this paper are shown in
Table 1.

The optimal time resolution for a wind farm power model
depends, on the one hand, on the purpose of the model
(e.g. which effects are to be captured by the model) and, on
the other hand, may be limited by the available computing
hardware and required prediction speed. In order to capture
the dynamics of a varying wind propagating through the wind
farm, the time resolution of the model has to be sufficiently
shorter than the duration needed by the wind to cross the en-
tire wind farm. For example, for an offshore wind farm with
a cross-section length of 10 km, with wind speeds between
turbine cut-in and cut-out wind speeds of 4 and 30 m s−1, re-
spectively, this duration is between 6 and 42 min. So, for that
purpose, a sampling time of 1 min should be adequate. In ad-
dition, the farm power set point data available for this work
has a 1 min time resolution, and so set point changes of the
farm power controller can be captured as well.

In Sect. 2.1.1 to 2.1.4, each of the data sources used in the
proposed methodology is described in more detail.

2.1.1 Turbine SCADA data

The turbine SCADA data of the wind farms that are used
as showcases in this paper have a sampling time of 1 s. For
both farms, the data of the turbines comprise the following
measurements:

– wind speed (measured by an anemometer located on top
of the turbine nacelle),

– wind direction (measured by a wind vane located on top
of the turbine nacelle) and

– turbine active power (measured at the power terminals
of the turbine).

For one of the two farms, an additional data field is available
which expresses the maximum power that the turbine could
technically produce at a moment with sufficient wind:

– turbine active-power capability.

The maximum power can indeed be limited below the rated
turbine power due to a technical problem of the turbine or
by a curtailment imposed from externally (e.g. by the farm
power controller).

Based on the wind speed and direction measurement data,
two additional data features are built that can be used as mea-
sures for the wind turbulence, wind turbulence intensity τ
and wind direction variance φ, as

τ =
σ (v)
µ(v)

, (1)

φ = σ 2(θlat)+ σ 2(θlon), (2)

with σ (v) as the standard deviation of the wind speed; µ(v)
as the average wind speed; and σ 2(θlat) and σ 2(θlon) as the
variance of the lateral and longitudinal component of the
wind direction, respectively, each during the 10 min time in-
terval centred around the 1 s data point.

As the wind farm and the turbine power models proposed
in this paper have a temporal resolution of 1 min, each of the
above 1 s data feature sequences is averaged to 1 min data
blocks.

2.1.2 Wind farm data

Most of the farm data can be calculated by aggregating the
SCADA data from the individual turbines. The active power
produced by the farm is calculated as the sum of the individ-
ual turbine active powers. Similarly, the farm active-power
capability is calculated by summing up the power capability
of each of the turbines.

Simply adding or averaging the wind measurement data of
all individual turbines, however, would lead to a loss of infor-
mation about the spatial variation in these features through-
out the farm. Instead, the characteristics of the wind flowing
into the wind farm are used, measured by a subset of turbines
located in the upstream part of the farm. This also allows for
isolating farm-internal wake and farm-external wake in sepa-
rate ML models (the latter depending also on the operational
status of the neighbouring farms). The set of upstream tur-
bines is determined by the following algorithm for corrected
geographic sorting (see Fig. 1):

1. calculate wind vector W as the average of the wind
speeds and directions measured by all the turbines of
the farm;

2. based on the farm layout, determine the projection of
the position of each turbine on W ;

3. select all turbines that are located in the most upstream
zone of the farm with length D along W ;
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Table 1. Data sources.

Data source Time resolution

Turbine SCADA data 1 s
Wind farm power controller SCADA data 1 min
Weather station SCADA data 10 min
Weather forecast data from commercial providers 1 h

Figure 1. Determination of the upstream turbines of the wind farm
with turbines A1 to E7, for the case of an average wind W from
the north-northwest direction. Turbines A1 to A5 are located in the
most upstream zone of the farm with length D along W . As in this
example the minimal number of upstream turbines to be taken into
account (N ) equals 6; turbine B1 is added to the set of upstream tur-
bines. Finally, as in this example, the number of upstream turbines
with the highest wind speed to be taken into account (M) equals
4; the two turbines with the lowest wind speed are not taken into
account for determining the inflow wind characteristics. In this ex-
ample, these are turbines A3 (which appears to be in a fully waked
position from a turbine of a neighbouring wind farm) and B1 (which
is in a partially waked position from turbine A1).

4. if the number of selected turbines is smaller than mini-
mum number N , complete the set of turbines by adding
additional turbines in the order of their projected posi-
tion on W ; and

5. from the set of N turbines, select the subset of M tur-
bines with the highest wind speeds.

As a rule of thumb, an appropriate choice for parameterD
is a value slightly smaller than the distance between the outer
turbine rows of the farm. As a consequence, in the case that
the wind vector W is nearly perpendicular to a side of the
wind farm, all turbines in the upstream row will be selected
as upstream turbines, enabling the capture of possible differ-
ences in wind characteristics over the complete width of the
farm. In the case that the wind vector W is oriented towards

a corner of the farm layout, however, only one single or very
few turbines may be selected. Therefore, a minimum number
N of turbines is selected, with N being a value which should
be larger than 1 and smaller than the number of turbines in a
single row. Finally, in order to remove turbines that risk be-
ing located in a narrow waked position caused by a turbine
from the farm itself or from a neighbouring farm, only theM
turbines with the highest wind speeds are retained. The farm
inflow wind parameters (inflow wind speed, inflow wind di-
rection, inflow turbulence intensity and inflow wind direction
variance) are then calculated as averages of the correspond-
ing features from the selected individual upstream wind tur-
bines. The overall methodology presented in this paper can
also be applied with alternative algorithms for determining
the upstream turbines. There is, however, always a trade-off
between the responsiveness of the model on wind transients
and the average accuracy of the model, due to the spatial vari-
ation in the wind characteristics across the wind farm.

Note that the farm inflow wind characteristics, as deter-
mined by the above algorithm, are independent of the opera-
tional status of the wind farm and, in particular, of the control
actions of the farm power controller. This is not the case for
wind characteristics measured by turbines located in waked
conditions more downstream in the wind farm. This indepen-
dence makes it possible to map weather forecasts to the farm
inflow wind characteristics with models that are independent
of the wind farm operational status.

An additional farm parameter, having a major influence
on the farm power production, is the set point of the farm
power controller. Currently, for the majority of wind farms,
active farm power control is still rarely used. Some farms,
however, nowadays already use active farm power control in
order to perform power balancing (Kölle et al., 2022). Due to
the fast-growing share of wind energy in the energy mix, the
use of farm power control may become more predominant
in the near future. For the wind farms used as examples in
this paper, the farm power set point data have a 1 min time
resolution.

Finally, one additional wind farm feature is composed of
the turbine SCADA data: the number of stopped turbines. If
one or more turbines are stopped (e.g. for maintenance rea-
sons), the total power of the farm is reduced. On the other
hand, a turbine at standstill will not cause wake for other
downstream turbines. Depending on the available turbine
SCADA data of the farms, the feature “number of stopped
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turbines” is built by counting the number of turbines produc-
ing zero power (or even consuming power) or as the num-
ber of turbines with power capability equal to 0. Notice that,
based on this feature, the farm power model does not get the
information about which turbines specifically are at stand-
still, which may lead to some loss of accuracy in the model.
Indeed, for example, stopping a turbine in a waked position
may lead to less power reduction than stopping a turbine in
an upstream position with free wind inflow.

2.1.3 SCADA weather data

For the showcases in this paper, measurement data from a
weather station located in one of the wind farms are used.
The data set comprises the air temperature, humidity and
pressure. Based on these three measurements, the relative
air density is calculated. For the farms used as examples in
this paper, the available measurements are data averaged over
10 min intervals. In order to use the air density as input for
the 1 min farm and turbine power models, the data series is
interpolated to a 1 min data sequence.

2.1.4 Weather forecast data

For the showcases in this paper, wind speed and direction
forecasts have been used for the location of the wind farms
and for a height of 100 m (similar to the hub height of the tur-
bines). The forecasts are provided by a commercial weather
forecast provider and have a 1 h time resolution. Based on
the lead time of the forecasts, separate data sets have been
composed with intra-day forecasts, day-ahead forecasts (be-
fore 11:00 the day before energy production) and 3 d ahead
forecasts.

2.2 Multi-component pipeline

Figure 2 shows the overall modular structure of the method-
ology proposed in this paper, integrating the components de-
scribed in Sect. 2.3 and 2.4. Weather forecasts of weather
forecast providers are processed as forecasts of the wind in-
flow experienced by the farm. In doing so, phenomena such
as external wake, wind farm blockage, coastal effects and
other unknown systematic forecasting errors are accounted
for. Based on these corrected inflow wind speeds and direc-
tions, possibly unknown wind parameters are estimated us-
ing auxiliary models. With all the resulting input parameters,
the wind farm power is forecasted. Additionally, the power of
an individual turbine operating under identical environmental
conditions is forecasted. By subtracting the power forecast of
the wind farm from the power forecast of the individual tur-
bine multiplied by the number of turbines in the farm, the
wake loss within the wind farm can be quantified.

2.3 Machine learning models

In this section, all ML models are described which are part
of the modular deep learning pipeline (Sect. 2.2). The wind
farm power model, which is the core model of this work,
is detailed in Sect. 2.3.1. This model predicts the real-time
wind farm power production based on a set of wind in-
flow measurements and other farm-specific parameters. The
ML model for predicting the real-time power of an individ-
ual wind turbine is presented in Sect. 2.3.2. The models for
converting weather forecasts into accurate forecasts of the
wind inflow conditions experienced by the wind farm are de-
tailed in Sect. 2.3.3. Lastly, the auxiliary models used to esti-
mate missing input parameters for the wind farm and turbine
power models are discussed in Sect. 2.3.4.

2.3.1 Wind farm power ML model

The core ML model proposed in this paper predicts the wind
farm power based solely on measurement data from conven-
tional turbine instrumentation. This type of data is usually
available to any wind farm operator. Each of the input fea-
tures of the model has a direct (physical) influence on the
power production of the wind farm.

As it typically takes between several minutes and half an
hour for the wind to cross a complete wind farm (depend-
ing on the wind speed and size of the farm), the wind and
wake characteristics at time ti across the farm depend not
only on the wind inflow at time ti but also on the evolution
of the wind inflow between ti and ti − T (with T = 30 min).
Also control actions from the farm power controller and the
number of stopped turbines in the past may have an influ-
ence on the spatial wind and wake profile across the farm. In
contrast, some input parameters have an immediate discon-
tinuous impact on the farm power production, independent of
their historical values. For example, a farm power controller
can quasi-instantaneously (i.e. with a response time smaller
than or similar to one 1 min time step) reduce the power of
all turbines across the wind farm. Therefore, the proposed
model is composed of two separate parts. For each input pa-
rameter that influences the wind and wake profile across the
farm in a continuous way, a sequence of historic values is
passed to a convolution branch. The outputs of these con-
volution branches are then passed to a feed-forward neural
network, together with the input parameters that have (only)
an immediate impact on the wind farm power production.

The structure of the proposed farm power model is shown
in Fig. 3.K separate convolution branches consist of two 1D
convolutional layers. The outputs of these K branches are
passed, together with L additional input features, through
a flattening and dropout layer, to a feed-forward regression
neural network composed of three dense layers, each fol-
lowed by a dropout layer. Each convolution layer has eight
convolution filters (c1 = c2 = 8) with a kernel size of 3, a
stride of 1 and no padding. The fully connected dense layers
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Figure 2. Overview of the modular structure of the multi-component pipeline with multiple ML models.

have 128 (n1), 256 (n2) and 256 (n3) units with a rectified
linear (ReLU) activation function, respectively.

A feed-forward neural network is one of the simplest types
of artificial neural networks, where the information flow is in
one direction, from the input layer, passing through the hid-
den layers to the output layer. A dense layer is a fully con-
nected layer where every neuron in the layer is connected
to every neuron in the previous layer. A convolution layer
involves the sliding of filters over the input data. A filter is
a small matrix with learnable parameters. In the proposed
model, each filter, with a dimension of 1× 3 (kernel size),
slides with a step of 1 (stride step) over the input time se-
quences and can detect specific patterns in these sequences
that are significant for the farm power production. A flatten-
ing layer is a layer which transforms a multi-dimensional ar-
ray into a 1D array. A dropout layer is a layer in which ran-
domly a fraction of the neurons outputs are set to 0 during
training, and so effectively neurons drop out of the network.
This prevents the network from becoming overly reliant on
specific neurons, which reduces overfitting and improves the
robustness of the model. A rectified linear activation function
is one of the most widely used activation functions in neural
networks, which introduces non-linearity in the network to
allow the model to learn complex patterns.

Time sequences from ti to ti−T of the following K input
parameters (based on SCADA data) are passed to theK con-
volution branches:

– farm inflow wind speed,

– lateral component of the farm inflow wind direction,

– longitudinal component of the farm inflow wind direc-
tion,

– farm inflow turbulence intensity (Eq. 1),

– farm inflow wind direction variance (Eq. 2),

– air density,

– set point of the farm power controller (if available in the
data set),

– number of stopped turbines and

– active-power capability of the farm (if available in the
data set).

In parallel, the values at ti of the following L input parame-
ters are passed directly to the feed-forward component of the
neural network:

– set point of the farm controller (if available in the data
set),

– number of stopped turbines and

– active-power capability of the farm (if available in the
data set).

Notice that the lateral and longitudinal components of the
wind direction are used as inputs, instead of the wind direc-
tion itself (expressed in degrees). This is done to guarantee
continuity in the data for the wind direction 360° (0°).

The dropout layers in the neural network model allow for
not only predicting the expected power production of the
wind farm but also quantifying the uncertainty in that pre-
diction. The method applied in this paper is referred to as
Monte Carlo dropout (Gal and Ghahramani, 2016). This is
an epistemic method as it quantifies the uncertainty arising
from the model architecture and the amount of data.

Instead of generating one single prediction of the farm
power for time step ti , N ′ different power predictions P̂ ni are
generated using the model with active dropout layers (in the
same way as during the training phase of the model). The
power prediction P̂i is then calculated as the average of these
N ′ different power predictions. In addition, also the variance
of these N ′ power forecasts σ 2

P̂i
can be determined, as well
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Figure 3. Structure of the proposed deep learning farm power model. K separate convolution branches consist of two 1D convolutional
layers. The outputs of these K branches are passed, together with L additional input features, through a flattening and dropout layer, to a
three-layer regression model that is composed of three dense layers, each followed by a dropout layer.

as an arbitrary set of percentiles and thus confidence intervals
[P̂i −αi, P̂i +βi].

Unfortunately, the Monte Carlo dropout method is prone
to miscalibration; i.e. the predictive uncertainty does not cor-
respond well to the model error. Therefore, a method referred
to as sigma scaling is applied, jointly calibrating the epis-
temic uncertainty from the model and the aleatoric uncer-
tainty from the data (e.g. due to sensor noise) (Laves et al.,
2020). For each time step ti of the test data set, the following
ratio is calculated:

q2
i =

(P̂i −Pi)2

σ 2
P̂i

, (3)

with Pi as the true farm power at time step ti . According to
Eq. (3), q2

i is thus the ratio of the prediction squared error of
the model for time step ti and the variance calculated with
the Monte Carlo dropout method for that time step. Analy-
sis of the results for the wind farms used as example in this
paper shows that the prediction errors P̂i −Pi and ratios q2

i

depend mainly on the wind speed and the set point of the
farm power controller. This could be expected, as for low
wind speeds and for high wind speeds above the rated tur-
bine wind speed, the power curve of the turbines is relatively
flat. In contrast, for wind speeds slightly below the rated wind
speed, the power curve of the turbines is the steepest. There-
fore, a calibration function q2(v,s) is established, with the
wind speed v and the set point of the farm power controller
s. This is done by mapping a simple feed-forward neural net-
work (with two hidden dense layers with 256 units) to the
complete test data set. With this calibration function, the vari-
ance predicted with the Monte Carlo dropout method σ 2

P̂i
is

re-calibrated as

σ̂ 2
Pi
= σ 2

P̂i
× q2(vi, si). (4)

Similarly, the confidence intervals generated with the Monte
Carlo dropout method are re-scaled as

[P̂i − α̂i, P̂i + β̂i] = [P̂i −αi × q(vi, si), P̂i +βi
× q(vi, si)]. (5)

2.3.2 Turbine ML model

Based on the same data set as that used for the farm power
model, a turbine power model is also built. This turbine
model has thus also a 1 min time resolution. However, in or-
der to model a healthy turbine without any technical deration,
a reduced power mode or curtailment by its power controller,
all data points with a reduced power capability and/or curtail-
ment are removed from the training data set.

In contrast to a wind farm, the power production of a sin-
gle turbine does not depend on the wind speed from multiple
antecedent 1 min time steps. Indeed, the response time of a
single wind turbine, which is determined predominately by
the inertia of its rotor, is significantly faster. Furthermore,
the wind direction has no direct influence on the power of
a turbine, as long as the yaw control system orientates the
turbine perpendicular to the incoming wind direction (for the
wind farms used as examples in this paper no wake steering
is done by applying yaw control).

As input data features, wind speed, turbulence intensity
(Eq. 1), wind direction variance (Eq. 2) and air density
are used. The turbine power is modelled by a simple feed-
forward neural network, composed of three fully connected
dense layers, each with 128 units with a rectified linear acti-
vation function.
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2.3.3 ML models for mapping weather forecasts

Commercial weather forecast services nowadays provide
weather forecasts for specific geographical locations, such as
the position of a wind farm. Forecasts of different providers
can differ due to the use of different weather models or data.
Usually, wind speed and wind direction forecasts do not take
into account the presence of neighbouring wind farms or
coastlines. Furthermore, the forecasts may not have exactly
the same calibration as the instrumentation that has been used
to train the wind farm power model.

Therefore, the weather forecasts should be mapped to the
real weather conditions experienced by the wind farm. The
appropriate data-driven models for such mappings will de-
pend on the available data sources from weather forecast
providers. For the showcases in this paper, the wind speed
forecasts are mapped to the measured farm inflow wind
speeds and the wind direction forecasts are mapped to the
measured farm inflow wind directions.

The structure of the ML model that is used for the wind
speed mapping is shown in Fig. 4 (left). It is a feed-forward
regression neural network with three hidden dense layers,
each followed by a dropout layer. The dense layers consist
of 16 (n1), 32 (n2) and 32 (n3) units with a ReLU activa-
tion function, respectively. As the time step of the weather
forecasts available for this work are rather course (1 h time
step), in a pre-processing step, the 1 h wind speed forecast
data are first interpolated to wind speed forecast data ṽt with
a 10 min time step. In order to provide the mapping model
the possibility of capturing the possible influence of wind
speed variations, not only the wind speed forecast of the spe-
cific 10 min time step ṽt but also the wind speed forecasts
of the two preceding and the two following 10 min times
steps (ṽt−2, ṽt−1, ṽt+1, ṽt+2) are used as an input feature. As
an output feature, the average inflow wind speed vt for the
10 min time step is used.

The structure of the ML model used for the mapping of
the wind direction forecasts is the same as for the wind speed
forecasts. The only differences are the input and output fea-
tures, which are the cosine and sine of the forecasted and
measured wind directions, cos θ̂t , sin θ̂t , cosθt and sinθt , re-
spectively. The structure of the ML model is shown in Fig. 4
(right).

2.3.4 Auxiliary ML models for missing input parameters

The farm power model (as specified in Sect. 2.3.1) has many
input parameters related to the inflow wind. Sometimes the
value of some of these wind characteristics is not known, at
least not accurately. For example, weather forecast providers
usually do not provide accurate information about the wind
turbulence when also taking the presence of neighbouring
wind farms into account. In such a case, one could decide
to use a single average value for these parameters. However,
the turbulence intensity, wind direction variance, air density

and the number of stopped turbines depend all more or less
on the wind speed and wind direction. Therefore, for each
of these four parameters a model is built to predict its value
based on the wind speed and wind direction. These auxiliary
models may be specific for a particular wind farm and are not
the focus of this paper.

2.4 Farm-internal wake loss

The proposed modular approach also allows for predicting
the power losses in the wind farm due to internal wake (see
Fig. 2). The power loss in a wind farm with J wind turbines
due to internal wake can be calculated as

Pwake =

J∑
j=1

PWT
j
−P, (6)

with PWT
j as the power production of wind turbine j sub-

jected to wind with the same characteristics as the inflow
wind of the farm and P as the farm power. In the case of
J identical turbines, the farm power loss due to wake can be
simplified as

Pwake = J ×PWT−P, (7)

where PWT = PWT
j ,∀j. (8)

Consequently, the wake loss can be modelled using the wind
farm power model (as proposed in Sect. 2.3.1) and the model
for a single turbine (Sect. 2.3.2):

Pwake(v,θ ,τ ,φ,ρ)= J ×PWT(v,τ,φ,ρ)

−P (v,θ ,τ ,φ,ρ), (9)

with v, θ , τ , φ and ρ, respectively, as the farm inflow wind
speed, wind direction, turbulence intensity, wind direction
variance and air density. Notice that for the farm power
model, and thus also for the wake model, these wind param-
eters are 30 min time sequences.

2.5 Baseline models

In order to demonstrate the influence of some key implemen-
tation choices of the wind farm power model (Sect. 2.3.1), its
performance metrics are compared with those of two baseline
models that do not comprise these implementation choices.

The first baseline model is a feed-forward neural net-
work model with three hidden dense layers, which is a sub-
component of the proposed wind farm power model. This
baseline model, however, does not comprise any convolution
layer and takes only the wind speed and the sine and cosine
of the wind direction at time step t0 as input features. Conse-
quently, this model has no information about the preceding
30 min and, by consequence, no information about the vari-
ability in the wind parameters. Furthermore, this model has
no knowledge about the other measurement data, such as the
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Figure 4. Structure of the deep learning models used to map wind speed forecasts to measured inflow wind speeds (a) and wind direction
forecasts to measured inflow wind directions (b).

air density, turbulence intensity and wind direction variation,
nor about the farm power controller and the number of tur-
bines at standstill.

The second baseline model is identical to the proposed
wind farm power model, with the exception that it does not
comprise any convolution layer. This baseline model has the
same set of input features as the wind farm power model, but,
similar to the other baseline model, it does not have informa-
tion about the variability in the wind parameters.

3 Results

The methodology as described in Sect. 2 has been applied
to two offshore wind farms located in the Belgian–Dutch
wind farm cluster in the North Sea (see Fig. 5). This clus-
ter comprises 13 wind farms. It is located at a distance of 20
to 60 km from the Belgian and Dutch coastline. For confiden-
tiality reasons, the two wind farms are denoted in this paper
as Wind Farm 1 and Wind Farm 2. The two farms are oper-
ated by different farm operators and have a different type of
wind turbine. The main characteristics of the two farms and
the complete wind farm cluster are listed in Table 2. All pre-
sented results involving farm power and turbine power are
normalized with the installed capacity of the wind farm and
the rated turbine power, respectively.

The results are grouped into the following three sections.
In Sect. 3.1, results are presented as being related to the core
wind farm power prediction model of each of the two wind
farms. Section 3.2 focuses on the estimation of farm-internal
wake. Finally, in Sect. 3.3, some results are shown as being
related to the integration of weather forecasts.

3.1 Wind farm power model

3.1.1 Data

For both Wind Farm 1 and Wind Farm 2, weather and turbine
data were available for a period of about 2.5 years. Table 3
shows the number of 1 min data points resulting from the pre-
processing of the SCADA data, which were split into distinct
training, test and validation data sets.

For splitting the available data into three independent data
sets, the following steps have been applied. First, a long
time sequence of consecutive days is selected as the valida-
tion data set. Thereafter, in order to guarantee that the test
and training data sets are sufficiently independent and, at the
same time, are both representative of all seasons, hours of
the day and days of the week, the test data set is established
by selecting all data from some days of the month from the
remaining data. More specifically, the test data set comprises
the data from days 2, 3, 4, 16, 17, 18 and 28 of each month.

Figures 6 and 7 show the wind roses for the inflow wind of
Wind Farm 1 and Wind Farm 2, respectively. South-southeast
is the predominant wind direction with also the highest wind
speeds. Although the two wind farms are located close to
each other in the same wind farm cluster, the wind conditions
experienced by the two wind farms are different.

The data plots in Figs. 8, 10 and 12 illustrate the depen-
dency of the farm power on the wind turbulence intensity,
wind direction variance and air density, respectively. Higher
wind turbulence results in higher farm power, as higher tur-
bulence facilitates the wake recovery, thus reducing the pos-
sible power loss for downstream turbines. Higher air density
also results in an increase in the turbine power because the
mass, and thus kinetic energy, of the moving air is higher.

The polar data plots in Figs. 9, 11 and 13 give an indication
of the correlation between turbulence intensity, wind direc-
tion variance and air density with the inflow wind speed and
wind direction, respectively. In the northwest and southeast
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Figure 5. Position of the Belgian–Dutch offshore wind farm cluster in the North Sea (© Google Maps).

Table 2. Main characteristics of the Belgian–Dutch offshore wind farm cluster and the two wind farms used as examples in this paper.

Number of turbines Installed capacity [MW] Acreage [km2]

Belgian–Dutch wind farm cluster 572 3764 608
Wind Farm 1 ≥40 ≥300 ≥40
Wind Farm 2 ≥30 ≥200 ≥20

Table 3. Number of data points used for training, testing and vali-
dating the two wind farm power models.

Data set Wind Farm 1 Wind Farm 2

Training 960 695 978 008
Test 292 996 292 078
Validation 15 810 15 810

wind directions, Wind Farm 2 has neighbouring wind farms
with densely positioned turbines in its immediate vicinity,
resulting in a high turbulence intensity for these wind di-
rections. Also in the northeast direction, Wind Farm 2 has a
neighbouring wind farm. However, that wind farm is located
further away and its turbines are positioned less densely. It
can also be seen that the wind turbulence is lower for high
wind speeds than for slow speeds. Furthermore, it can be
seen that the southwest direction is the wind direction with
the highest wind speeds. In that direction, the wind is com-
ing from over sea parallel to the coastline, through the narrow
Strait of Dover, which has high cliffs. It can also be seen that

wind parallel to the coastline typically has a lower air density
compared to the orthogonal directions from and to the main-
land. This corresponds to the fact that humid air has a lower
air density than dry air.

When comparing Figs. 8 and 12 from Wind Farm 2 and
Wind Farm 1, respectively, it can be seen that Wind Farm 2
has markedly more data points with a reduced power. This
is due to the power controller of the wind farm which, in
some circumstances, regulates the farm power in a continu-
ous manner. In contrast, for Wind Farm 1, there appear to be
farm curtailments to a few specific discrete power set points
(such as ∼ 60 % of the maximum farm power). Furthermore,
it can also be seen that for Wind Farm 1 the total installed tur-
bine capacity is never reached. This is due to the farm power
controller, which limits the maximum producible power of
the farm.

3.1.2 Hyper-parameters

Table 4 shows the parameters used to determine the set of
upstream turbines according to the algorithm described in
Sect. 2.1.2. Wind Farm 1 comprises more turbines than Wind
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Figure 6. Wind rose for Wind Farm 1.

Table 4. Parameters used for the selection of the upstream turbines.

Parameter Wind Farm 1 Wind Farm 2

D 1000 m 500 m
N 12 6
M 10 4

Farm 2 (parameter N ), and these are positioned more widely
apart (parameter D).

The hyper-parameters of the wind farm power ML model
(Sect. 2.3.1) and of the wind forecast mapping ML models
(Sect. 2.3.3) are documented in Appendix A.

3.1.3 Performance metrics

In Table 5, some performance metrics (Piotrowski et al.,
2022) of the farm power models for Wind Farm 1 and Wind
Farm 2 are listed: the root mean square error normalized
on the installed power capacity of the wind farm (nRMSE),

Table 5. Performance metrics of the power models for Wind Farm 1
and Wind Farm 2.

Wind Farm 1 Wind Farm 2
Training Test Training Test

nMAE 2.22 % 2.42 % 2.15 % 2.14 %
nME −0.05 % −0.17 % −0.11 % −0.10 %
nRMSE 4.02 % 4.21 % 3.69 % 3.66 %
R2 score 0.99 0.99 0.99 0.99

the normalized mean absolute error (nMAE), the normalized
mean error (nME) and the R2 score, for both the training and
test data set. The nME for each of the farms is near to 0 %,
and the nMAE is 2.42 % and 2.14 % for the test data sets of
Wind Farm 1 and Wind Farm 2, respectively. The differences
between the performance metrics of the training and test data
sets are very small, which is a sign for a satisfactory fit (little
overfitting).

In Table 6, as a comparison basis, the corresponding per-
formance metrics are shown for the two baseline models de-
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Figure 7. Wind rose for Wind Farm 2.

scribed in Sect. 2.5. FNN(v0,θ0) (feed-forward neural net-
work) denotes the first baseline model, which has only the
inflow wind speed v0 and the sine and cosine of the inflow
wind direction θ0 at time step t0 as input features. FNN(all in-
put features at t0) denotes the second baseline model, which
equals the proposed wind farm power model but without con-
volution layers. It has the same set of input features but only
for time step t0. Comparing the performance metrics of the
wind farm power model proposed in this work (Table 5) with
those of the two baselines models (Table 6), one can see, for
example, that for the test data the nMAE is reduced by about
47 % and 18 %, respectively (for both wind farms). Thus,
both the usage of additional input parameters (among oth-
ers, turbulence intensity, air density and the set point of farm
power controllers) and information from the preceding time
period (30 min) improve the performance of the farm power
model significantly. Note that none of the baseline models
can capture the dynamics caused by variable wind inflow.

Figures 14 and 15 give some insight into the prediction
error for individual test data points. It can be seen that the
prediction error is the smallest for conditions where the farm

power is close to 0 % or 100 % of the installed capacity. In-
deed, these regions comprise many data points with wind
speeds below the turbine cut-in wind speed and wind speeds
above the rated turbine wind speed, where the power curve
of the turbines is relatively flat, respectively.

3.1.4 Validation time sequence

Figure 16 shows the predicted and true farm power for a 60 h
time sequence of validation data for Wind Farm 1, as well as
the predicted confidence intervals. The confidence intervals
are the smallest for high wind speeds resulting in maximum
farm power and for low wind speeds with a farm power close
to 0 MW. The uncertainty appears to be the highest when
the farm power is fluctuating and peaking heavily. In con-
trast, for long continuous power increases or decreases, the
predicted uncertainty in the model appears to be relatively
low. For this time sequence, 69.0 % of the 1 min true farm
power data points lay within the 68.3 % confidence interval
and 97.5 % of the data points lay within the 95 % confidence
interval (when ignoring the true farm data points at maximum
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Figure 8. Farm power as a function of inflow wind speed and wind turbulence intensity and the frequency distribution of turbulence intensity
(Wind Farm 2).

Table 6. Performance metrics for two baseline deep learning power models for both Wind Farm 1 and Wind Farm 2.

FNN(v0, θ0) FNN(all input features at t0)

Wind Farm 1 Wind Farm 2 Wind Farm 1 Wind Farm 2

Training Test Training Test Training Test Training Test

nMAE 4.16 % 4.58 % 4.48 % 4.06 % 2.38 % 2.94 % 2.54 % 2.59 %
nME 0.95 % 1.04 % 1.48 % 1.14 % 0.06 % −0.07 % −0.04 % 0.00 %
nRMSE 7.84 % 8.58 % 9.57 % 8.45 % 4.36 % 5.19 % 4.43 % 4.54 %
R2 score 0.95 0.94 0.92 0.94 0.99 0.98 0.98 0.98

and zero farm power, where the absolute prediction error is
negligible).

Figure 17 shows the predicted and true farm power for a
time sequence of test data during which the farm power con-
troller of Wind Farm 2 is actively curtailing the farm power
(i.e. the set point of the power controller is smaller than
100 %). The uncertainty in the model appears to be very low
when the wind speed is largely sufficient to attain the power
set point.

3.1.5 Sensitivity analysis

Figures 18 to 23 illustrate the sensitivity of the farm power
curve generated by the farm power model for each of the in-

put parameters. In each of the plots, the farm power is shown
as a function of the wind speed. The other input parame-
ters are predicted by the corresponding auxiliary models (see
Sect. 2.3.4) based on the wind speed and a specific wind di-
rection. One single input parameter is then adapted slightly
in order to analyse the resulting impact on the predicted farm
power. Each simulation is a steady-state simulation; i.e. the
value of each of the input parameter sequences is constant in
time.

Figures 18 to 20 show that the models predict a higher
farm power for an increased turbulence intensity, wind di-
rection variance and air density, respectively. This confirms
what can be seen in Figs. 8, 10 and 12. Figure 21 shows the
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Figure 9. Inflow turbulence intensity as a function of wind speed and wind direction (Wind Farm 2).

predicted power for Wind Farm 1 for two different wind di-
rections. The produced power for a wind direction of 240°
is lower than for a wind direction of 180°. This difference is
due to farm-internal wake (see also Sect. 3.2). Indeed, a wind
direction of 240° is parallel to a long cross-section of Wind
Farm 1. In contrast, a wind direction of 180° is slightly off
the short cross-section of the wind farm. For this wind di-
rection, the internal wake is thus minimal. Figure 22 shows
the predicted power reduction for Wind Farm 2 when one
and two turbines, respectively, are stopped. As mentioned in
Sect. 3.1.1, the maximum power of this wind farm is limited
by its farm controller. As can be seen in Fig. 22, at high wind
speeds this maximum power limit can almost be reached with
one turbine at standstill. Figure 23 shows the farm power for
Wind Farm 2 in the case that the set point of the farm power
controller equals 30 %, for the wind directions of 325° and
260°. For low wind speeds, the farm power for a wind di-
rection of 260° is lower than for one of 325° because of the
higher farm-internal wake.

3.1.6 Farm power dynamics

All power predictions presented in Sect. 3.1.5 are for steady-
state conditions; i.e. all input parameters of the model are
constant, at least during the last thirty-one 1 min time steps
ti ∈ [t0, t−1, . . ., t−30], which are input features of the farm

power prediction model. As explained in Sect. 2.3.1, the
structure of the neural network of the farm model has been
chosen specifically to be able to capture temporal variations
in the inflow wind characteristics. In this section, the farm
power is predicted for wind speeds that fluctuate over time.
The objective is twofold: firstly, to assess the ability of the
model to predict consistent and physically meaningful re-
sults under these dynamic conditions and, secondly, to gain
insights into how wind speed variations impact farm power
production, which cannot be modelled by traditional steady-
state power models. Two types of wind speed variations are
tested: linear wind speed ramps and sinusoidal varying wind
speeds with different frequencies.

Figure 24 shows power predictions for Wind Farm 1 for
the same wind directions as shown in Fig. 21 (i.e. 150 and
240°). However, in addition to the two power curves for con-
stant wind speeds (vi = v0 for ti ∈ [t0, t−1, . . ., t−30]), power
predictions are shown for the cases with a linear wind speed
increase and decrease with a change rate of 0.05 m s−1 min−1

(i.e. vi = vi−1+ 0.05 m s−1 and vi = vi−1− 0.05 m s−1, re-
spectively). It can be seen that in the case of increasing wind
speed (dashed lines), the predicted farm power is lower. In
contrast, for decreasing wind speed (dotted lines), the pre-
dicted power is higher. Indeed, if at the inflow side of the
wind farm the wind speed is increasing, in the downstream in
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Figure 10. Inflow wind direction variance as a function of wind speed and wind direction and the frequency distribution of wind direction
variance (Wind Farm 2).

the wind farm the wind speed is still lower than at the inflow
side, resulting in a lower total farm power. As can be seen on
this plot as well, this effect is larger for a wind direction of
240° (blue arrows) than for a wind direction of 180° (orange
arrows). This is because the cross-section of the wind farm
with a wind direction of 240° is longer than that with a wind
direction of 180°. Consequently, changed wind speeds need
more time to reach the downstream turbines. In addition, on
the plot it can be seen that there is a hysteresis for the startup
and shutdown of the turbines around the cut-in wind speed.
Note that for static wind farm power models, in Fig. 24, all
curves for a wind direction of 150° would be identical and all
curves for a wind direction of 240° would be identical.

Figure 25 shows the frequency response of the power
model for Wind Farm 2. The inflow wind speed is sim-
ulated as a constant average speed V superposed with a
sinusoidal component with an amplitude of 1 m s−1 (vi =
V + sin( 2π

T
× ti)). Simulations were run for a period T

of the sinusoidal component equal to 2 to 120 min (T =
2,4,8,12,16,20, . . .,120 min). This has been done for dif-
ferent average wind speeds (V = 14, 11 and 8 m s−1) and
wind directions (260 and 325°). The curves show the aver-
age, maximum and minimum values of the resulting oscil-
lating farm power (solid and two dashed lines), as well as

the time delay between the sinusoidal wind speed component
and the oscillating farm power (dotted lines).

As an oscillation period of 120 min is much longer than
the time needed for the wind to cross the complete wind
farm, which is a quasi-static wind condition. For smaller
oscillation periods, the frequency of the wind oscillations
is higher. However, for T = 2 min, taking into account the
1 min time step, the wind speed is again constant (because
sin( 2π

T
× ti)= sin( 2π

2 × n)= 0).
As can be seen on the plot, for a specific wind speed and

oscillation frequency, the average, maximum and minimum
farm power for a wind direction of 260° (with high wake) is
always lower than for a wind direction of 325° (with less
wake) (see downward arrows). For faster-fluctuating wind
speeds (i.e. with shorter oscillation period), the amplitude
of the farm power fluctuation decreases (see bidirectional
arrows). In addition, in the case of wind conditions with a
high farm-internal wake, there appears to be a decrease in
the average farm power (see yellow markings). For small os-
cillation periods below 15 min, the average power increases
again, converging back to the same value as for quasi-static
wind conditions.

For short oscillation periods and consequently small wave-
lengths of the spatial wind speed distribution, the time de-
lay of the farm power converges to 0. Indeed, the time delay
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Figure 11. Inflow wind direction variance as a function of wind speed and wind direction (Wind Farm 2).

cannot be longer than the oscillation period of the sinusoidal
wind speed component. For longer oscillation periods, the
time offset converges to a constant value. Logically, the time
delay will never be higher than the time needed by the wind
to cross the whole farm.

For short oscillation periods below 15 min, the wavelength
of the wind speed oscillation gets smaller than the cross-
section of the farm. This may cause the important decrease
in the amplitude of the farm power oscillation. This might
also explain the jigsaw shape of the maximum and minimum
power in these conditions. To analyse these effects in more
detail, a wind farm model could be used that predicts not
only the total farm power but also the power production of
each individual turbine.

Note that for static wind farm power models, all curves in
Fig. 25 would be horizontal lines and be equal to the values
for the longest shown oscillation period (T = 120 min).

The analysis in this section is a qualitative analysis. As the
simulations are done with fictive wind speeds, there are no
ground-truth values for the farm power production to com-
pare with. Note, however, that the performance metrics pre-
sented in Table 5 are for measured wind data and thus cover
realistic wind speed variations. These performance metrics
thus cover the dynamic behaviour of the farm power model.

3.2 Farm-internal wake

As already shown in Fig. 21, the farm power production de-
pends on the wind direction due to the difference in wake
loss. In order to calculate the farm-internal wake in absolute
terms, an ML model has been established for a single turbine,
as described in Sect. 2.3.2. By subtracting the power pre-
dicted by the farm power model from the predicted turbine
power under identical wind conditions (multiplied with the
number of turbines in the farm), the farm-internal wake ef-
fect can be isolated from other influences on the farm power.

Figure 26 shows the measured farm power for Wind
Farm 1, as a function of the wind direction and wind speed.
Figure 27 shows the subset of these data points for which
the set point of the farm power controller is equal to 100 %
and at maximum one turbine is at standstill. Furthermore, the
scope of the plot has been limited to the wind speed range
for which wake is most predominant. Figure 28 shows the
corresponding predicted farm power by the farm model for
steady-state wind inflow (for 30 min). It can be seen that for
the west-southwest and east-northeast directions for a given
wind speed, the farm power is lower than for other wind di-
rections. This can be seen more clearly after subtraction from
the predicted turbine power. Figure 29 shows the power loss
due to internal wake as a percentage of the installed capacity
of the farm. The maximum internal wake loss is about 30 %.
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Figure 12. Farm power as a function of inflow wind speed and air density and the frequency distribution of air density (Wind Farm 1).

The reason for the high wake in the west-southwest and east-
northeast directions is that these directions are parallel to the
long axis of the wind farm, with multiple turbines positioned
after each other. For wind speeds above 13 m s−1, the power
loss due to wake approaches 0 MW. This is because at such
high wind speeds there is sufficient energy in the wind, and
consequently each turbine in the farm can produce sufficient
power so that the maximum farm power is reached.

3.3 Power forecasting based on weather forecasts

The farm power prediction models presented in Sect. 3.1 and
3.2 predict the farm power based on measurement data of the
wind inflow and some other parameters of the farm. In order
to forecast the farm power in the future with these farm mod-
els, forecasts of the wind speed and direction (and if available
also the other wind characteristics) are required.

The weather forecasts of different providers may differ be-
tween each other as they can be based on different weather
models and data. Furthermore, they typically do not (accu-
rately) take local effects into account, like for example neigh-
bouring wind farms. These may cause a reduction in the wind
speed, an increase in the wind turbulence intensity and a redi-
rection of the wind due to wind blockage. Also coastal effects
may have a significant impact on the wind speed and direc-
tion.

Figure 30 shows the correction factor being applied to the
wind speed forecasts of a specific weather forecast provider
for Wind Farm 1, depending on the forecast wind speed and
direction. This correction factor has been calculated by map-
ping historical wind speed forecasts (those with the shortest
lead time) from that weather forecast provider to the corre-
sponding measured inflow wind speed of that farm. As can
be seen in the figure, for wind directions between north-
northwest and north-northeast, the wind speeds predicted by
the correction model are only about 80 % of the forecast wind
speeds. The reason is that in that upstream direction many
wind farms are located within the immediate proximity. For
wind speeds below 5 m s−1, the correction factor is higher
than 1. This is due to the fact that the wind measurements
on the turbines are not well calibrated and are overestimat-
ing these low wind speeds. For such wind speeds below the
cut-in wind speed, turbines are shut off anyway.

In Fig. 31, it can be seen that for forecast wind directions
in the sector from northwest, over south to east, the wind di-
rections are in reality about 10 to 20° higher, meaning that
airflows coming from these directions are deflected by about
10 to 20° in the clockwise direction (compared to the values
forecasted by the weather forecast provider). In contrast, air-
flow coming from the sector east to northwest are deflected
in the anti-clockwise direction. This corresponds to the fact
that Wind Farm 1 is located in the south of the wind farm
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Figure 13. Air density as a function of wind speed and wind direction (Wind Farm 1).

Figure 14. Relation between predicted and true farm power for all data points of the test data set for Wind Farm 1.
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Figure 15. Relation between predicted and true farm power for all data points of the test data set for Wind Farm 2.

Figure 16. Predicted farm power and uncertainty intervals for a 60 h time sequence of validation data (Wind Farm 1).

cluster and the cluster has a rectangular-like shape with the
long axis in northwest–southeast direction. Due to blockage
of the wind by the wind farm cluster, the airflow deviates
through pressure build-up in front of the cluster slightly in
the direction of the outside corners of the cluster, where it
can flow next to the cluster. For lower wind speeds, thus with
lower momentum, this deflection appears to be sharper than
for higher wind speeds.

In addition, in Fig. 30 it can be seen that on average the
corrected inflow wind speeds are lower than the ones fore-
casted by the weather service provider, also for wind direc-
tions without upstream wind farms causing wake. This may
be may be attributable partly to coastal effects (the coast is
the nearest in the east to south directions) and partly to the
blockage effect of the wind farm cluster. For the wind direc-

tions in the south-southwest sector (directed towards the cor-
ner of the wind farm cluster) slightly increased wind speeds
can be observed (especially for wind speeds between 11 and
12 m s−1). This might be an indication of the acceleration
of the airflow at the corner of the cluster occurring jointly
with the deflection due to the blockage effect. However, this
may also be attributable to other reasons, such as underesti-
mation by the weather forecast provider of wind speeds par-
allel to the coastline through the narrow Strait of Dover, as
weather forecast models cannot model all local effects. For
forecasts from another weather forecast provider and for his-
torical ERA5 data, similar discrepancies in wind speed and
wind directions are observed, however with different biases
and/or variances.
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Figure 17. Predicted farm power and uncertainty intervals for a 16 h time sequence of test data with active-power control (Wind Farm 2).

Figure 18. Predicted farm power as a function of inflow wind speed and wind turbulence intensity (TI) (Wind Farm 2).

Using the complete chain of models as shown in Fig. 2,
starting with the models correcting the wind speed and direc-
tion forecasts, then the auxiliary models predicting the wind
turbulence and air density, and finally the farm power model,
the farm power can be forecasted for multiple time hori-
zons. Figure 32 shows the 3 d ahead, day-ahead and intra-day
power forecasts for an 8 d sequence for Wind Farm 1. Fig-
ure 33 shows the corresponding wind speed forecasts used as
inputs for the power forecasts. As weather forecasts with a
shorter lead time are usually more accurate than those with
longer lead times, the resulting power forecasts become more
accurate for shorter lead times as well.

This can be seen in Figs. 34 and 35, which show multi-
ple error metrics for wind speed and direction forecasts with

three different forecast horizons: intra-day (ID), day-ahead
(DA) and 3 d ahead (3DA). From the bar charts it can be seen
that the mean error (ME), mean average error (MAE) and
root mean square error (RMSE) are higher for longer forecast
horizons, whereas the R2 score decreases. It can also be seen
that all error metrics for the wind speed forecasts improve
significantly after application of the wind speed forecast cor-
rection model. Notice also that the mean error in the uncor-
rected wind speed forecasts is always larger than 0 m s−1.
This is probably mainly due to the fact that the speed fore-
casts ignore the wind speed reduction caused by the wake
of the upstream wind farms. After applying the correction
model to the wind speed forecasts, the mean error is de-
creased to around 0 m s−1.

https://doi.org/10.5194/wes-10-779-2025 Wind Energ. Sci., 10, 779–812, 2025



800 S. Ally et al.: Modular deep learning approach

Figure 19. Predicted farm power as a function of inflow wind speed and wind direction (WD) variance (Wind Farm 2).

Figure 20. Predicted farm power as a function of inflow wind speed and air density (Wind Farm 1).
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Figure 21. Predicted farm power as a function of inflow wind speed and wind direction (Wind Farm 1).

Figure 22. Predicted farm power as a function of inflow wind speed and the number of turbines at standstill (Wind Farm 1).
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Figure 23. Predicted farm power as a function of inflow wind speed and direction, with the farm power controller set point equal to 30 %
(Wind Farm 2).

Figure 24. Predicted farm power as a function of inflow wind speed (WS) with a linearly increasing and decreasing speed with a change rate
of 0.05 m s−1 min−1, for the wind direction (WD) at 240 and 150° (Wind Farm 1).
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Figure 25. Frequency response of predicted farm power in the case of a wind inflow with a sinusoidal oscillating wind speed component with
an amplitude of 1 m s−1. The plots show the average, maximum and minimum power of the predicted oscillating farm power as a function
of the period of the sinusoidal component of the wind speed. In addition, also the time offset between the oscillating farm power and wind
speed is shown. The colour of the curves indicates the average wind speed (14, 11 and 8 m s−1, respectively) and the wind direction (260 and
325°) (Wind Farm 2).

Figure 26. Farm power measurement data points as a function of wind speed and direction (Wind Farm 1).
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Figure 27. Subset of farm power measurement data points as a function of wind speed and direction, with the farm power control set point
(SP) equal to 100 % and number of turbines at standstill (SS) equal to 0 or 1 (Wind Farm 1).

Figure 28. Predicted farm power as a function of wind speed and direction, for constant wind conditions, with the farm power control set
point equal to 100 % and with all turbines in operation (Wind Farm 1).
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Figure 29. Predicted farm-internal wake as a function of wind speed and direction, for constant wind conditions, with the farm power control
set point equal to 100 % and with all turbines in operation (Wind Farm 1).

Figure 30. Correction factor for the wind speed forecasts of a weather forecast service for Wind Farm 1.
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Figure 31. Correction for the wind direction forecasts of a weather forecast service for Wind Farm 1.

Figure 32. Power forecasts for Wind Farm 1 based on wind forecasts with different forecast horizons for a time sequence of 8 d.

In Fig. 36, the error metrics of the corresponding wind
farm power forecasts are shown. For each forecast, the same
wind farm power model was used. For the orange bars, the
uncorrected wind speed and direction forecasts were used,
whereas for the green bars, first the wind speed and direc-
tion correction models were applied. The blue bars indicate
the error metrics for the power predictions of the wind farm
power model based on the actual wind inflow measurements
(see Table 5, test data set of Wind Farm 1). It can be seen that
the application of the wind correction models improves the
farm power forecasts significantly. Note also that without the
weather forecast correction models, the average wind farm
power is greatly overestimated. This is not the case anymore
after application of the weather forecast correction models.
In addition, in the case of day-ahead forecasting, the MAE
and RMSE are both reduced by about 30 %. For 3 d ahead
forecasting, the relative improvements are smaller but still
significant.

Note that a wind speed error of only 1 m s−1 represents
about 12.5 % of the range between the cut-in and rated wind

speed of a turbine (∼ 4 to∼ 12 m s−1). Consequently, a wind
speed forecasting error of that magnitude can result in a large
farm power forecasting error, larger than the inaccuracy in-
herent to the farm power model itself. The relatively large
errors in the weather forecasts should be no surprise, as the
weather forecasts used in this example have a time resolution
of only a 1 h (to be compared to the 1 min resolution of the
used SCADA data and wind farm power model). Moreover,
day-ahead forecasts have a forecasting lead time of up to 37 h
(from the previous day at 11:00 to 24:00 of the next day).
In addition, the processing time for making these weather
forecasts may take up to 6 h so that the day-ahead forecasts
may be based on data from 43 h ahead. The intra-day fore-
casts used in this example can have a lead time of up to
half a day because the weather forecast data available for
this work are updated only twice per day. Using more ac-
curate weather forecasts updated more frequently and with a
shorter time resolution will result in better farm power fore-
casts. One could argue that for the specific application of
long-term wind farm power forecasting, using an accurate
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Figure 33. Wind speed forecasts with different forecast horizons (from a third-party weather forecast provider).

Figure 34. Error metrics for intra-day (ID), day-ahead (DA) and 3 d ahead (3DA) wind speed forecasts for Wind Farm 1. The orange bars
are the metrics for the wind speed forecasts of a commercial weather forecast provider. The green bars are the metrics after application of the
weather forecast correction (WFC) model.

wind farm power prediction model with such a short time
resolution (1 min) adds little value. It should be noted, how-
ever, that if for example a 1 h time resolution would be used
for the training of the wind farm power model, the behaviour
of the wind farm power controller and the temporal dynamics
of inflow wind transients would not be captured by the farm
power model, which are, however, crucial for other targeted
applications of the model.

3.4 Computing hardware and software

All computing performed for this work, including the train-
ing of the ML models, was performed with a standard
notebook (11th Gen Intel® Core™ i7-1165G7 processor at
2.80GHz, 16.0 GB of internal RAM, 64-bit operating sys-
tem). All code is written in Python, with TensorFlow as the
machine learning platform. Both are free, open-source soft-
ware. This shows that the proposed model, in contrast to
computationally intensive models, could be run on hardware
that is readily accessible to wind farm operators.

4 Conclusions

In the present work, a novel methodology is proposed to fore-
cast the power production of a wind farm. The methodology
is based on a multi-component pipeline with a deep learn-
ing wind farm power model and a distinct machine learning
model for integrating weather forecasts as its two main com-
ponents.

The proposed wind farm power model relies solely on
SCADA data from the wind farm itself, which are usually
available to any wind farm operator. It captures the influence
of several weather parameters, including wind speed, wind
direction, turbulence intensity, wind direction variance and
air density. Additionally, it captures the temporal dynamics
of the wind inflow as well as the behaviour of the farm power
controller. Also the number of turbines that are at standstill is
taken into account. Notably, the model not only predicts the
farm power with a high accuracy but also generates confi-
dence intervals for these power predictions. Furthermore, the
farm power model is capable of predicting the farm power in
only a few milliseconds on PC, making it significantly faster
than even low-fidelity physics-based models.
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Figure 35. Error metrics for intra-day (ID), day-ahead (DA) and 3 d ahead (3DA) wind direction forecasts for Wind Farm 1. The orange bars
are the metrics for the wind direction forecasts of a commercial weather forecast provider. The green bars are the metrics after application of
the weather forecast correction (WFC) model.

Figure 36. Error metrics for intra-day (ID), day-ahead (DA) and 3 d ahead (3DA) wind farm power forecasts for Wind Farm 1. The orange
bars are the metrics for the wind farm power forecasts based directly on the wind speed and direction forecasts of a commercial weather
forecast provider. The green bars are the metrics for the wind farm power forecasts based on the corrected wind speed and direction forecasts.
The blue bars show the corresponding error metrics for the wind farm model predictions based on actual (NOW) wind inflow measurements.

A separate deep learning model is employed to post-
process the wind speed and direction forecasts from weather
forecast providers. In doing so, it takes farm-external fac-
tors into account, such as wake generation by neighbouring
wind farms, wind farm blockage, coastal effects and possi-
ble systematic forecasting errors from the respective weather
forecast providers.

The two models, i.e. the wind farm power model and the
model for post-processing weather forecasts, are independent
of each other, which is a major advantage, as these can be
trained and maintained separately.

Furthermore, in conjunction with a data-driven turbine
power model, the farm wake losses can also be predicted.

The proposed methodology has been applied to two large
real-world offshore wind farms. Performance metrics affirm
a significantly improved prediction accuracy compared to
some baseline machine learning models. In addition, vali-

dation sequences demonstrate the reliability of the predicted
confidence intervals. Sensitivity analyses, performed on each
of the model’s input features, yield interpretable and physi-
cally meaningful results. In addition, the prediction capabil-
ity of the farm power model is demonstrated for fluctuating
inflow wind speeds.

It is also shown that the application of the post-processing
model to the weather forecasts significantly improves the ac-
curacy of the look-ahead wind farm power forecasts. Never-
theless, the accuracy for long forecast horizons remains pre-
dominantly limited by the limited accuracy of the third-party
weather forecasts and not by the uncertainty inherent to the
farm power model itself.

In further research, we will integrate the wind farm power
prediction models as digital twins into applications where
their high prediction speed and the simulation of the farm
power controller are crucial.
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Appendix A: Hyper-parameters of ML models

In Table A1, the hyper-parameters of the wind farm power
model (Sect. 2.3.1) are listed. Note that the hyper-parameters
for the two wind farms are identical, except for the number
of input features, as Wind Farm 2 has as additional input fea-
ture: “active-power capability of the farm” (Sect. 2.1.2).

In Table A2, the hyper-parameters of the wind speed and
direction forecast mapping models (Sect. 2.3.3) are listed.
Note that for the two models, the same hyper-parameters are
used.

Table A1. Hyper-parameters of the wind farm power model.

Parameter Value

Number of input feature sequences (K) 8 (Wind Farm 1), 9 (Wind Farm 2)
Number of additional input features (L) 2 (Wind Farm 1), 3 (Wind Farm 2)
Number of convolution filters (c1,c2) 8
Kernel size of convolution filters 3
Stride of convolution filters 1
Number of units in dense layers (n1,n2,n3) 128, 256, 256
Activation function in dense layers ReLU
Activation function in output layer linear
Dropout rate 0.10
Optimizer Adam
Loss function MAE
Initial learning rate 0.0001
Learning rate reducing factor 0.99
Minimum learning rate 0.00001

Table A2. Hyper-parameters of the weather forecast mapping models.

Parameter Value

Number of units in dense layers (n1,n2,n3) 16, 32, 32
Activation function in dense layers ReLU
Activation function in output layer linear
Dropout rate 0.25
Optimizer Adam
Loss function MAE
Initial learning rate 0.001
Learning rate reducing factor 0.99
Minimum learning rate 0.00001
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