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Abstract. An accurate prediction of aerodynamic damping is important for floating wind turbines, which can
enter into resonant low-frequency motion. The Coleman transform is not directly valid for the stability analysis
of two-bladed floating wind turbines without applying an additional method to eliminate the system matrix time
dependence. Therefore, here we pursue methods that do not rely on it. We derive a time domain model that
takes into account the dynamic stall phenomenon and is used for developing Coleman-free aero-elastic stability
analysis methods which can quantify the damping without actual simulation. It contains four structural degrees
of freedom, namely the floater’s pitch angle and the three blade deflection amplitudes, as well as three dynamic
stall aerodynamic degrees of freedom, one for each blade. The time domain model is linearized by considering
part of the aerodynamic forcing as an added damping contribution. The linearized model is then made time-
independent through the application of Hill’s or Floquet’s method. This enables the possibility of carrying out a
stability analysis where the eigenvalue results obtained with both methods are compared. A first modal analysis
serves to demonstrate the influence of aerodynamic damping through the variation of the dynamic stall time
constant. Thereafter, a second modal analysis is reported as a Campbell diagram also for cross-comparison of
the Hill- and Floquet-based results. Moreover, the blade degrees of freedom are converted from the rotational
basis to the non-rotational one using the Coleman transform so that results in both frames can be further cross-
validated. Finally, we apply the validated stability methods to a two-bladed floating wind turbine and demonstrate
their functionality. The stability analysis for the two-bladed wind turbine yields new insight into the blade modal
damping and is discussed with comparison to the three-bladed analysis.

1 Introduction

Expanding offshore wind power beyond the usual water
depth limit of 50 to 70 m will unlock up to 10 times more
energy potential, positioning it as a worldwide source of
clean energy (Stiesdal Offshore, 2023). Floating wind tur-
bines have been developed since the Hywind demonstrator
from 2009 with the intent to extract energy in deeper wa-
ters, and they are estimated to be capable of being installed
at depths reaching up to 1000 m (CORROSION, 2023). This
endeavour pushes the development of floating wind turbines
for the ScotWind and INTOG (Innovation and Targeted Oil
and Gas) projects in Scotland to deliver by 2035 a cumulative
capacity of 24.7 GW in floating wind energy (Offshore Wind
Scotland, 2024). The design of floating wind turbines relies

heavily on aero-elastic modelling of the system response. For
a dynamic model described in the time domain, the rotation
of the rotor introduces multiple time periodic terms in the
governing equations that are based on physical effects. Due
to the system’s periodicity, a standard eigenvalue analysis
through a constant system matrix is not possible. The aero-
elastic stability analysis is an important calculation for the
design of wind turbines that addresses the damping of the
structural modes as well as the aerodynamic damping con-
tribution. This damping is of high importance for the low-
frequency pitch motion of floating wind turbines. Usually the
aero-elastic stability analysis is carried out with a linearized
version of the turbine dynamic model by applying a Cole-
man transform (Coleman et al., 1957) which eliminates the
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system’s periodicity. This elimination, also referred to as the
Coleman or the multi-blade coordinate (MBC) transform, is
only applicable for a rotor containing three blades or more
and for isotropic systems. Theoretically, the conditions to be
fulfilled for a rotor to be viewed as isotropic are not to be sub-
jected to gravity effects or a skewed or sheared inflow and to
not have a tilt angle either. For floating wind turbines, the
aero-elastic stability analysis is further complicated due to
the presence of the floater’s degrees of freedom which intro-
duce low-frequency modes. For this reason, there is a need
to establish aero-elastic stability methods that are valid for
floating two-bladed wind turbines and that do not rely on the
Coleman transform.

Certain past investigations on methods that render a sys-
tem linear time-invariant (LTI) have been proven to be less
efficient and more computationally expensive to put into
practice compared to other more novel methods or even the
Coleman approach. For example, it was proposed by Bir
(2008) to use an averaged system matrix over a period as
an alternative to computing the system matrix at certain sam-
pled times steps, but that method does not accurately take
into consideration the full periodicity of the system. As a
remedy to this problem for the treatment of the system’s pe-
riodicity, the Hill (1886) determinant method was employed
by Hansen (2016) for the modal analyses of an onshore
two-bladed and three-bladed wind turbine. Alternatively, the
Coleman transform is applied both in the aero-hydro-servo-
elastic OpenFAST code (Bortolotti et al., 2024) and in the
aero-servo-elastic HAWCStab2 code (Hansen, 2004; Kim
et al., 2013; Madsen et al., 2020). As another alternative, in
their respective studies, Bottasso and Cacciola (2015) and
Riva (2017) employed the Floquet (1883) theory to com-
pletely eliminate the periodicity so that the stability of a sim-
plified onshore three-bladed wind turbine could be assessed
(Skjoldan, 2011). Similarly and more recently, Meng et al.
(2024) researched the impact of aerodynamic states on the
stability analysis by applying the Coleman transform to di-
rectly eliminate the periodicity of a floating wind turbine,
followed by a modal order reduction. With a similar main
scope in mind, in our past work the linearization of a floating
wind turbine’s simplified equations of motion was already
realized (Pamfil et al., 2024) by relying on Hill’s method but
without taking into account all kinematic effects that influ-
ence the blade motion or having implemented yet a dynamic
stall model.

The purpose of the present study is to compare and vali-
date Hill’s and Floquet’s methods for the stability analysis of
a floating wind turbine. In this context, we aim to clarify four
objectives stated as questions: (1) how the effect of the floater
tilt is involved in the stability analysis, (2) if the damping ef-
fects of the aerodynamic states can be consistently included,
(3) if the results of the two methods agree and can repro-
duce the forward- and backward-whirling rotor modes in a
Coleman-based analysis, and (4) if the methods can success-
fully be applied to a two-bladed floating wind turbine. Hence,

to answer these questions, we derive a simplified floating
wind turbine model which has four structural degrees of free-
dom (DOFs), being the three blade deflection amplitudes and
a platform pitch angle. This time domain model is then en-
hanced by including Øye’s linearized dynamic stall model
(Øye, 1991) through the consideration of one extra dynamic
stall aerodynamic degree of freedom per blade. The dynamic
stall simulations are used as a benchmark for comparison be-
tween the time domain model and a linear model which is
obtained by a full linearization of the aerodynamic damping
load. After it is assessed if the linear model is assembled cor-
rectly and if it is physically consistent, we render it linear
time-invariant (LTI) by applying Hill’s or Floquet’s method
in order to be exempt from having to apply the Coleman
transform. By relying on either method, we conduct a first set
of stability analyses for a varying dynamic stall model time
constant and a second set of studies for a variation of the rota-
tional speed, and these are displayed as Campbell diagrams.
Regarding the applicability of Hill’s and Floquet’s methods
on the system matrix, the resulting eigenvalues are compared
with the ones found through the Coleman transform by re-
constructing the rotor forward-whirling (FW) and backward-
whirling (BW) modes. The results of these analyses are fur-
ther verified through a cross-validation of the eigenvalues for
a two-bladed floating wind turbine model.

We achieve the first objective about finding the impact of
the floater tilt on the stability analysis by showing that the
structural equations of motion (EOMs) do not depend on the
equilibrium floater tilt position when neglecting gravity ef-
fects and assuming a small tilt angle. This implies that for our
model the equilibrium floater tilt position does not affect the
stability analysis. Secondly, aerodynamic states are included
in the linear model’s state-space system, and they do affect
the modal damping and damped frequencies as showcased
through the stability analysis results. The third objective is
fulfilled by proving first that either Hill’s or Floquet’s stabil-
ity method is able to capture the correct principal damped
frequencies in the original frame, which is called the rota-
tional frame. It is also proved that these eigenvalues can be
expressed in a modified frame called the non-rotational frame
to match the ones found through the Coleman-transformed
system matrix. On that matter, the LTI model derived with
Hill’s method fully takes into consideration the periodicity
of the system, making it possible to calculate the principal
damped frequencies and the periodically shifted frequencies.
The fourth and last objective is fulfilled by developing the
two-bladed wind turbine model and revealing that the same
methods as for a three-bladed rotor can be applied to obtain
correct stability results. We also observe a marked difference
in blade modal damping behaviour for the two-bladed float-
ing wind turbine compared to the three-bladed case.

Wind Energ. Sci., 10, 827–856, 2025 https://doi.org/10.5194/wes-10-827-2025



B. Pamfil et al.: Coleman-free stability methods for floating wind turbines 829

2 Floating wind turbine model description

The floating wind turbine model that is being studied has
four structural degrees of freedom (DOFs) as schematized
in Fig. 1. For a three-bladed wind turbine, the four struc-
tural DOFs are the blade flap-wise deflection amplitudes, la-
belled as al with a blade identification index of l = 1,2,3,
and the floater pitch angular motion, labelled as ξ5. These
four structural DOFs are represented in a vector form as x =
[ξ5,a1,a2,a3]T. Three additional aerodynamic DOFs are in-
cluded later to account for the dynamic stall phenomenon.
The floating wind turbine blade structural properties, such as
its blade mode shapes φ, natural frequencies ω, and the blade
mass per unit length m(r), are taken from the DTU 10 MW
reference wind turbine (Bak et al., 2013). In Fig. 1, d identi-
fies a reference radial position from the hub along the blade
of length Lb with d = 0.7Lb, i.e. at 70 % of the blade length
span. For simplicity, the aerodynamic force for each blade
Fl,aero is calculated at that reference distance r = d from the
blade root, which is representative of the full blade in terms
of applied aerodynamic loads. The floating wind turbine is
subjected to an inflow velocity V0 at hub height H , to a forc-
ing moment MF applied at the floater base, and to a constant
rotor rotational speed of �. Here, Kξ5 refers to the rotational
stiffness coefficient along the floater pitch angle ξ5, andM is
the cumulative mass of the hub and nacelle combined.

The blade deflection ul(r, t) is approximated through the
consideration of the first flap mode (1f) only, which is char-
acterized by a mode shape φ1f and a natural frequency ω1f,
resulting in ul(r, t)= φ1f(r)al(t).

Furthermore, the time-dependent (t) azimuthal angular po-
sition 9l of the blades is defined in radians as

9l(t)=
2π
Nb

(l− 1)+�t, (1)

where Nb is the rotor’s number of blades, and the rotational
speed � is connected to a corresponding period T through
the ratio of T = 2π/�.

In Fig. 1, a global fixed coordinate system is defined in
terms of unit vectors x̂ and ŷ. Additionally, there is a local
moving coordinate system that rotates with the blade and de-
scribes the position of a blade section of mass m(r). That
coordinate system defines the radial location of mass m(r)
with the unit vector x̂′(t) and its tangential motion as the
blade is deflected in the direction of unit vector ŷ′(t). Based
on the perpendicularity of these unit vectors, an out-of-plane
vector ẑ is the result of a cross product between them, such
that ẑ= x̂′× ŷ′ and −ẑ= ŷ′× x̂′. The radial position in the
x̂′(t)–ŷ′(t) coordinate system of a blade’s element massm(r)
is Dl(r, t)=H + r cos9l(t), and its tangential displacement
is the blade deflection ul(r, t). The vector representation of
the mass m(r)’s displacement, D̂l(r, t), in the moving rotat-
ing coordinate system x̂′(t)–ŷ′(t) is thus

D̂l(r, t)=Dl(r, t)x̂′(t)+ ul(r, t)ŷ′(t). (2)

As mentioned earlier, the blade deflection ul(r, t) is quanti-
fied by the product of the first flap mode shape φ1f(r) in the
direction tangential to the rotor plane with the blade displace-
ment amplitude al(t).

2.1 Equations of motion

A time domain model is developed with the initial purpose of
obtaining the steady-state responses for a given operational
point. It also serves as a foundation to afterwards linearize
the aerodynamically damped forcing as a damping matrix
contribution and to include the dynamic stall DOF equations
in the system matrices. As a starting point, it is observable in
Fig. 1 that the unit vectors x̂′ and ŷ′ can be represented using
the global fixed coordinates x̂ and ŷ after applying a rotation
transformation, respectively as x̂′ = cos(ξ5) x̂+sin(ξ5) ŷ and
ŷ′ =−sin(ξ5) x̂+cos(ξ5) ŷ. They are then derived in time to
obtain ˙̂x′ = ξ̇5ŷ

′ and ˙̂y′ =−ξ̇5x̂
′. These expressions come in

handy when deriving (for the element massm(r)) its velocity
vector V̂ l(r, t)= d

(
D̂l(r, t)

)
/dt ,

V̂ l(r, t)= Ḋl(t)x̂′+Dl(r, t) ˙̂x′(t)+ u̇l(r, t)ŷ′(t)

+ ul(r, t) ˙̂y′(t)=
(
Ḋl(r, t)− ul(r, t)ξ̇5

)
x̂′

+
(
Dl(r, t)ξ̇5+ u̇l(r, t)

)
ŷ′, (3)

and its acceleration vector Âl(r, t)= d
(
V̂ l(r, t)

)
/dt ,

Âl(r, t)=
(
D̈l(r, t)− ul(r, t)ξ̈5− 2u̇l(r, t)ξ̇5−Dl(r, t)ξ̇

2
5

)
x̂′

+

(
2Ḋl(r, t)ξ̇5+Dl(r, t)ξ̈5+ ül(r, t)− ul(r, t)ξ̇

2
5

)
ŷ′. (4)

The acceleration vector Âl(r, t) can then be linearized by dis-
regarding higher-order terms, which results in

Âl(r, t)≈ Âl,lin(r, t)= D̈l(r, t)︸ ︷︷ ︸
Ax̂′,l

x̂′

+
(
2Ḋl(r, t)ξ̇5+Dl(r, t)ξ̈5+ ül(r, t)

)︸ ︷︷ ︸
Aŷ′,l

ŷ′. (5)

We observe in Eqs. (3) and (4) that none of the nonlinear
terms include ξ5 as a factor. For this reason, the linearized
model is applicable for any steady-state value of ξ5. Finally,
we identify in Eq. (5) the tangential acceleration Aŷ′,l that
is relevant to describe the element mass m(r)’s inertial force
fŷ′,l(r, t)=m(r)Aŷ′,l(r, t). To build up the EOM for the lin-
earized total moment applied around the ẑ axis, the angu-
lar momentum theory is used to compute the inertia moment
pl(r, t) which translates to

pl(r, t)=
d
dt

(
D̂l(r, t)×

(
m(r)V̂ l(r, t)

))
. (6)
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Figure 1. Schematic representation of the four structural DOFs of the floating wind turbine model wherem(r) is the blade’s mass distribution
at the radial location r , ul(r, t) is the blade deflection, and the index l refers to the blade identification.

The inertia moment pl(r, t) is then approximated as pl,lin(r, t)
by neglecting higher-order terms, which gives

pl(r, t)≈ pl,lin(r, t)=m(r)
(
D2
l (r, t)ξ̈5

+2Dl(r, t)Ḋl(r, t)ξ̇5+Dl(r, t)ül(r, t)
−D̈l(r, t)ul(r, t)

)
. (7)

These kinematic formulas can be used to establish the equa-
tions of rotational motion around the ẑ axis and of transla-
tional motion along the ŷ′ axis which corresponds to the tan-
gential direction of the blade rotation around the floater base.
The inertia contribution of the hub and nacelle cumulative
massM is translated from the hub height to the floater’s base
point with a distance H that separates the two points, MH 2.
The remaining share of the rotational inertia around the ẑ axis
is due to the blade’s distributed mass m(r)’s effect on the in-
ertial moment pl,lin(r, t). The rotational motion equation for
moments around the ẑ axis is written as

ẑ : MH 2ξ̈5δξ5+

Nb∑
l=1

 Lb∫
0

pl,lin(r, t)drδξ5


+Kξ5ξ5δξ5 =MFδξ5+

(
Nb∑
l=1

Dl(d, t)Fl,aero(t)

)
︸ ︷︷ ︸

Maero

δξ5, (8)

after using the principle of virtual work with a δξ5 rota-
tion. The applied forces on the right-hand side of Eq. (8)
include MF, which is the moment applied directly on the
floater DOF ξ5, and an aerodynamic moment Maero contri-
bution through Fl,aero. As seen in Fig. 1, the aerodynamic
momentMaero is induced by an equivalent total aerodynamic
forcing Fl,aero applied on each blade with a moment arm
Dl(d, t)=H +d cos9l(t) at the reference location of r = d .
This aerodynamic forcing is an approximation of the total
contribution by a local load Fl integrated over the entire
blade length span as Fl,aero = FlLb.

Similarly, the equation of translational motion along the ŷ′

axis for each lth blade is found based on the principle of the
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blade displacement virtual work δul(r, t)= δal(t)φ1f(r):

ŷ′ :

Lb∫
0

m(r)Aŷ′,l(r, t)︸ ︷︷ ︸
fŷ′,l (r,t)

δalφ1f(r)dr

+

Lb∫
0

k(r)al(t)φ1f(r) (δalφ1f(r))dr

︸ ︷︷ ︸
Kal alδal

= Fl,aero(t)φ1f(d)︸ ︷︷ ︸
GFal

δal, (9)

where there is a consideration of the blade aerodynamic forc-
ing Fl,aero and the tangential inertia force fŷ′ (r, t). In Eq. (9),
k(r) is the blade sectional stiffness as k(r)=m(r)ω2

1f, and
φ1f(d) is the first flap mode’s value at the reference radial
location r = d . The internal force which is caused by the el-
ement mass m(r)’s stiffness coefficient k(r) is not appearing
in Eq. (8) because it is not an external force applied to the
system. The external force that is considered in Eq. (9) is the
generalized aerodynamic blade force GFal .

The right-hand side for both the rotational and transla-
tional equations of motion is part of the time domain model’s
forcing vector, denoted F T . The time (index T ) domain
model’s dynamics are described by the following overall
EOM:

MS ẍ+CS ẋ+KS x = F T , (10)

where there is only a structural (index S) damping CS .
The structural mass MS and stiffness KS matrices in-

clude a contribution due to the floater and overall tur-
bine (nacelle and tower) structural properties (MS,floater
and KS,floater). The other contribution originates from the
blade (MS,blades(r) and KS,blades(r)) structural properties
through an integration span-wise in direction r . Therefore,
for the three-bladed wind turbine, the structural mass MS =

MS,floater+
∫ Lb

0 MS,blades(r)dr and stiffness KS =KS,floater+∫ Lb
0 KS,blades(r)dr matrices are assembled as

MS =

MH
2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0



+

Lb∫
0

m(r)


∑3
l=1D

2
l (r, t) D1(r, t)φ1f(r) D2(r, t)φ1f(r) D3(r, t)φ1f(r)

D1(r, t)φ1f(r) (φ1f(r))2 0 0
D2(r, t)φ1f(r) 0 (φ1f(r))2 0
D3(r, t)φ1f(r) 0 0 (φ1f(r))2

dr

(11)

and

KS =

Kξ5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



+

Lb∫
0

m(r)


0 −D̈1(r, t)φ1f(r) −D̈2(r, t)φ1f(r) −D̈3(r, t)φ1f(r)
0 ω2

1f(φ1f(r))2 0 0
0 0 ω2

1f(φ1f(r))2 0
0 0 0 ω2

1f(φ1f(r))2

dr, (12)

in accordance with the rotational and translational equations
of motion in Eqs. (8) and (9). As observable in Eq. (12),
the inertia moment pl,lin(r, t) generates negative restoring
forces that are equivalent to a negative stiffness effect. More-
over, the restoring floater pitching moment coefficient Kξ5

is tuned to achieve a realistic platform pitch frequency of
ωξ5 = 0.035 Hz.

The structural damping CS is inspired by a classical
Rayleigh damping model, CS = νMS+µKS , where only the
diagonal elements of the structural stiffness matrix KS are
multiplying a specific factor µk . The off-diagonal compo-
nents of the structural stiffness matrix KS are not related
to the structural stiffness of the structure itself but rather to
the element mass m(r)’s inertial effects which is why they
are not considered in the structural damping. Furthermore,
including the mass matrix MS proportionality to the struc-
tural damping matrix could potentially over-damp the sys-
tem at low natural frequencies because the damping ratio
contribution due to inertia is inversely proportional to the
frequency. In line with Eqs. (8) and (9), the total structural
damping CS = CS,floater+

∫ Lb
0 CS,blades(r)dr matrix for the

three-bladed wind turbine considers additional effects that
are caused by the element mass m(r)’s inertia as revealed
below:

CS =
Lb∫

0

m(r)

×


∑3
l=12Dl (r, t)Ḋl (r, t) 0 0 0
2Ḋ1(r, t)φ1f(r) µa1ω

2
1f(φ1f(r))2 0 0

2Ḋ2(r, t)φ1f(r) 0 µa2ω
2
1f(φ1f(r))2 0

2Ḋ3(r, t)φ1f(r) 0 0 µa3ω
2
1f(φ1f(r))2

dr

+

µξ5Kξ5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
(13)

To compute each kth DOF’s diagonal component in the struc-
tural damping matrix CS , we set the log-decrement δk value
and then use the structural frequency ωk to obtain the damp-
ing factor µk through

ζk =
δk√

4π2+ δ2
k

≈
δk

2π
and µk =

2ζk
ωk
. (14)

The approximation for ζk holds for a considerably small
damping ratio ζk . The torsional structural damping applied
on ξ5 must represent the hydrodynamic damping effect of the
floater’s motion. The damping ratio for a TetraSpar floater is
found in Borg et al. (2024) as ζξ5 = 3 % with a log-decrement
of δξ5 = 0.20. This results in a damping factor of µξ5 = 0.30.
Besides, for the blade DOF al the damping ratio is set at a
very low value of ζal = 0.5 % (Bak et al., 2013) with a corre-
sponding logarithmic decrement of δal = 0.03 and resulting
in a damping factor of µal = 0.0024.

We have not included the effect of gravity so far in the
model, but its effect is still represented in Fig. 1. This means
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that the current structural model is independent of the equi-
librium or steady-state floater tilt value ξ5. This is con-
firmed by the fact that although ξ̇5 and ξ̈5 occur in the dy-
namic equations, Eqs. (3) and (4), there is no explicit oc-
currence of ξ5 except for the linear restoring term Kξ5 in
Eq. (8) for translational motion. Here the linear model is
valid for oscillations around any tilt value ξ5. The inclusion
of gravity in the model would lead to additional terms in
KS =KS,floater+

∫ Lb
0 KS,blades(r)dr , namely in KS,floater and

KS,blades, resulting in

KS,floater =


Kξ5 +MgH 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (15)

and

KS,blades =

Lb∫
0

m(r)

×


∑3
l=1gDl (r, t) −D̈1(r, t)φ1f(r) −D̈2(r, t)φ1f(r) −D̈3(r, t)φ1f(r)
g φ1f(r) ω2

1f(φ1f(r))2 0 0
g φ1f(r) 0 ω2

1f(φ1f(r))2 0
g φ1f(r) 0 0 ω2

1f(φ1f(r))2

dr,

(16)

under use of the small tilt assumption of sinξ5 ≈ ξ5. These
stiffness matrix KS contributions demonstrate the additional
coupling effects from tilt and gravity for a floating wind tur-
bine. For the purpose of model simplicity, however, these
gravity effects have not been included in the further analy-
sis.

2.2 Aerodynamic loads

The aerodynamic loads applied on the blades are the lift
forces Ll , which are taken at the reference radial location
r = d (Hansen, 2015),

Ll =
1
2
ρ{cCL,l V

2
rel,l}r=d . (17)

Here Vrel,l is the airfoil relative velocity observed at the refer-
ence radial location r = d , ρ denotes the air density, c is the
airfoil chord length, and CL,l is the lift coefficient which is
dependent on the angle of attack αl . As mentioned, the radial
reference position on the blade is the approximate location
of the equivalent aerodynamic load which is comparable for
an airfoil to the position of the aerodynamic centre along the
chord length.

Since the main purpose of the model is to demonstrate
methods for stability analysis, a number of simplifications
are made. To this end, the contribution of blade drag forces
is neglected, as well as the induced wake velocity caused by
the rotational speed. The assumption that drag can be ne-
glected is applicable because of the airfoil shape at the refer-
ence position, which is a streamlined thin airfoil. As for the

tangential induction factor, it generates a negligible wake ve-
locity contribution. Another approximation that is part of the
model is that the floater pitch angular motion ξ5 response
is assumed to be considerably small, which suggests that
one can use the small-angle approximations sinξ5 ≈ ξ5 and
cosξ5 ≈ 1. These approximations hold very well due to ξ5
responses being indeed very small, which will be demon-
strated later in the paper through decay tests. The inflow ve-
locity component projected perpendicularly to the rotor plane
is assumed in our model to be not impacted by the floater
tilt angle variation due to the small-angle approximation, i.e.
V0 cosξ5 ≈ V0. According to this assumption, the resulting
blade aerodynamic load Fl,aero projected perpendicularly to
the rotor plane can also abide by the same approximation and
is assumed to be influenced by a non-projected inflow veloc-
ity V0.

2.2.1 Velocity triangle

The key velocity variables that constitute the relative veloc-
ity Vrel,l for an airfoil are the inflow velocity V0,l and the
rotational speed Vrot. The relations between these velocity
triangle variables are illustrated in Fig. 2.

From Fig. 2, several geometric relations are inferred, and
one of them is simply V 2

rel,l = V
2
n̂,l
+V 2

t̂ ,l
. The relative ve-

locity Vrel,l has an orientation which is given by the in-
flow angle φl and the following trigonometric relation: φl =
tan−1 (

−Vn̂,l/Vt̂ ,l
)
. The inflow angle φl is also described as

the sum of the twist angle βl with the angle of attack αl ,
which reads as φl = αl +βl .

Besides, the relative velocity Vrel,l is affected by the wake
velocity Wl . The induced wake velocity Wl has only a ve-
locity component that is orientated in the normal direction to
the rotor plane, and it is characterized by the induction factor
a. On this basis, the radial and tangential velocity to the ro-
tor plane, Vt̂ ,l , is the rotational velocity Vrot =−�d at r = d.
The contribution from the rotational wake induction factor a′

is negligible and hence chosen to be ignored in this analysis,
meaning that Vt̂ ,l = Vrot.

The velocity Vn̂,l , normal to the rotor plane, is influenced
by the inflow velocity V0, by the velocity perceived on the
airfoil due to the blade deflection Val , and by the velocity
caused by the floater’s pitch angular motion Vξ5,l . This leads
to

Vn̂,l = (1− a)

V0(H )− ξ̇5 (H + d cos9l)︸ ︷︷ ︸
Vξ5,l

− ȧlφ1f(d)︸ ︷︷ ︸
Val

 . (18)
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Figure 2. The airfoil velocity triangle expressed in a coordinate system composed of a tangential (t̂), normal (n̂), and outward (ô) unit vector.

2.2.2 Linearization of aerodynamic loads

Given Eq. (18), V 2
n̂,l

is expanded as

V 2
n̂,l
= (1− a)2V 2

0 (H )︸ ︷︷ ︸
steady term

+ (1− a)2
(

2ξ̇5 (H + d cos9l ) ȧlφ1f(d)+ ξ̇2
5 (H + d cos9l )2

+ ȧ2
l (φ1f(d))2

)
︸ ︷︷ ︸

higher-order terms neglected

+ 2(1− a)2V0(H )
(
−ξ̇5 (H + d cos9l )− ȧlφ1f(d)

)︸ ︷︷ ︸
damping contribution

.

(19)

For linearization purposes, higher-order terms of V 2
n̂,l

are ne-
glected in the derivations to come.

Using the previous aerodynamic identities, the lift force
Ll is projected in the normal direction to the rotor plane as
can be seen in Fig. 2. This projection is done by utilizing the
inflow angle φl :

Fl = Ll cosφl . (20)

The aerodynamic load Fl is a driver of the floating wind tur-
bine’s motion. It is linearized as

∂
(
Ll,lin cosφl,lin

)
∂·

=
1
2
ρ c

×

(
∂CL,l

∂·

∣∣∣∣
st

cosφstV
2
rel,st+CL,st

∂ cosφl,lin
∂·

∣∣∣∣
st
V 2

rel,st

+CL,st cosφst

∂
(
V 2

rel,l

)
∂·

∣∣∣∣∣∣
st

 , (21)

where the label st represents the steady-state value of a vari-
able. In Eq. (21), the variables CL,l,lin, cosφl,lin, and V 2

rel,l,lin

are linearized in the same fashion as Yl,lin,

Yl,lin = Yl,st +1Y = Yl,st +
∂Yl

∂ȧl

∣∣∣∣
st
ȧl +

∂Yl

∂fs,l

∣∣∣∣
st

× fs,l +
∂Yl

∂ξ̇5

∣∣∣∣
st
ξ̇5. (22)

The linearization contribution ∂Yl
∂fs,l

∣∣∣
st
fs,l that pertains to the

dynamic stall variable fs will be introduced later in the dy-
namic stall subsection. For the linearization of Ll,lin, one
consideration required to be taken into account is that Vt̂ ,l
is constant, which entails that

∂V 2
rel,l

∂·
=
∂V 2

n̂,l

∂·
. (23)

For the development of the linear model, using Eq. (21), it
can be demonstrated that the partial derivative of Vn̂,l is in-
volved in the linearization of the force Fl . The partial deriva-
tive of Vn̂,l appears notably when deriving the inflow angle
φl with respect to other variables as

∂φl

∂·
=

1

−Vt̂ ,st

(
V 2
n̂,st

V 2
t̂ ,st
+ 1

) ∂Vn̂,l
∂·

. (24)

The partial derivative of the lift coefficient CL,l is dependent
on the angle of attack αl and the dynamic stall variable fs,l .
Details related to the dynamic stall lift coefficient are clari-
fied later in the paper. Hence, it remains to analyse for the
linear model the partial derivative of cosφl , which is found
to be

∂ cosφl
∂·

= −
Vn̂,st

V 2
t̂ ,st

(
V 2
n̂,st

V 2
t̂ ,st
+ 1

) 3
2

∂Vn̂,l

∂·
. (25)

The aerodynamic forcing terms from Eqs. (8) and (9)
are linearized as GFal ,lin = Fl,linLbφ1f(d) and Maero,lin =
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∑Nb
l=1Fl,linLb (H + d cos9l) through the linearization of

variables CL,l,lin, cosφl,lin, and V 2
rel,l,lin as shown in Eq. (21).

We can now build a linearized model, characterized by the
index L, for use in the stability analysis. For that to occur, a
part of the aerodynamic loading from F T in Eq. (9) is moved
from the right-hand side to the left-hand side and then lin-
earized in the form of an added aerodynamic damping matrix
contribution noted CA,

MS ẍ+ (CS +CA) ẋ+KS x = FL. (26)

In the EOM from Eq. (26) which pertains to the lin-
earized model, the damping matrix is altered due to the added
linearized aerodynamic damping matrix CA consideration.
The partial derivatives of the forcing variables Maero,lin and
GFa,l,lin allow us to put together that linearized aerodynamic
damping matrix contribution CA as

CA =


−
∂Maero,lin
∂ξ̇5

−
∂Maero,lin
∂ȧ1

−
∂Maero,lin
∂ȧ2

−
∂Maero,lin
∂ȧ3

−
∂GFa1,lin

∂ξ̇5
−
∂GFa1,lin
∂ȧ1

0 0

−
∂GFa2,lin

∂ξ̇5
0 −

∂GFa2,lin
∂ȧ2

0

−
∂GFa3,lin

∂ξ̇5
0 0 −

∂GFa3,lin
∂ȧ3


st

.

(27)

The partial derivatives within CA are all evaluated at steady-
state (st) conditions for the linear model, given an operational
point with a specific rotational speed � and inflow velocity
V0.

2.2.3 Dynamic stall model

To evaluate the stability of a floating wind turbine model with
aerodynamic states, we include a dynamic stall model. The
variation of the angle of attack on an airfoil does not im-
mediately impact the aerodynamic lift and drag forces due
to the inertia, resulting in a time delay. Due to its simple
implementation, we decided to include Øye’s dynamic stall
model (Øye, 1991) which does take into account the time de-
lay effect on aerodynamic loads. According to Øye’s model,
the dynamic stall can be expressed in the lift coefficient CL
through the flow separation function variable fs. The variable
fs indicates the trailing-edge flow separation point location
x, starting from the leading edge, as a ratio with respect to
chord length, i.e. fs = x/c (Øye, 1991). The value of fs = 1
corresponds to stall not occurring, signifying that the flow
remains fully attached. On the contrary, a value of fs = 0
implies that the separation occurs at the leading edge of the
airfoil and that the flow is actually fully separated. According
to Øye’s dynamic stall model, the influence of fs on the lift
coefficient CL is

CL (αl,fs)= fsCL,inv (αl)+ (1− fs)CL,stall (αl) . (28)

In this context, CL,inv (α) refers to the inviscid or fully at-
tached flow lift coefficient, whereas CL,stall (α) relates to a

fully separated flow. Considering that the angle of attack
value α would be known, both lift coefficients CL,inv (α) and
CL,stall (α) are determined by the airfoil data from Fig. 3. For
the linearization of CL from Eq. (28), a set of partial deriva-
tives are established, including ∂CL,l

∂αl
and ∂CL,l

∂fs,l
, respectively,

as

∂CL,l

∂αl
= fs

∂CL,inv,l

∂αl

∣∣∣∣
st
+ (1− fs)

∂CL,stall,l

∂αl

∣∣∣∣
st

and
∂CL,l

∂fs,l
= CL,inv(αl)

∣∣
st− CL,stall(αl)

∣∣
st. (29)

By making use of the airfoil data from Fig. 3, the values
of ∂CL,inv,l

∂αl

∣∣∣
st

and ∂CL,stall,l
∂αl

∣∣∣
st

are computed numerically as
gradients at the operational angle of attack αl through a cu-
bic spline interpolation. Lastly, to fill out the linear model’s
aerodynamic damping matrix CA according to Eq. (21), the
partial derivative of the lift coefficient CL,l with respect to
ẋ =

[
ξ̇5, ȧ1, ȧ2, ȧ3

]T is elucidated by using the previous par-
tial derivative identity from Eq. (24):

∂CL,l

∂·
=
∂CL,l

∂αl

∂αl

∂·
=
∂CL,l

∂αl

∂φl

∂·
. (30)

The linearization of CL with respect to fs is next included
in the forcing vector F T from the time domain model and in
FL from the linear model as

F T =


Maero+MF =

∑3
l=1Lb (H + d cos9l )

·

(
1
2ρ c

(
∂CL,l
∂fs,l

fs,l +CL,stall,l

)
cosφstV

2
rel,st

)
+MF

GFa,1,lin = Lbφ1f(d)
(

1
2ρ c

(
∂CL,1
∂fs,1

fs,1+CL,stall,1

)
cosφstV

2
rel,st

)
.
.
.



FL =


∑3
l=1Lb (H + dcos9l ) ·

(
1
2ρ c

(
∂CL,l
∂fs,l

∣∣∣
st
fs,l

)
cosφstV

2
rel,st

)
+MF

Lbφ1f(d)
(

1
2ρ c

(
∂CL,1
∂fs,1

∣∣∣
st
fs,1

)
cosφstV

2
rel,st

)
.
.
.

 .
(31)

The time domain model forcing vector F T considers a linear
fs contribution through a CL variation dictated by Eq. (28).
Because the aerodynamic damping force is included in F T ,
what remains from it in FL is only the contribution of the
partial derivative ∂CL,l

∂fs,l

∣∣∣
st
= CL,inv

∣∣
st− CL,stall

∣∣
st, which is

expressed as a constant gradient evaluated at the operational
point’s steady-state condition. Knowing the identities for F T
and FL as well as CL’s linearized formulation, a Jacobian
matrix of partial derivatives can be derived for both forcing
vectors F at each ith row, F i . The Jacobian matrix of par-
tial derivatives for F i with respect to fs,j on the j th column
is identified as

[
∂F i/∂f s,j

]
and has the following composi-
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Figure 3. Airfoil FFA-W3-241 dynamic stall data with respect to
angle of attack α and is valid at the reference radial position r = d .

tion:

[
∂F i/∂f s,j

]
=


∂Maero,lin
∂fs,1

∂Maero,lin
∂fs,2

∂Maero,lin
∂fs,3

∂GFa1,lin
∂fs,1

0 0

0
∂GFa2,lin
∂fs,2

0

0 0
∂GFa3,lin
∂fs,3

 , (32)

with its assembly directly influenced by the partial deriva-
tive ∂CL,i

∂fs,j
. For the time domain model, the Jacobian matrix[

∂F i/∂f s,j
]

varies in time as the simulation progresses. On
the contrary, for the linear model case,

[
∂F i/∂f s,j

]
is con-

stant and affected by aerodynamic parameters that are fixed
at steady-state values found for a given operational point with
a particular inflow velocity V0 and rotational speed �.

To be able to compute the lift coefficientCL that influences
the aerodynamic loading, a dynamic stall ordinary differen-
tial equation (ODE) for fs is defined as

ḟs,l =
fs,static,l − fs,l

τ
. (33)

Here τ identifies a steady-state time constant which is in-
versely proportional to the steady-state relative velocity but
directly proportional to the chord length, τ = (4c)/Vrel,st. In
agreement with previous explanations about stall occurrence,
the static value of fs, i.e. fs,static, reaches 0 when there is a
full separation of the flow. Simultaneously, the dynamic stall
contribution to CL, called CL,stall (α), reaches then a maxi-
mum value. The effects of stall-induced aerodynamic fluc-
tuations are most observable when the static lift coefficient
CL,static curve reaches a maximum value, and then fs,static is
close to 0.5 for the current airfoil (being FFA-W3-241). Fig-
ure 3 exhibits the relations between the multiple aerodynamic
variables that have been introduced.

In the linearized model, ḟs,l is linearized with respect to
the four structural DOFs of the system and the three aero-

Figure 4. Numerical gradient ∂fs,static/∂α as a function of the an-
gle of attack α.

dynamic DOFs fs,l . This requires us to take into account the
full linearization of the ḟs ODE by including the linearization
of the fs,static,l variable as well,

ḟs,l,lin =−
fs,l

τ
+

1
τ

(
fs,static

∣∣
st+

∂fs,static,l

∂αl

∣∣∣∣
st

∂φl

∂ξ̇5

∣∣∣∣
st
ξ̇5

+
∂fs,static,l

∂αl

∣∣∣∣
st

∂φl

∂ȧl

∣∣∣∣
st
ȧl

)
. (34)

This complete linearization translates into the following two
Jacobian matrices, represented as

[
∂ḟ s,i/∂ẋ4×1,j

]
3×4 =


∂ḟs,1
∂ξ̇5

∂ḟs,1
∂ȧ1

0 0
∂ḟs,2
∂ξ̇5

0 ∂ḟs,2
∂ȧ2

0
∂ḟs,3
∂ξ̇5

0 0 ∂ḟs,3
∂ȧ3


st

(35)

and
[
∂ḟ s,i/∂f s,j

]
3×3, which is a diagonal constant matrix

with components on the ith row and j th column being equal
to −1/τ . To evaluate for the linear model the partial deriva-
tive ∂fs,static,l

∂αl

∣∣∣
st

in Eq. (34), the numerical gradient is deter-
mined at the corresponding operational angle of attack αl
through the use of the airfoil data from Fig. 3. It is observable
in Fig. 4 that the numerical result for the gradient ∂fs,static,l

∂αl

∣∣∣
st

is calculated via a cubic spline interpolation for a wide range
of angles of attack.

The angle of attack labelled as “Stall” refers to a point in
flow separation where CL,static reaches a maximal value and
simultaneously the gradient stops decreasing ∂fs,static/∂α.
The angle of attack αA identifies the point where the gradient
∂fs,static/∂α starts increasing and the end of the transitioning
region after the maximal CL,static value has been reached.
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2.3 State-space representation

When combining the time domain model EOM, which is a
second-order ODE (see Eq. 10), with the first-order dynamic
stall ODE (see Eq. 33), we can rewrite the system as a first-
order state-space model. This formulation is comprised of a
system matrix A, a state vector q, and a forcing input vector
FB :

q̇ = Aq +FB . (36)

The state vector q =
[
xT

4×1, ẋ
T
4×1,fs,1,fs,2,fs,3

]T includes
the structural DOF vector x, its time derivative ẋ, and the
variable fs,l for each blade. The length of state q, labelled as
Ns, is Ns = 11 for a three-bladed wind turbine. The response
of q is quantified in terms of variations from the steady-state
values, which are determined through simulations using the
time domain model. Finally, the state-space system matrix
A is built for the time domain model and linearized model,
respectively, as

AT =


[
04×4

] [
I4×4

] [
04×3

][
−M−1

S
KS
]

4×4

[
−M−1CS

]
4×4

[
M−1
S

[
∂F i/∂f s,j

]]
4×3[

03×4
] [

03×4
] [

∂ḟ s,i/∂f s,j

]
3×3



AL =


[
04×4

] [
I4×4

] [
04×3

][
−M−1

S
KS
]

4×4

[
−M−1

S

(
CS +CA

)]
4×4

[
M−1
S

[
∂F i/∂f s,j

]]
4×3[

03×4
] [

∂ḟ s,i/∂ẋj
]
3×4

[
∂ḟ s,i/∂f s,j

]
3×3


st

.

(37)

It is important to recall that the linear model system matrix
AL components are all evaluated at steady-state (st) condi-
tions. In contrast, the time domain model matrix AT has
partial derivatives that vary in time. For simulations with a
forced response, the time domain model state-space forcing
vector FB,T is, just like AT , impacted implicitly by a varia-
tion of aerodynamic parameters. On the other hand, the lin-
earized model’s forcing vectorFB,L contains only a platform
pitch forcing moment MF contribution because it accounts
for a response variation around steady state. This is summa-
rized as

FB,T =



[
04×1

]
M−1
S


∑3
l=1Lb (H + d cos9l ) ·

(
1
2 ρ cCL,stall,l cosφstV

2
rel,st

)
+MF

Lbφ1f(d)
(

1
2 ρ cCL,stall,1 cosφstV

2
rel,st

)
.
.
.


[
fs,static,1/τ
fs,static,2/τ
fs,static,3/τ

]



FB,L =


[
04×1

]
M−1
S

[
MF[

03×1
] ]

[
03×1

]
 .

(38)

3 Model verification

After the state-space representation of the time domain
model and linear model is completed, time domain simula-

tions are performed to assess how both models function in
terms of decay tests and dynamic stall responses. These sim-
ulations serve as a model verification as well.

3.1 Decay tests

To verify that the linear model (LM) has been fully linearized
and that it behaves in a physically correct manner, decay
test simulations are carried out to compare results with the
time domain model (TDM). Results are presented as vari-
ations from the steady-state values. The simulation condi-
tions consider an operational point of V0 = 8 m s−1 and �=
0.6 rad s−1. The corresponding steady-state angle of attack
and lift coefficient are located in a region where the flow is
partially attached and close to reaching maximalCL,static; see
Fig. 3. The initial space perturbations for the structural DOFs
(ξ5 and al) are equal to the negative value of the steady-
state values, and the initial conditions for the dynamic stall
fs,l variables are the corresponding values for those struc-
tural DOF initial conditions. This means that ξ5(t = 0)=
−0.02 rad, al(t = 0)=−7.11 m, and fs,l(t = 0)=−0.67.

The results from Fig. 5 show that the steady-state plateau
values for the al and the fs,l signals are reached in a very
short time span. The time domain plots also confirm that
there is no disparity between the results obtained with the
TDM and the LM. Time responses also indicate that the sys-
tem is highly damped with regards to the al and the fs,l DOFs
in comparison to the floater pitch ξ5, which has not reached
its steady-state value yet in the time frame displayed here.

In the frequency domain, the power spectral density (PSD)
plots in the right column of Fig. 5 capture at the peaks the
natural frequency of the floater pitch motion, ωξ5 , for the
ξ5 signal but also the shifted frequencies of −ωξ5 +� and
ωξ5 +� in the other signals (al and fs,l) because of the
system’s periodicity. This entails that damped frequencies
shifted by±m�, wherem is an integer, are also part of the re-
sponse. The blade natural frequency, ω1f = 0.6255 Hz, can-
not be captured by any signal with a decay test due to a very
high aerodynamic damping contribution. It was investigated
by the authors (Pamfil et al., 2024) that the blade natural fre-
quency was well captured once the aerodynamic damping
contribution was numerically reduced by decreasing the air
density, ρ.

3.2 Dynamic stall analysis

To test, furthermore, the correct implementation of the lin-
earized model compared to results generated with the time
domain model, we analyse on CL–α plots the hysteresis be-
haviour of the airfoil’s lift due to the dynamic stall.
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Figure 5. Decay test for the operational point of V0 = 8 m s−1, �= 0.6 rad s−1, and τ = 0.34 s, where the TDM and LM results are com-
pared.

3.2.1 Operational point and floater pitch moment
variation

The most direct way to verify the CL–α responses in terms of
dynamic stall behaviour is to vary the platform pitch moment
MF that is given by a harmonic time dependence as follows:

MF = AM cos(�M t) , (39)

with amplitude AM and excitation frequency �M . The am-
plitude AM is varied depending on the chosen operational
point to achieve the desired angle of attack variation, result-
ing in the hysteresis behaviour that can be noticeable on CL–
α plots.

Figure 6 reports the TDM and LM results for three op-
erational conditions with the same inflow velocity of V0 =

8 m s−1. For each operational point, the floater pitch moment
excitation amplitude AM is changed, whereas its excitation
frequency �M is fixed at 0.15 Hz, with �M = 0.94 rad s−1.
The three operational points that are experimented with are
located at the angle of attack corresponding to a maximal
value of CL,static, before, and right after, respectively, to al-
low us to examine more clearly the hysteresis behaviour for
a high fluctuation of the lift and angle of attack values. The
results for the point located where the flow is partially at-
tached and before CL,static is maximal are presented in the
first row. These results are achieved with a rotor speed of�=
0.43 rad s−1 that is below the minimum rotor speed of 6 RPM
for the DTU 10 MW reference turbine at V0 = 8 m s−1,

with a nominal time constant τnom = 0.47 s and with AM =
1.212×109 Nm. The results presented in the second and third
rows in Fig. 6 are related to an operational point located, re-
spectively, at the maximal CL,static region around α = 15 deg
and nearby at a higher angle of attack. The simulation condi-
tions for the second and third rows are, respectively, a rotor
speed of �= 0.38 rad s−1 and �= 0.35 rad s−1, a nominal
time constant of τnom = 0.52 s and τnom = 0.56 s, and a plat-
form pitch moment amplitude of AM = 9.70× 108 Nm and
AM = 1.212× 109 Nm. The distinction for the three differ-
ent operational conditions in terms of nominal time constant
τnom = (4c)/Vrel,st arises from the difference in steady-state
relative velocity Vrel,st =

√
V 2
n̂,l
+V 2

t̂ ,l
through the tangential

velocity component Vt̂ ,l =−�d; see airfoil velocity triangle
in Fig. 2.

Furthermore, the time frame chosen to be plotted entirely
captures the steady-state cyclic behaviour of the lift coeffi-
cient and angle of attack for more than one cycle.

The hysteresis phenomenon is caused by the time delay
effect in the region of the operational point; see airfoil data
in Fig. 3. There is a good overall match between the time
domain and linear model time series for α and CL. Both the
time domain and linear models are able to describe the stall
phenomenon. This difference between results is more pro-
nounced in the region before maximal CL,static is achieved,
where the hysteresis curves are more elongated.
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Figure 6. Dynamic lift and stall behaviour at three different operational points surrounding the maximal static lift coefficient CL,static region,
with a varying forcing moment applied on the floater pitch DOF, and where the TDM and LM results are compared.

3.2.2 Influence from time constant

The aerodynamic damping depends on the time constant τ
from the dynamic stall model, and it influences the behaviour
of the system where the flow is partially attached (1> fs >

0). Varying τ ’s value in the dynamic stall model with re-
spect to a reference nominal value τnom = 0.34s would clar-
ify what the impact is on the angle of attack α and lift coeffi-
cient CL, and it demonstrates the effect on the aerodynamic
damping. Simulations are executed at an operational point of
V0 = 8 m s−1 and �= 0.6 rad s−1 with a steady-state angle
of attack α = 8.32 deg. To observe the effect of τ ’s change on
CL–α graphs, there is a platform pitch forcing applied with
fixed parameters for the amplitude, AM = 1.212× 109 Nm,
and for the excitation frequency set at 0.15 Hz and �M =
0.15 · 2π rad s−1. We investigate the hysteresis behaviour of
the lift coefficient and angle of attack time series and com-
pare results between the TDM and LM. In Fig. 7, the hys-
teresis effect is studied for an angle of attack ranging from
α = 6.47 deg to α = 10.11 deg. The dynamic stall τ param-
eter is varied by factors of 0.15, 1, and 100 when applied to
the nominal value τnom = 0.34 s.

The variation of τ ’s value helps to visualize on a CL–α
plot the impact on the slope ∂CL

∂α
during the cyclic motion of

the platform pitch. Results point out that a higher value of τ
brings about a higher slope ∂CL

∂α
. After performing an analyti-

cal integration of the ODE from Eq. (33), this conclusion can
be supported by studying the influence of τ on the solution
of the dynamic stall variable fs. It is explicitly expressed at
a current time step t +1t for a small time step increment of
1t ,

fs(t +1t)= fs,static+
(
fs(t)− fs,static

)
e

(
−
1t
τ

)
. (40)

It is discernible in Eq. (40) that a larger time constant τ leads

to a larger exponential factor e
(
−
1t
τ

)
. This inevitably in-

creases fs(t+1t) through the term
(
fs(t)− fs,static

)
e

(
−
1t
τ

)
.

In compliance with Eq. (29) for ∂CL
∂α

, a greater value of fs

induces a higher slope ∂CL
∂α

. To recapitulate, τ ’s variation has
an outcome that is noticeable on a CL–α graph when a har-
monic floater pitch moment is applied. It has been proven
that an increased time constant τ produces a higher slope of
the lift coefficient CL over the angle of attack α, which is
evidently demonstrated in Fig. 7.

This lift slope trend with an increasing time constant τ
in the region where the flow is partially separated is not
physically accurate. A dynamic stall model that includes the
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Figure 7. Hysteresis results for simulations with the operational point of V0 = 8 m s−1 and �= 0.6 rad s−1, with a forcing moment applied
on the floater pitch DOF, and where TDM and LM results are compared.

Theodorsen effect would typically predict a lower effective
lift slope at this steady-state angle of attack α = 8.32 deg;
see, for example, Figs. 8 to 10 in Hansen et al. (2004). The
increased lift slope observed in Fig. 7 occurs because Stig
Øye’s dynamic stall model does not take into account the
shed vorticity from the airfoil trailing edge which is modelled
by Theodorsen’s analytical function. This effect is captured
by the Beddoes–Leishman dynamic stall model (Leishman
et al., 1986), which was linearized in the form of a state-space
model by Hansen et al. (2004). We opted for the Stig Øye dy-
namic stall model instead because it only requires one aero-
dynamic stall variable per blade compared to four variables
for the Beddoes–Leishman state-space model (Hansen et al.,
2004). This alleviates the implementation and linearization
of the dynamic stall model equations in the system state-
space formulation.

4 Hill’s method of infinite determinants

The damping of dynamic systems is usually quantified
through the eigenvalue analysis of linearized system matri-
ces. However, for the dynamic system at hand, several sys-
tem matrix components are azimuthally periodic, meaning
that the stability analysis cannot be directly analysed for the
time-varying system matrix. Hill’s method is a solution that
renders the system matrix LTI so that the eigenvalues can be
calculated.

4.1 Aero-elastic stability within Hill’s method

To obtain an LTI system via Hill’s method, the state-space
ODE from Eq. (36) is rewritten as a truncated double-sided
Fourier series with a summation index ranging from j =−N

to N , with N being the upper limit for the expansion. The

Fourier series expansion for the state vector q, the time
derivative vector q̇, and the linearized system matrix AL
(Christensen and Santos, 2005), which are all of dimension
Ns, is, respectively,

q(t)=
N∑

j=−N

qj (t)eij�t ,

q̇(t)=
N∑

j=−N

(
(ij�) qj (t)+ q̇j (t)

)
eij�t ,and

AL(t)=
N∑

j=−N

AL,j eij�t , (41)

where each AL,j is a constant matrix and where i =
√
−1.

In our model, a Fourier decomposition with N = 4 suffices
to create an exact description of the system’s periodicity.

The Fourier decomposition of the system must be double-
sided because the linearized model’s system matrix AL is
real and has no imaginary component; refer to Eq. (37). To
rephrase, the double-sided Fourier decomposition of AL al-
lows us to cancel out the imaginary parts that appear from the
positive (+j�) and negative (−j�) harmonics. The expres-
sions from Eq. (41) can be inserted into the state-space ODE
from Eq. (36). For the eigenvalue analysis to be applicable,
the free vibration condition is considered in Eq. (36), which
implies that no input forcing FB is exerted on the system.
This approach is laid out as

N∑
n=−N

(
q̇n(t)+ (in�) qn

)
ein�t =

N∑
j=−N

N∑
p=−N

AL,jqpe
i(j+p)�t . (42)
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The expression from Eq. (42) can then be manipulated to get

N∑
n=−N

q̇n(t)ein�t =
N∑

n=−N

(
− (in�)qn+

n+N∑
j=n−N

AL,jqn−j

)
ein�t . (43)

Since Eq. (43) must hold for any value of time t , the factor
for each ein�t term in the summation must satisfy

q̇n(t)=− (in�)qn+
n+N∑
j=n−N

AL,jqn−j . (44)

Upon definition of q̂ = [qT
n=−N , . . .,q

T
n=0, . . .,q

T
n=N ]

T,
Eq. (44) is recast into a hyper-matrix formulation by varying
the index n from −N until N to represent a state-space
equation for different harmonics qn of the response q,

ˆ̇q = Âq̂,

Â=



. . .
...

...
...

. . .

. . . AL,0+ i�I AL,−1 AL,−2 . . .

. . . AL,1 AL,0 AL,−1 . . .

. . . AL,2 AL,1 AL,0− i�I . . .

. . .
...

...
...

. . .

 ,

q̂ =



...

qn=−1
qn=0
qn=1
...

 . (45)

It can be seen in Eq. (45) that for a truncation with the expan-
sion upper limit N , the number of harmonic matrices AL,j
required to be computed spans from j =−2N to j = 2N .
The hyper-matrix Â that emerges is a Toeplitz matrix of di-
mension Ns · (2N + 1) with an additional contribution on the
diagonal terms due to the rotational speed �. Since Â is a
constant matrix, it allows us to describe an LTI system and
thus to compute its eigenvalues and eigenvectors.

4.2 Hill’s eigenvalue problem

Put differently, Eq. (45) translates to ˆ̇q = Â q̂ where the sta-
bility of the LTI system is determined through the eigenval-
ues of Â. Consequently, the eigenvalue problem to solve for
the hyper-matrix Â (Skjoldan, 2009) is expressed as(

Â− λk,mÎ
)
v̂k,m = 0̂, (46)

where v̂k,m = [. . ., v̂T
k,m,n=−1, v̂

T
k,m,n=0, v̂

T
k,m,n=1, . . .]

T. The
eigenvalues λk,m have an index k that is related to a physical
mode which can range from the first to the last state number,
k = 1, . . ., Ns. The index m refers to the periodic frequen-
cies valid for a kth eigenvalue λk,m, and with a Fourier series
truncation consideration, it ranges just like index n from−N
to N . Yet, if no truncation is considered in Eq. (46), each one

of those physical modes is associated with an infinite number
of eigenvalues due to the infinite nature of the hyper-matrix
Â. In that case, solving the eigenvalue problem for an eigen-
value λk,j+m in Eq. (46) leads to the same matrix Â to solve
as for λk,j with the addition of Îm� with shifted eigenvec-
tors, accordingly. In short, the eigenvalue is established as

λk,m = σk + i
(
ωp,k +m�

)︸ ︷︷ ︸
ωk,m

= λk,0︸︷︷︸
λk

+ im�, (47)

where the eigenvalue’s real part is the modal damping co-
efficient σk which is negative for stable modes, whereas its
imaginary part is the damped frequency ωk,m. The damped
frequency ωk,m is made of a principal (p) damped frequency
ωp,k shifted by an integer m multiple of i�. The principal
eigenvalues and eigenvectors are associated with an index
m= 0 in the eigenvalue identity from Eq. (47), and there
are as many of them as there are states. Furthermore, the re-
dundancy of eigenvectors v̂k,m can be proven. If we take the
middle row from Eq. (46) linked to n= 0 and describe that
subset of equations for λk,m=0, we get

. . .+AL,2v̂k,0,−2+AL,1v̂k,0,−1

+
(
AL,0− λk,0I

)
v̂k,0,0+AL,−1v̂k,0,1

+AL,−2v̂k,0,2+ . . .= 0. (48)

Then we can apply the same thought to the row associated
with n= 1 and thus obtain the following subset of equations
for λk,m=1 instead:

. . .+AL,2v̂k,1,−1+AL,1v̂k,1,0

+

AL,0−
(
λk,1− i�

)︸ ︷︷ ︸
λk,0

I

 v̂k,1,1+AL,−1v̂k,1,2

+AL,−2v̂k,1,3+ . . .= 0. (49)

By comparison of Eqs. (48) and (49), it can be reasoned
that v̂k,0,j = v̂k,m,j+m. It ensues that solving the basis eigen-
vector v̂k,0 for λk,0 is sufficient to describe the eigenvec-
tors of the system. The eigenvector v̂k,0 is the same as any
other eigenvector v̂k,m linked to λk,m, but it is shifted in
values in the positive n direction by m ·Ns and upwards
in frequency by m�. The relations from Eqs. (46) and
(47) for the infinite hyper-matrix Â are in practice affected
by the truncation from the Fourier decomposition which is
applied to the system. After truncation, the full eigenvec-
tor matrix that is associated with all the eigenvalues λk,m
is V̂(Ns·(2N+1))×(Ns·(2N+1)). Therefore, a portion of the full
eigenvector matrix V̂(Ns·(2N+1))×(Ns·(2N+1)) is identified as
V̂(Ns·(2N+1))×Ns , and it is composed of non-redundant hyper-
eigenvectors v̂k,m=0 that are linked to the principal eigenval-
ues λk,m=0. Inside V̂(Ns·(2N+1))×Ns , each column of index k
is composed of individual eigenvectors v̂k,m=0,n (see Eq. 46)
of length Ns = 11 for a three-bladed rotor. In the end, these

Wind Energ. Sci., 10, 827–856, 2025 https://doi.org/10.5194/wes-10-827-2025



B. Pamfil et al.: Coleman-free stability methods for floating wind turbines 841

principal eigenvectors v̂k,m=0,n are used to construct the pe-
riodic eigenmodes ψk ,

ψk =

N∑
n=−N

v̂k,m=0,ne
in�t , (50)

for the intent of modal analysis.

4.3 Principal eigenvalues selection method

Solving the eigenvalue problem from Eq. (46) for Hill’s con-
stant hyper-matrix Â (LTI system) generates the multiple
identical eigenvectors v̂k,m with damping values σk . These
identical modes have shifted damped frequencies ωk,m by an
integerm of� for each kth state; refer to Eq. (47). Among the
redundant modes, it is essential to select the one for each kth
state with the most significant eigenvalue and corresponding
frequency ωp,k .

A principal damped frequency can be defined as the me-
dian in the set of all values obtained, which has been vali-
dated by Xu and Gasch (1995) for a three-bladed wind tur-
bine rotor, by Christensen and Santos (2005) for a general
four-bladed rotor, and by Lazarus and Thomas (2010) for
a forced hardening Duffing oscillator. This procedure trans-
lates to selecting the eigenvalues that are nearest in value
to the ones of matrix AL,0, labelled as λk,AL,0 for each kth
state. The eigenvalue selection for each kth state is associ-
ated with a given optimal frequency shift m̂� that allows us
to obtain the rightful principal damped frequency as λk,m̂ =
min

(
|λk,m− λk,AL,0 |

)
, and then the optimal eigenvalue for

the kth state is eliminated from the selection pool of candi-
date values. This straightforward selection technique is ap-
plicable when AL,0 has matrix components that are consid-
erably larger in absolute value in comparison with the other
higher harmonic matrices,

||AL,0||F > ||AL,±1||F > ||AL,±2||F, . . ., (51)

which means that the truncation of Â can be performed with-
out compromising the accuracy of its eigensolutions. This
technique of principal eigenvalue selection has also been
employed by Genta (1988) for the stability analysis of a
non-axisymmetric rotor and stator modelled via Timoshenko
beam elements. The Campbell diagram was plotted by using
the “zero-order” and higher-order estimations of the eigen-
values by solving the eigenvalue problem of the EOM, re-
spectively, with the zeroth- and higher-order harmonic matri-
ces (Genta, 1988). More recently, a more elaborate method
was introduced by Hansen (2016) for the identification of
the principal eigenvalues. It consists of eliminating from the
eigenmode solutions half of the largest eigenvectors with
higher-order harmonic components and then selecting the
principal solutions with the largest mean or zeroth harmonic
components so that they are not centred around the mean
value. Despite the proven functionality of that method for

two- and three-bladed wind turbines (Hansen, 2016), we
have demonstrated in our previous stability analysis work
(Pamfil et al., 2024) the reliability of our more direct and sim-
ple principal eigenvalue selection methodology to deal with
the indeterminacy problem.

5 Floquet’s theory

Hill’s method has been shown to be capable of construct-
ing an LTI system that can be used for stability analysis.
Nonetheless, for cross-validation purposes, it is relevant to
utilize another method to perform the modal analysis. As
another option, Floquet’s theory is commonly used too for
the objective of rendering the periodic system LTI. Flo-
quet’s (or the Lyapunov–Floquet) theory has notably been
employed by Frulla (2000) to accurately obtain the stabil-
ity limit curves for the EOM of a symmetrical four-bladed
rotor and an unsymmetrical two-bladed one, both subjected
to a constant rotational speed �. The application of Flo-
quet’s theory for wind turbines has been further investigated
by Skjoldan (2011), Bottasso and Cacciola (2015), and Riva
(2017). Regarding the scope of their work, Bottasso and Cac-
ciola (2015) and Riva (2017) emphasized tuning the principal
damped frequency selection so that they are more represen-
tative of the system.

5.1 The original and transformed states with
corresponding ODEs

As a starting point, Floquet’s theory introduces the trans-
form matrix P(t), also referred to as the Lyapunov–Floquet
(L–F) L(t) transform (Filsoof et al., 2021). By definition,
the inverse of the P(t) transform multiplies an original state
y(t) to obtain a transformed state z(t), i.e. z(t)= P(t)−1y(t).
The P(t) transform is periodic, meaning that P(t+T )= P(t),
which also implies that P(0)= P(T ). The ODE from Eq. (36)
is linked to the original state y, and it is here solely gov-
erned by the linear model’s time-dependent state-space ma-
trix AL(t) with no added input or forcing (free vibration con-
dition),

Ṗ(t)z+P(t)ż︸ ︷︷ ︸
ẏ

= AL(t)P(t)z︸ ︷︷ ︸
y

. (52)

A new LTI ODE is redefined for the transformed state z by
isolating its time derivative ż. The resulting equation includes
the Floquet factor constant matrix R (Skjoldan and Hansen,
2009),

ż= P−1(t)
(
AL(t) P(t)− Ṗ(t)

)︸ ︷︷ ︸
R

z. (53)

If the dynamic system was represented for the transformed
state z in a different coordinate system than the original state
y, and if the state-space matrix AL(t) would be expressed in
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the same coordinate system as y, then P−1(t) could poten-
tially be the Coleman transform. In that case, the Coleman
transform would be the exact representation of the transform
P−1(t) for a dynamic system that is isotropic with a rotor
having three blades or more. However, if the dynamic sys-
tem is not entirely isotropic, then the Coleman transform is
an approximation of the transform P−1(t), and it does not
generate a constant matrix R with a complete cancellation of
periodic terms in AL(t).

5.2 The state transition matrix

The LTI ODE in Eq. (53) suggests that the transformed state
solution z(t) can be found, given its initial condition z(0),
if the Floquet factor R is known, z(t)= eRtz(0). In other
words, the matrix multiplying the initial condition to obtain
the solution is called a state transition matrix, which means
that 8R(t,0)= eRt . Equivalently, the state transition matrix
8A(t,0) enables the calculation of the original state y(t) in
the following manner:

y(t)= P(t)8R(t,0)z(0)= P(t)eRtP−1(0)︸ ︷︷ ︸
8A(t,0)

y(0). (54)

P(0) is set as equal to the identity matrix I, which ensures
that z(0)= y(0) according to the original state definition,
y(t)= P(t)z(t). This condition must be fulfilled, because it
is not intended to have an actual change of variable frame
through P(t). Knowing the system’s periodicity for the trans-
form P(t), i.e. P(0)= P(T )= I, the state transition matrices
in Eq. (54) are the same after a duration of period T has
passed, leading to8A(T ,0)=8R(T ,0). In order to solve ei-
ther state transition matrix, a corresponding ODE is found.
For instance, the transition matrix8A(t,0) ODE obtained for
the original state y (Bottasso and Cacciola, 2015) involves
the system matrix AL(t),

8̇A(t,0)= AL(t)8A(t,0), (55)

whereas the state transition matrix8R(t,0) ODE involves in-
stead the constant matrix R and follows the same principle,
8̇R(t,0)= R8R(t,0). The state transition matrix 8A(T ,0)
is also referred to as the monodromy matrix C, and it is
equated to C= eRT . The monodromy matrix is solved us-
ing Eq. (55) through as many decay test simulations for the
duration of period T as there are states (Skjoldan, 2011).
Each one of those simulations is characterized by an ini-
tial unit perturbation for one state at a time. The simulation
initial condition is a column vector taken from 8A(0,0)= I
that is utilized to fill the corresponding column of 8A(T ,0).
The numerous simulations executed to solve the monodromy
matrix by a Runge–Kutta time-integration scheme can be
computationally expensive in terms of duration, especially
at lower rotational speeds, �, which have longer periods, T .

5.3 The diagonalization of the monodromy matrix and
the constant Floquet factor matrix with eigenmodes

Once the state transition matrix8A(T ,0) or monodromy ma-
trix C has been calculated, it is diagonalized as C= VρV−1.
To do so, the eigenvalue problem for C (Riva, 2017) is solved
to determine the eigenvector basis matrix V, where columns
are eigenvectors, and to find the diagonal matrix of eigen-
values, ρ = diag

(
ρk
)
. The eigenvalues of the monodromy

matrix ρk are also referred to as the characteristic or Flo-
quet multipliers (Skjoldan, 2011). In addition, the eigen-
vectors are the same irrespective of the infinite number of
valid eigenvalues characterized by a given frequency shift
difference of m�. With regard to the Floquet factor R, it
is diagonalized with the same eigenvector basis matrix V as
for C, but with a modified diagonal matrix of eigenvalues,
λ= diag(λk) (Riva, 2017):

R=
1
T

ln (C)= V
1
T

ln (ρ) V−1
= VλV−1. (56)

Furthermore, the eigenvalues, λk , are affected by the period-
icity of the system in the following way (Bauchau and Nik-
ishkov, 2001):

λk,m = λk + i m�= σk + i
(
ωp,k +m�

)︸ ︷︷ ︸
ωk,m

=
1
T

ln (|ρk|)+ i
(

1
T

arctan
(
={ρk}

<{ρk}

)
+m�

)
. (57)

This eigenvalue λk,m definition is synonymous with the one
in Eq. (47) that is associated with Hill’s method (Skjoldan,
2011). The real component of λk,m, i.e. σk , is unique to each
kth state. In contrast, there is a multiplicity per state for the
imaginary component of λk,m, being the damped frequencies
ωk,m. Analogously to Hill’s method, a principal (p) damped
frequency ωp,k is linked to a given state of index k and can
be shifted by m�, as indicated in Eq. (57). To rephrase, due
to the system’s periodicity, there are an infinite number of
valid eigenvalues solutions λk,m for each kth state with any
integer m selected. For the sake of precision, it is impera-
tive to determine an optimal frequency shift of m̂� from
the value obtained by diagonalizing the monodromy ma-
trix. Thus, more suitable eigenvalues noted λ̂k,m̂ = λk+i m̂�
serve to recalculate an adjusted diagonalized Floquet factor,
i.e. R̂= V λ̂V−1.

5.4 Selecting principal eigenvalues through the
participation factor

It is left to determine a technique for the selection of the most
representative or principal eigenvalues λk,m considering their
multiplicity. This redundancy problem is resolved by quan-
tifying instead a participation factor of modes φk,m that is
associated with each eigenvalue λk,m. The notion of a partic-
ipation factor being used for the principal damped frequency
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selection among other candidates was first elaborated by Bot-
tasso and Cacciola (2015), but it was more thoroughly inves-
tigated by Riva (2017) afterwards. To be able to obtain the
participation factor from the state transition matrix φA(t,0)
definition, the periodic projected matrix of the eigenvector
basis 4(t) (Riva et al., 2016), 4(t)= P(t)V, can be used.
The matrix 4(0) is the eigenvector basis V since it has been
shown earlier that P(0)= I (Bottasso and Cacciola, 2015).
These new expressions are included in the reformulation of
the transition matrix φA(t,0) from Eq. (54) after substituting
R with its diagonalized representation from Eq. (56):

8A(t,0)= P(t)Veλt V−1P−1(0)=4(t)eλt (P(0)V)−1

=

Ns∑
k=1

[
. . . 0Ns×1 4(:,k)e

λk t 0Ns×1 . . .
]
4−1(0). (58)

Given that 8A(t,0) has been solved for each time step t ,
P(t) is isolated in Eq. (58) so that it can be used to com-
pute 4(t), P(t)=8A(t,0)Ve−λtV−1. Using the identity of
P(t)=8A(t,0)Ve−λtV−1 in combination with the defini-
tion of the eigenvector basis matrix 4(t), the indeterminacy
problem of the modal frequencies has also been resolved by
Skjoldan and Hansen (2009). That has been achieved through
a Fourier expansion of the time-varying periodic mode shape
vector ψk(t)= colk (4(t)) that is the kth column (colk) ex-
tracted from the projected matrix of the eigenvector basis
4(t),

ψk(t)= colk (P(t)V)= colk
(
8A(t,0)Ve−λt

)
=8A(t,0)colk

(
Ve−λt

)
=8A(t,0)vke−(λk+im�)t

= ψp,k(t)e
−im�t . (59)

The kth principal periodic mode ψp,k(t)=8A(t,0)vke−λk t

from Eq. (59) is dependent on the constant eigenvector vk
extracted from the eigenvector basis V. A truncated double-
sided Fourier expansion of ψp,k ,

ψp,k(t)=
N∑

m=−N

ψp,k,m(ωk,m)eim�t , (60)

allows us to pick the optimal frequency shift m̂� among
the Fourier vector coefficients based on the maximal Euclid-
ian norm, i.e. ||9p,k,m̂(ωk,m̂)||2 =max

(
||9p,k,m(ωk,m)||2

)
.

This selection method fails to determine the participation of
||9p,k,m̂(ωk,m̂)||2 weighted by the sum of norms from can-
didate vectors,

∑N
m=−N ||9k,m(ωk,m)||2. In order to improve

the frequency shift selection criteria, we need to find a def-
inition of the participation factor φk,m by continuing from
Eq. (58). One can then bring into the picture the matrix Ik,k ,
which is null except for a unit value on the matrix diago-
nal component located on the kth row and column (Bottasso
and Cacciola, 2015). This gives the simplified expression of
8A(t,0)=

∑Ns
k=14(t)Ik,k4−1(0)eλk t . After some additional

manipulations of Eq. (58), another identity for 8A(t,0) can
be deduced (Riva et al., 2016):

Ns∑
k=1

[
. . . 0Ns×1 4(:,k) 0Ns×1 . . .

]


.

.

.
01×Ns(

4−1(0)
)

(k,:)
01×Ns

.

.

.


eλk t

=

Ns∑
k=1

4(1,k)
.
.
.

4(Ns,k)


︸ ︷︷ ︸

9k (t)

[(
4−1(0)

)
(k,1) . . .

(
4−1(0)

)
(k,Ns)

]
︸ ︷︷ ︸

Lk (0)T

eλk t . (61)

This introduces in Eq. (61) the kth row (rowk) for the in-
verse of the eigenvector basis 4(0)−1

= V−1, which re-
sults in Lk(0)T

= rowk
(
4(0)−1). The state transition ma-

trix can be written afterwards as a Fourier decomposi-
tion,8A(t,0)=

∑Ns
k=1

∑N
m=−NZk,m(ωk,m)e(λk+im�)t , where

Zk(t)=4(t)Ik,k4−1(0)=9k(t)Lk(0)T is transformed from
the time to the frequency domain, Zk,m(ωk,m), through a
double-sided Fourier series expansion. In light of this, the
matrix Zk,m(ωkm) describes the contribution to the total value
of 8A(t,0), which quantifies the participation factor φk,m.
The participation factor can be evaluated through the Frobe-
nius norm of ||Zk,m(ωkm)||F (Riva, 2017):

φk,m =
||4k,m(ωk,m)Ik,k4−1(0)||F∑N

m=−N ||4k,m(ωk,m)Ik,k4−1(0)||F

=
||9k,m(ωk,m)||2�����

||LT
k (0)||2∑N

m=−N ||9k,m(ωk,m)||2�����
||LT

k (0)||2

=
||9k,m(ωk,m)||2∑N

m=−N ||9k,m(ωk,m)||2
. (62)

After a set of participation factors of index m have been
calculated for each kth state, the most appropriate princi-
pal eigenvalue is selected. It is crucial to point out that a
much greater number of frequency shift candidates should
be covered at lower rotational speeds. When nearing low ro-
tational speeds, the initial frequency estimates obtained from
the monodromy matrix for the blades motion amplitudes al
DOFs are suddenly too low and closer to the damped fre-
quency pertaining to the floater pitch angle ξ5 DOF. The se-
lection criterion is to pick, for each kth eigenvalue, the fre-
quency shift m̂� that is associated with the maximum par-
ticipation factor φ̂k,m̂ =max

(
φk,m

)
among the tested set of

candidate values (Riva et al., 2016).

6 Coleman transform

An aero-elastic stability analysis is usually carried out by us-
ing the Coleman transform which modifies the DOFs’ frame,
and it suffices in this case to render the system to become
LTI. We utilize it here as our benchmark model to vali-
date Hill’s and Floquet’s results from the previous sections.
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Figure 8. The three flap-wise motions of the blades expressed as
non-rotational (NR) variables, which are the blade collective flap-
wise (a0), the rotor fore–aft tilting (ac), and rotor yawing (as) mo-
tion amplitudes.

The Coleman transform expresses the blade deflection am-
plitudes al from a rotational frame of reference to a fixed
non-rotational (NR) frame as a0, ac, and as amplitudes. To
clarify this multi-blade set of variables, the three fixed rotor
motions in that frame can be visualized in Fig. 8.

The Coleman matrix T−1 transforms the four struc-
tural degrees of freedom from the rotational frame,
x = [ξ5,a1,a2,a3]T, to the non-rotational one, xNR =

[ξ5,a0,ac,as]T, and its inverse T provides the opposite trans-
form:

 ξ5
a0(t)
ac(t)
as(t)

=


1 [
1/3 1/3 1/3

2/3cosψ1 2/3cosψ2 2/3cosψ3
2/3sinψ1 2/3sinψ2 2/3sinψ3

]
︸ ︷︷ ︸

B−1
3×3


 ξ5
a1(t)
a2(t)
a3(t)


 ξ5
a1(t)
a2(t)
a3(t)

=


1 [
1 cosψ1 sinψ1
1 cosψ2 sinψ2
1 cosψ3 sinψ3

]
︸ ︷︷ ︸

B3×3


 ξ5
a0(t)
ac(t)
as(t)

 .
(63)

Put differently, Eq. (63) translates to xNR = T−1 x and x =
TxNR. It means that we transform the original four struc-
tural degrees of freedom vector in the non-rotational basis
by first excluding the three fs,l aerodynamic variables as-
sociated with the dynamic stall model implementation. The
equation of motion for the linear model from Eq. (26) is de-
rived in the NR frame by multiplying both the left- and right-
hand sides by T−1 and by utilizing T and T−1 to express the
vector x and its time derivatives in the same frame:

T−1MS

(
T̈xNR+ 2Ṫ ẋNR+T ẍNR

)︸ ︷︷ ︸
ẍ

+T−1 (CS +CA)
(
ṪxNR+T ẋNR

)︸ ︷︷ ︸
ẋ

+T−1KS(TxNR)︸ ︷︷ ︸
x

= T−1FL︸ ︷︷ ︸
FL,NR

. (64)

Here the forcing vector is set to be null due to the free vi-
bration condition considered, i.e. FL = FL,NR = 0. From
Eq. (64), the equation of motion in the non-rotational frame
can be worked out by grouping together the matrix contri-
butions that multiply individually the acceleration, velocity,
and displacement vectors that are specified in the same frame
too:(

T−1MS T
)

︸ ︷︷ ︸
MNR

ẍNR+
(

2T−1MS Ṫ+T−1 (CS +CA) T
)

︸ ︷︷ ︸
CNR

ẋNR

+

(
T−1MS T̈+T−1 (CS +CA) Ṫ+T−1KS T

)
︸ ︷︷ ︸

KNR

xNR = 0. (65)

All the components in Eq. (65), including the mass, stiff-
ness, and damping matrices, are now represented as non-
rotational variables. Thereafter, the contribution of the ad-
ditional three aerodynamic DOFs fs,l and the terms re-
lated to them need to be defined as non-rotational vari-
ables too and taken into account in the system matrix
AL,NR. The state vector q transformed in the NR frame

is qNR =
[
xT

4×1,NR, ẋ
T
4×1,NR, fs,0,fs,c,fs,s

]T
, and it has

a length of integer Ns. For instance, the system matrix
Afs is the first-order ODE Jacobian matrix for fs, i.e.
Afs =

[
∂ḟ s,i/∂f s,j

]
. The state-space ODE for the trans-

formed state vector qfs,NR =
[
fs,0,fs,c,fs,s

]T is q̇fs,NR =

Afs,NRqfs,NR , and the matrix Afs,NR is developed after some
manipulations starting with the expression qfs = Bqfs,NR .
The resulting system matrix AL,NR is defined by the EOM
that is described in the NR frame and by other transformed
Jacobian matrices that are inserted,

AL,NR

=


[
04×4

] [
I4×4

] [
04×3

][
−M−1

NRKNR

] [
−M−1

NRCNR

] [
M−1

NRT−1 [∂F i/∂f s,j ]B
][

B−1 [∂ḟ s,i/∂ẋj ] Ṫ
] [

B−1 [∂ḟ s,i/∂ẋj ]T
]

Afs,NR

 ,
Afs,NR =

[
B−1 [∂ḟ s,i/∂f s,j ]B−B−1 Ḃ

]
.

(66)

This system matrix AL,NR is time-independent and can be
used to calculate the eigenvalues without having to addition-
ally rely on Hill’s or Floquet’s method to cancel out the peri-
odicity of the system. This implies that the former periodicity
of matrix AL(t) has been eliminated.

The clear disadvantage of relying on the Coleman trans-
form system is the complexity of the Coleman-transformed
constant matrix AL,NR compared to the time-varying coun-
terpart AL(t). Applying the Coleman transform to the parts
of the matrix that define the coupling between the aerody-
namic fs,l states with the other structural states is not as triv-
ial as obtaining the Coleman-transformed mass MNR, damp-
ing CNR, and stiffness KNR constant matrices. Nevertheless,
applying the Coleman transform is a computationally effi-
cient approach if it renders the system LTI, because it is not
expensive in comparison to other methods.

Wind Energ. Sci., 10, 827–856, 2025 https://doi.org/10.5194/wes-10-827-2025



B. Pamfil et al.: Coleman-free stability methods for floating wind turbines 845

Figure 9. Modal damping, damped frequency, and damping ratio for an eigenvalue analysis in the rotational frame with a time constant τ
variation.

7 Stability analysis

We now apply the stability methods on the linearized model
to quantify the impact on the modal damping from the dy-
namic stall model’s time constant τ and rotational speed �.
Aerodynamic damping plays a major role in influencing the
system’s modal damping but also the damped frequency. The
extent of that impact is thoroughly studied in this section.

Regarding the presentation of the stability analysis, the
eigenvalues found in the rotational frame through Hill’s and
Floquet’s methods are compared to the ones found in the
non-rotational frame using the Coleman-transformed con-
stant system matrix AL,NR.

7.1 Time constant τ variation eigenvalue analysis

Our first stability study consists of analysing the evolution of
eigenvalues while varying the time constant τ . We choose an
operational point of V0 = 8 m s−1 and �= 5.73 RPM. This
is associated with the nominal time constant τnom = 0.34 s.
The steady state for that operational point is located in a spe-
cific region of the lift coefficient with respect to the angle of
attack. That region is characterized by a flow which is par-
tially attached and before CL,static reaches a maximal value.
In this particular study, the aerodynamic properties are all
kept constant and only the time constant τ is varied without
any influence on other variables, such as Vrel.

The eigenvalues that are associated with the dynamic stall
aerodynamic DOFs fs,l are omitted from plots. These eigen-
values are not physically relevant because the dynamic stall
DOFs fs,l only serve to express the aerodynamic damping
of the system, and they can be correlated with a one-DOF
dynamic system with a null frequency.

7.1.1 Rotational frame

Eigenvalues in Fig. 9 are expressed as a function of τ in the
rotational frame for the floater pitch mode denoted by PITCH
and for the symmetric blade mode denoted by SYM. Hill’s
(marked ◦) and Floquet’s (marked4) results match, and they
are presented in terms of modal damping σk , damped fre-
quencies ωk , and damping ratio ζk for these modes. This
investigation serves to notice the impact of the eigenval-
ues with respect to the time constant and to observe after
what time constant value and onward the blade damped fre-
quencies, modal damping, and damping ratio have reached a
plateau.

For the most part, the blade symmetric mode is not that
affected by a larger time constant at values above the nomi-
nal one. The time constant does, however, slightly influence
the growth of the floater pitch mode’s modal damping and
damping ratio. The damping ratio ζk is linked to the modal
damping σk and to the principal damped frequency ωp,k as
follows:

ζk =
−σk

|ωp,k|

√
1+ σ 2

k

ω2
p,k

. (67)

When the modal damping σk is low in absolute value, evi-
dently the damping ratio ζk can be approximated simply as
the ratio of ζk ≈−σk/|ωk|. The floater pitch damping ratio
increases marginally with τ according to that approximation
for ζk since its modal damping is very small while its damped
frequency remains constant.

There is a strong correlation between the time constant τ
and the dynamics of fs,l (refer to Eq. 40) which in turn in-
fluences the dynamic stall lift coefficient CL,l according to
Eq. (28). This clarifies why the time constant τ has a notice-
able effect on the blade modal damping, whereas it barely
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Figure 10. Modal damping, damped frequency, and damping ratio for an eigenvalue analysis in the NR frame with a time constant τ
variation.

impacts the platform pitch modal damping. It can also be ob-
served that the damped frequencies for the blade DOFs, al ,
get slightly larger with the time constant τ after the nomi-
nal value is surpassed. They increase until reaching a plateau
value where τ ’s growth minimally affects the damped fre-
quency and modal damping, since large values of τ lead to
fixed values of fs. Before the nominal τ value is reached,
there is an augmentation of the blade DOFs’ modal damping
which leads to a reduction of the damped frequency. Con-
cerning the damping ratio, it follows the same trend as the
modal damping for both the symmetric blade mode and the
floater pitch mode.

7.1.2 Non-rotational frame

Figure 10 shows in the non-rotational (NR) frame the modal
damping σk , damped frequencies ωk , and damping ratio ζk as
a function of τ . Results are reported for Hill’s (marked 4),
Floquet’s (marked �), and Coleman’s (marked �) approach.
In the frequency plot, the blade lowest damped frequency be-
longs to the rotor first backward-whirling (BW) mode, the
middle damped frequency belongs to the first symmetric flap
mode (SYM), and the highest damped frequency belongs to
the first forward-whirling (FW) mode. The overall lowest
damped frequency describes the floater pitch ξ5 mode, and
the lowest modal damping and damping ratio are also linked
to that mode.

Results calculated via Hill’s and Floquet’s methods are
originally found in the rotating frame, and they are recon-
structed in the NR frame by applying the frequency shifts
on the symmetric mode damped frequency to generate the
rotor FW and BW modes. The rotor FW mode’s damped fre-
quency is shifted away from the rotor SYM mode’s damped
frequency by a constant distance of +�, and the rotor BW

mode is shifted by −� where �= 5.73 RPM= 0.0955 Hz
is the rotational speed of the operational point. That being
said, the modal damping is the same in both frames, imply-
ing that σk,NR = σk , while the damped frequency in the ro-
tational frame is expressed in the NR frame through the fol-
lowing shifts:

ωk,FW,NR = ωk,SYM+�, ωk,BW,NR = ωk,SYM−�, (68)

given that ωk,SYM,NR = ωk,SYM. Afterwards, the damping ra-
tio ζk is found accordingly through Eq. (67) for all the blade
modes,

ζk,FW,NR =
−σk

|ωk,FW,NR|

√
1+ σ 2

k

ω2
k,FW,NR

,

ζk,BW,NR =
−σk

|ωk,BW,NR|

√
1+ σ 2

k

ω2
k,BW,NR

, (69)

and ζk,SYM,NR = ζk,SYM applies again for the SYM mode.
Once the eigenvalues determined with Floquet’s and Hill’s
methods are transformed in the NR frame, they do perfectly
match the ones calculated by directly solving the eigenvalue
problem for the Coleman-transformed system matrix AL,NR.
As for the difference in damping ratio between the FW, SYM,
and BW modes, it is due to the different damped frequencies
for the three modes, because the modal damping is identi-
cal and not influenced by the frame considered. According
to Eq. (67), because the modal damping is the same for all
three rotor modes, a BW mode experiences a higher modal
damping above the symmetric mode, whereas a FW mode
experiences instead a lower damping ratio.

Since the rotational speed� is kept constant, the rotor BW,
SYM, and FW modes’ damped frequencies (distanced by 1×
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Figure 11. Modal damping, damped frequency, and damping ratio for a Campbell diagram eigenvalue analysis in the rotational frame with
a rotational speed variation. The operational point is of V0 = 8 m s−1.

� from the SYM mode) and damping ratio values are equally
spaced, and they remain unaffected by the time constant τ
after the threshold of τ = 1 s has been exceeded.

7.2 Rotational speed Ω variation – Campbell diagram

To validate once more the correct implementation of Hill’s
and Floquet’s methods, an eigenvalue analysis for a vary-
ing rotational speed � is performed. The modal damping
σk , damped frequency ωk , and damping ratio ζk results are
displayed on a Campbell diagram in the rotational and non-
rotational frame. The operational point of V0 = 8 m s−1 and
�= 5.73 RPM is yet again located in the usual region before
the maximal CL,static is attained where the flow is partially
attached. For this operational point, we compute the steady-
state responses and the normal inflow velocity Vn̂,l which are
kept constant for varying rotational speeds �. However, the
rotational velocity is updated as Vt̂ ,l =−�d , and the aero-
dynamic parameters are calculated accordingly with a vary-
ing angle of attack α. Using the eigenvalues calculated with
Floquet’s and Hill’s method in the rotational frame, the ro-
tor BW (−�) and FW (+�) modes are once again added
on the damped frequency plot in the NR frame as offsets
from the SYM blade mode. On the contrary, when solving
the eigenvalues for the Coleman-transformed system, these
modes manifest themselves because they are rotor modes as-
sociated with a global fixed coordinate system rather than
being blade specific.

7.2.1 Rotational frame

The purpose of this stability analysis is to demonstrate that
the stability methods can determine the aerodynamic damp-
ing as a function of rotational speed. An augmentation of the
rotational speed � and of the tangential velocity component

Vt̂ ,l amplifies the relative velocity Vrel,l while simultaneously
decreasing the angle of attack α.

Results in Fig. 11 show that with a greater rotational speed
�, the floater pitch motion’s damped frequency does not rise
significantly, but its modal damping increases slightly, caus-
ing the damping ratio to be amplified considerably. It is also
seen in Fig. 11 that the damped frequency and modal damp-
ing predicted by Hill’s (marked ◦) and Floquet’s (marked 4)
methods are well matched.

Furthermore, the effect of increasing aerodynamic damp-
ing is observable notably in terms of a decreased blade DOF
al damped frequency. The amplification of the relative ve-
locity Vrel,l increases the aerodynamic damping through the
lift loads and leads to a higher blade modal damping. Thus,
at lower rotational speeds the symmetric blade mode has
a very small modal damping and a low damping ratio too,
which also applies to the floater pitch mode. At very low ro-
tational speeds, the blade damping ratio is even smaller than
the floater pitch one, but it grows drastically with rotational
speed and overpasses it soon after. In view of this, with a
higher aerodynamic damping at higher rotational speeds �,
the damped frequency for the pitch DOF ξ5 barely increases
and remains almost unchanged in comparison to the appar-
ent reduction of the blade damped frequencies. Nevertheless,
the damping ratio also increases for the floater pitch mode in
a linear way according to the approximation ζk ≈−σk/|ωk|
that holds since its modal damping is very low, and the
damped frequency remains almost unaffected. It ensues that
the aerodynamic damping influences the eigenvalues of the
blade DOFs more than the floater pitch eigenvalue.

The change in damped frequency at 3.16 RPM is due to the
variation of CL at that rotational speed with a corresponding
angle of attack as can be seen in Fig. 4. At that particular an-
gle of attack, the gradient ∂fstatic,l/∂αl starts increasing lo-
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Figure 12. Modal damping, damped frequency, and damping ratio for a Campbell diagram eigenvalue analysis in the NR frame with a
rotational speed variation. The operational point is of V0 = 8 m s−1.

cally. The resulting change in damped frequency at that RPM
is caused by a high fluctuation of aerodynamic parameters,
and it demonstrates that the stability analysis methods can
detect the effect of stall parameter variations. Fluctuations
at other rotational speeds are caused by gradual numerical
changes too in the gradient ∂fstatic,l/∂αl for corresponding
angles of attacks as detailed in Fig. 4. The angle of attack
noted αA in Fig. 4 represents a sudden rise in the value of
∂fstatic/∂α which disturbs mainly the floater pitch motion
damping trend. That sudden change in ∂fstatic,l/∂αl is con-
nected to the stall region in Fig. 3, where the static lift coeffi-
cient starts decreasing with the angle of attack, while the full
stall coefficient CL,stall slope stops increasing. In short, the
angle of attack region between the maximal CL,static value
(labelled Stall) and αA is a region which impacts both the
damping and damped frequency for the floater pitch motion
and only the damped frequency for the blades.

7.2.2 Non-rotational frame

Comparing eigenvalues on a Campbell diagram with both
Hill’s (marked 4) and Floquet’s (marked �) method, as well
as with the Coleman approach (marked �), allows us to cross-
validate them at last in the NR frame. Just like in Fig. 10 for
the time constant τ variation eigenvalue analysis expressed in
the NR frame, the rotor FW and BW modes are reconstructed
as before from the SYM mode when using Hill’s and Flo-
quet’s methods to compare with the Coleman-based results.
The Campbell diagram in Fig. 12 proves that the eigenvalues
found with either procedure are equal.

The three blade modes all have a modal damping that in-
creases with rotational speed, while their damped frequen-
cies decrease. To summarize, growth of modal damping and
a drop of damped frequency simultaneously cause the damp-
ing ratio to rise with rotational speed. Moreover, for the NR

frame, the blade DOF rotor FW mode is associated with
a lower damping ratio curve, while the rotor BW mode is
linked instead to a higher damping ratio curve. This occurs
because all three blade modes are associated with the same
modal damping; refer to the damping ratio expression in
Eq. (67). The rotor’s SYM mode curve is the middle one in
both the damped frequency and damping ratio plots. The BW,
SYM, and FW damped frequency and damping ratio curves
become more distinguishable from each other at higher ro-
tational speeds due to the application of the ±� frequency
offset.

8 Two-bladed floating wind turbine model

The main motivation for developing the two-bladed floating
wind turbine model is to test under different design circum-
stances and operational conditions the applicability of our de-
veloped Coleman-free aero-elastic stability methods, namely
Hill’s and Floquet’s methods. As a reminder, using only the
Coleman transform for a two-bladed rotor would not result
in making the system LTI, which is another reason to rely on
those methods in the first place. The Coleman transform for a
two-bladed rotor does not use the azimuthal periodicity in its
definition but rather its eigenmodes. For a two-bladed rotor,
if one were to apply the Coleman transform, the periodicity
of the system matrix could be eliminated through the use of
a supplementary method such as Floquet’s or Hill’s method.

The two-bladed wind turbine model is obtained firstly by
having a blade chord length c increased by a factor of 3/2
compared to the three-bladed model (Kim et al., 2015). This
chord length extension is applied for all airfoils across the
whole blade length span. It accounts for the reduction of the
number of blades so that the same lift, thrust, and torque
were generated by both wind turbine models. This blade
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Figure 13. Decay test for the operational point of V0 = 8 m s−1, �= 0.6 rad s−1, and τ = 0.512 s for the two-bladed wind turbine, where
TDM and LM results are compared.

design change affects things equally, so the airfoil section
of interest is at r = d . The two-bladed model EOMs differ
from the three-bladed case due to the system matrix size re-
duction through an elimination of matrix rows and columns
that pertain to the third blade components. In light of this,
the structural DOF vector for the two-bladed wind turbine
is x3×1 = [ξ5,a1,a2]T in the EOM from Eq. (26). Subse-
quently, the state vector within the state-space ODE from
Eq. (36) is q =

[
xT

3×1, ẋ
T
3×1,fs,1,fs,2

]T and is of dimen-
sion Ns = 8. The system matrices are thus fundamentally the
same except for the scaling of the chord length and the matrix
size reduction. The azimuthal angular 9l position of the two
blades is also changed as prescribed by Eq. (1) with Nb = 2,
and all system equations are modified accordingly.

8.1 Decay test

To verify that the two-bladed wind turbine linearized model
has been rightfully built, decay test simulations are per-
formed. Like for the three-bladed rotor case, results are pre-
sented in the time domain as variations from the steady states.
The simulation time span is relatively short, because there is
a focus on analysing the time responses of signals pertaining
to the DOFs al and fs,l until they reach their steady state.
The simulation conditions that are considered are the same
as for the three-bladed decay test in Fig. 5, meaning that an
operational point of V0 = 8 m s−1 and �= 0.6 rad s−1 is ap-

plied. The resulting steady-state angle of attack and lift co-
efficient are still positioned in the same region before maxi-
mal CL,static is obtained where the flow is partially attached.
Once more, the structural DOF initial conditions for the sim-
ulation are the negative value of the steady-state values with
corresponding dynamic stall fs,l variable initial conditions,
meaning that ξ5(t = 0)=−0.02 rad, al(t = 0)=−10.54 m,
and fs,l(t = 0)=−0.73.

Figure 13 presents the decay responses for the LM and
TDM. We observe a slight difference in time series for the
blade deflection amplitude al signals and for the dynamic
stall variable fs,l before reaching the steady state of the oper-
ational point. That difference in responses between the time
domain and linear model originates from the initial con-
ditions being considerably far away from the operational
point’s steady state. Nevertheless, it is clear that the lin-
earized model generates consistent time responses compared
to the time domain model.

As anticipated, the time domain responses are converging
fast towards the steady states also for the two-bladed model.
Just like for the three-bladed wind turbine results from Fig. 5,
the PSD plots do not capture the blade DOF al natural fre-
quency, ω1f = 0.6255 Hz, because the aerodynamic damp-
ing effect prevents it. However, the natural frequency of the
floater pitch motion,ωξ5 , is clearly observable as a peak value
in the ξ5 signal, and other natural frequencies of the sys-
tem are not observable in this signal due to its own natural
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Figure 14. Modal damping, damped frequency, and damping ratio for an eigenvalue analysis in the NR frame with a time constant τ
variation.

frequency dominant effect. Similarly to results for a three-
bladed rotor in Fig. 5, the other signals for the al and fs,l
DOFs also show peaks at the frequencies of −ωξ5 +� and
ωξ5 +�, which are caused by the system’s periodicity.

8.2 Eigenvalue analysis

For the eigenvalue analysis of the two-bladed wind turbine,
the applicability of Floquet’s and Hill’s method remains to
be demonstrated by executing the same studies as previously
done for the three-bladed rotor. It is also relevant to analyse
the distinctions in the eigenvalue trends between those com-
puted for the two- and three-bladed rotor. This is relevant in
particular for the Campbell diagram study.

The eigenvalues are originally computed in the rotational
frame because the Coleman transform is not applicable for
the two-bladed rotor. Despite that, they are expressed in the
NR frame through a reconstruction of the rotor BW and FW
modes.

8.2.1 Time constant τ variation eigenvalue analysis

With regard to the eigenvalue analysis for a varying time con-
stant τ , results for the two-bladed wind turbine in Fig. 14
are similar to the three-bladed case in terms of tendency to
reach plateau values with an increasing τ . The current eigen-
value results consider the same simulation conditions as for
the three-bladed rotor simulations in the same region, mean-
ing that the operational point still has an inflow velocity of
V0 = 8 m s−1, and a rotational speed of�= 5.73 RPM, but a
nominal time constant of τnom = 0.512 s instead. Similarly to
previous results in Fig. 9 for the three-bladed rotor, the blade
damped frequency is smallest at the nominal τ value for the
current operational point. Furthermore, for the rotor BW and
FW modes, the blade damped frequencies are shifted again

by a constant rotational speed �= 5.73 RPM away from the
SYM blade mode’s damped frequency. In accordance with
previous results, the floater pitch damped frequency remains
almost constant, whereas its modal damping σ increases pro-
portionally to τ and consequently so does its damping ratio
ζ . The only distinction between the two- and three-bladed
rotor results in Figs. 14 and 10 is the modal damping and
damped frequency 16values magnitude for the blade DOFs.
For the two-bladed rotor, the blade damped frequencies are
lower, while the modal damping and damping ratio are con-
siderably higher. Due to its increased chord length, the two-
bladed rotor experiences higher aerodynamic loads on each
blade and, for that reason, a higher aerodynamic damping.

8.2.2 Rotational speed Ω variation – Campbell diagram

On the subject of eigenvalue results for the Campbell dia-
gram study, the two-bladed rotor’s BW and FW modes can
only be obtained through the frequency shift away from
the blade symmetric mode since the Coleman transform is
not applicable in this context. Figures 15 and 16 report the
Campbell diagrams for two operational points with the same
rotational speed of �= 5.73 RPM that are located in the re-
gion before CL,static is maximal for a partially attached flow.
Their inflow velocities are, respectively, V0 = 8 m s−1 and
10 m s−1, and their corresponding nominal time constants are
τnom = 0.512 s and τnom = 0.508 s. The operational point is
used to get the steady states and the normal inflow velocity
Vn̂,l but not the rotational velocity which is updated as Vt̂ ,l
with −�d as well as the time constant τ , accordingly. We
consider here these two different inflow velocities when in-
vestigating the eigenvalue trends to support our conclusions
on the matter for the three- and two-bladed rotor design.

First, in Figs. 15 and 16, the occurrence of maximal
CL,static around 3.00 RPM for an inflow velocity of V0 =
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Figure 15. Modal damping, damped frequency, and damping ratio for a Campbell diagram eigenvalue analysis in the NR frame with a
rotational speed variation. The operational point is of V0 = 8 m s−1.

Figure 16. Modal damping, damped frequency, and damping ratio for a Campbell diagram eigenvalue analysis in the NR frame with a
rotational speed variation. The operational point is of V0 = 10 m s−1.

8 m s−1 and 4.1216 RPM for V0 = 10 m s−1 has a noticeable
influence on the damped frequencies of the blades, which is
similar to what was detected in Fig. 11 for the three-bladed
rotor. As noted earlier for the three-bladed rotor, according
to the variation of ∂fs,static/∂α in Fig. 4 with respect to the
angle of attack, there is a high impact on the analysis of the
eigenvalues in the region of proximity of maximal CL,static,
between the angle of attack labelled “Stall” and the angle
of attack αA. Likewise, it can be observed in Figs. 15 and 16
that the two-bladed rotor’s floater pitch motion’s damped fre-
quency and especially its damping are highly fluctuating in
that angle of attack region. The blade damped frequencies are
also highly impacted by the local variation of aerodynamic
parameters in that region.

For the results with an inflow velocity of V0 = 8 m s−1

compared to V0 = 10 m s−1, an overall higher blade modal
damping is observed, because the angles of attack are lower
for the same rotational speeds in the angle of attack region
before maximal CL,static is reached, meaning below 15 deg.
According to the airfoil data in Fig. 3, in that region lower
angles of attack are associated with a greater fs value and
with a lower CL,inv, but the CL,stall value can vary. Thus, the
overall value of the dynamic lift coefficient CL can increase
due to the impact of the dynamic stall variable fs; refer to
Eq. (28). A higher lift coefficient CL would increase the lift
force and ultimately generate a higher blade modal damping.
Conversely, in the region where the flow is partially attached
and near the maximal value of CL,static, a higher angle of at-
tack value generates greater CL,inv and CL,stall. This comes
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along with a lower fs which can also increase the overall
value of the dynamic lift coefficient CL, depending on the
impact of the dynamic stall variable fs.

As a marked difference from the three-bladed rotor, a pro-
nounced maximum in the blade modal damping is reached
for a rotational speed of 6.054 RPM for V0 = 8 m s−1 and
5.57 RPM for V0 = 10 m s−1. The higher modal damping oc-
curs for the lower inflow velocity of V0 = 8 m s−1, where
the modal damping increases with rotational speed until
reaching a maximal value at a lower angle of attack around
α = 7.78 deg compared to α = 11.52 deg for the higher in-
flow velocity of V0 = 10 m s−1. At that particular rotational
speed, the angle of attack is positioned before it is attained.
The blade modal damping and damped frequency curves
for V0 = 10 m s−1 fluctuate more because of a higher lift
load variation with a greater inflow velocity. In this context,
the two-bladed rotor experiences higher aerodynamic loads
through higher lift loads because of the chord length being
increased. Therefore, a small variation of the angle of at-
tack, particularly at higher inflow velocities V0 with greater
lift variations, can cause such fluctuations in the eigenvalues.
This difference in modal behaviour on a Campbell diagram is
a characteristic of the two-bladed floating wind turbine that
is accentuated compared to the three-bladed rotor.

Moreover, the attained maxima of blade modal damping
are different compared to the three-bladed case. For example,
as mentioned previously, at V0 = 8 m s−1 the blade modal
damping maxima occur at �= 6.054 RPM. We investigate
this further in Fig. 17 when a change in trend with rotational
speed � occurs for the gradient ∂ḟ s,i/∂ẋj , which is the par-
tial derivative of the dynamic stall variable fs with respect to
the structural DOFs time-derived vector ẋ. The overall varia-
tion of the gradient ∂ḟ s,i/∂ẋj components in the LTI system
matrix is evaluated as a 1-norm (||·||1), which is a sum of ma-
trix components in absolute value. Results for ∂ḟ s,i/∂ẋj are
investigated using Hill’s matrix AL,0, i.e. ||6ḟ s,i/∂ẋj ||

1
A0

,
and using Floquet’s diagonalized matrix with updated eigen-
values and corresponding damped frequency shifts R̂, i.e.
||6ḟ s,i/∂ẋj ||

1
R̂

. We also investigate eigenvector changes
with rotational speed � to understand the causes for the
variation of blade modal damping. Upon inspection of the
structural mode eigenvectors v = [v1, . . .,v8]

T, we identify
the symmetric blade mode eigenvector vSYM as having only
blade amplitude components al for the displacement (vSYM,2
and vSYM,3) and velocity (vSYM,5 and vSYM,6) DOFs, as
well as dynamic stall values for the fs,l DOFs (vSYM,7 and
vSYM,8). When considering the absolute value of eigenvec-
tors, |v|, with respect to their real and imaginary parts, we no-
tice for the symmetric blade mode that only the fs,l compo-
nents, which are equal (|vSYM,7| = |vSYM,8|), vary with rota-
tional speed�. The same trend as for the gradient ∂ḟ s,i/∂ẋj
is observed at the rotational speed of maximal blade modal
damping for the SYM blade mode’s eigenvector dynamic
stall components evaluated as absolute values, |vSYM,7| =

|vSYM,8| = |vSYM,fs,l |. This points out the high correlation
in this case between the gradient ∂ḟ s,i/∂ẋj and the SYM
blade mode. Onward from the rotational speed of maximal
blade modal damping, there is a visible change in shape for
the resulting curves. For V0 = 10 m s−1, these changes occur
at �= 5.57 RPM, according to Fig. 18. We also observe in
Figs. 17 and 18 that the curves for the gradient ∂ḟ s,i/∂ẋj
and for the symmetric mode eigenvector dynamic stall vari-
able reach a maximal value at a rotational speed associated
with the angle of attack in the region where CL,static is max-
imal. All these observations indicate that for varying rota-
tional speeds the dynamic stall gradient ∂ḟ s,i/∂ẋj relates
to the SYM blade mode and consequently the blade modal
damping.

Finally, for the two-bladed rotor, an increased chord length
gives overall a larger lift and a larger blade modal damp-
ing. At large RPM values, the blade damping is so strong
(ζ ≈ 1) that the damped frequency tends to zero. As a con-
sequence, it can be seen for both test cases in Figs. 15 and
16 that the rotor backward-whirling mode reaches a critical
damping state when the damping ratio is ζ = 1. The rotor
backward-whirling mode also experiences a reflection of its
damped frequency once reaching a null value, because a neg-
ative frequency is not physically plausible.

9 Conclusions

A three-bladed floating wind turbine time domain model
and a linear model were established to devise Coleman-free
methods for aero-elastic stability analysis. It was demon-
strated how the presence of gravity leads to additional terms
in the stiffness matrix that couples the blade deflection and
floater pitch, thus introducing a dependency to the floater
equilibrium tilt angle for the stability analysis. This tilt de-
pendency on the structural dynamics disappeared when grav-
ity was excluded. The aerodynamic states were included in
the model through the dynamic stall variable fs with its re-
spective ODE, and then the time domain model was lin-
earized with the inclusion of the aerodynamic damping con-
tribution. The time domain and linear models enabled us to
do a first dynamic stall analysis by varying the floater pitch
excitation intensity for different operational points where
stall occurs, which verified the match between the two mod-
els. Another time domain hysteresis analysis was conducted
with the time constant τ being fixed at different values while
operating in the partially attached flow region before the
static lift coefficient CL,static is maximal. Those analyses ver-
ified that both the time domain and linear models were con-
sistent and that they represented the wished for physical be-
haviour of the floating wind turbine.

Afterwards, the three-bladed linear model was rendered
time-independent through the use of Hill’s and Floquet’s
methods. Once the linear model was made time-invariant,
all stability analyses proved that the impact of aerodynamic
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Figure 17. Angle of attack α, 1-norm of the gradient ∂ḟ s,i/∂ẋj components, and dynamic stall component of the symmetric blade mode
(|vSYM,fs,l |) for the LTI system matrix using Hill’s and Floquet’s methods. The rotational speed � is varied for the operational point of
V0 = 8 m s−1.

Figure 18. Angle of attack α, 1-norm of the gradient ∂ḟ s,i/∂ẋj components, and dynamic stall component of the symmetric blade mode
(|vSYM,fs,l |) for the LTI system matrix using Hill’s and Floquet’s methods. The rotational speed � is varied for the operational point of
V0 = 10 m s−1.

states is observable in terms of both modal damping and
damped frequency. For the sake of completeness and under-
standing of Hill’s and Floquet’s methods, the eigenvalue re-
sults were cross-validated with each other for multiple sta-
bility studies. The first eigenvalue analysis was carried out

for a varying time constant τ , and it demonstrated that both
methods produced matching results that included the damp-
ing influence of the aerodynamic states. The next eigenvalue
analysis was accomplished on a Campbell diagram where
the rotational speed was varied. Results showed again perfect
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agreement between the eigenvalues provided by both meth-
ods. Following those eigenvalue studies, a modification of
the frame, from a rotating frame to a fixed non-rotating one,
was applied to the system through the Coleman transform.
The evolution of eigenvalues with respect to the variation of
τ and rotational speed�was examined in the new frame too.
These results were compared to previous ones expressed in
the rotating frame, and they were identical irrespective of the
method applied, Floquet’s or Hill’s. This comparison illus-
trated that having stability analyses executed for a Coleman-
free system provides the same eigenvalues for the blade sym-
metric mode as with the Coleman-transformed system. Using
Hill’s and Floquet’s eigenvalues computed in the rotational
frame, it was proven that it is possible to reconstruct the ro-
tor forward- and backward-whirling mode eigenvalues of the
model so that they are identical to those obtained directly
with the Coleman-transformed system matrix.

Finally, a two-bladed rotor model was implemented for the
main objective of investigating the change in eigenvalues in
a Campbell diagram compared to results for the three-bladed
rotor model. Two different inflow velocity cases were tested.
The same Hill and Floquet methods were applied for the two-
bladed stability studies, and both of them produced matching
results again. Both methods were utilized for the two-bladed
rotor too to reconstruct the rotor forward- and backward-
whirling modes with the frequency shift of ±� away from
the symmetric blade mode. Results have shed light on the
major differences that can be present for the two-bladed
wind turbine stability analysis. Just like for the three-bladed
rotor, the region where CL,static is maximal had a notice-
able impact on the two-bladed rotor’s eigenvalues. The blade
modal damping had a distinct peak at the rotational speed
of �= 6.054 RPM for an inflow velocity of V0 = 8 m s−1,
whereas the peak was located at�= 5.57 RPM for an inflow
velocity of V0 = 10 m s−1. This observation was investigated
further through inspection of the dynamic stall gradient of
∂ḟ s,i/∂ẋj with respect to the structural DOF velocity vector
ẋ. The 1-norm value of the gradient ∂ḟ s,i/∂ẋj components
(summed absolute values) was considered for the LTI sys-
tem matrix with Hill’s (matrix AL,0) and Floquet’s methods
(updated diagonalization matrix R̂). It was observed that the
maximum blade modal damping was seen to coincide with
a change of curve trend for the stall gradient as well as for
the symmetric blade mode’s dynamic stall DOF fs. For vary-
ing rotational speeds � (and angles of attack α), the change
caused by the gradient ∂ḟ s,i/∂ẋj in the system matrix gen-
erated a fluctuation with the same trend observed in the sym-
metric blade mode’s eigenvector dynamic stall variable fs
value.

In line with previous studies, special attention was needed
for the selection of the principal damped frequencies when
applying both Hill’s and Floquet’s methods. When using
Hill’s method, the principal damped frequency selection was
facilitated because the Frobenius norm of the zeroth har-

monic matrix AL,0 from the Fourier expansion of AL(t)
was much larger than for higher harmonic matrices; refer
to Eq. (51). This means that the truncation of Â could be
done while still preserving the accuracy of its eigensolutions.
One could select the principal damped frequencies as being
closest to the ones associated with AL,0. The drawback of
Floquet’s method was that it was computationally demand-
ing in time duration compared to Hill’s method. Essentially,
it was a numerically less efficient method on account of the
need to compute the transition state or monodromy matrix by
carrying out as many decay simulations of a period duration
as there are states. However, for situations where the system
matrix is not available or for the analysis of experimentally
acquired time series, Floquet’s method would be a better al-
ternative compared to Hill’s method. In that case, the mon-
odromy matrix could be extracted directly from responses
after a period without further need for simulation. Although
Hill’s method relied on a bigger expanded state-space matrix
to solve the eigenvalue problem, it was still computationally
less costly than Floquet’s method in our context. In spite of
that, we found that both methods are reliable and accurate to
provide consistent and identical eigenvalue results.

In summary, Hill’s and Floquet’s methods can be used for
any linear state-space model and thus in principle also for
linearized versions of aero-elastic models. We have demon-
strated their functionality here on a simple model with floater
pitch and aerodynamic states. If we were to include not only
the blade deflection contributions from the first flap-wise
(1f ) but also the second flap-wise (2f ) and first edge-wise
(1e) modes, there would be the corresponding blade deflec-
tion amplitude DOFs a1f,l , a2f,l , and a1e,l in the model with
the velocity triangle updated and partial derivatives calcu-
lated with respect to the time derivatives of those DOFs.
However, the number of aerodynamic states would remain
unchanged. Similarly to the modal superposition method
used for computing the blade deflections, the same can be
done if considering the tower deflections by adding the tower
mode deflection amplitudes as additional DOFs and updating
too, accordingly, the partial derivatives and velocity triangle.

Future work will focus on relying on Hill’s method for fast
response calculations by using improved approaches com-
pared to our previous methodology (Pamfil et al., 2024).
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