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Abstract. This work proposes an uncertainty-aware approach to the inverse problem of damage identification
in a floating offshore wind turbine (FOWT). We design an autoencoder architecture, where the latent space rep-
resents the features of the target damage condition. The inverse operator (encoder) is a deep neural network
that maps the measurable response to the parameters (means, variances, and weights) of a multivariate Gaus-
sian mixture model. The Gaussian mixture model provides a convenient distributional description that is flexible
enough to accommodate complex solution spaces. The decoder receives samples from the Gaussian mixture and
maps the damage condition (states) to the system’s measurable response. In such a problem, and depending on
the quantities being observed (sensor positioning), it is possible that multiple damage states may correspond to
similar measurement records. In this context, the main contribution of this work lies in developing a method to
quantify the uncertainty within the context of a possibly ill-posed damage identification problem. We employ the
Gaussian mixture to express the multimodal solution space and explain the uncertainty in the damage condition
estimates. We design and validate the methodology using synthetic data from a FOWT in the commonly adopted
OpenFAST software and consider two damage types frequently occurring in mooring lines: biofouling and an-
chor displacement. The method allows for the estimation of the damage state while capturing the uncertainty
in the estimations and the multimodality of the solution under the availability of a limited number of response
measurements.

1 Introduction

Floating offshore wind (FOW) is rapidly emerging as a lead-
ing form of renewable energy. Faster and steadier winds and
a much larger area for future deployment are only a few ap-
pealing aspects that make FOW intriguing for industry ex-
perts and academics. While FOW’s current global capacity
barely exceeds 180 MW, recent reports predict that FOW will
generate over 250 GW by 2050 (GWEC, 2023). One of the

critical barriers limiting the commercial viability of floating
offshore wind turbines (FOWTs) is their operational expense,
which relates to inspection, monitoring, and faulty compo-
nent replacement. These tasks are troublesome and expensive
in offshore environments, whose access is compromised by
weather conditions (Nava et al., 2022).

One of the most critical components of FOWTs is the
mooring system. Mooring systems, which inherit the char-
acteristics of similar devices conceived for the oil and gas
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industry (Årdal et al., 2014), employ steel chains, wire, and
cable spanning dozens of meters to anchor the platforms to
the seabed or to connect them. They operate under a broad
range of environmental and operational conditions that may
lead to damage due to corrosion, wear, and fatigue (Li et al.,
2018; Liu et al., 2020). These phenomena affect the system’s
behavior and may compromise the integrity of the platform
if no action is taken. Ensuring the safe and optimized perfor-
mance of mooring lines is crucial to minimizing operational
costs and maximizing the profitability of FOWTs.

Condition monitoring of mooring systems is most often
carried out on-site through visual underwater inspections
(Martinez-Luengo et al., 2016) and ultrasonic testing (Thib-
botuwa et al., 2022). Both methods are costly and often
inefficient, owing to the requirement for engaging a quali-
fied workforce and appropriate equipment. Companies must
also wait for acceptable weather conditions before deploying
their crews on FOWT farms to comply with safety require-
ments. For these reasons, structural health monitoring (SHM)
techniques have emerged as a solution to provide a continu-
ous, efficient, and remote assessment of these assets (Ciuriuc
et al., 2022; Liu et al., 2023). SHM typically targets an in-
verse problem solution that aims to identify the condition
of a target system and possibly characterize associated dam-
age based on the indirect information delivered via measure-
ments from an instrumentation system (Farrar and Worden,
2013). Two main approaches exist in the field of SHM for
FOWTs: model-based (or physics-based, also known as hy-
brid) and data-based schemes (Liang et al., 2024; Liu et al.,
2022b). On the one hand, physics-based models of dynamic
systems often employ complex ordinary or partial differen-
tial equations (PDEs) that govern the physical phenomena
under study. While they require a deeper insight into the un-
derlying physics, these techniques can achieve higher accu-
racy and generalization at the expense of computational ef-
fort (Jonkman, 2007; Wang, 2015; Hall and Goupee, 2015).

On the other hand, data-driven techniques employ exten-
sive datasets to fit the desired outcome (Martinez-Luengo
et al., 2016). They can infer highly complex, nonlinear re-
lations, provided that these are witnessed in the available
data adopted for training purposes. In the context of SHM
for mooring systems, indirect response sensors such as gy-
roscopes, inclinometers, and GPS trackers have become in-
creasingly attractive (Gorostidi et al., 2023; Coraddu et al.,
2024). These devices are relatively inexpensive and easy to
deploy while being sensitive to the presence of damage. Ex-
perimental data are noisy, constrained to practically measur-
able quantities, and often limited to a specific condition (e.g.,
the healthy state), which covers only a subset of the inverse
problem’s solution subspace. Simulations from a computa-
tional parametrization (e.g., a finite-element model) are often
employed to complement experimental data and overcome
this scarcity (Figueiredo et al., 2010; Zhang and Sun, 2021;
Fernandez-Navamuel et al., 2023).

In the past few decades, machine learning (ML) algorithms
have gained popularity thanks to advances in data acquisition
and transmission, informatics, and computational resources.
Particularly interesting are deep neural networks (DNNs),
which present advantageous properties such as satisfying the
theorem of universal approximation (Hornik et al., 1989)
and enabling the incorporation of physical knowledge (Rojas
et al., 2024). One key challenge in the resolution of inverse
problems is handling uncertainties. Many authors have al-
ready dealt with uncertainty when solving inverse problems
in other fields. In civil infrastructure, Betancourt et al. (2021)
implemented a deep interval neural network to classify dam-
age in a benchmark bridge. Huang and Beck (2015) tested the
performance of a sparse Bayesian probabilistic model against
incomplete data. Teimouri et al. (2017) designed a Gaus-
sian process-based method to monitor the integrity of a com-
posite airfoil structure. In geophysics, Alyaev and Elsheikh
(2022) implemented a mixture density network for the inver-
sion of gamma-ray logs. Liu et al. (2022a) estimated subsur-
face rock and fluid properties using deep variational autoen-
coders. Rodriguez et al. (2023) extended the loss formula-
tion stated in Shahriari et al. (2021) and implemented a mul-
timodal variational autoencoder (MVAE) to identify subsur-
face material properties. In the field of wind energy, Mylonas
et al. (2021) proposed a conditional variational autoencoder
(CVAE) to deliver uncertainty-robust long-term fatigue pre-
dictions in a wind turbine blade based on supervisory, con-
trol, and data acquisition (SCADA) signals. Mclean et al.
(2023) employed Gaussian processes (GPs) to account for
the uncertainty present in power curve models as the damage-
sensitive features. Other works propose the use of hierarchi-
cal sparse Bayesian learning to solve the system identifica-
tion problem through model updating using Gibbs sampling
(Huang et al., 2017b, a). The authors validated their strat-
egy numerically and experimentally using a relatively simple
structure with limited degrees of freedom (DOFs).

Focusing on the application of SHM to assess FOWTs,
a vast amount of literature exists using DNNs. For exam-
ple, Chung et al. (2020) fed response amplitude operator
(RAO) data into a DNN to detect anomalies in the cross-
section of mooring lines for a tension leg platform. Their
research was continued by Lee et al. (2021), who extended
their approach to catenary lines and taut mooring systems.
Janas et al. (2021) developed a condition-agnostic convolu-
tional neural network (CNN) to detect anomalies caused by
the loss of one line in a floating oil and gas vessel, train-
ing their model with images of its horizontal displacement
history. The recent work by Sharma and Nava (2024) com-
bined CNNs and auto-regressive (AR) models to detect bio-
logical fouling-, corrosion-, and anchor-shift-related damage
in a floating platform’s mooring lines. Their study obtained
AR coefficient matrices from displacements and rotations for
the DeepCWind OC4 platform’s surge, heave, and pitch re-
sponses fed as image inputs to the CNN.
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Still, many existing works employ deterministic ap-
proaches which suffer from significant limitations when
tackling real-life inverse problems, such as damage identi-
fication via monitoring data. Long-term instrumentation sys-
tems are often cheap, very limited, and provide incomplete
and noisy measurements. This context makes the solution
to the inverse problem highly non-unique and unstable (ex-
tremely sensitive to slight changes in the input data) (Adler
and Öktem, 2017). Yet in the deterministic scope, Shahriari
et al. (2021) proposed a way to define the loss function of
DNNs in the measurement space rather than in the ill-posed
solution space via an encoder–decoder architecture and a
two-step training phase. With this strategy, they constrained
the training and prevented undesired solutions. Based on this
idea, Gorostidi et al. (2023) attempted to detect failures in
the mooring system of a FOWT based on response mea-
surements. They employed statistics-based features from 6
DOFs to identify the level of biofouling and anchoring dam-
age using synthetic data from a FOWT simulated in Open-
FAST (Jonkman et al., 2022). Although this approach aids
in identifying a physically plausible scenario, it neglects the
multimodality of the solution (i.e., various damage scenar-
ios producing the same measured response). Addressing this
ill-posedness requires moving from deterministic to proba-
bilistic approaches to quantify the uncertainty in the solution
space and provide more reliable assessments.

However, there is still a considerable gap in implement-
ing uncertainty-aware methods for the condition assessment
of mooring systems in FOWTs. This work intends to con-
tribute to this direction. Here, we extend our previous work
(Gorostidi et al., 2023, 2022), which aimed to infer the un-
derlying health condition of mooring systems using response
measurements, which delivered a deterministic assessment.
Following the recent work by Rodriguez et al. (2023), we
propose a Bayesian approach for quantifying the uncertainty
in the delivered damage estimates. Our proposal adapts the
MVAE methodology introduced in Goh et al. (2021) and Ro-
driguez et al. (2023) to solve the inverse problem of dam-
age identification of FOWT mooring systems. The core of
the proposed methodology is to probabilistically describe the
solution to an inverse problem that may exhibit high multi-
modality. This situation frequently occurs when dealing with
sparse instrumentation systems, which is often the case in
SHM applications (Teughels and De Roeck, 2004; Oliveira
et al., 2018a, b; Devriendt et al., 2014; Magalhães et al.,
2008).

We design an encoder–decoder architecture to address
ill-posed inverse problems within the context of damage
identification. According to the forward operator, the pro-
posed methodology ensures that the estimated solutions are
physically meaningful. We describe the multimodal solution
space (damage condition) using a multivariate Gaussian mix-
ture. This parametrized distributional model is mathemati-
cally convenient to integrate into the differentiable scheme
of DNNs and is sufficiently flexible to accommodate com-

plex distributions. The inverse operator (encoder) estimates
the parameters (i.e., means, variances, and weights) that build
a corresponding Gaussian mixture describing the distribution
of the damage condition features. We draw samples from
the estimated posterior distribution model that are subse-
quently fed into the forward approximation (decoder). With
this strategy, we statistically describe the target damage con-
dition space, accounting for the multimodality of the solu-
tion, which occurs mainly when the instrumentation system
comprises a limited number of sensors.

Training the inverse produces the posterior distribution
that describes the damage condition given some input mea-
surements of the system’s response. In this work, statis-
tical features of measured rotational DOFs are employed
as the response measurements. We employ rotations since
these can be measured experimentally through low-cost, low-
maintenance sensors, similar to acceleration, while still de-
livering information that reflects the resulting response. A
benefit of using rotations lies in delivering quantities that
contain lower-frequency information with respect to accel-
eration signals. This is useful when the involved response
includes lower-frequency components (e.g., rigid-body mo-
tions and drifts). The loss function leverages two terms; the
first accounts for the measurement misfit, while the second
drives the shape of the posterior distribution.

We analyze the effect of uncertainty in the delivered esti-
mates of our proposed scheme in eight test examples that cor-
respond to representative damage scenarios. We further ex-
plore how using 1 single DOF increases the ill-posedness of
the inverse SHM problem, demonstrating the strength of our
proposed method in providing a more reliable diagnosis with
poor instrumentation systems. Finally, we further investigate
the robustness of the methodology to different measurement
error levels. The results demonstrate that our method suc-
cessfully captures the uncertainty in the predictions, describ-
ing the multimodality of the solution mainly in the absence
of some response signals.

Despite the successful results, this work suffers certain
limitations that ought to be acknowledged. First, the method-
ology provides a way to describe the uncertainty that is inher-
ent to the ill-posedness of the inverse problem. Such uncer-
tainty induces the multimodality of the output (i.e., the dam-
age condition estimate). The method also reflects the effect
of aleatory uncertainty (noisy measurements) as it transfers
from the measured data to the estimated condition. However,
this work neglects the epistemic uncertainty, which occurs
when making a prediction on measurements that correspond
to a damage condition that is far from those employed in the
training stage. Accounting for such uncertainty and disen-
tangling both sources is beyond the scope of this work and
requires further study. Second, since the Gaussian mixture
is a parametric approach, it constrains the outcome and pre-
vents a complete characterization of the effect of uncertainty.
Improving the distributional model requires many compo-
nents, which enormously increases the number of parameters
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to be estimated. This is an important limitation of the method,
mostly when scaling up to higher-dimensional spaces. Fi-
nally, due to the current scarcity of experimental data from
real operating FOWTs, this work is entirely restricted to syn-
thetic data from computational simulations. Integrating ex-
perimental data with synthetic scenarios is a key challenge
to proving the applicability of the suggested methodology in
real-field data.

The remainder of this article is structured as follows. Sec-
tion 2 derives the mathematical formulation describing the
inverse problem. Section 3 presents the turbine–platform as-
sembly and the excitation and damage conditions employed
in our simulations. Section 4 describes the specifications of
the proposed DNN architecture and training stage. Sections 5
and 6 discuss the method’s performance considering (i) 3
DOFs and (ii) a single DOF. Finally, Sect. 7 highlights the
conclusions and limitations of the proposed work and reveals
future lines of research.

2 Methodology

We describe the rigid-body response of a FOWT platform in
terms of 6 DOFs: surge (forward–backward motion), sway
(sideways motion), heave (vertical motion), roll (rotation
about the longitudinal axis), pitch (rotation about the trans-
verse axis), and yaw (rotation about the vertical axis) (Tran
and Kim, 2015). Since transmission of time domain signals is
extremely expensive, their content is often condensed in the
form of statistical features, which is the typical approach to
storing SCADA data (Gorostidi et al., 2023). Let m ∈M de-
note the platform’s response with M features extracted from
the time domain signals of the 6 DOFs. This response re-
lates to the loading and the system properties through a set
of partial differential equations (PDEs). These PDEs describe
the aerodynamics, hydrodynamics, servodynamics, and elas-
todynamics of the coupled system operating under wind and
wave excitation conditions w ∈W (Tran and Kim, 2015).

Damage in the mooring system affects its physical proper-
ties (e.g., stiffness). We denote the set of damage features de-
scribing the condition of the FOWT mooring system with z ∈
Z . These features indicate the level of each possible existing
damage and succinctly represent the changes in the coeffi-
cients of the governing PDEs. We define F : Z×W→M as
the forward operator mapping the damage and loading con-
ditions to the response of the system. Here, F includes the
PDEs governing the response of the floating platform of the
FOWT. The Cartesian product of the domains Z and W , rep-
resents all combinations of damage and loading conditions.

2.1 Deterministic inverse operator

In damage identification, we seek the inverse operator I :
M×W→ Z , which, given some noisy response measure-
ments m under a prescribed excitation w, yields the system’s
damage condition z. This relationship is often unknown and

highly nonlinear. Here, we approximate I using deep neural
networks (DNNs). DNNs have remarkable power in approx-
imating complex nonlinear functions (Hornik, 1991). More-
over, once trained, such models produce evaluations in mil-
liseconds. These particularities render DNNs appealing in
many areas, including damage identification. Let Iθ be the
DNN described by the parameters θ that approximates the
inverse problem I. For a certain observed input [m,w], we
define a loss function to measure the discrepancy between the
estimates of the approximate inverse Iθ and the true damage
condition of the system, z:

LZ (θ )= ‖z− Iθ ([m,w])‖22, (1)

where we employ the squared l2 norm as the discrepancy
metric. We can find the optimal parameter set θ by minimiz-
ing the loss function in Eq. (1) over a training dataset that
contains D labeled responses D = {mi,wi,zi}Di=1.

However, in real physical problems, the instrumentation
system is often sparse and thus not fully sensitive to the tar-
geted damage scenarios. This situation renders the forward
operator F non-injective; i.e., more than one system state
(damage condition) may produce the same response (Taran-
tola, 2004). Consequently, the inverse problem is ill-posed,
meaning it might have multiple solutions for the same noisy
input. Given this ill-posedness of the inverse problem under
incomplete and noisy data availability, minimizing LZ (θ )
may produce an infeasible outcome that simply results by av-
eraging possible candidate solutions. Thus, defining the loss
on the space of the damage conditions Z is inconvenient.
To overcome this issue, we adopt an encoder–decoder strat-
egy, where the encoder approximates the inverse problem
(given the measurements m, estimate the damage condition
features z), and the decoder corresponds to the forward oper-
ator. With this architecture, the damage condition estimates
are enforced to satisfy the forward operator (governing ordi-
nary or partial differential equations) and thus are consistent
with the underlying physics describing the system’s behav-
ior. This composition of the forward with the inverse, which
constitutes the identity mapping, enables the loss function to
be expressed on the space of the measured responses, M:

LM(θ )= ‖m−F ◦ Iθ ([m,w])‖22, (2)

using the l2 norm. Minimization of this loss function ensures
that the DNN will report one out of all feasible solutions.

The main bottleneck when minimizing the loss function
in Eq. (2) owes to the effort required to massively evaluate
the forward operator F . We define a DNN Fφ described by
the parameters φ that approximates the forward operator F .
Once trained, Fφ provides computationally efficient system
responses that substitute the expensive forward evaluations.
Figure 1 graphically describes the connection of the forward
with the inverse operator using a fully connected architec-
ture.

We adopt a two-step training strategy proposed and em-
ployed in previous works (Shahriari et al., 2021; Rodriguez
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Figure 1. DNN architecture connecting the forward Fφ with the in-
verse Iθ . The output of the entire DNN yields the reconstruction of
the input measurements, m̂i = Fφ ◦Iθ (mi ). This architecture per-
mits the definition of the loss function in the measurements space,
M. The wind and wave excitations w are fed to both the forward
and the inverse. For representation feasibility, we depict the distri-
bution as a bi-variate Gaussian mixture.

et al., 2023; Gorostidi et al., 2023). The contribution of these
works and their connection with the present approach are ex-
tensively described in Sect. 1. We first obtain the optimal for-
ward parameters φ∗:

φ∗ := arg min
φ

‖m−Fφ([z,w])‖22. (3)

Then, we find the optimal inverse parameters θ∗:

θ∗ := arg min
θ

‖m− (F∗φ ◦ Iθ )([m,w])‖22. (4)

The second step incorporates F∗φ as a non-trainable architec-
ture.

After the two-step training, we essentially are interested in
using Iθ∗ to estimate the damage condition z of the FOWT
from the measured responses m and operational conditions
w. In this deterministic framework, the inverse operator out-
puts a single-value estimate for each damage condition given
an input [m,w]. This approach precludes adequate interpre-
tation of the uncertainty in the estimates, which are assumed
to be 100% confident. However, despite ensuring that the
provided estimate corresponds to one of the possible solu-
tions (assuming an adequate and successful training process),
this might differ from the actual condition of the system.

2.2 Bayesian inverse operator

In this work, we overcome the limitation of the deterministic
solver by adopting a Bayesian approach to approximate the
inverse operator I (Rodriguez et al., 2023; Goh et al., 2021).
Since the physical law governing the system is deterministic,
we consider the forward to be a deterministic operator. We
assume that uncertainty resulting from recording noisy mea-
surements propagates from the data to the predicted damage

condition estimates (through the inverse operator). Hence, in-
stead of mapping the measurements to the damage condition,
we seek the operator that maps the input probability distribu-
tion (of the measurements) to the distribution of the damage
condition. The distribution of the damage state features is
conditioned on the measured data; i.e., we search for a con-
ditional probability distribution.

Let us assume that the measured response, loading condi-
tions, and unknown system’s damage conditions are repre-
sented as random variables. Vectors m, w, and z correspond
to realizations of each of these sets of random variables. Con-
sidering the existence of additive noise that is inherent to the
data acquisition process, we express the forward problem as

m= F(z,w)+ ε, (5)

where we substitute F by its optimal approximation Fφ∗ , and
ε is the unknown measurement error with known statistics
described by a probability density function (PDF) ε ∼ p(ε).
Although z is unknown, we can represent its uncertainty us-
ing a conditional probability distribution considering its re-
lationship with the measured variables, p(z|m,w). For any
damage condition z, the conditional PDF p(z|m,w) is the
target posterior distribution that forms the estimated target of
the inverse problem I under the use of a Bayesian approach.
We employ Bayes’ theorem to express it with the following
proportionality:

p(z|m,w)∝ p(m|z,w) ·p(z), (6)

where p(z) represents the prior PDF of the unknown damage
condition z, and p(m|z,w) is the likelihood model that ex-
presses the interrelation between the measurements and the
damage condition.

Due to the intractability of the true posterior (usually an
unknown non-parametric PDF), we define an inverse op-
erator Iθ that estimates the parameters of an approximate
PDF for each damage condition in z, given the response
measurements m and operating loads w. Since we have no
prior knowledge, we approximate this PDF using a flexible
one, given by a mixture of multivariate Gaussian functions
(Deisenroth et al., 2020), such that

qθ (z|m,w)∼ GMM(µ,σ )=
∑K

k=1
αkN (z|µk,6k),

N (z|µk,6k)=
1

(2π )Z/2|6k|1/2

× exp
(
−

1
2

(z−µk)6
−1
k (z−µk)

)
,

(7)

where the PDF qθ (z|m,w) is a Gaussian mixture model
(GMM) dependent on the parameters θ of the DNN Iθ ,
αk is the weight of the kth Gaussian in the mixture, and
N (z|µk,6k) is the corresponding multivariate Gaussian dis-
tribution with mean vector µk and diagonal covariance ma-
trix 6k = diag(σ k) for k = 1, . . .,K Gaussians. Compared to
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the deterministic approach, instead of a single value esti-
mate, now the output of the inverse operator Iθ produces the
set of properties describing the mixture, namely the vector
GMMprops = {µ1, . . .,µK ,σ 1,σK ,α1, . . .,αK}. This results
in an output of K(2×Z+ 1) dimensions. For simplicity in
notation, we have omitted the dependency of the GMM prop-
erties on the DNN parameters θ .

Realizations from qθ (z|m,w) represent samples of the
damage condition z that are likely produced by the unknown
true posterior p(z|m,w). All the realizations {zh}Hh=1 share
the same operating conditions w. Recovering the strategy of
composing the forward with the inverse (see Fig. 1), we feed
the samples to the optimal forward operator Fφ∗ trained in
Eq. (3). Figure 2 schematically represents the architecture in
the Bayesian approach.

We aim to minimize the discrepancy between the true pos-
terior p(z|m,w) and the approximate posterior qθ (z|m,w)
obtained from Iθ . We first assume that noise ε is mutually
independent with respect to the unknown damage condition
z (Goh et al., 2021). Thus, according to Eq. (5), we can ex-
press the likelihood as

p(m|z,w)= p(m−F([z,w])). (8)

We then assume the noise follows a Gaussian distribution,
p(ε)=N (0,0), where 0 = diag(βF([z,w]))2 is a vector
that contains the non-zero elements of a diagonal matrix, and
the parameter β corresponds to the noise level. This allows
us to rewrite Eq. (6) as

p(z|m,w)∝ p(m−F(z,w)) ·p(z)=
1

(2π )M/2|0|1/2

× exp
(
−

1
2

(m−F([z,w]))t0−1(m−F([z,w]))
)
, (9)

where p(z) is the prior distribution of the damage condition
properties, which can follow any PDF. The Kullback–Leibler
divergence (KL) is defined as a statistical measure of the dis-
tance between two PDFs (Deisenroth et al., 2020; Asperti
and Trentin, 2020). KL assumes a null value when the com-
pared PDFs are equal and can be defined as

KL[p(x)||q(x)] =
∫
p(x) log

p(x)
q(x)

dx, (10)

where x indicates a realization of the random variableX, and
p(x) and q(x) are the two different PDFs. Here, we use the
KL metric to evaluate the distance between the true posterior
p(z|m,w) and its approximation estimated by the inverse op-
erator Iθ , denoted as qθ (z|m,w), yielding

KL[qθ (z|m,w)||p(z|m,w)]

=

∫
qθ (z|m,w) log

qθ (z|m,w)
p(z|m,w)

dz. (11)

However, the KL divergence term exhibits certain short-
comings that weaken its strength as a distance metric; it is

asymmetric, it does not satisfy the triangle inequality, and it
produces an intractable term (the evidence of the data dis-
tribution p(m)) (Blei et al., 2017). Instead, a lower bound
is calculated for the evidence, known as the evidence lower
bound (ELBO) (Blei et al., 2017). ELBO is the loss function
commonly employed in variational autoencoders (VAEs) to
account for the discrepancy between the two distributions
(Goh et al., 2021; Rodriguez et al., 2023). We obtain the
ELBO loss by exploiting the KL expression and isolating the
intractable terms:

KL[qθ (z|m,w)||p(z|m,w)]

=

∫
qθ (z|m,w) log

qθ (z|m,w)
p(z|m,w)

dz

=

∫
qθ (z|m,w) logqθ (z|m,w) dz

−

∫
qθ (z|m,w) logp(z|m,w) dz

=Eq [logqθ (z|m,w)] −Eq [logp(z|m,w)]

=Eq [logqθ (z|m,w)] −Eq
[

log
p(m,w,z)
p(m,w)

]
=Eq [logqθ (z|m,w)− logp(m,w,z)]
+ logp(m,w). (12)

In Eq. (12), we employ the relationship between the joint
distribution and the posterior: p(z|m,w)= p(m,w,z)

p(m,w) . We re-
arrange the terms and define the ELBO as

ELBO= logp(m,w)−KL[qθ (z|m,w)||p(z|m,w)]

=Eq [logp(m,w,z)− logqθ (z|m,w)]
=Eq [log(p(m|w,z)p(w)p(z))]
−Eq [logqθ (z|m,w)]
=Eq [logp(m,w|z)] +Eq [logp(z)]
−Eq [logqθ (z|m,w)], (13)

where we assume that the operating conditions w and the
damage properties z are independent (i.e., p(w,z)= p(w) ·
p(z)). Hence, we can remove p(w) in the second line of the
equation, as it is independent of z.

For a certain observation {m,w}, we drawH samples from
the posterior and approximate the ELBO loss function as

LELBO(θ )≈

1
H

H∑
h=1

[
logp(m,w|zh)︸ ︷︷ ︸

Likelihood

+ logp(zh)︸ ︷︷ ︸
Prior

− logqθ (zh|m,w)
]︸ ︷︷ ︸

Approx. posterior

. (14)
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Figure 2. DNN architecture in the adopted Bayesian approach. The output of the inverse operator produces the parameters that describe the
PDF of the damage condition z. A sampling layer draws H random samples from the distribution, which are then fed to the optimal forward
operator Fφ∗ . The output of the entire DNN yields the reconstruction of the input measurements, m̂i = Fφ ◦Iθ (mi ).

By substituting the likelihood from Eq. (9) into Eq. (14), we
finally express LELBO as

LELBO(θ )≈

1
H

H∑
h=1

[
−

1
2

(m−F([zh,w]))t0−1(m+F([zh,w]))

+ logp(zh)− logqθ (zh|m,w)
]
. (15)

Here, the first term accounts for the data misfit, which is
the error between the true measurements and the reconstruc-
tions provided by Fφ∗ . The second term refers to the prior,
which we assume to follow a bounded uniform distribu-
tion p(z)∼ U[blow,bup] with lower and upper bounds blow
and bup, respectively. The last term measures the probabil-
ity that the hth sample belongs to the estimated distribu-
tion qθ (z|m,w). The second term can be neglected by di-
rectly constraining the Gaussian mixture density function to
the desired interval (according to the assumption of uniform
distribution). Note that minimizing the Kullback–Leibler di-
vergence between the original and the estimated posteri-
ors (KL[qθ (z|m,w)||p(z|m,w)]) is equivalent to maximiz-
ing LELBO or minimizing its negative. For a training dataset
D with D labeled observations (D = {mi,wi,zi}Di=1) and H
drawn samples from the estimated PDF, we obtain the opti-
mal parameter set θ∗ by minimizing the negative of LELBO:

θ∗ := arg min
θ

1
D ·H

×

D∑
i=1

H∑
h=1

[
1
2

(mi −F([zhi ,wi]))
t0−1(mi −F([zhi ,wi]))

+ logqθ (zhi |mi,wi)
]
. (16)

3 Case study

We consider the use case of the 5 MW FOWT designed
by the National Renewable Energy Laboratory (NREL)
(Jonkman et al., 2009) mounted atop the DeepCWind
semisubmersible platform (Robertson et al., 2014a). The
model was developed as part of the Offshore Code Com-
parison Collaboration Continuation (OC4) project, which
aimed to verify the accuracy of offshore wind turbine dynam-
ics simulation tools through extensive code-to-code compar-
isons. This involved contributions from numerous organiza-
tions worldwide, ensuring a robust and well-validated design.
The semisubmersible floater for OC4 was specifically de-
signed to serve as a benchmark for offshore wind energy re-
search and development purposes (Robertson et al., 2014b).
The motivation for adopting such a turbine–floater assembly
in this study lies in its computational availability and pop-
ularity within the FOW research community. Moreover, the
OC4 model underwent experimental validation. The valida-
tion process included comparisons between numerical simu-
lations and experimental data from wave tank tests (Borisade
et al., 2018). The OC4 floater, depicted in Fig. 3, provides
stability to the turbine facing unsteady and unpredictable sea
conditions thanks to three partially ballasted base cylindri-
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Figure 3. 5 MW NREL FOWT mounted atop the DeepCWind OC4
semisubmersible platform.

cal columns. A set of pontoons and cross-braces connects
each column to the others and to the main tower. The plat-
form is held in place by three catenary mooring lines located
120° from one another. The selected measurements describ-
ing the platform’s response include features from the 3 rota-
tional DOFs: roll, pitch, and yaw. From a sensory perspec-
tive, these measurements can be experimentally obtained us-
ing inclinometers, cheap and reliable devices often used in
long-term monitoring, or via micro-electromechanical sys-
tem (MEMS) technologies, given the mechanical symmetry
of the system in terms of force and load distribution. Com-
pared to acceleration signals, which are often measured in
the field of FOWT condition assessment, displacements (and
coupled-rotation DOFs) tend to be more sensitive under low-
frequency dynamics, such as floating-platform responses. In
the recent work by Sharma and Nava (2024), the authors ana-
lyzed the sensitivity of acceleration and displacement signals
under mooring system damage (anchoring), highlighting the
potential of displacements over accelerations even for low-
level damage.

Figure 4 describes the response under common environ-
mental conditions. We extract a set of modal statistics from
these responses, which we assume are sufficiently descriptive
of the platform’s movement.

As observed in Fig. 4, owing to the system’s symmetry,
rotations in the roll DOF are harmonic oscillations around
the mean position with an energy content associated with the
natural surge and roll periods, while pitch exhibits a more
colorful power spectral density (PSD) being affected by the
external excitation.

From the time domain responses (see Fig. 4a, c, and e), we
compute the mean displacement as

x =

tf∫
t0

xdt ≈
1
N

N∑
i=1

xi, (17)

whereN indicates the total number of data points. We further
compute the standard deviation of the response as

σ =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2. (18)

We assume the time domain response to be stationary by ne-
glecting its transient state. To obtain the frequency spectra
(see Fig. 4b, d, and f), we compute the PSD of the signals,
which describes the power distribution across a frequency
range as (Theodoridis, 2020)

Sx(f )= lim
T→∞

E
[
|Fx(f )|2

]
2T

, (19)

where Fx(f ) is the Fourier transform of the time domain sig-
nal for any DOF x. Finally, we identify two dominant peak
frequencies as

f1 = arg max
f∈[0,fthresh]

Sx(f ), (20)

f2 = arg max
f∈[fthresh,∞]

Sx(f ). (21)

One of the peaks for each DOF usually matches the plat-
form’s natural frequency. In contrast, the further spectral
peaks reflect the influence of external conditions, e.g., wind,
current, and waves, in the system’s response (Benitz et al.,
2014). We have split each DOF’s natural and excitation fre-
quencies using threshold frequencies fthresh to ensure both
peaks are identified.

To assess the magnitude of the peaks and the intensity of
all the frequencies in the spectra, we also measure the zero-th
momentum as (Sundar, 2017)

m0 =

ωf∫
0

ωSxdω, (22)

where ω is the angular frequency in radians per second.
These are the five features we employ to describe the time
domain response of the platform. These statistics are ulti-
mately the inputs of our neural network. This method allows
for a significant reduction in the number of inputs required
to assess the health status of mooring lines’ integrity while
maintaining high physical accuracy.

In this work, we use NREL’s open-source wind tur-
bine simulation tool OpenFAST (OpenFAST Documenta-
tion, 2023), which evaluates the influence of aerodynamic
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Figure 4. Response amplitude operator (RAO) of the FOWT for roll response in (a) time and (b) frequency domain, for pitch response in
(c) time and (d) frequency domain, and for yaw response in (e) time and (f) frequency domain.

(Jonkman et al., 2015) and hydrodynamic (Jonkman et al.,
2014) excitations on the response of the floating platform.
The number of deployed real-scale FOW turbines is limited;
moreover, the data related to the performances of these de-
vices are proprietary, and even if they were publicly avail-
able, the amount of labeled data under damage conditions
in the mooring systems might be extremely reduced, given
the short life of these platforms. The current lack of oper-
ational data from such devices demands solutions that may
exploit simulation tools in the delivery of predictive mod-
els. OpenFAST is regarded as a highly accurate and reliable
tool for numerical simulations of FOWTs in wind–wave en-
vironments (Yang et al., 2021; Reig et al., 2024; Rinker et al.,

2020) owing to existing validation efforts using experimental
data (Coulling et al., 2013; Robertson et al., 2017). The OC4
model, in particular, has been validated in OpenFAST against
experimental data for free-decay tests (Gorostidi et al., 2023;
Liu et al., 2019).

Our simulations aim at solving the system of equations
given by

(M +A∞)q̈ +Kq =
∑

F (t,ω), (23)

where M is the system’s mass matrix, A∞ is the added mass
matrix, and K is the hydrostatic stiffness matrix. Terms q
and q̈ encompass the system’s position and acceleration, re-
spectively (Faltinsen, 1993). The force term can be split into
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Figure 5. Top view of the DeepCWind OC4 semisubmersible plat-
form. The mooring line exposed to damage is highlighted in red.

components reflecting the contribution of wave, wind, vis-
cous, mooring, and radiation-damping forces (Jonkman and
Matha, 2011).

The simulation process follows the same structure as that
presented by Gorostidi et al. (2023). We assign the environ-
mental conditions for each simulation by selecting a combi-
nation for significant wave height HS ∈ [2,15] (m) and peak
period TP ∈ [1,15] (s). The decision to use these features is
motivated by their common availability in real practice since
supervisory control and data acquisition (SCADA) systems
typically include such measurements.

We have defined evenly spaced values for both HS and
TP within their feasible interval, and one combination is ran-
domly selected for each simulation using Monte Carlo sam-
pling. These two variables define a Pierson–Moskowitz spec-
trum, which estimates the distribution of the energy of ocean
waves based on their frequency using the empirical correla-
tion proposed by Pierson and Moskowitz (1964). The inte-
gration of this spectrum defines the temporal evolution of the
wave force component of the total force in Eq. (23). We select
wind velocity WV in a similar manner, with speeds ranging
from 1 to 30 ms−1. In this work, we consider uniform wind
speed profiles.

We then introduce damage to the mooring lines in Mo-
orDyn, OpenFAST’s mooring line dynamics module (Hall,
2020). In this work, as shown in Fig. 5, we distort one of the
lateral mooring lines of the platform.

Most failures in the mooring system occur during the oper-
ational phase, according to a survey focused on floating pro-
duction storage and offloading (FPSO) platforms for the oil
and gas sector (Fontaine et al., 2014). Pitting corrosion, fa-

tigue due to cyclic loading, and abrasion with the seabed may
represent some of the most frequent causes leading to critical
failure of the mooring systems. In the present study, we an-
alyze the effect of degradation caused by two other common
forms of damage: biological fouling (Decurey et al., 2020)
and anchor point slippage (Liu et al., 2021; Sharma and
Nava, 2024). These damage mechanisms affect the mechan-
ical properties of the platform’s mooring lines, e.g., mass,
stiffness, and buoyancy, and may accelerate wear or cause
premature failure (Spraul et al., 2017). Biofouling, in partic-
ular, is a slow process that affects the mass and drag of the
mooring system, affecting the performance and stability of
the platform. Anchor slipping, moreover, drastically affects
the stiffness of the system (Liu et al., 2021).

We simulate biofouling by modifying the mass per unit
length and diameter of a segment located at the center of the
mooring line. We consider the maximum biofouling damage
to increase these properties by 10 %. We induce anchoring
damage by displacing the line’s anchor points’ x and y coor-
dinates, which we assume to have an effect on the line’s stiff-
ness, causing alterations in the response of the platform. We
consider the maximum anchoring damage at 20 m parallel to
its baseline orientation of 240° with respect to the x direction.
To label the scenarios, we employ two severity coefficients,
one for each damage type, where the maximum damage level
corresponds to a value equal to one, and healthy mooring line
scenarios are assigned null coefficient values. Any intermedi-
ate damage coefficient reflects mild degradation, which mod-
ifies the line’s properties following a linear interpolation. We
sample these coefficients by sampling from a folded Gaus-
sian distribution located around zero, with a standard devia-
tion of 0.35. The rationale behind this is that we seek a train-
ing dataset containing mostly low-severity scenarios, much
more frequent in common operation (Gorostidi et al., 2023).

For any scenario, we first sample the damage coeffi-
cients describing the damage condition. We subsequently use
Monte Carlo to sample the loading conditions and assign dif-
ferent sea states. With this approach, we build a large dataset
with cases that include milder or more energetic sea states for
all the considered damage scenarios. Each scenario involves
a simulation recreating 30 min of FOWT dynamics, comput-
ing platform responses every 0.025 s, and subsequently ex-
tracting the selected features. In summary, any scenario is
defined by (i) 3 features describing the loading conditions,
namely HS, TP, and WV; (ii) 15 response features, 5 for each
of the 3 considered DOFs; and (iii) the 2 damage condition
coefficients. We produce 60 000 samples in parallel batches
using 120 Intel Xeon (R) E5-2680, 2.70 GHz CPUs (Donos-
tia International Physics Centre, 2022), taking approximately
42 h.
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4 Neural network design and training

We employ TensorFlow 2.13 to treat the datasets and train
the Bayesian DNN for damage condition assessment (Abadi
et al., 2015). We split our dataset into training (Dtrain), vali-
dation (Dval), and testing (Dtest), each containing 70 %, 20 %,
and 10 % of the total samples, respectively. We then use the
MinMax scaler (Scikit Learn, 2024) to constrain the envi-
ronmental conditions and response features to the interval
[0,1] so as to ensure that high-order features do not out-
weigh lower-order ones in the training process. The rescaling
function is based on the training data and applies to the three
datasets.

Next, we specify the DNN architecture and the hyperpa-
rameters describing the training routine. There are no gen-
eral guidelines regulating the pursuit of an optimal configu-
ration. Numerous hyperparameters exist in this case, pertain-
ing to the model definition and its training process, including,
among others, layer counts, types, and sizes; activation func-
tions; and regularization techniques. This renders the search
space virtually infinite. As a common practice, developers
usually test the performance of a range of candidate archi-
tectures designed based on educated guesses and experience,
aiming to strike a balance between computational efficiency
and prediction accuracy.

In this work, we employ a combination of hyperbolic tan-
gent (Namin et al., 2009) and rectified linear unit (ReLU)
(Agarap, 2018) functions for the hidden layers. We imple-
ment the weight initialization method proposed by Aldirany
(2024), who suggested that TensorFlow’s default Glorot uni-
form initialization scheme (Glorot and Bengio, 2010) is un-
suitable for non-differentiable and non-zero mean functions,
such as ReLU. Instead, we apply the He uniform initializa-
tion (He et al., 2015) to the ReLU layers. At the output layer,
we use three different activations for the properties of the
multivariate Gaussian mixture: the sigmoid function (Han
and Moraga, 1995) for the means, as we seek a smooth func-
tion to estimate damage condition coefficients in the interval
[0,1]; the softplus function (Zheng et al., 2015) for the vari-
ances, as a smooth equivalent of ReLU to enforce positive
values; and the softmax function (Goodfellow et al., 2016)
for the weights so that their sum is equal to one, and each
value falls within [0,1]. We have observed adequate training
performance when using the parameters shown in Table 1.
However, other configurations may also provide satisfactory
results. For the multivariate Gaussian mixture PDF, we as-
sign k = 5 Gaussian components. We have no prior knowl-
edge of the optimal number of Gaussians to reflect the un-
certainty in the damage condition properties. The larger the
number, the more flexible the mixture will be. However, the
number of Gaussians directly affects the number of parame-
ters to be estimated; thus, it hampers the training process. Af-
ter some trial and error analysis, the authors reached adequate
results using five Gaussians. We draw H = 10 samples to be
fed into Fφ∗ . A larger number of samples accelerates con-

Table 1. Specifications of our Gaussian mixture autoencoder. Tanh:
hyperbolic tangent; ReLU: rectified linear unit; GU: Glorot uni-
form, HU: He uniform.

Encoder

Layers 100, 250, 300, 300, 200, 150, 100
Activations ReLU, ReLU, Tanh, ReLU, Tanh,

ReLU, Tanh
Initial weight GU, GU, HU, GU, HU, GU, HU
Initial learning rate 10−5

Batch size 1024
Epochs 200

Sampling layer

µ activation Sigmoid
σ activation Softplus
w activation Softmax
No. Gaussians 5
No. samples 10

Decoder

Layers 10, 30, 50, 70, 80
Activations Tanh, ReLU, ReLU, ReLU, ReLU
Initial weight GU, HU, HU, HU, HU
Initial learning rate 5× 10−3

Batch size 512
Epochs 500

vergence at the cost of more time-consuming iterations. Fi-
nally, we consider a noise parameter β equal to 0.076, which
roughly corresponds to noise levels of up to approximately
8.5% (Bishop, 2006). The value of β is critical to leverage
the contribution of both loss terms in Eq. (16) during training
and thus to properly describe the uncertainty in the solutions.

We follow the two-step training procedure described in
Sect. 2. We first find the optimal forward operator Fφ∗
by minimizing Eq. (3), as described in our previous work
(Gorostidi et al., 2023). We pre-train the decoder to approxi-
mate the physical law of the system, since this enables access
to the derivative quantities that are needed when training the
encoder, according to the loss function in Eq. (16). In this
manner, the decoder serves to impose the known physical
law as a type of inductive bias. A further benefit of this ap-
proach is that by specifying fewer unknowns (only those cor-
responding to the encoder), we reduce the difficulty of the
inference task; in particular, we decrease the number of local
minima.

We present the evolution of the decoder’s loss in Fig. 6.
The parameters of Fφ∗ are frozen for the next training step.
We obtain the optimal inverse operator Iθ∗ by minimizing
the ELBO loss described in Eq. (16). Figure 7 depicts the
evolution of the loss function during training, including the
total loss value, and the two participating terms.
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Figure 6. Evolution of training and validation losses for the forward
operator Fφ∗ .

Table 2. Properties of the selected examples.

Scenario z1 z2

1 0.20 0.65
2 0.82 0.44
3 0.34 0.74
4 0.00 0.00
5 0.15 0.60
6 0.05 0.25
7 0.34 0.10
8 0.00 0.40

5 Results with 3 DOFs

This section analyzes the damage identification performance
using the test dataset Dtest unseen during training and val-
idation tasks. Here, we select eight damage scenarios from
Dtest to visualize the results. The eight data points represent
different damage conditions and are summarized in Table 2.

The deterministic approach employed in Gorostidi et al.
(2023) minimized the data misfit (LM), producing a single
value estimate for each input measurement. However, de-
spite being a feasible solution, it might be far from the true
one when multiple solutions coexist. For any response mea-
surement m, we can identify the feasible solutions as those
producing a reduced value of LM. Accordingly, these solu-
tions must produce a high probability value in the estimated
posterior PDF, qθ (z|m,w). Figures 8 and 9 depict the solu-
tion space and compare two contour maps within the solu-
tion space: (i) the density value over qθ (z|m,w) and (ii) the
LM value for the eight test example scenarios. The contour
plot of data misfits reveals the existence of multiple damage
scenarios producing similar responses (measurements), i.e.,
producing a small value of LM. Both contours must ideally
be identical for the posterior to show all the feasible solu-
tions. However, the constraints and assumptions imposed for
the posterior to be tractable (parametrization of the distribu-
tion to a Gaussian mixture, diagonal covariance matrix as-
sumption, etc.) restrict the shape of the PDF. For comparison

purposes, the figures include both the ground truth and the
deterministic solutions produced in Gorostidi et al. (2023).

In the figures, we have constrained the contour maps of
LM to enable proper visualization of the targeted regions.
Despite the shape limitations of the estimated posterior dis-
tributions, the resulting contours (left-hand figures) exhibit
a clear correspondence with the expected solution space de-
scribed by LM. Thus, the contour plot of the estimated pos-
terior PDF qθ (z|m,w) describes the uncertainty in the solu-
tion space.

We observe that, in most cases, the shape accommodates
close to a bi-variate Gaussian distribution, indicating the ex-
istence of a dominating mode. These results suggest that the
selected sensing system and the extracted features suffice
to uniquely identify the damage condition causing the ob-
served measurements. Analyzing the deterministic solution,
we observe that it lies close to the true damage condition,
indicating acceptable predictions. However, as we explore
in Sect. 6, employing an incomplete sensing system (fewer
DOFs available) might contribute to the ill-posedness of the
inverse and thus result in a much more uncertain damage con-
dition.

In this work, we make two main assumptions in the train-
ing dataset to constrain the scope of the analysis. First, the re-
sults presented in this section assume the availability of some
loading condition features describing the wind and wave ex-
citation. Although SCADA systems are frequently found in
FOWTs, such measurements may be inaccessible or be sub-
ject to failure. Appendix A describes the results obtained
when training the inverse operator without any information
regarding the loading conditions.

Second, we particularize the methodology to the damage
condition of one single mooring line. As a proof of concept,
we assume that only one mooring line may suffer damage at
a time. However, in real practice, simultaneous damage may
happen in two or more components of the target system (e.g.,
two mooring lines). Appendix B presents the results obtained
for a new case study where we consider anchoring damage
co-occurring at two mooring lines.

Given the computational limitations of simulating damage
scenarios, a relevant aspect that needs to be considered re-
lates to the capability of the DNN to provide a reliable out-
come for a certain scenario that was unseen during training
(although of the same nature/type as those used for training).
Appendix C analyzes such a situation via two different stud-
ies to demonstrate the ability of the distributional model to
approximate the true solution and provide information about
the uncertainty origin.

5.1 Exploring robustness to noise

One critical issue to tackle when dealing with data from real
operative systems is the effect of noise. We represent the
measurement error as additive noise with a Gaussian dis-
tribution. We assume the covariance matrix to be a diago-
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Figure 7. Evolution of training and validation losses for the 3-DOF case: (a) data misfit and mixture density components of the loss and
(b) training and validation ELBO losses.

nal matrix 0 = (βF([z,w]))2, where the scalar β affects the
variances of the noise components. A low value of β indi-
cates almost null noise in the data, and the total loss value is
mainly due to the data misfit term. Contrarily, a larger value
of β is associated with higher noise levels and an increase in
the contribution of the distributional term. We can relate β
with the signal-to-noise ratio (SNR), which is given by (see
Johnson, 2006)

SNR= 10log10
E(S2)
E(n2)

, (24)

where S represents the measured signal and n the noise. For
white Gaussian noise with a null mean, we substitute the ex-
pectation of the noise by its variance. As an indicative value
of the noise level based on the training dataset, assigning
β = 0.05 corresponds to a SNR≈ 26dB.

We explore increasing noise levels by modifying the value
of β. Figure 10 depicts this effect for the first test example in
Table 2. Analogous results are observed for the other exam-
ples. The results reveal the sensitivity of the estimated PDF to
the noise level. We observe that for β = 0.1 (SNR≈ 20dB),
the entire solution space is feasible for the biofouling damage
represented by z1. This demonstrates a limited sensitivity of
the measured features to this damage compared to anchoring
(z2), which can still be estimated. These results support the
robustness of the method in the presence of high noise levels.

6 Results with 1 DOF

To highlight the potency of the proposed method, we explore
the multimodality of the solution space when the instrumen-
tation system is sparse (limited number of sensors). This sit-
uation is very common when low-cost, long-term sensing
devices are installed. Measuring accelerations is also an ex-
tended and cost-effective practice. Damage in the mooring
elements affects the dynamics of the entire FOWT system
(including the 6 degrees of freedom). However, the dynam-
ics of the mooring system correspond to low frequencies and

strongly exciting sway DOF, which is coupled with the ro-
tation DOF roll. Compared to accelerations, displacements
(and coupled-rotation DOFs) tend to be more sensitive to
damage in the mooring systems, such as anchor displace-
ments, in terms of signal power (Sharma and Nava, 2024).
To explore the multimodality in the damage condition esti-
mates, we have selected the roll DOF as the only available
signal since it is particularly sensitive to damage given the
mechanical symmetry of the system and the unidirectionally
of the external excitation and aids in the visualization of the
results.

In this case, we employ only five response features – those
associated with roll – as the input data for the DNN. We adapt
the architecture of Iθ described in Sect. 4 to accommodate
the new input dimensions and repeat the training step to min-
imize LELBO. Figures 11 and 12 show the results for the eight
damage scenarios.

The data misfit (LD) contour maps on the right-hand side
of Fig. 12 reveal a much more spread range of plausible dam-
age conditions across the solution space for any given in-
put measurement. The contour plots of the estimated prob-
abilities (left-hand figures) match with the LD map. Given
that the uncertainty has increased in the solution space (ill-
posedness), the results reveal a more clear multimodality in
the solution space. Compared to Figs. 8 and 9, where the
deterministic solution was pretty close to the ground truth,
now we observe a considerable separation. This discrepancy
already provides information about the existence of multi-
ple solutions. For example, for the test case 1 (see Fig. 11a
and b), we clearly observe how the Gaussians try to adopt the
tube-shaped contour map of minimal LD values that seem to
connect the ground truth and the deterministic solution.

Figures 9–12 qualitatively illustrate the multimodal nature
of the solution to our inverse problem. Next, we further quan-
tify the performance of our network using common metrics.
Table 3 reports the root mean square error (RMSE) of the es-
timations using both deterministic and probabilistic models.
The table’s left half presents the RMSE values for the 3-DOF
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Figure 8. First four test examples: the left-hand figures represent the contour plot of the estimated posteriors qθ (z|m,w). The right-hand
figures represent the data misfit (LM) value.
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Figure 9. Last four test examples: the left-hand figures represent the contour plot of the estimated probability density functions qθ (z|m,w).
The right-hand figures represent the data misfit (LM) value.
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Figure 10. Analysis of noise effect in the qθ (z|m,w) results for the first test example. Increasing noise levels according to (a) β = 0.025
(SNR≈ 32dB), (b) β = 0.050 (SNR≈ 26dB), (c) β = 0.075 (SNR≈ 22.5dB), and (d) β = 0.10 (SNR≈ 20dB).

case, while its right half displays the RMSEs for the case of
incomplete instrumentation with the roll DOF only. RMSEs
were calculated using 10 samples from the Gaussian mixture
autoencoder. Since the deterministic model provides a point
prediction, the RMSEs of the deterministic predictions are
equivalent to the absolute error between the ground truth and
the model’s estimation.

The 3-DOF errors in Table 3 concur with the contour plots
presented in Figs. 8 and 9, which proved the selected in-
strumentation sufficient for the deterministic model to accu-
rately estimate mooring degradation. Table 3 shows that the
deterministic model’s predictions using 1 DOF are poorer,
with our Bayesian approach exhibiting improved behavior,
especially in Scenarios 1, 3, and 7. These cases, as shown
in Figs. 11 and 12, reflect a highly multimodal solution and
prove that the deterministic model does not accurately esti-
mate the true solution but rather captures one of the plausible
solutions.

These results support the capacity of the proposed method
to provide an uncertainty-aware assessment in the form of
the probability value for each pair of damage conditions. In
such cases, postprocessing can be applied to extract the rel-
evant information from the multivariate contour map, such
as defining extrema or establishing a threshold to select
the most likely scenarios. Statistical data compression tech-
niques (e.g., principal component analysis, PCA) could be

applied to produce a lower-dimensional representation of the
space that enables visualization.

7 Conclusions

This work proposes a Bayesian deep learning strategy to
achieve an uncertainty-aware assessment of the condition
of the mooring system in a floating offshore wind turbine
(FOWT). To remedy this, we employ a mixture of multivari-
ate Gaussians to track how the uncertainty is propagated from
the available measurements to the estimated health condition
diagnostics, providing more robust and reliable estimates.
We test the performance of the method using measurements
from 3 degrees of freedom and explore the robustness against
increasing noise levels, with successful results. We also ana-
lyze the benefits of the method when dealing with sparse sen-
sor scenarios, such as measuring at only 1 degree of freedom,
revealing the ability of the method to reveal the multimodal
nature of the solution in ill-posed scenarios.

In line with the limitations and challenges stated in Sect. 1,
here we determine future research lines and challenges to
be addressed. Scaling up the methodology to more complex
damage spaces (e.g., simultaneous damage in all mooring
lines, different directions of the anchor displacements, cor-
rosion effect) is one of the key challenges to be addressed.
Given the intractable dimensionality increase in the num-
ber of parameters of the Gaussian mixture, we explore al-
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Figure 11. First four test examples for 1 DOF: the left-hand figures represent the contour plot of the estimated probability density functions
qθ (z|m,w). The right-hand figures represent the data misfit (LM) value.
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Figure 12. Last four test examples for 1 DOF: the left-hand figures represent the contour plot of the estimated probability density functions
qθ (z|m,w). The right-hand figures represent the data misfit (LM) value.
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Table 3. RMSE values for 3-DOF and 1-DOF cases using both deterministic and Gaussian mixture autoencoder models.

3 DOFs 1 DOF

Deterministic Gaussian mixture Deterministic Gaussian mixture

Scenario RMSEz1. RMSEz2 RMSEz1 RMSEz2 RMSEz1. RMSEz2 RMSEz1 RMSEz2

1 0.011 0.013 0.114 0.041 0.355 0.494 0.330 0.357
2 0.010 0.023 0.133 0.062 0.133 0.062 0.131 0.107
3 0.006 0.004 0.181 0.148 0.180 0.183 0.149 0.185
4 0.053 0.002 0.103 0.032 0.052 0.051 0.151 0.153
5 0.002 0.005 0.200 0.093 0.021 0.090 0.137 0.118
6 0.141 0.071 0.161 0.136 0.126 0.077 0.112 0.180
7 0.095 0.004 0.091 0.135 0.164 0.374 0.123 0.210
8 0.012 0.020 0.210 0.066 0.014 0.034 0.046 0.018

ternate distributional models, such as random fields (Birmpa
and Katsoulakis, 2021), Gaussian processes (GPs) (Li et al.,
2019), or copulas and vine copulas (Letizia and Tonello,
2025).

We further consider a future research line to focus on
more exhaustive feature extraction that includes more refined
system identification features, including the transmissibility
and transmittance, or autocorrelation features, as they may
enhance the damage identification task. Also, to achieve a
higher-level assessment, we investigate clustering techniques
to separate the different types of uncertainty according to
the nature and properties of the existing sources (e.g., mul-
timodality of the estimate, measurement noise, model un-
certainties, extrapolation over unknown measurements) (Ka-
mariotis et al., 2024).

Finally, it is a core priority of the authors to validate the
proposed methodology for a case study where both exper-
imental and synthetic data can be combined. Experimental
data will present important limitations, including a strong
concentration around a reduced region of the domain (mostly
the undamaged condition and other unlabeled damage sce-
narios). Hence, it is mandatory to find an adequate strategy to
complement these data with synthetic simulations, account-
ing for the computational limitations in terms of time and
resources. In this sense, covering the entire range of possi-
ble damage scenarios is computationally prohibitive unless it
is carefully tackled. Active learning methods enable an effi-
cient design of the synthetic dataset required for the training
stage, as they guide the simulation process to enrich the most
poorly characterized regions.

Finally, given the potential of the proposed methodology
to be applied to different inverse problems, the authors are
currently exploring its application to the field of damage
identification for bridge structures. The main challenges aris-
ing in this context relate to the high dimensionality of the
damage condition space, which will require more efficient
distributional models such as copulas.

Appendix A: Exploring results when loading
conditions are unavailable

This appendix considers the case when the loading condition
features describing the wind and wave excitation are unavail-
able. We train our inverse model Iθ , ignoring these features
for the case where only the roll DOF is available. The de-
sign and training specifications are similar to those summa-
rized in Table 1. Figure A1 presents the results obtained for
the first four test case scenarios. Analyzing the results, we
observe that, although the distributional model partially cap-
tures the damage condition in some cases (see, e.g., Fig. A1a,
c, and g), in other scenarios it is far from producing reli-
able outcomes. The lack of information regarding the load-
ing conditions misleads the condition estimates, mainly for
variable z1 (anchoring). For example, in Fig. A1b and e, we
observe that the distributional model spreads along the an-
choring axis (z1) with no identification of the existing multi-
modality.
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Figure A1. First four test examples for 1 DOF when omitting wind and wave condition measurements in the inverse training stage.
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Appendix B: Exploring results for simultaneous
damage in two mooring lines

In this appendix, we analyze the detection capability of si-
multaneous damage occurring in two different mooring lines.
To remain in the two-dimensional space, we consider only
anchoring damage. In particular, this section explores an-
choring damage to a lateral mooring line, as well as the
downstream line parallel to the surge motion. The param-
eterization of anchoring degradation for the platform’s lat-
eral line remains unchanged with respect to the main body
of this study. Anchoring damage displaces the anchor of the
floater’s downstream line up to 20 m further in the direction
of the wind–wave excitation. Figure B1 presents the prob-
ability and data misfit distributions for four test cases, con-
sidering as input data the 3 rotation DOFs (roll, pitch, and
yaw). The figure shows the robust performance of the model
to concurrent damage in various mooring lines. However, if
we constrain the input data to the roll DOF only, we find that
the measured features are unable to identify the damage in
the second mooring line. Figure B2 illustrates this for one
test scenario. The results highlight the importance of select-
ing damage-sensitive features to capture the different modes
of failure that may occur in the system.
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Figure B1. Four test cases for simultaneous anchoring damage on two mooring lines considering roll, pitch, and yaw motion. The left-hand
figures represent the contour plot of the estimated probability density functions qθ (z|m,w). The right-hand figures represent the data misfit
(LM) value.

Wind Energ. Sci., 10, 857–885, 2025 https://doi.org/10.5194/wes-10-857-2025



A. Fernandez-Navamuel et al.: Gaussian mixture autoencoder for FOWT damage identification 879

Figure B2. Test case for simultaneous anchoring damage on two mooring lines considering only roll motion.

Appendix C: Exploring the generalization capability
for unseen-damage scenarios

This appendix explores the potential of our proposed method
in evaluating damage scenarios different from the training
cases. Given the extrapolation limitations of neural networks,
we study scenarios of the same nature (the same type of dam-
age occurs, namely anchoring and biofouling), although with
a remarkable reduction in severity. We perform two differ-
ent analyses for the inverse: (i) training only with scenarios
where damage z1 (anchoring) is always ≥ 20% and testing
with scenarios with z1 < 20% and (ii) training only with sce-
narios where damage z2 (biofouling) is always ≥ 20% and
testing with scenarios with z2 < 20%. In both cases, we con-
sider using the 3 rotation DOFs as the input measured signals
(roll, pitch, and yaw).

Figure C1 shows four randomly selected test cases for
the first analysis (anchoring kept ≥ 20% during training).
We observe that the distributional model successfully ap-
proximates the true solution, with the uncertainty spreading
mostly in the direction of the constrained feature (i.e., an-
choring) within acceptable thresholds. Hence, the developed
method can inform the damage condition and indicate the
direction of uncertainty, even for cases where the evaluated
scenario lies outside the training domain.

Analogously, Fig. C2 shows four test scenarios for the
second analysis (biofouling kept ≥ 20% during training).
The results reveal that the highest density values concentrate
close to the true solution, although with some error (see, e.g.,
Fig. C2c, where the highest PDF values are shifted towards
smaller anchoring damage, but the level of biofouling dam-
age is well captured).

In summary, the results demonstrate that despite these not
being included during the training phase, the DNN success-
fully identifies damage scenarios with lighter severity. The
analyses demonstrate the generalizability of the method for
damage scenarios that have the same nature but are signif-
icantly different in severity from those considered during
training, as well as the potential of the distributional model
to indicate the direction of the uncertainty.
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Figure C1. Posterior PDF (qθ (z|m,w)) contour plots for four test scenarios when training with anchoring (z1) scenarios ≥ 20%.

Figure C2. Posterior PDF (qθ (z|m,w)) contour plots for four test scenarios when training with biofouling (z2) scenarios ≥ 20%.
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