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Abstract. The size growth of modern wind turbines creates challenges in their control system design, par-
ticularly due to greater wind variability across larger rotor areas. As modern turbine control systems rely on
the availability of accurate wind speed information, the increasing unrepresentativeness of pointwise measure-
ment devices, such as anemometers, necessitates the incorporation of more representative rotor-effective wind
speed (REWS) estimation. Classical REWS estimators, based on static power relations, often fail to account for
dynamic changes, leading to inaccurate estimation. To overcome these challenges, this paper introduces a power-
balance-based REWS estimation framework and splits the estimation problem into two modules: an aerodynamic
power estimator and a wind speed estimate solver. Two possible aerodynamic power estimation techniques are
discussed based on numerical derivative and state estimation. As state estimator calibration remained a chal-
lenge for varying wind turbine sizes, a gain-tailoring method for the performance calibration throughout a range
of modern wind turbine sizes has been derived for the state-estimation-based aerodynamic power estimator.
Two types of wind speed estimate solvers are analyzed, namely the continuous and iterative single-step meth-
ods. From the two modules, the best-performing methods – the state estimation aerodynamic power estimator
and iterative single-step wind speed solver – are chosen to form the optimal power balance REWS estimator.
The combined optimal estimator is validated through OpenFAST simulations of the National Renewable Energy
Laboratory (NREL) 5 MW and IEA 22 MW turbines and compared against a baseline method. The proposed
method demonstrates good tracking of the REWS, better noise resilience, and convenient estimator gain calibra-
tion across different turbine sizes.

1 Introduction

With the increasing demand for clean and renewable wind
energy for the provision of electricity worldwide, there is a
trend toward upscaling wind turbine sizes (Global Wind En-
ergy Council, 2024). Greater wind turbine rotor-swept areas
enable more wind energy to be harnessable, resulting in in-
creasing power production per unit turbine and effectively
lowering the so-called levelized cost of energy – thus making
wind turbines more competitive in the energy market (Burton
et al., 2011; Veers et al., 2019).

Regardless of the potential economic benefit, the task of
controlling wind turbines with larger rotors is becoming
more of a challenge, especially when accurate information on
wind speed is crucial to ensure high controller performance,
e.g., for gain scheduling (Kumar and Stol, 2009; Koerber
and King, 2013), feedforward (feedback) control (Van En-
gelen and Van der Hooft, 2003; Koerber and King, 2013;
Lazzerini et al., 2024), or tip-speed ratio tracking (Bossanyi,
2000; Ortega et al., 2013; Abbas et al., 2022; Brandetti
et al., 2022, 2023), to mention a few. This is mainly caused
by the greater spatial variability across the rotor-swept area
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for larger turbines. Thus, pointwise wind speed information,
such as that provided by anemometers downstream at the na-
celle, becomes increasingly unrepresentative, not to mention
the presence of highly perturbed wind flow at the rotating
turbine blades (Soltani et al., 2013). On the other hand, be-
ing the main driving force of a wind turbine, the deduction of
more representative wind speed information via the turbine
dynamics has been seen as a viable alternative (Boukhezzar
and Siguerdidjane, 2011). To be more exact, other available
measurements, namely rotor speed, generator torque signal,
and blade pitch position, can be used to provide the so-
called rotor-effective wind speed (REWS) estimate (Øster-
gaard et al., 2007).

Early REWS estimation studies (see Østergaard et al.,
2007; Soltani et al., 2013, and references therein), in large
part, utilize the static relation between the produced power
and the REWS by omitting the always-occurring dynamical
changes in the rotor speed. Resultingly, these REWS estima-
tors cannot provide accurate estimations of the aerodynamic
torque in transient conditions due to the neglected dynamic
information.

To address the aforementioned shortcoming, later REWS
estimation studies incorporating rotor acceleration informa-
tion in their framework arose in the literature. In Bossanyi
(2000), the REWS estimate is obtained by first estimat-
ing the aerodynamic torque by reformulating torque bal-
ance drivetrain dynamics, which account for rotor accel-
eration and drivetrain inertial information. Then, given a
priori knowledge of the aerodynamic torque coefficient ta-
ble, it is possible to deduce the information on the wind
speed.1 The work of Van Engelen and Van der Hooft (2003)
and Boukhezzar and Siguerdidjane (2011) adopts a simi-
lar estimation approach, where for the wind speed estimate
solver, the Newton–Raphson algorithm, being an iterative
single-(time)step method, is utilized. In Ortega et al. (2013),
an immersion and invariance method for the wind speed es-
timation is employed, and its global convergence guarantee
is provided. This method seeks to nullify the error between
measured rotor speed and its estimate, with the latter being
the integrated difference between the (inertia-scaled) genera-
tor torque and the aerodynamic torque estimate, using a pro-
portional compensator (and an integrator, as extended by Liu
et al., 2022). Having canceled the rotor speed estimation er-
ror, the wind speed estimate is then obtained in a continuous
manner. The continuous method, in comparison with the iter-
ative method, is considered to be a multiple-time-step solving
scheme.

Nevertheless, stability analysis of the continuous solver
following a discretization has remained unaddressed, to the

1In Bossanyi (2000), the information on the tip-speed ratio cor-
responding to the estimated aerodynamic torque is the main estima-
tion output. Thus, given rotor speed measurements, the wind speed
estimate can be straightforwardly derived from this tip-speed ratio
estimate (as explained in Østergaard et al., 2007).

best of the authors’ knowledge. Moreover, the performance
comparison between the two wind speed estimation solving
methods has received little attention in the literature.

With regard to the aerodynamic torque (or power estima-
tor), the work of Østergaard et al. (2007) is of particular inter-
est. Two ways to obtain the aerodynamic torque estimate are
studied therein, namely (filtered) numerical derivative and
state estimation. The former is associated with the numerical
differentiating method used to obtain the rotor acceleration
estimate from measured rotor speed. This provides a neces-
sary “ingredient” to reconstruct aerodynamic torque given a
priori inertia information and generator torque input. The lat-
ter method provides two cascaded observers. The inner loop
estimates the unmeasurable turbine states by Kalman filter-
ing, while the outer one estimates the aerodynamic torque
by a proportional–integral compensator structure. Although
performance comparisons of both methods are provided, lit-
tle attention was paid to the effect of noisy measurements
on the aerodynamic torque estimators, which might deterio-
rate the ensuing wind speed estimation. To facilitate calibra-
tion of wind speed estimation by state estimation, the work
of Moustakis et al. (2019) proposed a machine-learning-
based Bayesian optimization approach. Nonetheless, since it
remained unclear how to properly tune such a wind speed es-
timator, a Bayesian optimization approach, which is a global
optimization machine learning algorithm, was adopted in the
study.

However, optimal wind speed estimator tuning for a single
turbine might not necessarily translate into optimal perfor-
mance when applied to a different turbine. Given the accel-
erated growth in modern wind turbine sizes, there is a need
for deriving a calibration methodology to ensure optimal es-
timator tuning throughout these turbines.

Furthermore, based on the above literature review, four
possible combinations of the aerodynamic torque (or aero-
dynamic power, as made clearer shortly) estimator and wind
speed estimate solver can be constructed with the optimal
combination left undetermined. Moreover, validation in real-
istic simulation settings of such an optimal wind speed es-
timator combination – calibrated for wind turbines of vari-
ous sizes – needs to be performed. It is also worth noting
that the aforementioned works on various wind speed esti-
mator schemes are based on the torque balance modeling of
the wind turbine drivetrain. While such torque-based coordi-
nates have been widely used for wind turbine control designs
in the literature, employing power-based terms to represent
wind turbine dynamics is common practice in industry (Hov-
gaard et al., 2015; Odgaard et al., 2017; Brandetti et al.,
2022; Mulders et al., 2023a; Pamososuryo et al., 2023). The
current work thus provides a wind speed estimator frame-
work largely based on power balance dynamics. Neverthe-
less, adopting this work into the torque balance framework is
straightforward. The contributions of this work are outlined
as follows:
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1. A thorough analysis for numerical-derivative- and
state-estimation-based aerodynamic power estimators
in noisy measurement settings is provided.

2. A calibration methodology for a state-estimation-based
aerodynamic power estimator for a range of modern
wind turbine sizes is formulated.

3. Iterative and continuous wind speed estimate solvers are
derived, and frequency-domain stability analysis for the
latter-mentioned method is provided.

4. The optimal wind speed estimator structure is identified
from the proposed aerodynamic power estimators and
wind speed estimate solvers.

5. A mid-fidelity validation of the selected optimal estima-
tor under realistic conditions for multiple wind turbine
sizes is provided.

The remainder of this paper is structured as follows: in
Sect. 2, preliminaries required for this paper, being the nota-
tion convention, key reference wind turbine properties, and
assumptions used throughout the paper, are explained. Sec-
tion 3 touches upon the closed-loop wind turbine model and
the proposed power balance REWS estimation framework.
Sections 4 and 5 address several potential options for the
aerodynamic power estimator and wind speed estimate solver
subcomponents, respectively, where thorough analyses and
low-fidelity numerical demonstrations are given. In Sect. 6,
the proposed combinations of the aerodynamic power esti-
mator and wind speed estimate solver subcomponents are
validated using higher-fidelity wind turbine simulation re-
sults. Finally, the conclusions and recommendations of this
work are laid out in Sect. 7.

2 Preliminaries

2.1 Notations

In this section, frequently used notations in this paper are
defined. Time dependency in the continuous domain is indi-
cated by the time variable t and in the discrete-time domain
by the time-step variable k. Quantities in the Laplace domain
are indicated by s notation and those in the discrete z do-
main with z. The first time derivative of a signal is denoted
by a dot, the hat notation indicates an estimated quantity, an
overline indicates a quantity at its steady state, and a tilde de-
notes a signal corrupted by noise. Constants associated with
the optimal power coefficient, design tip-speed ratio, and fine
pitch angle are indicated by a star.

2.2 Key reference wind turbine properties

As mentioned earlier in Sect. 1, wind speed estimator calibra-
tion methodology for various wind turbine sizes is presented
in this work. Therefore, a wide range of wind turbine power

Figure 1. Curve-fitting results. Reference wind turbine data points
are depicted by the dots, and the fitted curves are indicated by the
lines. Panel (a) is the mapping from the rotor diameter to the inertia
(left y axis) and rated generator power (right y axis). Panel (b) is
the mapping from the rated generator power to the inertia.

capacities, which are at present represented by the available
reference wind turbine models ranging from 5 to 22 MW, is
considered to showcase the applicability of the current study
to a wide range of relevant-sized wind turbines. For this pur-
pose, several reference wind turbines are considered in this
study, and their key physical properties are summarized in
Table 1.

For convenience, empirical relations have been derived be-
tween the rotor diametersD, power ratings Pg,rated, and low-
speed-shaft-equivalent inertias J of the turbines. By drawing
such relations, it is possible to account for more turbine di-
mensions, power ratings, and inertias other than those of the
reference turbines. To this end, the key properties of the refer-
ence wind turbines in Table 1 are used to obtain the following
fitted functions:

J (D)=
(

2.581 · 106
· e0.02024D

)
kg m2 , (1a)

Pg,rated(D)=
(

1.491× 106
× e0.009613D

)
W , (1b)

J (Pg,rated)=
(

9.979× 107P 2
g,rated+ 2.843

× 108Pg,rated +2.424 · 108
)

kgm2 . (1c)

For the above fits, the coefficient of determination R2 > 0.99
is ensured.

2.3 Assumptions

– Assumption 1. The power coefficient represents the ex-
act steady-state aerodynamic characteristics of the ac-
tual rotor.

– Assumption 2. In the low-fidelity simulations provided
throughout this study, the power coefficient of all the
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Table 1. Key physical properties of reference wind turbines. Those of the NREL 5 MW are taken from Jonkman et al. (2009), the IEA
10 MW from Bortolotti et al. (2019), the IEA 15 MW from Gaertner et al. (2020), and the 22 MW turbine from Zahle et al. (2024).

Turbine parameter
Reference wind turbine

NREL 5 MW IEA 10 MW IEA 15 MW IEA 22 MW

Rated power, Pg,rated (MW) 5 10 15 22
Rotor diameter, D (m) 126 198 240 280
LSS-equivalent inertia, J (kg m2) 43 702 538 160 342 052 312 456 272 752 272 514.5
Gearbox ratio, G (–) 97 1 1 1

considered reference wind turbines (see Table 1) is
equal to that of the National Renewable Energy Lab-
oratory (NREL) 5 MW reference wind turbine so as to
enable a clear analysis and comparison of the results be-
tween the various considered turbines.

– Assumption 3. The drivetrain inertia value at the low-
speed shaft side is assumed to be an a priori known pa-
rameter.

3 Closed-loop wind turbine model and
rotor-effective wind speed estimation framework

Figure 2 presents the overall scheme considered in this work,
in which the wind turbine is controlled by a partial-load con-
troller along with a power balance wind speed estimator. The
wind speed estimator, being the main focus of the analysis in
this work, is connected in an open-loop system to the closed-
loop system. The red block represents the wind turbine, the
green block contains the controller, and the blue block is the
power balance wind speed estimator considered in this study.

Section 3.1 and 3.2 provide the required theory used in
this paper by outlining the first two subsystems, followed by
defining the wind speed estimator. Then Sect. 3.3 addresses
the decomposition of the estimator into several subcompo-
nents, providing a framework for the remainder of the work
presented in this paper.

3.1 Single-degree-of-freedom wind turbine model and
optimal controller

In this work, single-degree-of-freedom power balance drive-
train dynamics are considered to be a simplified representa-
tion of a wind turbine as follows:

Jωr(t)ω̇r(t)= Pr(t)−Pg(t)/ηg , (2)

where J ∈ R is the low-speed-shaft (LSS)-equivalent iner-
tia, ωr ∈ R the rotor angular speed, and Pg ∈ R the gener-
ated power with the corresponding generator efficiency fac-
tor ηg ∈ (0,1]. The aerodynamic power is given by the fol-
lowing nonlinear relation:

Pr(t)=
1
2
ρArCp(λ(t),β(t))U (t)3 , (3)

in which ρ ∈ R denotes the air density, Ar ∈ R the rotor area,
U ∈ R the REWS (Soltani et al., 2013), and β ∈ R the blade
pitch angle. The power coefficient Cp : R2

→ R is a nonlin-
ear mapping from β and the non-dimensional tip-speed ratio
(TSR), defined as

λ(t)=
ωr(t)R
U (t)

, (4)

with R ∈ R as the rotor radius.

– Remark 1. The power coefficient considered in this
work does not take into account the aerodynamic effects
due to structural deformations, e.g., those associated
with bend–twist coupling of the blades. Had this been
the case, changes in local blade sections’ angle of at-
tack are expected, and different combinations of ωr and
U , although they correspond to the same λ, might yield
different power coefficients. This would render the Cp :

R2
→ R mapping between λ, β, andCp inadequate such

that Cp : R3
→ R mapping is needed (i.e., Cp(ωr,U,β)

instead of Cp(λ,β); see Lazzerini et al., 2024, and ref-
erences therein). Nevertheless, without loss of general-
ity, the mapping of the former is adopted for the sake of
clarity of the analysis of this paper; thus, theCp tables in
this work are generated using a rigid-rotor assumption.

The drivetrain system outputsωr, which is then fed into the
optimal torque controller (Bossanyi, 2000), often known as
the “Kω2

r ” controller. Although controllers performing bet-
ter than Kω2

r , e.g., during transients, are available in the lit-
erature, partial-load controller design is not the main focus
of this study. Hence, the Kω2

r controller is deemed suffi-
cient for the goal of this work. Having said that, this work is
equally applicable to more advanced partial-load controllers
available in the literature, such as tip-speed ratio tracking
schemes, e.g., Brandetti et al. (2023) and Lazzerini et al.
(2024). However, it should be noted that in the latter scheme,
blade pitching is active in partial load. As the standard Kω2

r
scheme does not utilize blade pitch control, further study of
the current estimation scheme under varying pitch angles is
required and reserved for future work. Furthermore, constant
pitch at a fine position of β = β? is used, and, for the sake
of brevity, the notation Cp(λ) := Cp(λ,β?) is used for the re-
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Figure 2. The general scheme of the power balance wind speed estimation considered in this study. The wind turbine (red block) is operated
in a closed loop with a Kω3

r controller (green block), whereas the power balance wind speed estimator (blue block) is in an open-loop
configuration with the turbine. The power balance wind speed estimator is subdivided into the aerodynamic power estimator (yellow block)
and wind speed estimate solver (purple block).

mainder of this paper. The Kω2
r controller, in its generator-

power equivalence, is expressed as

Pg(t)= ηgKω
3
r , (5)

where

K =
πρR5C?p

2λ?3

is the optimal control gain. The notation λ? indicates the de-
sign TSR, corresponding to the optimal power coefficient,
defined as C?p := Cp(λ?). Based on the expression in Eq. (5),
in the remainder of this paper, as well as in Fig. 2, this opti-
mal controller is referred to as “Kω3

r ”.

3.2 Power balance wind speed estimation general
concept

This section establishes the REWS estimation framework
that forms the basis of the remainder of this paper. The ra-
tionale behind the power balance REWS estimator presented
herein lies in the retrievability of wind speed information
by asymptotic minimization of an error term between the
aerodynamic power and its estimate, in which Assumption 1
holds, that is

U (t)= lim
t→∞

argmin
Û (t)

∣∣ep(t)
∣∣ , (6)

where Û ∈ R denotes the REWS estimate. The notation ep ∈

R is the said estimation error, defined as

ep(t)= Pr(t)−
1
2
ρArCp

(
λ̂(t)

)
Û (t)3 , (7)

where the second term on the right-hand side of the equation
is the aerodynamic power estimate based on Eq. (3), utilizing
Û in place ofU . The challenge of obtaining an estimate of Pr
and solving the optimization problem of Eq. (6) is explained
in further detail in the next section.

– Remark 2. Note that Eq. (6) will not be achieved in the
presence of discrepancies between the utilized and ac-
tual Cp tables. Such disparities will lead to a biased

wind speed estimate, as reported in Brandetti et al.
(2022). Readers interested in the details of this ill-
conditioning are therefore referred to that study.

3.3 Wind speed estimator subcomponent partitioning

Now that the closed-loop controlled wind turbine and wind
speed estimation problem has been defined, the power bal-
ance REWS estimator explained in Sect. 3.2 can be parti-
tioned into two subcomponents to allow for both rigorous
analysis and effective estimation schemes: (i) aerodynamic
power estimator and (ii) wind speed estimate solver. Fig-
ures 2 and 3 depict this partitioning, the latter of which details
the possible techniques to realize these two subcomponents.
Similar separation approaches have also been adopted in the
literature, e.g., in Van Engelen and Van der Hooft (2003)
and Østergaard et al. (2007). The current study provides a
more in-depth analysis of the subcomponents.

The first block provides an estimate of the aerodynamic
power, which – in contrast to the measured generator power
– is more challenging to obtain, as is explained shortly. For-
tunately, such information can still be obtained based on the
available measurements and is the concern of the orange
blocks in Figs. 2–3. By rearranging Eq. (2) and replacing
specific variables with their estimated representations, one
obtains

P̂r(t)= Jωr(t) ˆ̇ωr(t)+Pg(t)/ηg . (8)

Note that P̂r and Pg/ηg are equal to each other in steady
state; however, due to the variable nature of the wind and
rotor speed, omitting the rotor acceleration term entirely
from this calculation means losing valuable dynamic infor-
mation (Østergaard et al., 2007; Soltani et al., 2013). There-
fore, taking into account the dynamics through the utilization
of the rotor acceleration and the Jωrω̇r terms enhances the
accuracy of the REWS estimate during both steady-state and
transient conditions.

In practice, however, rotor acceleration is not directly mea-
surable, and it is challenging to obtain a good estimate of this
quantity, ˆ̇ωr, due to the noisy nature of measured signals. To
retrieve ˆ̇ωr, one may resort to numerical derivative methods
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Figure 3. Power balance wind speed estimation partitioning. The
left column contains the potential aerodynamic power estimators to
be connected with the potential wind speed estimate solvers within
the right column, thereby creating four possibilities for combining
the two subcomponents.

of ωr or state estimation methods, as depicted in Fig. 3. Sub-
sequently, the aerodynamic power estimate P̂r is obtained by
solving Eq. (8).

– Remark 3. At this point, two aerodynamic power esti-
mate terms have been introduced. One is P̂r, defined in
Eq. (8), and the other is the second term on the right-
hand side of Eq. (7). To prevent any confusion, the term
“aerodynamic power estimate” is used to refer to the
former, whereas the latter is from hereon referred to as
the “Û -dependent aerodynamic power estimate”.

Independent of how P̂r is retrieved, such information, to-
gether with ωr measurements, is then fed into the wind speed
estimate solver subcomponent, indicated as the purple blocks
in Fig. 3. Solving for the estimated wind speed is achieved in
two ways in this work: the continuous (e.g., as used in Ortega
et al., 2013, and Liu et al., 2022) and iterative single-step
methods (e.g., through Newton–Raphson methods, as done
in Van Engelen and Van der Hooft, 2003, and Boukhezzar
and Siguerdidjane, 2011). A linear analysis of the continuous
wind speed estimate solver in continuous time is provided,
in which the stability properties of the linearized solver dy-
namics are derived. Furthermore, the effects of various dis-
cretization methods on the system, especially on the men-
tioned stability properties, are evaluated. The single-step ap-
proach solves the wind speed estimate in a similar way to the
former method without the need for high solver gains, po-
tentially causing stability issues when trying to obtain good
estimation quality without phase lags. Its wind speed estima-
tion quality is determined by the choice of error tolerance
parameters and iteration budget.

The aforementioned options for each of the subcompo-
nents, therefore, allow for several possible combinations in
which the power balance wind speed estimator can be con-
structed, as illustrated in Fig. 3; however, the optimal com-
bination has yet to be found. To this end, in Sects. 4 and 5,
the derivations of the two aerodynamic power estimators and
the wind speed estimate solvers are provided, respectively,
where their performance is also evaluated.

4 Aerodynamic power estimator

As discussed previously, reconstructing aerodynamic power
from available measurements is an essential step in obtaining
an accurate REWS estimate in both steady-state and dynamic
transient conditions. To this end, the most challenging part is
obtaining an accurate estimate of the rotor acceleration ˆ̇ωr,
which is the main concern of this section. Two approaches
are considered herein. First, the numerical-derivative-based
method is examined in Sect. 4.1. Later in Sect. 4.2, the state-
estimation-based technique is discussed. In Sect. 4.3, the nu-
merical comparisons for both methods are evaluated.

4.1 Numerical-derivative-based technique

To obtain an estimate of the rotor acceleration, a numerical
derivative is applied to the measured ωr. In the frequency
domain, this is represented as follows:

ˆ̇�r(s)= Fnd,c(s,τ )�r(s) , (9)

in which �r and ˆ̇�r, with slight abuse of notation for the
latter, are the respective Laplace-transformed variables of ωr
and ˆ̇ωr. The transfer function

Fnd,c(s,τ )=
s

τs+ 1
(10)

in Eq. (9) is the filtered derivative,2 in accordance with the
IEEE 421.5-2016 standard (IEEE, 2016), with a unity deriva-
tive gain. The parameter τ ∈ R≥0 is the time constant of the
numerical derivative.

In its implementation, the numerical derivative (Eq. 10)
is discretized via the backward difference method. Thus, the
discrete-time transfer function of the filter is

Fnd,d(z,τ )=
(

1
τ

)
1− z−1

1+h/τ − z−1 , (11)

where h denotes the sampling time.
As τ is the only tuning parameter for the filter (Eq. 11),

it plays a crucial role. For instance, setting τ = 0 casts Fnd,d
into a pure differentiator. This enables infinite amplification
at high frequencies (including noise), which is propagated
to ˆ̇ωr, which is undesired. Having τ that is too large is also

2That is, a pure differentiator combined with a first-order low-
pass filter.
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unwanted as ˆ̇ωr and the subsequent P̂r may become less ac-
curate despite the better noise resilience. Calibration of τ is,
therefore, a trade-off between having an accurate rotor accel-
eration estimate and good noise suppression. In the following
section, a numerical demonstration of such a trade-off is per-
formed and analyzed.

4.1.1 Time-constant selection: accuracy and noise
propagation

As stated above, the choice of τ may be helpful in suppress-
ing the effects of noisy measurements often encountered in
real-world scenarios. To provide a clearer picture of this as-
pect, Fnd,d is applied to the discrete-time rendition of Eq. (9),
resulting in the filtered and differentiated rotor speed

˜̂
ω̇r(k)=

ω̃r(k)− ω̃r(k− 1)+ τ ˜̂ω̇r(k− 1)
τ +h

, (12)

with

ω̃r(k)= ωr(k)+ vωr (k) (13)

as the noisy rotor speed signal, where vωr ∼ (0,σ 2
vωr

) is an
additive Gaussian white noise with a mean of zero and vari-
ance σ 2

vωr
.

The impact of the noise propagated from ω̃r will affect
the aerodynamic power estimate, as made evident in the fol-
lowing relation, obtained by substituting Eqs. (12)–(13) into
Eq. (8):

P̂r(k)= J ω̃r(k) ˜̂ω̇r(k)+Pg(k)/ηg . (14)

Note that the equation contains a multiplication between ω̃r

and ˜̂ω̇r. This implies that the noise the former contains is
multiplied by the noise it propagated to the latter from the
previous time step. This introduces a biased P̂r that depends
on the noise variance because the product of a noise sequence
with itself, although it has a mean of zero, will give a nonzero
mean.3 A chosen τ may lessen the effects of such noise prop-
agation but may deteriorate P̂r estimation performance and is
a trade-off.

To numerically demonstrate the effect of noisy measure-
ments on Eq. (14), 400 s simulations, sampled at h= 0.02 s,
were run for time constants and noise variances of τ ∈
[0,10−1

] s and σ 2
vωr
∈ [10−6,10−2

] rad2 s−2, respectively. In
addition, the inertia value of the NREL 5 MW is used
(see Table 1) under steady-state operating conditions ωr =

0.8 rads−1 and P g = 1.548 MW, the latter of which is com-
puted using Eq. (5) with C?p = 0.469, λ? = 6.53, and ηg =

0.94. Figure 4 summarizes the statistical results of these sim-
ulations, where µ

P̂r
is the mean of the aerodynamic power

estimate.
3Consider this product to be νωr = v

>
ωrvωr . The mean of νωr is

thus equal to the variance of vωr , namely E[νωr ] = E[v
>
ωrvωr ] =

σ 2
vωr

, where E is the expected value operator (Verhaegen and Ver-
dult, 2007).

Figure 4. The mean of the aerodynamic power estimate µ
P̂r

, nor-
malized with respect to that of a noiseless case. It is shown that with
a high noise variance σ 2

vωr
, the noise propagated by the numerical

derivative from ωr into ˆ̇ωr results in a high bias in P̂r. Nonetheless,
the application of τ lessened the severity of the increased aerody-
namic power estimation bias, shown by lower µ

P̂r
as τ becomes

higher.

It is apparent in the figure that greater noise variance leads
to higher µ

P̂r
, representing added bias in the aerodynamic

power estimate; nevertheless, employing high τ values al-
leviates such deterioration to some extent. Also implied in
this observation is that using τ = 0 s (i.e., using a pure dif-
ferentiator) is not desirable, especially in highly noisy envi-
ronments, as this would lead to an infinite amplification of
high-frequency components. In conclusion, attention needs
to be paid to noisy ωr conditions as the resulting biased P̂r
may undermine the REWS estimation in the end.

4.2 State-estimation-based technique

Besides the aforementioned numerical derivative technique
used to obtain ˆ̇ωr and thus P̂r, state-estimation-based meth-
ods can also be employed. Obtaining P̂r via state estimation
can be more beneficial compared to the numerical derivative
technique in terms of having the freedom to trade-off sen-
sitivity to noisy measurements with responsiveness through
estimation gain tuning; however, it might be more challeng-
ing in its implementation and calibration.

Despite the adopted power balance wind speed estimation
framework, the state estimator employed in this section uti-
lizes an internal model based on the torque balance variant
of Eq. (2). Retaining the power variables in Eq. (2) would
lead to the internal estimator dynamics being nonlinear such
that it becomes necessary to obtain the Jacobians of the sys-
tem – adding complexities to the observer design. Therefore,
to provide an aerodynamic power estimate, a reformulation
is performed to obtain a torque-based estimator. To this end,
the internal model is described as the following dynamics:

ω̇r(t)=
Tr(t)−GTg(t)

J
, (15)

where G ∈ R+ is the gearbox ratio of the drivetrain, Tr =

Pr/ωr is the aerodynamic torque, and Tg = Pg/(ηgωrG) is
the generator torque.
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The dynamics (Eq. 15) are then recast into the following
discrete state-space form by employing forward Euler dis-
cretization:

xs(k+ 1)= Asxs(k)+Bs,uus(k)+Bs,dds(k)+wωr (k) ,

ys(k)= Csxs(k)+ vωr (k) , (16)

with

xs = ωr,us = Tg,ds = Tr, and ys = ωr

as the state, input, disturbance, and output, respectively, and
the state-space matrices

As = 1,Bs,u =−hJ
−1G,Bs,d = hJ

−1, and Cs = 1,

where {xs,us,ds,ys} ∈ R and {As,Bs,u,Bs,d,Cs} ∈ R. Also
included in Eq. (16) are the process noise wωr ∼ (0,σ 2

wωr
)

with variance σ 2
wωr

and measurement noise vωr ∼ (0,σ 2
vωr

)
with variance σ 2

vωr
, both assumed to be uncorrelated zero-

mean Gaussian white noise. The aerodynamic torque is con-
sidered to be an unknown input and, therefore, a subject
of the estimation. Thus, it is recast as a random-walk pro-
cess (Verhaegen and Verdult, 2007) as follows:

Tr(k+ 1)= Tr(k)+wTr (k) , (17)

where wTr ∼ (0,σ 2
wTr

) is a zero-mean Gaussian white noise
sequence with variance σ 2

wTr
, uncorrelated to wωr and vωr .

One advantage of treating Tr as a random-walk process is in
the ease of design as no a priori information, such as aero-
dynamic torque coefficient, is needed. In particular, the Jaco-
bian of this term is not necessary given that it is a nonlinear
function of v and ωr.

The general state-space expression for the state estimator
– as depicted in Fig. 5, augmenting Eq. (17) to Eq. (16) and
also including feedback from the measured system output
y = ωr – is written as follows:[
x̂s(k+ 1)
T̂r(k+ 1)

]
︸ ︷︷ ︸

x̂s,aug(k+1)

=

[
As Bs,d
0 1

]
︸ ︷︷ ︸

As,aug

[
x̂s(k)
T̂r(k)

]
︸ ︷︷ ︸
x̂s,aug(k)

+

[
Bs,u

0

]
︸ ︷︷ ︸

Bs,aug

Tg(k)

+

[
wωr (k)
wTr (k)

]
︸ ︷︷ ︸

ws,aug(k)

+L(y(k)− ŷs(k)) ,

ŷs(k)=
[
Cs 0

]︸ ︷︷ ︸
Cs,aug

[
x̂s(k)
T̂r(k)

]
︸ ︷︷ ︸
x̂s,aug(k)

+ vωr (k) , (18)

with L= [L1,L2]
> as the observer gain vector. This gain

can be determined by either a pole placement (Luenberger
approach) or a Kalman design, the latter of which is able
to provide minimum-variance unbiased state estimation by
solving an algebraic Riccati equation involving the noise

Figure 5. Internal structure of the state-estimation-based aerody-
namic power estimator. Note that the aerodynamic power estimate
P̂r is the product of the rotor speed estimate ω̂r and aerodynamic
torque estimate T̂r. See Remark 4 for more details.

covariance matrices. However, because the former provides
more freedom to define the pole locations of the state estima-
tor according to one’s own optimal performance criterion, in
this study, L is determined by pole placement.

– Remark 4. Similar to the numerical-derivative-based
method, the state estimation scheme above can provide
the aerodynamic power estimate by making use of the
relation P̂r = J ω̂r ˆ̇ωr+Pg/ηg. However, as in the state-
estimation-based scheme considered in this section, the
quantities ω̂r and T̂r are accessible directly from the aug-
mented state vector x̂s,aug such that the aerodynamic
power estimate can be computed straightforwardly via
P̂r = ω̂rT̂r. Thus, this approach is considered for the re-
mainder of this study.

In the aforementioned Luenberger approach, L needs to
be designed such that As,aug−LCs,aug has stable eigenvalues.
Such a condition guarantees the convergence of y−ŷs to zero
given observable (As,aug,Cs,aug). Evaluating this condition
confirms that it is satisfied for hJ−1

6= 0, which is always
the case in practical scenarios.

With regard to the estimator’s performance, having a
closer look into the characteristic polynomial of As,aug−

LCs,aug may yield some new insights, e.g., how the design
can be applied for different wind turbine power ratings. Fur-
thermore, it is also somewhat known that the power rating
of a wind turbine is associated with its dimension and, thus,
inertial properties (Rodriguez et al., 2007), which, in this
particular case, is the most influential as h,G� J . This in-
dicates that a selected L suitable for a wind turbine might
give a different performance when applied to another turbine
with a different power rating. Therefore, it is crucial to find a
gain-tailoring guideline so that identical state estimator per-
formance among different power ratings or inertia values can
be found.

The aforementioned considerations are addressed in the
following sections: Sect. 4.2.1 provides the investigation into
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the characteristic polynomial of the estimator. A numerical
demonstration is presented in Sect. 4.2.2 to compare the per-
formance of the estimator with and without such a guideline.

4.2.1 State estimator characteristic polynomial

This section covers the analysis of the characteristic polyno-
mial for the state-estimation-based aerodynamic power esti-
mator laid out in the previous section. Investigation into such
a characteristic polynomial informs one about how, for in-
stance, the choice of estimator gain influences the natural
frequency and damping of the estimator. The characteristic
polynomial is derived as follows:

det(zI −As,aug+LCs,aug)= z2
+p1z+p2 = 0 , (19)

in which the roots of the polynomial coefficients are param-
eterized as

p1 = 2(hω0ζ0− 1)= L1− 2 , (20a)

p2 = 1− 2hζ0ω0+h
2ω2

0 = 1−L1+
h

J
L2 , (20b)

where ω0 and ζ0 are the respective natural frequency and
damping ratio of the continuous-time characteristic equa-
tion4, which by further manipulation of Eq. (20) leads to

ω0 =

√
L2

hJ
, (21a)

ζ0 =
L1

2hω0
. (21b)

It is directly evident from the above equations that to main-
tain constant ω0 and ζ0 for a range of different turbines, the
ratio L2/J needs to be kept constant under the assumption
that L1 and h are equal for all turbines. Furthermore, it is
more insightful to express L1 and L2 in terms of ω0 and ζ0
by rearranging Eq. (21) as follows:

L1 = 2hζ0ω0 , (22a)

L2 = hJω
2
0 . (22b)

The relation above allows one to determine both gains based
on specifiedω0 and ζ0, but most importantly, it becomes clear
thatL2 needs to be tailored based on the turbine inertia, espe-
cially if one wants to apply the estimator to different turbine
sizes and power ratings, as discussed in the previous section.
In the following section, how this gain is tailored to a range
of wind turbine inertias is discussed, and a numerical demon-
stration is also provided.

4.2.2 Constant- and tailored-estimator-gain comparison

To numerically demonstrate the performance difference be-
tween constant and tailored L2 over the considered range

4That is, s2
+ 2ζ0ω0s+ω

2
0 = 0. Applying forward Euler dis-

cretization to this equation gives Eq. (19).

of turbines, 800 s simulations (sampled at h= 0.02 s) are
performed with a turbulent wind with a mean speed Uh =

7.5 ms−1 and an intensity IT = 4 %. The drivetrain dynamics
(Eq. 2) in the closed-loop system with the controller (Eq. 5)
are incorporated to represent the wind turbine. A total of 10
wind turbines within the Pg,rated ∈ [5,25]MW range are con-
sidered, and the inverse of Eq. (1b) is used to obtainR =D/2
from the specified Pg,rated, e.g., to compute TSR and the op-
timal mode gain K .

Their estimator gains are subsequently obtained using
Eq. (22), in which ω0 = 25 rads−1 and ζ0 = 1 are chosen
and, as shown later, result in satisfactory estimator perfor-
mance. The J values derived from Eq. (1c) for the selected
Pg,rated range are subsequently substituted to Eq. (22b) to ad-
just L2 values5. For the constant-gain case, L2 computed for
Pg,rated = 5 MW is considered for all turbines. No noise is
assumed for ωr measurements for the sake of simplicity in
this demonstration; nevertheless, similar conclusions can be
derived under noisy measurements.

Figure 6 summarizes the key statistical results of the sim-
ulations, being the absolute means (|µ(•)|) and standard de-
viations (σ(•)) of the rotor speed, aerodynamic torque, and
aerodynamic power estimation errors, ωr− ω̂r, Tr− T̂r, and
Pr− P̂r, respectively. In general, it is observed from the fig-
ure that, compared with the tailored-gain case, the use of
constant gain deteriorates the absolute means and standard
deviations as the power rating increases. However, an excep-
tion applies for σ

Tr−T̂r
and σ

Pr−P̂r
, where similar results are

depicted for both cases.
The observation from the above demonstration motivates

the need to set a new standard, i.e., by employing L2 tai-
loring based on the power rating and consequent drivetrain
inertia of the considered turbines, which provides a conve-
nient means to calibrate state-estimation-based aerodynamic
power estimation. As shown later, such a gain tailoring – and
more importantly, the state-estimation-based aerodynamic
power estimator – leads to faster (less phase lag) and more
noise-resilient wind speed estimation.

4.3 Aerodynamic power estimation technique
comparison

With the numerical derivative and state estimation ap-
proaches to estimating aerodynamic power presented in the
previous sections, this section is now dedicated to comparing
both methods. To this end, simulations with the same tur-
bulent wind setting as in Sect. 4.2.2 are run, where a wind
turbine of Pg,rated = 15 MW, representing a “mid-sized” tur-
bine in the considered turbine range, is utilized. In addition,
noisy rotor speed measurements are assumed, with σ 2

vωr
=

10−6 rad2 s−2.
Two strategies for obtaining P̂r are compared:

5Alternatively, one may also use the previously obtained D fol-
lowed by a substitution to Eq. (1a).
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Figure 6. Statistical assessment results of the constant (blue) and
tailored (green) Luenberger estimator’s L2 gain based on the power
rating (and inertia) of the turbines. Absolute errors of the rotor
speed, aerodynamic torque, and aerodynamic power estimates (a,
c, e) of the constant-L2 strategy tend to be much higher than those
of the tailored gain. Significant difference in the standard deviations
of these errors (b, d, f) is only shown for the rotor speed estimation,
whereas those of the aerodynamic torque and power are compara-
ble. These results imply that appropriate gain adjustment based on
the power rating of the corresponding turbine is imperative.

1. The first strategy is to use the filtered derivative Fnd,d
introduced in Sect. 4.1 to obtain ˆ̇ωr, followed by its
substitution to Eq. (8), including ωr and Pg measure-
ments with known J according to Assumption 3. A time
constant of τ = 0.5 s is selected as it is considered a
good trade-off between noise correlation, quality of the
derivative, and noise amplification limitation.

2. The second strategy is to directly retrieve P̂r through
the state estimation method explained in Sect. 4.2 by
multiplying ω̂r and T̂r (see Remark 4). The gain L is
computed by settingω0 = 25 rads−1 and ζ0 = 1, as used
in the previous section.

Figure 7 depicts the time series results of the simulation,
where, for clarity, the results are only chosen for the times-
tamp t = 200–250 s. In the figure, the actual aerodynamic
power as a ground truth is indicated by the gray line. It can
be seen that the aerodynamic power estimation result for the
state-estimation-based method outperforms that of the nu-
merical derivative method in terms of less noise propagation
and phase lag.

Note that, for the latter, increasing τ will result in less
noise but increasing phase lag (Østergaard et al., 2007) as
this will diminish and deteriorate the Jωrω̇r estimate such

Figure 7. Comparison of aerodynamic power estimation methods.
It is shown that the estimate obtained via the state-estimation-based
technique (red line) has much less noise compared with that of the
numerical derivative technique (blue line) while still maintaining
high estimation accuracy. Also depicted is the aerodynamic power
estimate determined using only the generated power (green line),
which shows the worst-case phase lag with respect to the other
methods, demonstrating the loss of information if rotor acceleration
information is absent.

that P̂r ≈ Pg/ηg (i.e., information will be lost). The case
where Jωrω̇r = 0 such that P̂r = Pg/ηg is demonstrated by
the green line, which evidently shows a phase lag with re-
spect to cases where the information of Jωrω̇r is made avail-
able. It is concluded, therefore, that for the power balance
REWS estimation scheme, the state-estimation-based aero-
dynamic power estimator is to be used for the remainder of
this paper. Note that the performance of the state estimation
method can be improved by further tuning ω0 and ζ0.

5 Wind speed estimate solver

Having a good estimate of the aerodynamic power is cru-
cial for the second component of the overall power bal-
ance wind speed estimation scheme, which solves the effec-
tive wind speed estimate (see Fig. 2). Alluded to earlier in
Sect. 3.3 and shown in Fig. 3, the two manners in which
such a solver can be designed are detailed in the following
sections. Section 5.1 discusses the continuous solver, where
the linear state-space derivation of the solver is done, fol-
lowed by frequency-domain analysis. Then, the stability of
the solver in the discrete-time domain is discussed. Later, in
Sect. 5.2, the iterative single-step algorithm is proposed as a
promising alternative to the former.

5.1 Continuous solver

This section presents an analysis of the continuous manner of
solving the wind speed estimate, given that the aerodynamic
power estimate and rotor speed measurements are provided.
Figure 8 depicts the internal structure of this continuous wind
speed estimate solver, which is elaborated upon in the follow-
ing.

As laid out in Sect. 3.2, asymptotically minimizing the es-
timation error term ep returns the wind speed estimate Û ,
which converges to the actual wind speed over time as per
the definition in Eq. (6). Such an integration operation en-
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Figure 8. Internal structure of the continuous wind speed estimate
solver.

ables the wind speed estimate solver to be written as the fol-
lowing state transition equation:

˙̂
U (t)=−KUep(t) , (23)

with the integrator gain

KU =
κ

Pg,rated
(24)

determining the convergence rate. The notation κ ∈ R+ is a
constant, and the rated generator power Pg,rated ∈ R+ is used
to convert ep from wattage into the per-unit (p.u.) system.

As ep has a nonlinear analytic definition (Eq. 7), the wind
speed estimate solver in the continuous time is represented
by the following nonlinear dynamics:

S :
{
ẋ(t)= f (x(t),u(t)) ,

y(t)= g(x(t)) ,

with

x = Û,u=
[
P̂r, ω̂r

]>
, and y = Û

as its state, input, and output vectors, respectively.
To proceed with the linear analysis, the first-order Taylor

expansion of S is derived, resulting in the following linear
state-space system:

ẋ(t)= Ax(t)+Bu(t) ,

y(t)= Cx(t) , (25)

with the state, input, and output matrices defined respectively
by the following Jacobians:

A=
∂f

∂x

∣∣∣∣
(x,u,y)

=−
KU

2
ρArÛ

2
(

3Cp

(
λ̂
)
− λ̂

∂Cp

∂λ̂

)
,

B =
∂f

∂u

∣∣∣∣
(x,u,y)

=−KU

[
1 −

1
2
ρArRÛ

2 ∂Cp

∂λ̂

]
,

C =
∂g

∂x

∣∣∣∣
(x,u,y)

= 1 . (26)

Given the linearized dynamics above, it becomes com-
pelling to examine the stability properties of the linear sys-
tem. To this end, the next subsections provide frequency-
domain stability and discretization-method analysis utilizing
the above-derived linear system.

5.1.1 Frequency-domain stability analysis

In the previous section, the nonlinear dynamics of the con-
tinuous solver have been described, followed by their linear
state-space rendition. Here, the stability of the solver is as-
sessed via pole location investigation. Solving for G(s)=
Y (s)/U (s)= C(s−A)−1B, one obtains the multiple-input
single-output transfer matrix formulation of the state-space
(Eq. 25) as follows:

G(s)=
N

D(s)
. (27)

The notations N = B and D(s) are the respective numera-
tors and denominator of the transfer functions above, with
the former being a constant-gain vector, hence the indepen-
dence from s. The latter is of interest, especially with regard
to stability analysis.

The denominator of the transfer functions is

D(s)= s+
KU

2
ρArÛ

2
(

3Cp

(
λ̂
)
− λ̂

∂Cp

∂λ̂

)
︸ ︷︷ ︸

p

, (28)

which, in order to guarantee stability, the left-half plane pole
location p < 0 must be satisfied such that

p =−
KU

2
ρArÛ

2

︸ ︷︷ ︸
pc

3Cp

(
λ̂
)

︸ ︷︷ ︸
pa

− λ̂
∂Cp

∂λ̂︸ ︷︷ ︸
pb

< 0 , (29)

with pc > 0. The inequality (Eq. 29) requires pa−pb > 0 to
hold to ensure the pole stays within the left-half plane. This
condition, which can be rewritten as

pa > pb⇔
3

λ̂
Cp

(
λ̂
)
>
∂Cp

∂λ̂
, (30)

is a well-known condition for global asymptotic stability in
(improved) immersion and invariance wind speed estimator
studies, e.g., Ortega et al. (2013) and Liu et al. (2022).

With the stability expression of Eq. (29) (or Eq. 30) at
hand, a stability map under different operating conditions is
made. For this purpose, the Cp table of the NREL 5 MW is
taken. Figure 9 depicts the resulting stability region of the
continuous wind speed estimate solver. The stable region is
shown in green, whereas the unstable region is in blue. The
left subfigure illustrates how the Cp contour is divided based
on whether Eq. (29) (or Eq. 30) is satisfied. The blue dot
shows the location of C?p , corresponding to the fine pitch β?
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Figure 9. Stability region of the continuous wind speed estimate
solver in the continuous time G(s), where the condition p < 0 in
Eq. (29) is satisfied (indicated in green, otherwise in blue). The
left subfigure shows the different Cp levels for the NREL 5 MW
turbine (solid white lines), with C?p indicated by the blue dot. The
right subfigure shows the mapping of the stability region in terms
of wind speed U and rotor speed ωr for the fine pitch angle β?. The
solid blue line is the partial-load regime, where the Kω3

r controller
is active. Also shown for completeness are the dashed black lines,
indicating the lower and upper bounds for the rotor speed, as well
as cut-in and rated wind speeds.

(horizontal dashed line) and design TSR λ? (vertical dashed
line). The operating conditions at the β? line are mapped on
the right subfigure, resulting in a stability region representa-
tion in terms of U and ωr. The solid blue line represents the
λ? or Kω3

r line, where maximum power extraction occurs.
As can be seen, the continuous wind speed estimate solver is
stable for a large part of the turbine operational domain and,
more importantly, along the optimal Kω3

r line where the tur-
bine operates in partial load in steady state.

However, as far as practicality is concerned, the effects
of discrete-time implementations should extend the above
continuous-time analysis. A discretization method, for in-
stance, might not preserve the stability properties obtained
in the continuous-time domain (Åström and Wittenmark,
2011). Moreover, different estimator gain κ values influence
the stability region. These aspects are the main concerns in
the next section.

5.1.2 Solver discretization and instability

In this section, the stability of the continuous wind speed es-
timate solver (Eq. 27) in the discrete time is discussed. The
three most common discretization methods are considered to
be the following (Åström and Wittenmark, 2011):

1. the forward Euler (FE) method, with the following s- to
z-domain transformation,

s′FE =
z− 1
h
; (31)

2. the backward difference (BD) method, with the follow-
ing transformation,

s′BD =
z− 1
zh
; (32)

3. the Tustin (TU) method, with

s′TU =
2
h

z− 1
z+ 1

(33)

as the corresponding s- to z-domain transformation.

Substituting any of the above discretization methods into
G(s) results in the following general discrete-time approxi-
mation representation:

G(s = s′)=H (z)=
P (z)
Q(z)

, (34)

with P (z) denoting the numerators andQ(z) the denominator
of the discrete-time transfer function H (z).

Similar to its continuous-time counterpart, discrete-time
stability analysis only focuses on the poles of the system,
i.e., whether they are within the unit disk, such that in the
following study, onlyQ(z) is of interest (Åström and Witten-
mark, 2011). Explicit representations of H (z), obtained by
the discretization methods in Eqs. (31)–(33), are, therefore,
provided below, and their corresponding stability condition
derivation follows:

1. Using s = s′FE for the FE method, G(s) becomes

H FE(z)=
Nh

z+KU,h
1
2ρArÛ

2
(pa −pb)− 1

, (35)

with KU,h = hKU (or, similarly, KU,h = hκ/Pg,rated).
From Eq. (35), the following inequality must hold for
stability to hold:∣∣∣∣1−KU,h

1
2
ρArÛ

2
(pa −pb)

∣∣∣∣< 1 . (36)

2. For the BD method, s = s′BD is used, and the following
discrete transfer function is obtained:

HBD(z)=
(Nh)z(

1+KU,h
1
2ρArÛ

2
(pa −pb)

)
z− 1

, (37)

with the following condition for stability:∣∣∣∣∣∣ 1

1+KU,h
1
2ρArÛ

2
(pa −pb)

∣∣∣∣∣∣< 1 . (38)

3. Under the TU discretization, s = s′TU casts G(s) into

HTU(z)=
Nh
2 (z+ 1)

z+KU,h
1
4ρArÛ

2
(pa −pb)(z+ 1)− 1

, (39)
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the stability of which is determined by the following in-
equality:∣∣∣∣∣∣1−KU,h

1
4ρArÛ

2
(pa −pb)

1+KU,h
1
4ρArÛ

2
(pa −pb)

∣∣∣∣∣∣< 1 . (40)

Note that the stability properties may now be influenced by
the choice of sampling time h and gain κ (as Pg,rated is con-
stant). Nevertheless, to better illustrate whether alterations in
the stability region occur after discretization takes place, the
stability conditions in Eqs. (36), (38), and (40) are plotted in a
similar manner to Fig. 9, as explained in the following. Also
considered are the following two arbitrary operating points
(OPs) along the Kω3

r line for a low and high partial-load
wind speed:

OP 1:

x = y = Û = 4.5m/s ,

u=
[
P̂ r,ωr

]>
= [3.263× 105 W,0.469 rads−1

]
>

and

OP 2:

x = y = Û = 10.5ms−1 ,

u=
[
P̂ r,ωr

]>
= [4.145× 106 W,1.094 rads−1

]
> ,

respectively, computed using the NREL 5 MW properties.
First, the stability region for the FE method, with h=

1/50 s constant for all evaluations, is examined. Figure 10 de-
picts the resulting stability assessment, which illustrates the
deterioration of the stability region of the FE method as κ in-
creases, affecting the partial-load operations (solid blue line),
e.g., OP 2 (red dot). Although not shown in the figure, even
higher κ may affect low-wind-speed operations. This obser-
vation, therefore, concludes that one’s choice of discretiza-
tion method results in a performance limitation of the wind
speed estimate solver in terms of an existing “upper bound”
for the magnitude of κ . Nevertheless, a compromise can be
made to improve the stability of the FE method by increas-
ing sampling frequency (i.e., lowering h) proportional to the
increase in κ to maintain constant KU,h. However, increas-
ing the sampling frequency does not eliminate the presence
of a κ “upper bound”; moreover, the extent to which such a
frequency can be increased is practically limited as a result,
e.g., hardware capabilities. Therefore, a more feasible solu-
tion is to adopt different discretization methods while leaving
the sampling frequency unchanged.

Figure 11 makes it clear that the BD method, in contrast to
the FE method, does not result in the change of the stability
characteristics of the continuous system when converted into
the discrete system for the considered κ values. Remarkably,
if κ is further increased, the pole of the discrete-time system
HBD(z) moves even farther away from the edge of the unit
circle (as implied in Eq. 38, theoretically leading to increased
stability for increasing gains).

Figure 10. Unstable region’s (blue area) growth in HFE(z) with
increasing κ = {200,300,400,500} using h= 1/50 s of sampling
time and the forward Euler discretization method.

Figure 11. Stability region of HBD(z) with increasing κ =

{200,300,400,500} using h= 1/50 s of sampling time and the
backward difference (BD) discretization method. An identical
graphical evaluation is obtained for the Tustin-discretized system
HTU(z) for the selected gains.

Similar to the BD method, the TU method gain increase
will lead to the discrete-time pole moving closer to the ori-
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gin, but under the same gain, the pole in the TU method
will be closer to the origin than in the BD method. This is
because with the TU method, higher gains simultaneously
lower the numerator and increase the denominator of the dis-
crete pole, as can be implied from Eq. (40). Regardless, for
the considered κ , the stability region of the TU-discretized
system HTU(z) is identical to that of G(s). It is therefore
worth noting that although Fig. 11 shows the stability char-
acteristics of HBD(z) for the given gains, those of HTU(z)
would give identical representations; therefore, no dedicated
figure is provided for the latter for brevity.

To summarize, the BD and TU methods are the pre-
ferred discretization techniques for discrete-time implemen-
tations of the continuous wind speed estimate solver in that
the stability condition from the continuous-time system is
preserved. Given present-day computational resources and
readily available discretization methods in popular software
packages, the selection for each of the methods is incon-
sequential from an implementation perspective. Therefore,
later in Sect. 5.3, a time series numerical comparison is per-
formed to determine the most suitable approach, also includ-
ing the iterative single-step solver explained in the next sec-
tion.

5.2 Iterative single-step solver

Besides the continuous wind speed estimate solver in the pre-
vious section, iterative numerical methods can also be em-
ployed to solve for the wind speed estimate. A well-known
iterative method for this purpose is the Newton–Raphson
method, as used in the work of Van Engelen and Van der
Hooft (2003) and Boukhezzar and Siguerdidjane (2011).
This iterative algorithm finds the roots of a function given an
initial guess and makes use of the gradient of the function.
The reliance on such a gradient, however, adds an additional
layer of complexity in this case in that an extra look-up ta-
ble other than that for the Cp table is needed. Moreover, the
use of this extra look-up table would increase the computa-
tional burden per iteration within the algorithm. Fortunately,
the definition of wind speed estimate, being an integration of
the estimation error ep over time multiplied by a gain KU,
can be straightforwardly adopted in an iterative manner in
such a way that Û can be obtained in a single time step. Al-
gorithm 1 describes the proposed iterative single-step wind
speed estimate solving method.

First, the iterative single-step algorithm computes the TSR
estimate based on ω̂r(k), available through the aerodynamic
power estimator in Sect. 4, and wind speed estimate Ui at the
ith iteration, namely λi . Having λi , theUi-dependent aerody-
namic power estimate can then be computed, which is used to
obtain the aerodynamic power error along with P̂r(k), avail-
able from the aerodynamic power estimator. Normalized by
Pg,rated, this error (denoted ep,norm,i) is then used to update
the i+ 1th wind speed estimate Ui+1. These steps are then
repeated until the relative wind speed estimate error or the

Algorithm 1 Iterative single-step method for solving wind
speed estimate.

Require: P̂r(k), ω̂r(k), Û (k− 1), imax, εU, εp
Ensure: U ≈ Û (k)
1: i← 1
2: Ui← Û (k− 1)
3: repeat
4: λi←

ω̂r(k)R
Ui

5: ep,norm,i←
P̂r(k)− 1

2ρACp(λi )U3
i

Pg,rated
6: Ui+1← Ui + ep,norm,i
7: Uold← Ui
8: i← i+ 1
9: until (i ≥ imax) or

(∣∣∣ (Ui−Uold)
Ui

∣∣∣≤ εU) or
(∣∣ep,norm,i

∣∣≤ εp)
10: Û (k)← Ui
11: return Û (k)

absolute normalized aerodynamic power error falls within
the tolerance bound εU ∈ R+ or εp ∈ R+, respectively. Oth-
erwise, the algorithm stops until the maximum allowed iter-
ation imax ∈ Z+ is reached. Finally, the algorithm outputs the
wind speed estimate Û (k)= Ui from the last iteration. Note
that, compared to the continuous wind speed estimate solver,
the iterative method here employs κ = 1. Later, it is shown
that setting such a unity gain is sufficient to achieve fast con-
vergence.

5.3 Wind speed estimate solver comparisons

With the continuous and iterative single-step solvers ex-
plained in the previous sections, this section now compares
both methods numerically. The optimal wind speed esti-
mate solver is then picked and combined with the state-
estimation-based aerodynamic power estimator, as discussed
in Sect. 4.2. To this end, the same simulation setup as in
Sect. 4.3 is considered.

First, the performance of the different continuous wind
speed estimate solvers, discretized under the FE, BD, and
TU methods, is compared. The estimator gain is chosen to
be κ = 400, which is a stable gain, especially for the FE
discretization at the considered operating condition (Uh =

7.5 ms−1, under IT = 4 %). Figure 12 shows the simulation
results, which is focused on the t = 210−230 s timestamp for
clarity. As shown in the figure, the BD- and TU-discretized
wind speed estimate solvers show identical estimation per-
formance, which is not the case in their FE-discretized coun-
terpart. The unstable-like oscillations occurring in the begin-
ning, middle, and end of the sequence of interest of the FE
method likely result from nonlinearity effects in combination
with frequency folding or aliasing (Åström and Wittenmark,
2011).

Figure 13 depicts the time series comparison between the
BD-discretized continuous solver and the iterative method.
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Figure 12. Actual wind speed U and wind speed estimates of the
continuous wind speed estimate solver under different discretization
methods Û(•). The FE-discretized solver occasionally shows high-
frequency oscillatory behavior, potentially due to combined nonlin-
earity and aliasing effects, which is not the case for that of the BD
and TU methods for the chosen estimator gain κ = 400.

Figure 13. Actual wind speed U and wind speed estimates of the
continuous and iterative single-step wind speed estimate solvers,
the former of which is discretized with the BD method. Identical
responses indicate that the accuracy of the wind speed estimate
solvers depends, to a large extent, on the aerodynamic power (and
rotor speed) estimation quality.

With the same tuning parameters as the previous simula-
tion for the former, the latter is configured with imax = 5 and
εU = εp = 0.01, which are a good trade-off between accu-
racy and speed of the estimation. As evidently shown, both
solvers demonstrate similar performance and accuracy for
the presented case. However, in different scenarios, such as
more noisy aerodynamic power and rotor speed estimates,
both solvers may show disparities.

Noisy inputs would require the integrator gain of the con-
tinuous solver to be lowered such that high-frequency com-
ponents in the input signals are attenuated but potentially re-
sult in lagged estimates. For the iterative solver, noisy inputs
would increase the computational cost in terms of the higher
number of iterations to converge to a solution.

Fortunately, as the roles of the aerodynamic power estima-
tion (with a bonus of rotor speed filtering) and wind speed
estimate solving are decoupled in this study, the task to en-
sure a low-noise and accurate wind speed estimate mostly re-
lies upon the tuning of the former subcomponent. This way,
few iterations and strict error tolerances of the iterative algo-
rithm can be maintained. Such a condition also benefits the
wind speed estimate of the continuous solver; however, as
it requires a high gain to maintain good estimation quality,
it is still prone to having the above-mentioned sampled-time
system artifacts.

Hence, for the final and optimal design of the power bal-
ance wind speed estimation in this work, the combination of
the state-estimation-based aerodynamic power estimator and
iterative single-step wind speed solver is chosen and evalu-
ated next in mid-fidelity simulations.

6 Mid-fidelity simulation setup and results

With the power balance wind speed estimation design final-
ized, this section covers the mid-fidelity validation of the pro-
posed algorithm. The details of the simulation setup are cov-
ered in Sect. 6.1, and the validation results are discussed in
Sect. 6.2. All code and data used to implement and validate
the proposed wind speed estimation framework are openly
available via Zenodo (Pamososuryo et al., 2024).

6.1 Simulation setup

The simulation setup for the mid-fidelity wind speed estima-
tor validation in this work uses the open-source simulation
code OpenFAST v3.5.3 (Jonkman et al., 2024), the develop-
ment of which is led by the National Renewable Energy Lab-
oratory (NREL). OpenFAST couples several nonlinear aero-
hydro-servo-elastic computational modules by which real-
istic and complex wind turbine dynamic responses can be
simulated with high accuracy. For the validation purposes
of this work, the AeroDyn, ServoDyn, ElastoDyn, and In-
flowWind modules of OpenFAST are used. The BeamDyn
module, capable of simulating blade structural dynamics, in-
cluding blade torsion and bend-twist coupling, is not consid-
ered in this work; otherwise, higher-dimensional coefficient
tables would have been necessary, as discussed in Lazzerini
et al. (2024) (see also Remark 1). Future work will include
the BeamDyn module, where higher-dimensional coefficient
tables are required for validations.

Concerning the degrees of freedom (DOFs) of the simu-
lated wind turbines, the following are activated:

– the generator

– the drivetrain rotational flexibility

– the first and second flapwise blade modes

– the first edgewise blade mode

– the first and second fore–aft tower modes

– the first and second side–side tower modes.

Note that the drivetrain rotational-flexibility DOF is turned
off when a direct-drive wind turbine is simulated.

Two wind turbines representing the respective low- and
high-power ratings are simulated, namely the NREL 5 MW
and the IEA 22 MW turbines, as introduced in Sect. 2.2.
In contrast to using the same Cp tables as in the previous
analysis sections, using the reference wind turbine models
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in OpenFAST leads to simulating the aerodynamic proper-
ties of the respective turbines. The generator efficiency fac-
tors for both turbines are ηg = 0.94 for the NREL 5 MW and
ηg = 0.954 for the IEA 22 MW.

With regard to the wind profile, Kaimal turbulent wind
cases are considered for both turbines, with Uh = 7.5 ms−1

and IT = {4,12}%, generated using TurbSim (Jonkman,
2014), and used as input for the aforementioned InflowWind
module. The simulations are run for 1060 s, in which the first
60 s is excluded to remove computational transients from the
evaluation.

The power balance wind speed estimator employs the
state-estimation-based method for the aerodynamic power
estimation (Sect. 4), with its gain L computed using ω0 =

5.75 rads−1 and ζ0 = 4.5. Note that, compared to the initial
low-fidelity simulations in Sect. 4.2.2, the lower frequencies
and higher dampings of the estimator are chosen and con-
sidered to be a good compromise between noise filtering and
good performance in the mid-fidelity settings. Better perfor-
mance might be attained by the incorporation of more sys-
tematic tuning methods that are able to find the optimal gain
via cost minimization (e.g., mean and variance of the wind
speed estimate error), such as Bayesian optimization (Mul-
ders et al., 2020) or genetic algorithms (Lara et al., 2024).
With regard to the measurement noise, that of the rotor speed
vωr is assumed to have a variance of σ 2

vωr
= 10−5 rad2 s−2,

i.e., 1 order of magnitude higher than that used in the low-
fidelity simulations in Sect. 4.3.

Constant- and tailored-gain settings are considered, the
first one being computed using the LSS-equivalent inertia
of the NREL 5 MW for both turbines, similar to what was
done in Sect. 4.2.2, whereas the second one is tailored on the
actual LSS-equivalent inertia of the simulated turbines (see
Table 1). For the two turbines considered in this section, the
chosen ω0 and ζ0 result in stable aerodynamic power estima-
tors for both the constant- and the tailored-gain cases.

For the iterative single-step wind speed estimate solver,
imax = 10 and εU = εp = 0.005 are considered. Despite the
tighter convergence bounds compared to the low-fidelity sim-
ulations in Sect. 5.2, the wind speed estimate in the simula-
tions of this section only requires one iteration on average to
solve.

The proposed method is also compared with an exist-
ing wind speed estimator, namely the Immersion and In-
variance (I&I) REWS estimator, based on the work of Liu
et al. (2022), a brief derivation of which is provided in Ap-
pendix A. This estimator is based on torque balance driv-
etrain dynamics, in which the internal model estimates the
rotor speed and aims to minimize its difference from the ac-
tual measurements. Resultingly, the error compensation by a
proportional-integral (PI) structure gives the wind speed esti-
mate of this scheme. For both turbines in the low-turbulence
scenario, the I&I estimator gains are Kp = 15 m and Ki =

3.5 ms−1, whereas for the high-turbulence case, the gains are
retuned to be Kp = 25 m and Ki = 5 ms−1 to match the per-

Figure 14. Wind speed estimation time series for the NREL 5 MW
wind turbine. The proposed method (green line) gives a smooth,
less noisy estimate compared to the I&I (red line) for low- (a, b)
and high-turbulent (c, d) cases. The low-frequency component of
the wind speed is captured where biased estimation occasionally
occurs, potentially due to an inaccurate Cp table utilized in both
estimators and an absence of dynamic inflow modeling in the esti-
mators. The actual REWS, as outputted by OpenFAST, is shown by
the blue line. Zoomed-in plots of 25 s time spans are provided on
the right for clearer observation of the estimation performance.

formance of the proposed method. Note that there have not
been any studies yet in systematic tuning across a range of
turbine sizes for the I&I approach, to the best of the authors’
knowledge. Thus, the above PI gains are tuned heuristically
and equally for the NREL 5 MW and IEA 22 MW. The next
section covers the results from the OpenFAST simulations
for the aforementioned settings.

6.2 Results

The time series performance evaluation of the power bal-
ance wind speed estimator is provided in this section for
the considered reference turbines, the NREL 5 MW and IEA
22 MW. The statistical assessments of the numerical simula-
tion results are provided at the end of this section.

Figure 14 depicts the time series results of the wind speed
estimation for the NREL 5 MW. For both turbulent cases, it is
shown that both methods are able to capture the slowly vary-
ing component of the actual wind speed well, with the pro-
posed method showing less noisy results compared to I&I.
This is mainly because the latter method, by default, does
not contain any noise filtering feature, which can be added
by low-pass filtering, for instance. Additional filtering would
lead to additional phase lags and, thus, a slower wind speed
estimation. The proposed estimator thus demonstrates supe-
rior noise handling capabilities over I&I, which obviates the
need for additional filtering. However, as such a modification
is not the main focus of this work, the original I&I structure
is retained.
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An interesting behavior worth paying attention to in both
wind speed estimation methods is the somewhat equal bi-
ases with respect to the actual wind speed. This is evident
at the beginning of the low-turbulent wind case and at 525
and 625 s of the high-turbulent case. Such biases poten-
tially come from the inaccuracy in the Cp table (Brandetti
et al., 2022), which was generated by steady-state simula-
tions, which might not necessarily be accurate during tran-
sients. Additionally, the absence of dynamic inflow effects in
the estimator model could play a role in the appearance of
such estimation biases (Knudsen and Bak, 2013).

Having presented the estimation results of the NREL
5 MW, those of the IEA 22 MW are now showcased. The
main goal of the simulations with a larger turbine is to vali-
date the performance differences between using constant and
tailored estimator gains, with the proof of concept shown in
the low-fidelity simulations in Sect. 4.2.2. Figure 15 depicts
the time series results of the wind speed estimation for the
IEA 22 MW wind turbine. For the constant-gain case, the
L2 aerodynamic power estimator gain is based on the L2
gain tuned for the NREL 5 MW turbine, whereas that of the
tailored-gain case is determined based on the inertia of the
IEA 22 MW turbine using Eq. (22b). Evident in the figure
is the better performance of the proposed method under tai-
lored L2 compared to under constant L2 – note the displayed
lagged behavior of the latter. With respect to the I&I results,
the former performs similarly in terms of estimation qual-
ity of the low-frequency component in the wind speed with
the advantage of less noisy estimates. Similar to the NREL
5 MW results previously, estimation biases are also observed
in the IEA 22 MW case, which, again, are likely due to the
inaccuracies in the Cp table of the corresponding turbine and
absence of dynamic inflow modeling.

From the aforementioned simulations, aerodynamic power
and wind speed estimation error histograms are provided for
the considered turbines. Figure 16 depicts the former, where
the top row shows the histograms of the NREL 5 MW turbine
and the bottom row the histograms of the IEA 22 MW. For all
turbulent cases and estimators, the normalized aerodynamic
power estimation errors, defined as (Pr− P̂r)/Pg,rated ·100%,
are shown to be similar. Most errors of the I&I and the pro-
posed methods (only shown for the tailored-gain case) are
concentrated at 0 %, with decreasing occurrences at larger
percentages, resembling a bell curve. At higher turbulence
intensity, wider histograms are obtained, which is logical
due to the limitation of both estimators in capturing high-
frequency contents of the actual REWS.

Figure 17 shows the histograms of the normalized wind
speed estimation errors, defined as (U − Û )/Uh · 100%. The
figure sheds new light on the presence of skewed histograms.
For the NREL 5 MW turbine, the error histograms are right-
skewed, indicating the wind speed tends to be underesti-
mated. On the contrary, the IEA 22 MW tends to be left-
skewed; that is, the estimators tend to overestimate the wind
speed value instead. Given that such skewness is not ob-

Figure 15. Wind speed estimation time series for the IEA 22 MW
wind turbine. The proposed method gives a smooth, less noisy es-
timate compared to the I&I (red line) for low- (a, b) and high-
turbulent (c, d) cases. Constant L2 (dashed orange line) results in
lagged estimation compared to gain-tailored L2 (solid green line).
The actual REWS, as outputted by OpenFAST, is shown by the blue
line. Zoomed-in plots of 25 s time spans are provided on the right
for clearer observation of the estimation performance.

Figure 16. Aerodynamic power estimation error histograms of the
wind speed estimators. Both the I&I and the proposed power bal-
ance wind speed estimator are shown to have similar aerodynamic
power error distributions.

served for the aerodynamic power estimation errors, the er-
rors of the wind speed estimation might come from the in-
accuracy of the Cp tables for the corresponding turbines, as
previously suspected. Online calibration of such a Cp table
has been studied, e.g., in Mulders et al. (2023a, b), which
can be used to correct the wind speed estimation quality to
minimize such skewness.

Based on the mid-fidelity simulation results reported
above, the following conclusions of this section are drawn.
First, it has been shown that the mean values of both the
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Figure 17. Wind speed estimation error histograms of the wind
speed estimators. Both the I&I and the proposed power balance
wind speed estimator are shown to have similar wind speed es-
timation error distributions. Subtle differences are also shown for
both the I&I and the proposed power balance wind speed estimator,
where the former has slightly higher occurrences at the histograms’
tails due to the higher noise level, while the latter has slightly higher
occurrences at the center of the distributions.

power-based wind speed estimator and the I&I are identi-
cal. Moreover, it has also been demonstrated that the use
of steady-state information, i.e., through Cp tables, in a dy-
namic environment can lead to skewness for both estima-
tors. Dynamic inflow modeling might also be required for
future improvements to the current scheme. Nonetheless, un-
der noisy measurement conditions, the former exhibits more
noise resilience, whereas the latter requires additional filter-
ing – complicating the design and potentially introducing
phase lag. Finally, the convenience provided by the gain tai-
loring for the proposed method has allowed for performance
calibration between the small and larger wind turbines.

7 Conclusions

In this work, an analysis framework and optimal design for
a power balance REWS estimator have been proposed. The
estimator is subdivided into two subcomponents based on
their role in the scheme, namely, the aerodynamic power
estimator and the wind speed estimate solver. Two aerody-
namic power estimator techniques have been thoroughly an-
alyzed, one based on the numerical derivative technique and
the other based on the Luenberger state estimation technique.
Of the two potential aerodynamic power estimators, the state-
estimation-based technique has been chosen due to its bet-
ter resilience against noisy measurements. Moreover, for the
first time, a gain-tailoring method for performance calibra-
tion throughout a range of modern wind turbine sizes has
been formalized. Regarding the wind speed estimate solvers,
two options have also been considered, namely the con-

tinuous and iterative single-step solvers. In this study, the
frequency-domain stability analysis of the former has been
conducted in the continuous-time domain. Under the forward
Euler discretization, deteriorations in the stability properties
of this solver have been identified and shown in the discrete-
time domain. Despite the favorable stability properties of
the analyzed backward difference and Tustin discretization
methods, the more robust iterative single-step wind speed es-
timate solver has been chosen and, in combination with the
state-estimation-based aerodynamic power estimator, forms
the optimal power balance wind speed estimator structure.
This optimal power balance wind speed estimator has been
validated in the mid-fidelity simulation environment Open-
FAST, utilizing the NREL 5 MW and IEA 22 MW wind tur-
bines, representing small and large wind turbines in the con-
sidered range, respectively. The proposed method and the
considered “baseline” I&I wind speed estimator have shown
similar performance in estimating the low-frequency compo-
nent of the wind speed, with the latter having good REWS
tracking, better noise resilience, and convenient estimator
gain calibration across different turbine sizes.

Zero-bias aerodynamic power estimations have been ob-
tained for both estimators; however, time series and his-
togram analyses have shown the appearance of biased wind
speed estimations for both methods. Such biased estimations
could be attributed to the inability of the steady-state Cp data
used to estimate wind speed in a highly dynamic environ-
ment, excluding effects such as dynamic inflow. However,
learning algorithms used to capture the true power coefficient
during operation exist in the literature and can be incorpo-
rated to improve the performance of the proposed method.

A future study will consider providing an optimal means
for tuning the estimator, e.g., through Bayesian optimization,
incorporating currently unmodeled dynamics, such as drive-
train torsion, tower dynamics, and dynamic inflow effects,
and accounting for blade pitch information.

Appendix A: Improved Immersion and Invariance
wind speed estimator

The improved Immersion and Invariance (I&I) wind speed
estimator, as studied in Liu et al. (2022), is described briefly
in this section. Readers interested in the detailed derivations
and analyses are referred to Liu et al. (2022).

The I&I estimator is described by the following torque bal-
ance equation:

˙̂ωr(t)=8
(
ωr(t), Û (t)

)
−
Tg(t)
J

, (A1)

with the following nonlinearity:

8
(
ωr(t), Û (t)

)
:=

ρAÛ (t)3Cp

(
λ̂(t)

)
2Jωr(t)

. (A2)

The wind speed estimate is the result of the minimiza-
tion of the error between rotor speed and its estimate by a
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proportional–integral compensator, that is

Û (t)=Kpeωr−ω̂r (t)+Ki

t∫
0

eωr−ω̂r (τ )dτ , (A3)

with Kp as the proportional gain and Ki the integrator gain,
where

eωr−ω̂r (t)= ωr(t)− ω̂r(t) . (A4)

Code availability. The MATLAB and Simulink code used to im-
plement the power balance wind speed estimation framework, in-
cluding OpenFAST integration, is publicly available on Zenodo
at https://doi.org/10.5281/zenodo.15491426 (Pamososuryo et al.,
2024).
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