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Abstract. Assessing the availability of key wind resources requires augmenting observations to support the im-
plementation of wind energy infrastructure. However, observations are limited, necessitating the development of
high-resolution, long-term gridded datasets. This study presents a robust, dynamically downscaled climatologi-
cal dataset, offering 20 years of hourly wind data at a 4 km spatial resolution across North America, and evaluates
its performance against observations, including meteorological towers and automated surface-observing system
(ASOS) stations, as well as coarse-resolution reanalysis data (the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis version 5 (ERA5)). Results demonstrate that the downscaled high-resolution
wind data outperform ERA5 in regions of complex terrain and coastal areas, with improved overlap coefficients
for wind data distributions and reduced root mean square errors (RMSEs) for hub-height and near-surface diurnal
wind patterns. The downscaled simulation also captures the synoptic drivers of seasonal wind direction patterns
reasonably well, indicated by high wind rose similarity indices. This study also provides an analysis of interan-
nual variability, utilizing the dataset’s full 20-year period, and model uncertainty, generated by varying model
initial conditions and physics parameterizations across 1-year ensemble members, which are key considerations
for wind resource assessment in wind farm development.

1 Introduction

Wind is a key factor in shaping a region’s complex climate,
influencing both environmental and economic sectors. Un-
derstanding local and regional wind variability is vital for
assessing wind energy potential, which aids in the efficient
implementation and operation of wind farms (Millstein et
al., 2019; Couto and Estanquiero, 2022). Additionally, eval-
uating wind speed and direction is essential for conducting
accurate climatological assessments to determine the long-
term changes in regional wind patterns. However, the spa-
tiotemporal coverage of current wind measurements remains
very limited, particularly over complex terrains (e.g., west-

ern US), offshore, and at hub-heights, where wind energy re-
source assessments are crucial.

To bridge the gap between limited observational data and
the need for accurate wind resource assessments, global
and regional reanalysis datasets, such as Modern-Era Ret-
rospective analysis for Research and Applications version
2 (MERRA-2), the North American Regional Reanaly-
sis (NARR), and the European Centre for Medium-Range
Weather Forecasts Reanalysis version 5 (ERA5), are com-
monly used (Hersbach et al., 2020; Gelaro et al., 2017;
Mesinger et al., 2006). These reanalysis datasets provide
valuable insights into wind patterns, variability, and long-
term trends, and are also crucial for capturing climatological

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



14 K. Peco et al.: Evaluation of a wind climatological dataset over North America

oscillations and large-scale circulations that influence wind
characteristics (e.g., Sheridan et al., 2022a). While these
datasets typically have higher horizontal resolution than
global climate models (GCMs), they still lack the resolu-
tion necessary to explicitly resolve convection and represent
fine-scale surface variations, which is essential for captur-
ing convectively driven precipitation and wind (Murakami,
2014; Jones et al., 2021). Additionally, validating these re-
analysis datasets is essential for determining their viability
for wind resource assessments (Sheridan et al., 2020, 2025;
Lee et al., 2014). For example, Sheridan et al. (2022b) found
that ERA5 generally underestimates wind speed diurnal cy-
cles based on 62 sites at a variety of heights above ground
across the continental United States (CONUS). This under-
estimation is most prominent in late afternoon, caused pri-
marily by the underestimation of convectively driven strong
winds. Similarly, Chen at al. (2024) and Wilczak et al. (2024)
found that ERA5 showed significant negative biases for wind
speeds in areas of complex terrain, especially over the Rocky
Mountains.

To achieve the necessary high resolution to capture finer-
scale wind patterns over large spatial areas and extended
time periods, researchers employ a technique called dynam-
ical downscaling. This technique involves using initial and
boundary conditions from the global or regional reanalysis
data to force simulations at finer resolutions using a regional
climate model. Regional climate modeling at a convection-
permitting (CP) resolution, with a horizontal grid spacing of
less than approximately 4 km, has become a promising ap-
proach for delivering more reliable climate information at re-
gional and local levels. By directly resolving deep convective
processes rather than relying on parameterization, these mod-
els demonstrate significant enhancements (e.g., Prein et al.,
2015, and references therein). Due to recent breakthroughs in
computational capacity and data management, several stud-
ies have been able to perform convection-permitting regional
climate model (RCM) simulations. These simulations, es-
pecially those concentrating on CONUS (e.g., Draxl et al.,
2015b; Gensini et al., 2022; Liu et al., 2017; Rasmussen et
al., 2023), have shown substantial progress in depicting pre-
cipitation, wind, and high-impact weather from national to
regional spatial scales. Among these, Draxl et al. (2015a, b)
presented the largest freely available wind dataset at the time
of its development, serving the Wind Integration National
Dataset (WIND) Toolkit for wind resource assessment and
grid integration studies. The data provide time series of me-
teorological variables every 5 min and 2 km across CONUS
in the 7 years from 2007 to 2013.

This study builds upon previous efforts by presenting an
additional high-resolution, long-term dataset, along with en-
semble simulations for quantifying model uncertainty, for
utilization in climatological wind assessments. The dataset
was generated by a regional climate model using the Weather
Research and Forecasting (WRF) model. With 4 km resolu-
tion, 20-year hourly output, and a model domain spanning

the majority of North America and surrounding oceans, this
dataset provides a spatiotemporal extension to existing cli-
matological wind analyses. With large geographic coverage,
this data product also offers insight into more remote, to-
pographically complex regions, potentially highlighting vi-
able areas for wind energy outside of CONUS. By leverag-
ing a single large spatial domain, the model evolved as one
system, developing its own natural variability without be-
ing constrained by the forcing data. This dataset has been
leveraged by the latest WIND Toolkit Long-term Ensemble
Dataset (WTK-LED), as documented by Draxl et al. (2024),
serving as the WTK-LED Climate dataset (Table ES-1 in
Draxl et al., 2024). Ultimately, this high-resolution dataset
aims to combine the climatological significance of an exten-
sive temporal length with the wind resource utility advan-
tages of a large spatial domain.

Our study validates the dynamically downscaled model
wind speeds and wind directions against various observa-
tional data at both the near-surface and turbine heights at
mostly inland and onshore locations, investigating model
performance at different temporal scales (diurnal, seasonal,
interannual variability). In the context of wind energy in par-
ticular, both speed and direction are crucial components to
consider when maximizing the efficacy and operability of
wind farms, as speed largely determines the amount of power
generated, while direction can incite microscale differences
in wake effects. A complementary study evaluating the same
dataset but focusing on CONUS coastal areas has been con-
ducted by Sheridan et al. (2025). Our validation is also per-
formed on the forcing data – ERA5 reanalysis (Hersbach et
al., 2020) – aiming to understand the added value of the dy-
namically downscaled model to its coarser-resolution forcing
data. Additionally, this study seeks to augment insights into
model uncertainty within wind simulations that are brought
about by varying model configurations.

This paper is organized in the following structure. The
methodology (including model description), observational
datasets used for validation, and analysis metrics used for
evaluation are outlined in Sect. 2. The results of the model’s
performance at hub heights and near the surface are pre-
sented in Sect. 3.1 and 3.2, with an exploration of model bias
in Sect. 3.3. Interannual variability and model uncertainty are
quantified in Sect. 3.4 within the context of wind energy im-
plications. Lastly, a summary of our findings and avenues for
future research are discussed in Sect. 4.

2 Methods and datasets

2.1 Model setup

The wind validation performed in this study was based on
a 20-year (2001–2020) climatological dataset produced by
the WRF model (Powers et al., 2017) version 4.2.1 with
the Advanced Research WRF dynamic core (Skamarock et
al., 2008): the Argonne Downscaled Data Archive version 2
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(ADDA v2). With a domain of 2050× 1750 grid points at a
4 km grid spacing (8200 km× 7000 km), the model featured
over 3.5 million grid cells, horizontally spanning the major-
ity of North America and the Caribbean islands (Fig. 1a in
Akinsanola et al., 2024). The model was run with 50 un-
evenly spaced sigma levels, 18 of which were within the low-
est 1 km (8, 25, 42, 58, 75, 104, 147, 189, 231, 274, 317,
360, 403, 468, 555, 643, 777, and 957 m above ground level)
and 10 of which were below 300 m above the ground, to en-
sure that the hub-height winds were calculated directly by
the model. Initial and lateral boundary conditions were deter-
mined by ERA5. The model was reinitialized for each year
on 1 November, ultimately producing a series of 20 simula-
tions with a duration of 14 months each, covering the period
from 2001–2020. The first 2 months (November and Decem-
ber) of each year were discarded as spinup time and not used
for the data analysis. The reinitialization approach was cho-
sen since the RCM was driven by high-resolution reanaly-
sis data instead of coarse-resolution GCMs, which usually
require at least 1 year of spinup time. While soil moisture
is typically a concern when reinitializing models during the
cold months, the soil moisture of both the ERA5 forcing data
and ADDA v2 was validated and found to be realistic (Akin-
sanola et al., 2024).

The Yonsei University (YSU) planetary boundary
layer (PBL) scheme was used for these simulations,
which runs with topographic correction for surface winds
(topo_wind= 1 WRF; Jiménez and Dudhia, 2012; Ska-
marock et al., 2019) to represent extra drag from subgrid
topography and enhanced flow at hilltops. The surface layer
scheme used was the MM5 similarity scheme, which follows
the Monin–Obukhov similarity theory (Monin and Obukhov,
1954) alongside the Carlson–Boland similarity functions
(Carlson and Boland, 1978). The unified Noah land surface
model was used for the land surface processes, which em-
ploys a four-layer soil temperature and moisture scheme, as
well as fractional snow cover and frozen soil physics (Tewari
et al., 2004). A full list of model parameterizations can be
found in Table 1. No internal grid nudging or spectral nudg-
ing was employed for these simulations because it requires
additional computational resources (20 %–30 % more for our
configuration), and the ERA5 forcing data are at a relatively
higher resolution than other reanalysis datasets, which can
provide good boundary conditions and allow the model to
develop its own spatiotemporal variability. Model output
data for the most used meteorological variables, such as air
temperature, wind speed and direction, and precipitation,
were saved at hourly intervals for the full domain from
2001–2020. Other variables used less frequently were saved
at 3 h intervals.

2.2 Model uncertainty

There are multiple sources of model uncertainty in regional
weather and climate models (Hawkins and Sutton, 2009).

The dominant uncertainty for near-term simulations includes
model internal variability and structural uncertainty. Inter-
nal variability is caused by varying initial conditions, while
structural uncertainty is generated by various physics pa-
rameterizations. To study the model’s internal variability, we
conducted 10 additional 1-year (El Niño–Southern Oscilla-
tion neutral year – 2018) ensemble runs, all with the same
model setup as described in Sect. 2.1 but with different ini-
tial conditions (Wang et al., 2018). This was achieved by run-
ning each of the 10 ensemble members 12 h apart, with the
first being initialized on 1 November 2017 at 00:00 UTC and
the last being initialized on 5 November 2017 at 12:00 UTC.
Thus, the slightly different initial conditions at each respec-
tive start time acted as the catalyst to generate differences be-
tween the ensemble members. The number of internal vari-
ability ensembles was chosen based on the logic of Wang
et al. (2018), who demonstrated that 10 ensemble members
with varying initialization times was the minimum number
needed to capture the internal variability of the model.

To investigate the model’s structural uncertainty arising
from important physics parameterizations for wind, namely
the PBL and land surface model (LSM), an additional six en-
semble members were generated for the same neutral year
2018. Each ensemble member shared the same domain and
spatial resolution but employed two different and widely
used PBL schemes (YSU and MYNN) and LSMs (Noah and
NoahMP) for wind energy applications (Draxl et al., 2014;
Yang et al., 2017). The MYNN PBL scheme is a level 2.5
closure scheme for turbulence and implicitly solves for tur-
bulence using parametric equations. It gives estimates of tur-
bulent kinetic energy and dissipation rates within the bound-
ary layer of the atmosphere (Nakanishi and Niino, 2009).
NoahMP is an improved version of the Noah LSM and pro-
vides better representations of terrestrial biophysical and hy-
drological processes (Niu et al., 2011). A major physical
mechanism enhancement includes improved treatment of soil
moisture. Two dynamic vegetation options and two surface
layer drag coefficient calculation options were also perturbed
within the NoahMP LSM. Thus, in total we had 10 combi-
nations, with 5 LSM options and 2 PBL options. We exper-
imented with these 10 runs for a subregion over the South-
ern Great Plains (with various topographic characteristics)
and determined that 6 of the 10 runs were able to capture the
range of model uncertainty across the domain. Then, we used
these six representative combinations for the entire North
American domain and entire year of 2018. While the 16 en-
semble members do not capture all model uncertainty, they
do represent a robust range of model variability due to these
perturbations in initial conditions and key physics parameter-
izations (see more details in Draxl et al., 2024).

2.3 Observational datasets used for validation

The validation performed on ADDA v2 used wind speed ob-
servational data taken within 100 m above ground level. The
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Table 1. WRF model setup and ensemble runs used in ADDA v2 simulations.

Regional climate
model

WRF v4.2.1

Initial and boundary
conditions

ERA5 at 0.25°, every 3 h

Horizontal grid spacing
and time steps

4 km; adaptive time stepping

Number of grid cells 2050 (west to east)× 1750 (south to north)× 49 (top to bottom)

Simulation period 1 January 2001 to 31 December 2020

Microphysics scheme Morrison double moment (Morrison et al., 2005)

Land surface scheme Unified Noah (Tewari et al., 2004), Noah-MultiParameterization
(NoahMP; Niu et al., 2011) with two options for dynamic vegetation and
surface

Planetary boundary
layer scheme

Yonnsei University (Hong et al., 2006), Mellor–Yamada–Nakanishi–Niino
(MYNN; Nakanishi and Niino, 2009)

Short- and longwave
radiation scheme

Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et al., 2008)

first collection of observations focused on hub-height wind
speeds and wind directions. These observations were taken
from multiple meteorological towers hosted by the US De-
partment of Energy National Laboratories (Argonne National
Laboratory, Brookhaven National Laboratory, NREL, Oak
Ridge National Laboratory, Pacific Northwest National Lab-
oratory, Savannah River National Laboratory) and the Na-
tional Oceanic and Atmospheric Administration (National
Centers for Environmental Information, National Data Buoy
Center). In total, 26 meteorological towers were sampled and
quality controlled for this analysis, with wind speed observa-
tions taken anywhere from 10 to 100 m above ground level.
Observations were quality controlled through the process of
removing atypical or unphysical reported wind speeds (less
than 0 m s−1, greater than 50 m s−1, or non-varying values
over periods of time greater than 3 h), based on Sheridan et
al. (2025). Mast flow distortion corrections were not imple-
mented since most locations had only one anemometer read-
ing. For sites with multiple anemometer readings, instrumen-
tation metadata, such as anemometer orientation with respect
to nearby structures, were not included, and we did not want
to make corrective assumptions. While different factors, such
as instrument precision, environmental effects such as land
use, obstructions, or elevation effects, and temporal sampling
methods can introduce uncertainty into the collected obser-
vational wind, the quality control procedures conducted here
maximize the integrity and reliability of the data used for this
validation.

Temporal coverage for the meteorological towers varied
between 2–20 years, with an average of ∼ 8.1 years. Ob-
servations covered a diverse range of geographies, includ-
ing mountainous, coastal (East Coast and West Coast of

CONUS), Great Lakes, and plain regions; Alaska and Puerto
Rico (Caribbean) were denoted as separate geographic re-
gions. For 19 of these meteorological towers, the exact loca-
tions, anemometer heights, and temporal coverages of wind
observations can be found in Table 2. The remaining seven
are proprietary data, for which exact locations could not be
specified. While turbine-height wind speed and wind direc-
tion data are sparse, we have leveraged all publicly available
resources that we have access to and performed a thorough
validation over diverse geospatial areas.

The second part of this evaluation explores an expan-
sive collection of 10 m wind speed data sourced from a net-
work of automated surface-observing system (ASOS) sta-
tions. These stations monitor and report various meteoro-
logical variables and are operated by the United States Na-
tional Weather Service, the Federal Aviation Administration,
and the Department of Defense. The specific dataset used for
this validation was collected from the Iowa Environmental
Mesonet (IEM) and subsequently quality controlled by the
Data Archive and Portal (DAP) platform. The dataset hosts
over 2000 sites across CONUS and Alaska and covers a tem-
poral period from 1 January 2000–31 December 2021, offer-
ing a spatiotemporally comprehensive means for performing
a thorough validation of ADDA v2’s 10 m wind. Addition-
ally, wind speed data from four additional ASOS stations
over Puerto Rico were downloaded from the IEM to spa-
tially expand the model validation and gain a more compre-
hensive understanding of model performance over areas of
sparse data availability and complex terrain.

To demonstrate the potential added value of ADDA v2 to
its coarse-resolution forcing data, we also included ERA5
reanalysis in all near-surface and hub-height evaluations.
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Table 2. Information of the hub-height wind data sourced from meteorological towers across CONUS. The number listed for each location
corresponds to the numbers in Fig. 1, identifying the geographic positions of the meteorological towers. Location coordinates for proprietary
data were excluded.

Geography Location Coordinates Temporal Anemometer
coverage height

West Coast Megler, WA (1) 46.27° N, −123.88° W 2010–2018 53 m
Martinez, CA (3) 38.04° N, −122.12° W 2014–2020 100 m
Los Angeles Pier J, CA (4) 33.73° N, −118.19° W 2014–2020 31 m

Mountain Wasco, OR (2) 45.50° N, −120.77° W 2005–2018 30 m
NWTC, CO (5) 39.91° N, −105.24° W 2002–2020 50 m

Plains Site A, KS (6) – 2006–2008 49 m
SGP Observatory, OK (7) 36.61° N, −97.49° W 2012–2020 65 m
Site A, TX (8) – 2008–2013 50 m
Site B, TX (9) – 2009–2013 51 m
Site A, MN (10) – 2007–2011 80 m
Site A, AR (11) – 2011–2012 53 m
Argonne National Lab, IL (12) 41.70° N, −87.99° W 2007–2013 60 m
Site A, IN (13) – 2018–2019 90 m
Site A, OH (14) – 2017–2018 90 m

Great Lakes Dunkirk, NY (17) 42.49° N, −79.35° W 2001–2017 20 m

East Coast Edith Hammock, AL (15) 30.23° N, −88.02° W 2008–2013 36 m
Fowey Rock, FL (16) 25.59° N, −80.09° W 2001–2020 44 m
Spiderweb, SC (18) 33.41° N, −81.83° W 2009–2012 34 m
East Point, FL (19) 29.41° N, −84.86, ° W 2004–2020 35 m
Cape Henry, VA (20) 36.93° N, −76.01° W 2007–2020 28 m
Brookhaven, NY (21) 40.87° N, −72.89° W 2007–2013 50 m

Alaska Red Dog Dock, AK (22) 67.58° N, −164.07° W 2018–2020 13 m
Bligh Reef, AK (23) 60.84° N, −146.88° W 2013–2020 22 m
Juneau Dock, AK (24) 58.29° N, −134.39° W 2018–2020 18 m
Five Fingers, AK (25) 57.27° N, −133.63° W 2013–2020 22 m

Puerto Rico San Juan, PR (26) 18.43° N, −66.01° W 2001–2020 10 m

ERA5 outputs only two levels of wind (10 and 100 m), so
to evaluate winds at heights between these levels, an interpo-
lation method was required. At each timestamp, the ADDA
v2 and ERA5 wind speeds were adjusted to the observational
heights via the power law using the model wind speeds at sur-
rounding output heights to the observation height. While this
interpolation method may induce some bias in both ADDA
v2 and ERA5, the differences between these datasets are
driven mostly by the difference in spatial resolution and the
value added by ADDA v2. This approach was selected based
on the analysis of Duplyakin et al. (2021), who found that
the power law minimized errors due to vertical adjustment of
wind dataset output heights to observation heights.

2.4 Statistics for validation

The wind speed validation in this study utilizes several statis-
tical error metrics to evaluate how well ADDA v2 performs
against observations. Root mean square error (RMSE), Pear-

son correlation coefficients (r), overlap coefficients (OVLs),
and wind rose similarity indices (WRSIs) are used.

The RMSE gives a metric for the overall accuracy of the
model, with lower RMSEs indicating improved model per-
formance. RMSE is taken as the square root of the average
of the squared differences between simulated wind speeds
and observed wind speeds at various timescales (seasonal,
monthly, diurnal), given by Eq. (1). This metric is effec-
tive at highlighting instances of larger errors in the model
and demonstrates the overall magnitude of model inaccuracy.
Here, n represents the number of wind speed observations
(in time), vmod represents the modeled wind speed, and vobs
denotes the observed wind speed. Relative RMSE (rRMSE)
was also considered (Eq. 2) by dividing the RMSE by the av-
erage of the observed wind speed. This gives a general sense
of the magnitude of error in relation to the magnitude of the
wind speeds themselves.
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RMSE=

√
1
n

∑n

i=0

(
vmod,i − vobs,i

)2 (1)

rRMSE=
RMSE
vobs

(2)

The mean bias error (MBE) is used to assess the overall bias
of the modeled wind compared to the observational wind
speeds. It is taken as the average difference between the mod-
eled wind speeds and the observed wind speeds. Values can
be negative or positive and indicate any systematic biases
present within the model. For example, a negative bias would
indicate that the model systematically underestimates wind
speeds and vice versa. A value of 0 indicates either that the
model performs realistically or that there is an equal number
of positive and negative biases. In Eq. (3), vmod represents the
modeled wind speeds, and vobs represents the observed wind
speeds. Relative MBE (rMBE) was also considered (Eq. 4)
by dividing the MBE by the average of the observed wind
speed. This gives a general sense of the magnitude of bias in
relation to the magnitude of the wind speeds themselves.

MBE=
1
n

∑n

i=1

(
vmod,i − vobs,i

)
(3)

rMBE=
MBE
vobs

(4)

The Pearson correlation coefficient (r) measures the degree
of linear correlation in time between model wind speeds and
observational wind speeds. Values range from −1 to 1, with
−1 indicating a perfect negative correlation, 1 indicating a
perfect positive correlation, and 0 indicating no correlation.
In Eq. (4), vmod is the mean of the modeled wind speeds, and
vobs is the mean of the observed wind speeds.

r =

∑n
i=1

(
vmod,i − vmod

)(
vobs,i − vobs

)√∑n
i=1
(
vmod,i − vmod

)2∑n
i=1
(
vobs,i − vobs

)2 (5)

Lastly, overlap coefficients (OVLs) were calculated between
the probability density functions for the modeled and ob-
served wind speed distributions, using Eq. (5). Functions
were estimated using kernel density estimations, specifying
Scott’s rule (Scott, 2015) for bandwidth smoothing. Once
functions were drawn, OVLs were calculated using the fol-
lowing formula, in which fvmod (x) is the estimated density
function for the model wind speeds, and fvobs (x) is the es-
timated density function for the observed wind speeds. The
result of this calculation yields a value from 0 to 1, in which
0 indicates no overlap, and 1 denotes complete overlap be-
tween the estimated functions for observations and model
wind speeds.

OVL=

∞∫
−∞

(
fvmod (x), fvobs (x)

)
dx (6)

In addition to wind speed evaluations, we also conducted
wind direction validations using wind roses. This is impor-
tant for examining the model’s performance in capturing the
seasonality of wind direction, as well as for investigating the
covariance of wind speed and direction (Wu et al., 2022b).
For these wind roses, similarity indices (WRSIs) were also
calculated by taking the sum of the minimum frequencies
between the model and observations for each discrete wind
direction bin, using Eq. (6). Here, fdmod (i) and fdobs (i) repre-
sent the frequency of wind directions for each bin i.

WRSI=
∑n

i
min

(
fdmod (i), fdobs (i)

)
(7)

2.5 Quantification of model uncertainty and interannual
variability

To quantify model uncertainty due to internal variability and
structural uncertainty as described in Sect. 2.2, statistical
bootstrapping was employed on the 16 simulations with a du-
ration of 1 year to generate 500 augmented ensemble mem-
bers. This was done by randomly selecting data for each hour
from 1 of the 16 ensembles, ultimately building an entirely
new ensemble with the same spatial and temporal domain.
This technique allows for a more comprehensive look at the
statistical distribution of data and the underlying variabil-
ity that drives model uncertainty. Time averages were then
performed across the model domain on each of the 500 re-
sampled ensembles to gauge how the degree of model un-
certainty is influenced by different timescales; this included
monthly, biweekly, weekly, and daily averages, as well as
daytime (21:00 UTC) and nighttime (06:00 UTC) monthly
averages. To represent model uncertainty, 5th and 95th per-
centiles were taken at the different timescale averages (e.g.,
weekly and biweekly) across the 500 augmented ensembles
to determine the upper and lower bounds of temporally av-
eraged wind speeds. Then, the difference between these two
percentiles (95th–5th) served to demonstrate the degree of
ensemble spread. These percentiles were calculated for ev-
ery grid point and at each timescale average to reveal spa-
tiotemporal patterns present for model uncertainty. Interan-
nual variability was calculated as well to compare it with
model uncertainty. The same timescale averages were taken
before computing the same percentiles (5th and 95th) across
the 20-year period. For a relative metric, the calculated inter-
annual variability was divided by the mean wind speed for
the relevant season and multiplied by 100 to get a percent
change.

3 Results

3.1 Hub-height wind speed and wind direction
validations

We start with a model validation for wind speeds at hub
heights (Sect. 2.2) over the 26 locations (Fig. 1) to assess
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ADDA v2’s utility for wind energy applications. We used
several metrics and statistics to quantify model performance,
including probability density functions (PDFs), mean bi-
ases, seasonally averaged wind speed diurnal cycles, wind
roses, timescale-dependent RMSEs, and correlation coeffi-
cients. For each figure, locations from the different geogra-
phies listed in Table 2 were chosen to assess ADDA v2’s per-
formance in different regions; where possible, at least one
figure representing each geographic characteristic was dis-
played.

3.1.1 Probability density functions

PDFs effectively compare data distributions without consid-
ering the time dimension, aiming to visualize any biases be-
tween the model and observations. Across the 26 hub-height
locations, ADDA v2’s PDFs had a higher average OVL of
0.85 with the observational PDFs, while ERA5’s PDFs had
an average OVL of 0.78. Similarities between ADDA v2 and
ERA5 distributions and observed wind speeds were spatially
variable, with ADDA v2 performing better than ERA5 for 18
of the 26 sites considered. In particular, ADDA v2’s higher
resolution was able to capture the finer-scale wind speed pat-
terns in mountainous regions, with OVLs significantly higher
than ERA5’s over the Cascades and the Rockies (Fig. 2c, d).
ADDA v2 was able to modestly outperform ERA5 across
the plain region. The average OVL for ADDA v2 across
the nine locations was 0.86, while ERA5 saw an average
OVL of 0.79. There were a couple of locations where both
datasets struggled to capture the hub-height wind speed dis-
tribution. For example, both ADDA v2 and ERA5 demon-
strated strong overestimations (Fig. 2j) for Spiderweb, South
Carolina. As discussed in Sect. 3.3, ADDA v2’s positive bias
can be partly attributed to the land surface model (LSM) used
for these simulations, as well as the positive bias inherited
by ERA5. Both datasets also struggled with the hub-height
wind speeds at Brookhaven, New York. However, the over-
estimations seen for this location by both datasets may be
attributed to its unique geographic position; it is located on
Long Island, New York, equidistant from Long Island Sound
and the Atlantic Ocean, where land–sea interactions on ei-
ther side may incite complexities in the local wind patterns.
Across the four Alaskan locations, ADDA v2 saw an average
OVL of 0.88 compared to ERA5’s 0.70 (Fig. 2k). ERA5’s
coarser resolution can contribute to these errors, especially
across Alaska, where complex topography incites stark spa-
tial changes in wind patterns. For San Juan, Puerto Rico,
ADDA v2 and ERA5 saw decent performance in capturing
wind speed patterns, although both depicted modest overes-
timations (Fig. 2l).

3.1.2 Mean bias

While PDFs provide a general view of a model’s system-
atic bias, they do not evaluate the time dimension. Mean

bias is therefore examined here to identify any systematic
errors present within our models when considering the time
dimension. Here, the entire overlapping time period between
ADDA v2, ERA5, and the observations was taken. At each
daily-averaged (Table 3), monthly-averaged, and seasonally
averaged time step, the bias was taken between each dataset
and observations. The interquartile range (IQR), minimums,
and maximums of these bias values are then plotted in Fig. 3.

Across most of the locations, ADDA v2’s median bi-
ases are either centralized around 0 or slightly larger than
0, indicating that ADDA v2 performs reasonably well with
slight overestimations. However, ERA5 demonstrated clear
underestimations across the locations sampled. For example,
for the mountainous location Wasco, Oregon, ERA5 saw a
strong negative MBE (Fig. 3a). Similarly for the Great Plains
location, Site A, Kansas, ERA5 saw an equally large neg-
ative MBE of −2.79 m s−1. ADDA v2 had smaller MBEs
for both locations at 0.67 and −0.07 m s−1, respectively. The
East Coast and Caribbean locations, Fowey Rock, FL, and
San Juan, Puerto Rico, saw minimal MBEs of 0.32 and
0.02 m s−1 for ADDA v2 and −1.66 and −0.79 m s−1 for
ERA5 (Fig. 3a). For Five Fingers, Alaska, MBE ranges were
large for both ADDA v2 and ERA5 at the daily timescale.
ADDA v2 outperformed ERA5 for this location, demonstrat-
ing a small positive bias compared to ERA5’s modest un-
derestimation. Lastly, both datasets had minimal MBEs for
Los Angeles Pier J, California, with relatively small IQRs
(Fig. 3a).

3.1.3 Diurnal cycles

While PDFs and mean biases are useful for understanding
the overall distribution and temporal accuracy of model-
simulated wind speeds, it is particularly crucial to understand
how well the model captures diurnal variability in wind,
especially when planning hybrid renewable energy assess-
ments between wind and solar energies. Therefore, season-
ally averaged wind speed diurnal cycles are considered in this
analysis for each hub-height location to evaluate how well
ADDA v2 captures intraday wind speed patterns. Specifi-
cally, an average was taken for each hour of the day (00:00,
01:00, 02:00 UTC, etc.) across each season. Wind speeds of
10 m were also included for some of these locations because
they have more pronounced diurnal patterns. Pearson’s r and
RMSE values are used to validate the seasonally averaged
model diurnal cycles.

Across all locations (Fig. 1), ADDA v2’s diurnal wind
speed patterns had an average Pearson’s r of 0.67 with ob-
servations, while ERA5’s average was considerably lower,
at approximately r = 0.35. Similarly, ADDA v2 had a lower
average RMSE of 1.02 m s−1 compared to the 1.36 m s−1

RMSE of ERA5. Both datasets saw improved performance
when there was a strong diurnal signature in wind speed
magnitudes, as summarized in Table 3. This was especially
the case for southern locations, especially with coastal ge-
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Figure 1. Locations of in situ observations sampled from meteorological towers across CONUS and Alaska, along with an ASOS location
over Puerto Rico. The zoomed-in area, with stars representing each dataset, indicates the capability of ADDA v2’s higher resolution to more
closely match the exact location of the in situ data. The 2000+ sites over CONUS are not included here but can be seen in Fig. 6.

ographies, where the greater surface heating at lower lati-
tudes modulates diurnal wind speed patterns more signif-
icantly (Elliott et al., 2004). For East Coast locations like
East Point, Florida; Fowey Rock, Florida; and Edith Ham-
mock, Alabama, Pearson’s r values were at or above 0.85 for
ADDA v2. ERA5 Pearson’s r values were also high over-
all, but the dataset struggled with Fowey Rock in particular
(Fig. 4b). Overall, ADDA v2 performed better for the wind
speed diurnal pattern for the West Coast region (Fig. 4a),
with an average Pearson’s r of 0.74 compared to ERA5’s
0.64. However, ADDA v2 did tend to overestimate wind
speeds for Martinez, California, and Wasco, Oregon, leading
to higher RMSE values compared to ERA5. For regions with
flat terrain, ADDA v2 performed much better than ERA5.
Correlation coefficients for plain-like geographies, on aver-
age, were r = 0.76 for ADDA v2 and r = 0.27 for ERA5. For
mountainous regions, both ADDA v2 and ERA5 struggled
significantly to capture diurnal wind speed patterns (Fig. 4c),
with an average Pearson’s r of 0.32 and 0.24, respectively.
The high elevations of these locations have more complex

responses to diurnal changes in solar heating and thus do not
have very clear wind speed patterns throughout the day, espe-
cially during the winter (Fig. 4c). Across the four Alaskan lo-
cations, both datasets struggled to capture the diurnal pattern,
with an average Pearson’s r of 0.46 for ADDA v2 and 0.12
for ERA5. Lastly, for San Juan, Puerto Rico, both datasets
were able to capture the dramatic diurnal wind speed pattern
observed (Fig. 4e). However, ADDA v2 was much more pre-
cise, accurately simulating intraday wind speed minimums
and maximums.

3.1.4 Wind roses

The previous sections focus on assessing model performance
for wind speeds, but it is also important to assess model per-
formance for wind direction to indicate whether the model
can capture the synoptic-scale phenomena that drive these
seasonal changes in wind direction. Wind direction is also
important for understanding the wake effect in a large wind
farm. This section employs wind roses to visualize seasonal
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Figure 2. Probability density functions (PDFs) of wind speeds simulated by ADDA v2 and ERA5 alongside observations over Los Angeles
Pier J, California (a); Martinez, California (b); Wasco, Oregon (c); NWTC, Colorado (d); Site A, Kansas (e); Site A, Arkansas (f); Site A,
Minnesota (g); Dunkirk, New York (h); Edith Hammock, Alabama (i); Spiderweb, South Carolina (j); Five Fingers, Alaska; and (k) San
Juan, Puerto Rico.
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Table 3. Statistical metrics for each of the 26 hub-height observational locations.

Geography Location Wind speed Wind speed Wind speed diurnal WRSI Wind speed
OVL diurnal correlation RMSE (m s−1) MBE (m s−1)

ADDA v2 ERA5 ADDA v2 ERA5 ADDA v2 ERA5 ADDA v2 ERA5 ADDA v2 ERA5

West Coast Megler, WA 0.82 0.94 0.85 0.35 1.45 0.40 0.68 0.73 1.44 −0.15
Martinez, CA 0.79 0.87 0.39 0.64 1.64 0.86 0.61 – 1.38 −0.66
Los Angeles Pier J, CA 0.90 0.85 0.97 0.94 0.64 0.90 0.69 0.72 −0.02 −0.70
Average 0.84 0.89 0.74 0.64 1.24 0.72 0.66 0.73 0.93 −0.50

Mountain Wasco, OR 0.91 0.64 0.69 0.4 0.78 2.53 0.63 0.65 0.67 −0.07
NWTC, CO 0.87 0.75 −0.05 0.07 1.64 1.86 0.90 0.69 1.65 −1.78
Average 0.89 0.69 0.32 0.24 1.21 2.2 0.77 0.67 1.08 −0.78

Plains Site A, KS 0.97 0.6 0.89 0.03 0.40 2.88 − − −0.07 −2.79
SGP Observatory, OK 0.90 0.89 0.83 0.89 0.52 0.76 0.79 0.77 0.85 −0.96
Site A, TX 0.83 0.63 0.91 −0.30 1.18 3.14 − − −1.12 −2.99
Site B, TX 0.97 0.8 0.75 0.89 0.46 1.37 − − 0.07 −1.28
Site A, MN 0.83 0.82 0.90 −0.38 1.62 1.59 0.83 − 1.46 −1.39
Site A, AR 0.92 0.74 0.48 0.40 0.72 1.66 − − 0.58 −1.62
Argonne, IL 0.76 0.89 0.64 0.55 1.15 0.35 0.82 0.81 1.12 −0.07
Site A, IN 0.76 0.93 0.59 0.41 1.66 0.60 0.68 − 1.39 0
Site A, OH 0.82 0.81 0.82 −0.08 1.40 1.33 0.78 − 1.33 −1.07
Average 0.86 0.79 0.76 0.27 1.01 1.52 0.78 0.79 0.62 −1.35

Great Lakes Dunkirk, NY 0.93 0.82 0.82 −0.33 0.67 0.63 0.83 0.81 −0.65 0.36

East Coast Edith Hammock, AL 0.93 0.96 0.86 0.93 0.59 0.31 0.72 0.76 0.57 −0.27
Fowey Rock, FL 0.95 0.77 0.85 0.51 0.54 1.70 0.77 0.69 0.32 −1.66
Spiderweb, SC 0.54 0.77 0.62 0.23 2.09 0.84 − − 2.03 0.34
East Point, FL 0.92 0.95 0.92 0.95 0.68 0.31 0.70 0.73 0.64 −0.26
Cape Henry, VA 0.85 0.82 0.54 0.55 0.85 0.77 0.80 0.79 0.70 0.67
Brookhaven, NY 0.63 0.56 0.51 0.49 2.36 2.88 − − 2.18 2.51
Average 0.80 0.81 0.72 0.61 1.19 1.14 0.75 0.74 1.07 0.22

Alaska Red Dog Dock, AK 0.85 0.69 0.57 −0.11 0.70 1.20 0.66 − −0.67 1.14
Bligh Reef, AK 0.90 0.86 0.39 0.25 0.55 0.96 0.72 − 0.26 −0.79
Juneau Dock, AK 0.83 0.47 0.48 0.33 0.90 2.90 0.79 − −0.40 −2.86
Five Fingers, AK 0.93 0.77 0.40 0.01 0.60 1.50 0.81 − 0.59 −1.33
Average 0.88 0.70 0.47 0.12 0.69 1.64 0.75 − −0.06 −0.96

Caribbean San Juan, PR 0.71 0.78 0.95 0.62 0.62 1.15 0.88 − 0.02 −0.79

All Average 0.85 0.78 0.67 0.35 1.02 1.36 0.75 0.74 0.63 −0.80

wind direction distributions for each hub-height location be-
tween the model and observations.

Across the 19 locations that had wind direction data avail-
able, both ADDA v2 and ERA5 were able to capture the cli-
matological synoptic mechanisms driving seasonal changes
in wind directions reasonably well, with WRSIs at 0.75
and 0.74, respectively. No single geographic region within
ADDA v2 significantly outperformed another, as summa-
rized in Table 3.

However, ADDA v2 outperformed ERA5 for the moun-
tainous location NWTC, Colorado, with WRSIs of 0.90 and
0.69, respectively. Here, ADDA v2 was able to accurately
capture the predominantly western winds in the fall, winter,
and spring, generated by mid-latitude cyclones and the more
mesoscale chinook winds that occur on the leeward sides of
mountain ranges (Lackmann, 2011; Markowski and Richard-
son, 2010). Diurnal patterns of wind direction were also eval-
uated (Fig. S1 in the Supplement). While both ADDA v2 and

ERA5 captured the intraday wind direction patterns at the lo-
cations examined, ADDA v2 was able to simulate the wind
direction shift in the afternoon during the summer more ac-
curately, when wind direction has more abrupt changes due
to diurnal heating and cooling, compared to ERA5.

Across the Alaskan locations, ADDA v2 performed mod-
erately well, with wind direction WRSIs at Bligh Reef, Five
Fingers, Juneau Dock, and Red Dog Dock (Fig. 5d) at 0.72,
0.81, 0.79, and 0.66. For coastal locations, like Red Dock,
Alaska, summer wind directions can be influenced by sea
breezes, indicated by the high frequency of southerly flow
during the summer (Fig. 5d).

3.1.5 Model performance across various timescales

The model setup for ADDA v2 is designed to capture clima-
tological statistics rather than to predict day-to-day weather
(Appendix A in Wang and Kotamarthi, 2014). However, it
can still be used to understand average intraday wind speed
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Figure 3. Distribution of mean biases computed between ADDA v2 (red) and observations and between ERA5 and observations (blue)
during the overlapping time periods, plotted as box-and-whisker plots for Wasco, Oregon; Site A, Kansas; Fowey Rock, Florida; Five
Fingers, Alaska; San Juan, Puerto Rico; and Los Angeles Pier J, California, at the daily (a), monthly (b), and seasonal (c) timescales.

patterns for different regions. This section tests ADDA v2’s
capacity to represent wind speeds at different timescales
using RMSEs and correlations, aiming to demonstrate the
timescale at which the model can be useful for wind energy
resource assessments.

For almost all hub-height locations analyzed, RMSEs de-
creased and correlations increased as the timescale averages
became coarser. On average across the 26 locations consid-
ered, rRMSEs at the daily, weekly, biweekly, and monthly
scales were 46 %, 29 %, 25 %, and 22 %, respectively, indi-
cating improvement at each transition to a coarser timescale
(Fig. 6f). Pearson’s r showed a similar trend, at r = 0.48,
r = 0.63, r = 0.68, and r = 0.75 (Fig. 6f), consistently grow-
ing when calculated at increasingly coarse timescales. More-
over, the largest error improvement occurred when going
from daily averages to weekly averages. For example, this
can be seen for the 60 m wind speeds at Site A, Arkansas

(Fig. 6b), where rRMSEs were at 37 % at the daily timescale,
before dropping to 20 %, 16 %, and 13 % at the weekly, bi-
weekly, and monthly timescales. Pearson’s r also improved
from 0.57 at the daily timescale to 0.89 at the monthly
timescale. Similarly, Fowey Rock, FL (Fig. 6b), saw a drastic
improvement from daily- to weekly-averaged wind speeds,
with rRMSEs dropping from 40 % to 23 %, and Pearson’s r

steadily climbing between timescale averages. This trend is
seen for the Alaskan and Puerto Rican locations as well, with
ADDA v2 struggling to capture specific-day wind speeds but
performing well at coarser, more climatological timescales
(Fig. 6c, d).

3.2 Near-surface wind speed evaluation

ADDA v2 near-surface validations were initially performed
using wind speed observations taken from 2000+ ASOS sta-
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Figure 4. Seasonally averaged diurnal wind speeds (summer, winter) for Los Angeles Pier J, California (a); Fowey Rock, Florida (b); Wasco,
Oregon (c); Red Dog Dock, Alaska (d); and San Juan, Puerto Rico (e).
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Figure 5.

tions across CONUS, Alaska, and Puerto Rico. While the
full temporal domain (2001–2020) of ADDA v2 was used
in this analysis, statistics for each ASOS station were de-
pendent on the maximum overlap in data availability be-
tween ADDA v2 and observations. Seasonal means were
taken across the available temporal period before calculat-
ing the relative mean bias error (rMBE) and RMSE values
for each ASOS station.

ADDA v2 performs well for the majority of ASOS sta-
tions evaluated, with rMBE values falling between −10 %
and 10 % across much of the western and central portions of
the model domain. However, ERA5 struggles significantly
in these same regions, especially in the spring and summer
(rMBEs upwards of −60 %). This has been documented in
past studies (Chen et al., 2024; Wilczak et al., 2024), which

highlight ERA5’s tendency to underestimate wind speeds in
areas of complex terrain (i.e., the Rockies).

For the eastern half of CONUS, both ADDA v2 and ERA5
show similar spatiotemporal patterns for error magnitudes.
Specifically, both datasets demonstrate notable rMBE val-
ues across the southeast (60 %–80 %), most notably dur-
ing the fall and winter. This systematic error is predomi-
nantly attributed to model overestimation during nighttime
hours (00:00–12:00 UTC), when observational wind speeds
are very low (0–1 m s−1), which is at a scale typical of model
uncertainty. Thus, when the model simulates wind speeds of
about 1.5–2 m s−1, the relative error appears significant. In-
terestingly, ADDA v2 also shows higher rMBE values for the
upper Midwest during the fall and winter, when wind speeds
are seasonally stronger; this bias is analyzed more in depth
in Sect. 3.3. For most other regions, namely the central/lower
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Figure 5. Seasonally averaged wind speed and wind direction distributions for Los Angeles Pier J, California (a); Dunkirk, New York (b);
Argonne, Illinois (c); and Cape Henry, Virginia (d). Values on each concentric circle (e.g., 4, 8, 12, 16) within the wind rose are used to
measure the normalized frequency of each wind direction wedge. Wind rose wedge positions indicate the direction from which the wind is
blowing.

Midwest, Texas, and the northeast, ADDA v2 and ERA5 ac-
curately capture seasonal wind speeds, indicated by lower
rMBE values.

When specifically looking at the ASOS stations over
Alaska (Fig. 7), ADDA v2 and ERA5 generally capture
coastal wind speeds well, with rMBEs of around −15 %–
15 %, but struggle more in areas with complex topography.
For some locations of Alaska’s mountainous interior, rMBE
values are much higher than those of surrounding locations
(rMBEs around 60 %, especially during the winter). Overall,
average RMSEs across Alaska for each season were 1.65,
1.08, 0.9, and 0.95 m s−1 for ADDA v2 and 1.14, 1.23, 1.17,
and 0.96 m s−1 for ERA5. Similarly to CONUS, ADDA v2

was able to more accurately capture Alaska’s wind speeds
during the summer and fall but had a notable spike in RMSE
magnitudes during the winter, especially for inland locations.

3.3 Sensitivity of wind speed biases to physics
parameterizations

Given all the evaluations in previous sections, this section in-
vestigates some potential drivers of model bias over various
regions, which can be used to implement solutions. Most no-
tably, ADDA v2 sees positive wind speed biases across the
southeast United States, as well as for some parts of the upper
Midwest. This bias is seen for both the near-surface winds
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Figure 6. ADDA v2 RMSEs, rRMSEs, and Pearson correlation coefficients at different timescale averages for Site A, Arkansas (b); Fowey
Rock, Florida (c); Five Fingers, Alaska (d); and San Juan, Puerto Rico (e), along with average metrics across all 26 meteorological towers
(f). The number on each bar represents the value for each respective statistic, with timescales becoming coarser from left to right.

and the hub-height winds (Figs. 7, 2e). Part of these overes-
timations can be attributed to the biases within the forcing
data of ERA5. Depicted in Fig. 7, ERA5 primarily overes-
timates wind speeds for southeast CONUS, especially dur-
ing nighttime hours. Another potential reason for the over-
estimated wind speeds during nighttime could be attributed
to the model’s capacity to respond to atmospheric stabil-
ity. It has been documented that Noah-YSU (the PBL and
LSM schemes used to run ADDA v2 simulations) has en-
hanced performance for wind speeds in unstable conditions
but struggles in a very stable atmosphere (Hong et al., 2006;
Draxl et al., 2014; Wang and Jin, 2014). Thus, the very low
wind speeds present during stable conditions may not be ac-
curately captured by models employing these schemes.

The overestimation of wind speeds over the upper Mid-
west, however, does not seem to be inherited from ERA5.
Instead, it is likely due to the model’s physics parameteriza-
tion. Various ASOS locations were chosen in the Midwest,
where ADDA v2 showed high error magnitudes, to examine
whether different physics parameterizations minimized these
errors. Seasonally averaged diurnal cycles were studied for
these locations using the six structural uncertainty ensemble
members (Sect. 2.2) with varying PBL and LSM schemes

against observations. Error metrics were calculated, and the
most accurate ensemble, indicated by the highest correlation
coefficient or the lowest RMSE, was noted (Fig. 8).

For each location that demonstrated a positive near-
surface wind speed bias, the NoahMP land surface model
outperformed the Noah land surface model, as seen in
the diurnal cycles plotted for a Wisconsin ASOS station
(Fig. 8). It is also apparent that the greatest error occurs
during overnight hours (00:00–12:00 UTC), in which none
of the six ensemble members come close to representing
the observed wind speeds. Contrarily, during daytime hours
(12:00–00:00 UTC), all ensemble members more accurately
capture wind speed magnitudes, although they still demon-
strate some degree of overestimation. Furthermore, in all but
one metric, the MYNN PBL scheme outperformed the YSU
PBL scheme. Of the statistical metrics considered for each
season, the MYNN PBL scheme almost always showed the
lowest RMSE value and the highest correlation coefficient.
However, it is important to acknowledge that no individual
model configuration was able to solve the positive bias seen
for these locations.

Considering the effects that different LSM schemes have
on simulated wind speeds, we further analyzed how spe-
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Figure 7. ADDA v2 and ERA5 seasonal rMBEs calculated against 2000+ ASOS locations across CONUS and Alaska.

cific LSM parameterizations drive differences in near-surface
winds. One of the most important considerations is friction
velocity, typically denoted by u∗. Friction velocity quanti-
fies the turbulent momentum flux at the surface. Therefore,
higher u∗ values correspond to more of the momentum being
lost to the surface, leading to weaker wind speeds closer to
the ground.

We analyzed u∗ between the NoahMP and Noah LSM
schemes and found that friction velocity generally tends to
be larger in model simulations that employ NoahMP (Fig. 9),
especially at the locations that saw positive near-surface wind
speed biases. In some cases, the friction velocity was as much
as 20 %–25 % larger in NoahMP than in Noah. As a result,
as shown in Fig. 9, wind speed ratios between NoahMP and
Noah, specifically within the first ∼ 10 m a.g.l., were as high
as 1.15 (Fig. 9). At greater heights (e.g., 25 m and above),
this ratio decreases as friction has a diminishing influence on
momentum fluxes with increasing height as wind speeds get
stronger overall. Therefore, while the NoahMP LSM saw im-
proved performance in simulating near-surface winds, it still
did not fully resolve the positive bias observed.

3.4 Interannual variability and model uncertainty

Interannual variability across ADDA v2’s 20-year temporal
period was calculated across the entire spatial domain. Ad-

ditionally, model uncertainty was quantified by investigat-
ing the spread across 500 augmented ensembles, varying in
their physics parameterizations (structural uncertainty) and
initial conditions (internal variability). While the model un-
certainty brought about by structural uncertainty was larger
than that generated by the internal variability (Fig. S2), both
were considered here to provide a comprehensive view of
all model uncertainty. The magnitudes and spatiotemporal
patterns of each of these variabilities are then investigated
here. Intuitively, the degree of model uncertainty is signif-
icantly influenced by the timescale being analyzed. This
can be seen in Fig. 10, in which the magnitude of uncer-
tainty scales inversely with the length of the timescale. The
biweekly, weekly, and daily timescales see overall uncer-
tainty values of approximately 0.4–0.7, 0.7–1.1, and greater
than 2.5 m s−1, respectively, across much of North Amer-
ica (Figs. 10, 11). This concept is similar to the improved
performance of ADDA v2 at coarser-resolution timescales
(Sect. 3.1.4). We also found that nighttime uncertainties were
slightly higher than daytime uncertainties in regions of com-
plex topography, especially over the Rocky Mountains.

In terms of the spatial patterns of model uncertainty, the
mountainous regions generally demonstrate higher uncer-
tainty values, by about 0.5 m s−1, when compared to adjacent
regions with simpler topography (Figs. 10, 11a, b). This indi-
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Figure 8. Seasonally averaged diurnal cycles for each of the structural uncertainty ensemble members (Sect. 2.4) against observed wind
speeds in regions where ADDA v2 demonstrated a positive bias. Each ensemble label is denoted by its LSM or PBL scheme and the options
for the dynamic vegetation and surface layer drag coefficient calculation (e.g., 5-1 means dveg= 5 and opt_sfc= 1 in namelist.input if
NoahMP was used).

cates that complex terrain introduces more unpredictable in-
teractions between the physical mechanisms that drive near-
surface and low-level winds (Wu et al., 2022a; Helbig et
al., 2017). These interactions pose challenges for the model
in producing reasonable solutions. Thus, small changes in
model initial conditions or parameterizations can influence
these mechanisms and cause significant variability within
the simulated wind. It is also interesting to note that large
lake features also observed high degrees of model uncer-
tainty, specifically during the summer months, indicating the
model’s inadequacy in solving air–lake interactions and the
need for a fully coupled lake–atmosphere model (Kayastha
et al., 2023).

In the context of wind energy applications, model un-
certainty is integral when mapping ideal locations for wind
farm siting. However, it needs to be paired with spatiotem-
poral patterns of interannual variability to understand the full
scope of wind resource reliability and potential risks asso-
ciated with long-term power generation. Ideally, both model
uncertainty and interannual variability need to be low for op-

timal and consistent power generation. As seen in Fig. 11a
and b, the relative magnitude scale of interannual variability
and model uncertainty is very different for all seasons. For
example, the interannual variability of biweekly-averaged
100 m wind speeds can be as high as 70 %–80 % of the wind
speeds themselves. This is observed especially during the
winter months, when highly variable synoptic-scale features
strongly influence wind patterns. Alternatively, model uncer-
tainty exists at a smaller magnitude, typically in the range of
about 10 %–20 % of the mean wind speed.

The interannual variability in summer is smaller, with typ-
ical magnitudes ranging from 30 %–40 % of the mean wind
speed, likely attributable to the more consistent synoptic pat-
terns present during summer. At coarser timescales (e.g., sea-
sonal), both interannual variability and model uncertainty de-
crease considerably. Across much of North America, sea-
sonal interannual variability is 15 %–25 % of the mean wind
speed. But, consistent with any timescale, these values can
be as high as 40 %–50 % in regions of complex topography
(Fig. S3).
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Figure 9. Vertical profile of wind for a location in which ADDA v2 overestimated wind speeds, comparing averaged winds between the
2018 simulations using the NoahMP and Noah LSMs. Wind speed profiles correspond to the leftmost y axis, while the ratios of both wind
speed and friction velocity use the rightmost y axis.

Figure 10. Model uncertainty at different timescale averages (daily, weekly, and biweekly). For a detailed description of the methodology
for uncertainty quantification, see Sect. 2.5.
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Figure 11. Relative interannual variability and relative model uncertainty for one biweekly-averaged period for a winter month (January)
and a summer month (July) for 100 m wind speeds. For a detailed description of the methodology for interannual variability quantification,
see Sect. 2.5.

The short-term ensemble simulations can be leveraged
with the long-term simulations to identify key regions that
have an optimal combination of moderately strong wind
speeds and relatively low model uncertainty and interannual
variability. Ultimately, this will maximize energy output po-
tential for optimally sited wind farms.

4 Discussion and concluding remarks

The validation of the Argonne Downscaled Data Archive ver-
sion 2 (ADDA v2) dataset presented in this study underscores
its utility in wind resource assessments and climatological
applications. This section synthesizes the key findings and
compares the performance of ADDA v2 with ERA5, high-

lighting ADDA v2’s added value to its coarser-resolution
forcing data.

ADDA v2 demonstrated significant advantages over
ERA5 in capturing fine-scale wind variability across diverse
geographies. The dataset performed particularly well in re-
gions with complex terrain, such as the Rocky Mountains and
Alaska, where high-resolution modeling captured localized
wind phenomena more effectively. This is especially criti-
cal when assessing the consistency in wind power generation
throughout the day, with potential implications for hybrid-
style energy generation. Additionally, ADDA v2’s ability to
reduce errors at coarser temporal scales (e.g., weekly and
monthly averages) reinforces its applicability to long-term
climatological studies and resource planning. However, chal-
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lenges remain, particularly in regions where both ADDA v2
and ERA5 struggled, such as the southeast United States and
areas characterized by stable atmospheric conditions. These
limitations highlight the need for targeted improvements in
existing and new parameterizations (e.g., PBL and LSM) to
address specific biases. Additionally, while this validation fo-
cused more on inland regions, Sheridan et al. (2025) have
evaluated ADDA v2’s performance over coastal locations.
Tobias-Tarsh et al. (2025) have evaluated ADDA v2’s per-
formance in wind-related extremes in the context of tropical
cyclones over the North Atlantic Basin.

Other studies exist that introduce wind datasets and val-
idate them against observations. For instance, Draxl et al.
(2015b) documented a 7-year wind dataset with a grid spac-
ing of 2 km, primarily focused on wind power evaluations
over CONUS, and included a limited meteorological val-
idation using six tall masts and three buoys. Rasmussen
et al. (2023) performed validations on a 42-year-period,
4 km dataset of near-surface (10 m) wind speeds, with un-
derestimation particularly over complex terrain. While these
datasets provide their own unique utility, ADDA v2 offers a
powerful combination of a reasonably long time period and
a large spatial domain containing unique geographic regions.
By comprehensively validating ADDA v2’s wind speeds and
directions using an extensive network of near-surface ob-
servations and a diverse set of hub-height observations, this
evaluation can provide insight for both climatological stud-
ies and wind resource assessments. Yet, all these datasets can
be used collectively, complementing one another with their
unique characteristics and allowing for a more comprehen-
sive view of model uncertainty and longer-term variability.

However, even with all these datasets developed thus far, it
is challenging for high-resolution numerical simulations cov-
ering such large domains to capture all model uncertainty and
variability. The experiments presented here aim to deliver a
relatively robust sample of model uncertainty, but there are
many other physics parameterizations that can generate dif-
ferent model solutions. Recent advances in machine learning
(ML)-based surrogate models or hybrid models may provide
a more comprehensive means of quantifying model uncer-
tainty (Tunnell et al., 2023; Di Santo et al., 2025; Pringle et
al., 2025) given that they can perform faster calculations.

While this evaluation demonstrates the capabilities of
ADDA v2 in capturing climatological features using mul-
tiple metrics over various geospatial locations, some other
features can be investigated in future work. One of them is
the spatial and temporal variability captured by the model.
As demonstrated by past studies (e.g., Müller et al., 2024;
Skamarock, 2004; Larsén et al., 2012), atmospheric mod-
els with spatial resolution 1x can only capture the energy
spectrum at wavelengths ∼ 4–6 1x. Thus, at a 4 km model
resolution, the inherent variability and turbulence of the at-
mosphere can only be simulated accurately at∼ 20 km scales
(Kolmogorov, 1941; Durran, 2010; Skamarock et al., 2008).
Evaluation of such variability would require continuous grid-

ded observational data, such as those from radar, lidar, or
satellites (Müller et al., 2024). Another consideration for fu-
ture work is to make the evaluations more robust by including
multiple model grid cells surrounding each observation site,
rather than using only the closest grid cell, as we did in this
study. This would allow us to characterize a range of mod-
eled winds around the observation sites and better represent
model spatial variability. Lastly, while this study prioritizes
climatology inland, future work is needed to analyze ADDA
v2’s capability of capturing extreme winds, which can pro-
vide insight into storm-related (e.g., derechos) risk assess-
ments (Li et al., 2025).

Code and data availability. All datasets used in this study are
freely available, except for the selected proprietary hub-height
data. ERA5 reanalysis data are accessible through the Climate
Data Store: https://cds.climate.copernicus.eu/ (last access: 15 Oc-
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newable Energy Laboratory, providing access to hub-height wind
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wind/wind-toolkit/wtk-led-climate-v1-0-0-download/ (last access:
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