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Abstract. Wind farm control concepts require awareness and observation methods of the inner-farm flow field.
The relative location of the wake, to which a downstream turbine is exposed, is of great interest. It can be used as
feedback to support closed-loop wake-steering control, ultimately leading to higher power extraction and fatigue
load reduction. With increasing fidelity, not only time-averaged wakes but also instantaneous wake conditions,
subject to meandering and wind direction changes, are considered within a controller. This paper presents a
quantitative field comparison of two independently applied wake centre estimation methods: a scanning lidar
and an extended Kalman filter (EKF) based on the rotor loads of the waked turbine. No ground truth is available
in the field environment, therefore the methodology accounts for the fact that two uncertain estimates are com-
pared. The lidar estimates, with a derived uncertainty in the order of 0.05 rotor diameters D, can be used as a
suitably precise reference to draw conclusions about the load-based EKF. The EKF uses Coleman-transformed
blade root bending moments, linked to the wake centre position via an analytical model with a low number of
tuning parameters. The model can easily be trained with aeroelastic simulations, including the dynamic wake
meandering model. The formulation adds robustness to the tracking and allows the user to determine the confi-
dence in the wake position estimate, which can be used for wake impingement detection or for a wake-steering
controller to judge whether a yaw manoeuvre is adequate. The results indicate agreement of the methods with
root mean square errors of 0.2D for low and moderate turbulence intensity, and 0.3D for turbulence intensities
above 12 %. The paper focuses on wake position estimation but also outlines a methodology for validating wind
farm models and wind field reconstruction techniques with complementary lidar data.

1 Introduction

Wind farm flow control allows the user to partly compen-
sate wake-induced power losses or load increases. Wake
steering, static induction control, or wake mixing strategies
are employed to that purpose (Meyers et al., 2022). So far,
mostly open-loop approaches are considered for wake steer-
ing, namely misaligning or dynamically actuating the up-
stream turbine(s) without considering feedback of the wake-
exposed turbines (see e.g. Fleming et al., 2017; Doekemeijer

et al., 2021). Here, the yaw controller relies on engineering
models for the wake trajectory it tries to aim for. While ro-
bust formulations can account for wind direction variability
(Rott et al., 2018; Simley et al., 2020), optimal wake deflec-
tion cannot be guaranteed, since outer influences and wake
dynamics can hardly be accounted for. The wake trajectory
is impacted by atmospheric stability and further subject to
the meandering motion (Larsen et al., 2015; Sengers et al.,
2023).
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The consequent next step is to close the loop by pro-
viding suitable feedback signals to a wind farm controller.
Meyers et al. (2022) explicitly mention the need for state es-
timation on the wind farm level, i.e. for the awareness of the
flow conditions within the farm. Standard SCADA data and
basic instrumentation of modern wind turbines, for example
strain gauges for blade root bending moments, allow the rotor
to be used as a sensor. Rotor-effective measurements such as
power, torque, and collective blade loads provide observabil-
ity towards rotor-effective wind speeds (Soltani et al., 2013;
Bottasso et al., 2018; Lio et al., 2023; Coquelet et al., 2024).
This can be used as direct feedback or to tune an analytical
flow model, as shown by Doekemeijer and van Wingerden
(2020) and Becker et al. (2022). Yet, the observability is lim-
ited, as shown for example by Doekemeijer and van Winger-
den (2020), where the estimator can hardly distinguish which
half of the rotor is exposed to a partial wake, especially un-
der uncertain wind direction information. In order to increase
the spatial observability of non-uniform turbine inflow, the
rotor imbalances – resulting from shear, yaw misalignment,
or wake impingement – can be encountered (Bertelè et al.,
2017). These rotor imbalances, such as yaw and tilt moments,
are related to the harmonics of the blade root bending mo-
ments. The Coleman transform describes the translation from
the rotating to the non-rotating coordinate system.

Ultimately relevant for wake-steering control is the wake
position within the wind farm, which is the feature that a
wind farm controller aims to manipulate. Existing methods
for the wake position estimation are based either on wind
turbine rotor loads or the light detection and ranging (li-
dar) measurements. The load-based approaches described by
Bottasso et al. (2018) and Schreiber et al. (2020) aim at
qualitative impingement detection and include a field valida-
tion. Time-averaged position tracking is shown by Cacciola
et al. (2016) in aeroelastic simulations and by Schreiber et al.
(2016) in a wind tunnel.

Yet, the dynamics caused by wind direction changes and
wake meandering are not taken into account here. Braun-
behrens et al. (2023) show that these dynamic scales are rel-
evant for the inner-farm flow but are also challenging for an
estimator to capture. As outlined by Larsen et al. (2008) and
further described in Sect. 2.2.2, the spatial scales in the order
of 2–20 rotor diameters (or their complementary time scales)
need to be considered in the context of wake meandering.
Dynamic EKF formulations are shown by Dong et al. (2021)
and Onnen et al. (2022), using blade loads but also taking
the meandering dynamics into account. Yet, these methods
are only tested in simulation environments, where the wake
position is known.

The lidar-based wake-tracking methodologies depend on
the lidar type. The online approaches for wind farm con-
trol purposes use short-range forward-looking lidars, usually
considering a low number of fixed beams for cost efficiency
(Raach et al., 2017; Lio et al., 2021). Kalman filter formu-
lations are used for robustness under the sparse spatial ob-

servability owing to the low number of beams. They are sim-
ilar to the load-based attempts but can further include the
wake deficit shape to the estimation Lio et al. (2021). In con-
trast, long-range scanning lidars provide a high spatial res-
olution of the flow field. Due to their high costs, they are
not considered for commercial applications in the context of
real-time wind farm flow control. Instead, they are mainly
used in experimental campaigns for the scientific validation
of wake behaviour (Trujillo et al., 2011; Machefaux et al.,
2015; Bromm et al., 2018; Brugger et al., 2022). Both wake
steering (Bromm et al., 2018) and wake meandering (Brug-
ger et al., 2022) effects can be resolved.

In Sect. 4.2.2, the results of the load- and lidar-based wake
estimation approaches mentioned above are compared to the
approach presented in this paper, considering the individual
testing conditions and performance metrics. At this point, the
research gap can be concluded as follows: existing work for
load-based wake tracking lacks

– a consideration of wake dynamics and time resolution,
or

– a field validation, or

– (in the case of a field validation) an independent refer-
ence to compare with.

The objective of this work is to fill the gap by addressing all
three aspects: the work shows the direct estimation of the in-
stantaneous wake centre position in a field experiment with
two utility-scale wind turbines. The load-based estimate is
compared to the wake position probed with a scanning lidar,
which serves as an independent reference. To that purpose,
the uncertainty of the lidar estimate is quantified using ana-
lytic error propagation following the GUM (Guide to the ex-
pression of uncertainty in measurement; JCGM, 2020). The
lidar data processing orients at existing work of Machefaux
et al. (2015) and Bromm et al. (2018), isolating the quasi-
instantaneous wake deficit in a moving frame of reference.

The remainder of the paper is structured as follows: in
Sect. 2, the methodology is described, starting with the field
setup, followed by the load-based EKF and the lidar-related
data processing, including an uncertainty consideration. In
Sect. 3, the results are presented. First, the experimental con-
ditions are characterized, and then the wake position esti-
mates are compared. In Sect. 4, the findings are discussed,
ranged, and compared with literature. Concluding remarks
are given in Sect. 5.

2 Methodology

2.1 Field experiment

The wind farm used in this work consists of two Eno126
turbines, built by Eno Energy Systems GmbH near the vil-
lage of Kirch Mulsow near Rostock, Germany, close to the
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Baltic Sea. The surrounding nature of the test site has agri-
cultural vegetation, with patches of trees and bushes between
the fields. The measurements used for this paper are from
February and March 2021. Further investigations of the ex-
periments at this site are reported in Hulsman et al. (2022),
Sengers et al. (2023), and Kidambi Sekar et al. (2024). The
turbines are spaced by 2.7 rotor diameters along a south-
westerly direction (compare Fig. 1), which is also the prevail-
ing wind direction for this site. For brevity, the turbines are
called WT1 and WT2 in the following, with WT1 located in
the south-west, thus mostly being the upstream turbine. Each
turbine has a rotor diameter D of 126 m and a rated power
of 3.5 MW. The hub heights are 117 and 137 m for WT1 and
WT2, respectively. In addition to standard operational sig-
nals, both turbines are equipped to measure blade root bend-
ing moments in flapwise and edgewise directions with strain
gauges and fibre-optical sensors. This paper uses the fibre-
optical sensors by Polytech Wind Power Technology Ger-
many GmbH (formerly Fos4X GmbH). Both turbines’ na-
celle yaw orientation is tracked with interconnected differ-
ential Global Navigation Satellite System (GNSS) devices
(Trimble type 3 Zephyr mode, three antennas on WT1 and
two on WT2l; see Trimble, 2025). The increased accuracy
of the yaw angle probing in comparison to the inbuilt yaw
encoders is relevant for the post-processing of the lidar mea-
surements, as recommended by Bromm et al. (2018). The
rotor azimuth angle information of WT2 was not available,
thus the angle was reconstructed from the gravity-dominated
edgewise blade loads, as shown in Appendix A.

A met mast is located 2.6D north of WT1 (see Fig. 1). The
wind speed and direction are probed with cup anemometers
and vanes (Thies-Clima, type 4.3352.00.400 (Thies-Clima,
2025b) and type 4.3151.00.212 (Thies-Clima, 2025a), re-
spectively) at z1 = 54 m and z2 = 112 m. Both the turbine
and met the mast data are stored at 50 Hz.

The wind shear exponent α is calculated from the met mast
measurements according to the power law:

α =
log(u2/u1)
log(z2/z1)

, (1)

where ui , i ∈ 1,2 is the wind speed and zi , i ∈ 1,2 is the
height of the wind cup anemometers.

A pulsed scanning lidar (Leosphere WindCube 200S) is
installed on the nacelle of WT1, facing in a downstream di-
rection. Within the wind direction sector under investigation,
the lidar performs horizontal trajectories (single plan posi-
tion indicator, or PPI). The scanned sector covers a range of
120° with a scanning speed of 2° s−1 and range gates be-
tween 50 and 1630 m. The coordinate systems involved in
the post-processing and further details on the lidar trajectory
are described in Sect. 2.3.1.

Within the wind direction interval [191°,259°], active
wake steering control is tested. At intervals of 30 min, the
controller of WT1 toggles between greedy and intentional
yaw misalignment. The yaw update frequency is at 30 s, and

the misalignment is realized via the manipulation of the na-
celle vane signal. The assessment of the wake steering con-
troller is not the focus of this paper, yet it is important to
regard its role when discussing the wake constellations.

2.2 Load-based wake tracking

In this section, the methods used for the load-based wake
tracking algorithm and usage of training data are described.
Core of the tracking algorithm is an extended Kalman fil-
ter (EKF), which links the load measurements from a wake-
exposed wind turbine with the physical knowledge about
the wake dynamics. An EKF incorporates non-linear state-
and measurement transition functions via local linearization
around the current state estimate (Brown and Hwang, 1992).
The interaction between the individual aspects of the load-
based wake tracking problem is shown in the overview chart
in Fig. 2. The EKF and its sub-components are described
in the following sections. In Sect. 2.2.1, the EKF formula-
tion and the definition of states and inputs takes place. Sec-
tion 2.2.2 defines the state transition function f (), including
a consideration of the involved wake physics. Section 2.2.3
defines the measurement transition function h(), i.e. the link-
age between wake position and rotor loads.

Note that the estimation task is here formulated for the
general two-dimensional case, which considers the horizon-
tal and vertical wake position. Due to the measurement setup
and the single PPI scans of the lidar, only a comparison of
the horizontal component is possible, which is also more rel-
evant. The vertical position is considered less relevant for the
application, because (i) it has lower position variance due to
wind direction changes and meandering (Braunbehrens and
Segalini, 2019), and (ii) it cannot be manipulated by wake-
steering control.

2.2.1 General EKF setup

A discrete EKF is implemented, where k denotes the time in-
dex, ˆ(·) an estimate, xk ∈ RNx the state vector, and yk ∈ RNy
the measurement vector, with dimensions Nx = 4 and Ny =
3. The state vector contains the wake positions (yw,zw) in
a WT2-oriented coordinate system (compare Sect. 2.3.1), as
well as their first derivatives with time (vc,wc). The mea-
surement vector yk contains the Coleman-transformed non-
rotating rotor loads, further described in subsection 2.2.3.

xk = [yw,zw,vc,wc]
T , yk = [Myaw,Mtilt,Mcol]

T (2)

The EKF algorithm consists of the steps presented in
Eqs. (3)–(7). An a priori value is denoted as (·)−. The
model xk+1 = f (xk,nx,k) describes the state transition, and
the measurement model yk = h(xk,ny,k) describes the static
mapping between the system state and measurements, where
nx,k ∈ RNx and ny,k ∈ RNy represent white noise acting on
the state and output equation, respectively, with zero mean
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Figure 1. Wind farm layout at the Kirch Mulsow test site. Left: turbine spacing and distance to the met mast indicated; right: wind sectors
for the control experiment indicated; adapted from Hulsman et al. (2022). © OpenStreetMap contributors 2024 (https://www.openstreetmap.
org/copyright). Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

Figure 2. Block diagram of the dynamic wake tracking algorithm, showing the input and output signals to the EKF.

and covariance matrices Q and R. The state covariance ma-
trix is denoted as Pk . It is initialized as Pk=0 =Q. The local
linearizations of the state transition model and the measure-
ment model around a current state are denoted as Fk and Hk ,
respectively. Note that the state transition model f (xk,nx,k)
used in this work is formulated as a linear operation (see next
subsection). Thus, the linearization in Eq. (4) is not necessary
and F can be directly constructed from Eq. (8a)–(8d). In the
scope of this work, the EKF is applied at 1 Hz sampling fre-
quency.

Prediction step:

x̂−k = f (x̂k−1,0) (3)

P−k = FkPk−1FTk +Q with Fk =
∂f (xk−1,0)

∂x
. (4)

Measurement update step:

Kk = P−k HT
k (HkP−k HT

k +R)−1 with Hk =
∂h(x−k ,0)
∂x

(5)

x̂k = x̂−k +Kk (yk − ŷk)︸ ︷︷ ︸
innovation ey,k

with ŷk = h(x̂−k ,0) (6)

Pk = (I−KkHk)P−k . (7)

2.2.2 Dynamic model

The dynamic model f () describes how the system state
evolves over time. In this study, the model should capture
how the wake centre position changes over time. Depend-
ing on the atmospheric conditions and the wind farm control
strategy, the wake trajectory is subject to various dynamic
influences. Time scales of wind direction changes, wake-
steering control and wake meandering need to be incorpo-
rated by the dynamic model of the EKF, while the effects
corresponding to small-scale turbulence with no expressive-
ness towards the wake position need to be rejected.

For the inner-farm effect of wind direction variability,
Simley et al. (2020) suggest a distinction between low-
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and high-frequency wind direction. The high-frequency share
refers to oscillatory point-measurements (e.g. a nacelle vane)
at the hub height of a wind turbine, while the low-frequency
share describes the dominant mean wind direction across the
wind farm. Using a combination of field measurements and
large-eddy simulations (LESs), Simley et al. (2020) iden-
tify the boundary between high- and low-frequency wind
direction at 0.0037 Hz for a scenario at 8 m s−1 ambient
wind speed and wind turbines of 126 m rotor diameter
(NREL 5 MW). Rott et al. (2018) suggest to regard a time
window of 5 min (=̂ 0.0033 Hz), which is very similar. Us-
ing the same non-dimensional type of expression as in Larsen
et al. (2008) and Lio et al. (2021), this frequency can be
expressed as fc,WD ≈ u∞/(20D), where u∞ is the ambient
undisturbed mean wind speed. Depending on the perspective,
a high-frequency wind direction variation can also be seen
as the vector addition of longitudinal and transversal wind
speed components, i.e. a turbulence phenomenon.

Wake meandering in the atmospheric boundary layer is
driven by turbulence patterns considerably larger than the
wake deficit scale (Trujillo et al., 2011). Larsen et al. (2008)
introduced the dynamic wake meandering (DWM) model,
which translates this split of scales to a random walk trajec-
tory, where the wake deficit is seen as a passive tracer. Larsen
et al. (2008) and Larsen and Lio (2025) define the default cut-
off frequency of the meandering motion as fc = u∞/(2Dw),
where Dw is the wake diameter (in near-wake applications,
the rotor diameter D is also a valid choice). Note that this is
the theoretical limit, up to which a wake deficit is regarded as
a passive tracer. Lio et al. (2021) show in a field study with
a lidar-based EKF featuring an auto-correlation term of the
wake position time history that the dominant spectral share
of the meandering motions can be up to a factor 10 slower.

In conclusion, the frequency range of u∞
20D ≤ f ≤

u∞
2D is

relevant for meandering. Wake position changes at slower
time scales do not require a higher-order model. The me-
andering time scales are thus modelled with 1st-order dif-
ferential equations. This work uses a cut-off frequency of
fc = 0.01 Hz. The changes in lateral and vertical wake po-
sition are described via the characteristic velocities vc(t) and
wc(t), whose change rates are modelled as low-pass-filtered
white noise:

ẏw(t)= vc(t)+ nx,1(t) (8a)
żw(t)= wc(t)+ nx,2(t) (8b)
v̇c(t)=−ωc vc(t)+ωcnx,3(t) (8c)
ẇc(t)=−ωcwc(t)+ωcnx,4(t), (8d)

where ωc = 2πfc. The equations are discretized for their
implementation in the state transition function f (xk,nx,k).
Note that the nx,i represents the ith element of the noise vec-
tor nx . The time index k is omitted here, because the con-
tinuous representation is chosen. Since the noise terms enter
linearly, they are incorporated in the EKF formulation via the
additive noise covariance matrix Q.

Figure 3. Contour plot of the measurement model outputs in depen-
dency of the wake position, normalized with their respective max-
imum and minimum for confidentiality. The fitting parameter d is
indicated, describing the phase offset of the yaw-tilt coupling.

2.2.3 Measurement model

The measurement model h() is a mapping from the state to
the measurement – in this study, a link from the wake centre
position to the rotor loads. The model must fulfil certain cri-
teria: it should be computationally inexpensive, such that it
can be computed online in each filter iteration. Look-up ta-
bles with pre-computed information are preferable here (see
e.g. Schreiber et al., 2020; Soltani et al., 2013). Moreover,
the model has to be differentiable, such that its local sensi-
tivity to a change in state or input can be determined. Fi-
nally, it should be robust and lead to a convergence of the
estimate, even if the state at initialization is far off. The mea-
surement vector yk contains the Coleman-transformed, non-
rotating flapwise blade root bending moments according to
Eq. (9). The time index k is omitted from the notation for
better readability.

y =

[
Myaw
Mtilt
Mcol

]
+ny

=
2
3

 sin(9) sin(9 + 2π
3 ) sin(9 + 4π

3 )
cos(9) cos(9 + 2π

3 ) cos(9 + 4π
3 )

1/2 1/2 1/2

[ Mf,1
Mf,2
Mf,3

]
+ny , (9)

where9 denotes the rotor azimuth position andMf,i denotes
the ith blade flapwise blade root bending moment.

In the following, the parameterized model is derived in
Eqs. (10)–(13). All fitting parameters introduced in this scope
are listed in Table 1. The model is subsequently fitted to train-
ing data generated in aeroelastic simulations with the enabled
DWM model (Larsen et al., 2008). Figure 3 shows the con-
tour shape of the model, and Fig. 4 is an example of training
data and fitting.

The yaw and tilt moment depend on the wake position
(yw,zw) relative to the rotor. Let these be expressed in po-
lar coordinates centred at the hub, where rw =

√
y2

w+ z
2
w is

the distance of the hub to the wake centre. The ratio between
rotor tilt and yaw moment yields information about the an-
gle θ and the angular position of a wake in the rotor plane,
quantified as θ = atan(yw/zw) using a four-quadrant inverse
tangent. In order to get the absolute magnitude of the wake-
induced rotor imbalance, the quantity M̃(rw) is introduced
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Table 1. Fitting parameter for the measurement model h().

Parameter Unit Description

Rmix m wake overlap resulting in the largest yaw/tilt moment; an approximation is
Rmix = (R+Rw)/2, i.e. the mean of rotor radius and wake deficit radius

M̃max Nm maximal value of yaw/tilt moment (reached at wake overlap Rmix)
b Nm wake-independent offset of yaw moment
c Nm wake-independent offset of tilt moment
d ° phase angle to describe yaw-tilt coupling
M0 Nm collective moment at full wake overlap
M∞ Nm collective moment at no wake overlap

Figure 4. Training data and model fit of the yaw moment; each scat-
ter colour refers to a prescribed position of WT1, normalized with
the respective maximum and minimum for confidentiality. The fit-
ting parameter Rmix, M̃max, and c are indicated, showing the width,
amplitude, and offset of the model, respectively.

as

M̃(rw)=
√(
Myaw(rw,θ )− b

)2
+ (Mtilt(rw,θ )− c)2. (10)

A reformulation yields the following compact formulation of
the yaw and tilt moments

Myaw(r,θ )= M̃(rw) · sin(θ + d)+ b (11a)

Mtilt(r,θ )= M̃(rw) · cos(θ + d)+ c, (11b)

where b and c describe offsets to the moments that do not
originate from the wake, such as a moment due to tilt over-
hang or vertical shear. An optional term for phase delay is de-
noted as d , describing how an inert blade reacts to a change
of local wind speed, also known as yaw-tilt coupling (see Lu
et al., 2015 and Mulders et al., 2019). The quantity M̃(rw)
is defined in Eq. (12), where M̃max and Rmix are fitting con-
stants.

M̃(rw)=


M̃max sin

(
πrw

2Rmix

)
if |rw|<Rmix

M̃max exp
(

2
(
rw
Rmix
− 1

)2
)

if |rw| ≥ Rmix
(12)

Although wake tracking based only on rotor imbalance
(Myaw,Mtilt) was found to be possible, the stability and con-
vergence behaviour can be enhanced by including the collec-
tive momentMcol (Onnen et al., 2022). The relation between
rw and Mcol is linked to the control strategy of the wind tur-
bine and the rotor-effective wind speed (REWS). A larger rw
leads to a higher REWS, until the wake is so far from the
rotor centre that no overlap with the rotor takes place and the
REWS approaches u∞. This means that in the partial load re-
gion, Mcol is suppressed with more wake overlap, i.e. for de-
creasing rw. In the full load region, the blades are pitched to
keep the power (∝ u3) constant, which implies that the thrust
and the flapwise moments (∝ u2) decrease with increasing
wind speed. The highest loading can be seen at rated wind
speed. Consequently,Mcol increases with more wake overlap
in the full load region, down to the point when the REWS be-
comes smaller than the rated wind speed. Mcol is fitted with
a Gaussian function of σ = Rmix. The constantsM∞ andM0
describe the collective moment for rw→∞ and rw = 0, re-
spectively.

Mcol(r)=M∞− (M∞−M0)exp

(
−

r2
w

2R2
mix

)
(13)

The characteristic shape of the measurement model as de-
scribed above is illustrated in Fig. 3.

The parameters of the measurement model (see Table 1)
are fitted to a set of training data from aeroelastic simulations
within the framework of FASTfarm (Branlard et al., 2022)
via a non-linear least-squares regression. The field setup is
replicated in the simulations, but the position of WT1 is sub-
sequently shifted laterally from −1.5D to +1.5D in steps
of 0.5D. The DWM model is enabled, and the curled wake
model is chosen (Branlard et al., 2022). As an example, a
subset of the training data at 10 m s−1 ambient wind speed is
given in Fig. 4, showing the non-dimensionalized yaw mo-
ment in dependency of the wake position yw. Each scatter
colour refers to one location of WT1. The combination of
wake meandering and different WT1 positions results in a
wide range of wake constellations being covered. In the case
of a constellation with larger downstream spacing, thus larger
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meandering amplitudes, even fewer WT1 positions could be
considered for the generation of training data.

The fit parameters depend on the ambient conditions, most
prominently on the ambient wind speed. Information of the
wake deficit is implicitly contained in the parametric model.
Especially in the case of large downstream distances, am-
bient turbulence and atmospheric stability impact the wake
mixing. In the present case, however, the streamwise spac-
ing is too short for the ambient turbulence to show a no-
table impact on the modelled wake mixing and thus on the
fitting parameters. The impact of shear on the wake deficit
is not fully accounted for in the simulation environment, es-
pecially in relation to wake asymmetry (as discussed later in
Sect. 4.1). Thus, it is decided to only create training data in
dependency of the ambient wind speed, resulting in a one-
dimensional lookup-table (LUT) of fitting parameters. This
requires 63 simulations (7 WT1 positions and 9 wind speeds,
4–12 m s−1), each with a duration of 600 s, a TI of 10 %, and
α = 0.25. Only one stochastic seed per wind field proved suf-
ficient, since the set for one ambient condition already com-
bines the results of seven simulations with their respective
wind field (referring to the seven lateral WT1 positions). De-
pending on the scenario, a higher-dimensional LUT can be
required. A consideration of ambient TI is required in case
of larger streamwise spacing to adequately resolve the im-
pact of turbulent mixing in the far-wake region. Also, includ-
ing ambient shear could be a further step, preferably with a
refined modelling of its impact on the wake deficit.

In addition to parameter fitting, the training data allows in-
sight into the order of magnitude of the load variance, which
is linked to turbulence and dynamic events such as load over-
and undershoots. This variance is regarded in the noise tun-
ing of the EKF when choosing the entries in the measure-
ment covariance matrix R. The measurement covariance of
the yaw moment is increased by a factor of 10 in situations
when the turbine is yawing, to prevent a misinterpretation of
the yaw moments occurring here.

2.3 Lidar data processing

This section describes the steps from the initial scanning li-
dar measurements to a wake position in a WT2-based coor-
dinate system. An uncertainty analysis is included to show
the eligibility of the lidar measurements as a suitably precise
reference.

2.3.1 Coordinate systems

Different coordinate systems occur in the scope of this work.
An overview is shown in Table 2. Ultimately, the lidar-probed
wake positions should serve as the reference for the load-
based tracking of WT2, thus a WT2-centred coordinate sys-
tem is targeted. The relations between the coordinate sys-
tems are given in Eqs. (14)–(16), and an overview is sketched
in Fig. 5. The x and y offsets in Eq. (16) refer to the 2.7D

Figure 5. Illustration of the coordinate systems as defined in Ta-
ble 2.

spacing in ground-based coordinates. The lidar performs hor-
izontal single PPI scans. An elevation of δ = 1.3° is used to
account for the average nacelle tilt during operation, deter-
mined via the GNSS system on WT1. The lidar azimuth an-
gle χ covers a range of 120° with a scanning speed of 2° s−1.
The range gate centre is denoted as dr and spans from 50 to
1630 m in steps of 10 m. The nacelle yaw angles are denoted
as γ1 and γ2 for WT1 and WT2, respectively.[
x
y
z

]
WT1
= dr

[
cos(χ ) cos(δ)
sin(χ ) cos(δ)

sin(δ)

]
Li

(14)[
x
y
z

]
GB
=

[
−sin(γ1) cos(γ1) 0
−cos(γ1) −sin(γ1) 0

0 0 1

][
x
y
z

]
WT1

+

[
0
0

hWT1

]
(15)[

x
y
z

]
WT2
=

[
−sin(γ2) −cos(γ2) 0
cos(γ2) −sin(γ2) 0

0 0 1

][
x− 252.8m
y− 227.6m

z

]
GB

+

[
0
0

−hWT2

]
(16)

2.3.2 Wake centre estimation

The horizontal wind speed uh is the projection of the lidar
line-of-sight wind speed uLOS on the wind direction 8, ob-
tained by the nearby met mast:

uh =
uLOS

cos(χ + γ1−8)cos(δ)
(17)

Note that (γ1−8) expresses the yaw misalignment of WT1.
Equation (17) assumes zero lateral and vertical wind speed
components v,w, which is equivalent to the assumption of
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Table 2. Coordinate systems.

Coordinate Notation Axes
system

Lidar based (·)Li spherical, azimuth χ (positive clockwise), elevation δ, range dr, rotates with WT1 yaw γ1
WT1 based (·)WT1 Cartesian, right-handed, x in positive in downstream direction of WT1, z: elevation, origin at rotor centre
Ground based (·)GB Cartesian, right-handed, x: Easting, y: Northing, z: elevation, origin at WT1 foundation
WT2 based (·)WT2 Cartesian, right-handed, x in positive in downstream direction of WT2, z: elevation, origin at rotor centre

Figure 6. Wake centre identification from lidar measurements in
a WT2-based coordinate system. The wind direction here is 205°,
resulting in a partial wake constellation.

identical wind direction at the met mast and the probing posi-
tion. The impact of this assumption on the uncertainty is dis-
cussed in Sect. 2.3.3. The wake position is identified via the
horizontal velocity uh within the upstream area of WT2, de-
fined by xWT2 ∈ [−110,−90]m and yWT2 ∈ [−200,200]m,
compare Fig. 6. The upstream distance is a trade-off between
maintaining proximity to WT2 and being less affected by its
induction zone (Kidambi Sekar et al., 2024). The subsequent
wake centre identification is linked to the definition of the
wake centre itself, as discussed by Vollmer et al. (2016) and
Coudou et al. (2018). A comprehensive overview of differ-
ent lidar-based tracking methodologies is given by Trujillo
(2017). Following Vollmer et al. (2016), a robust approach
via the minimum in density of virtual available power is used:

yw = argmax
yWT2

(p ∗ fM ) (18)

with

fM (yWT2)=
{
−1 if |yWT2| ≤

D
2

0 otherwise
,

where (.∗ .) denotes a convolution and fM is a square-shaped
masking function. The density of available power is defined
as p(yWT2)= u3

h.

2.3.3 Uncertainty estimation

The uncertainty of the wake position yw is subject to

– the lidar probe position uncertainty,

– the uncertainty in the horizontal wind speed at the probe
position, when projected from the line-of-sight velocity,
and

– the sensitivity of the wake centre identification method
towards the wind speed uncertainty.

In principle, an uncertain probe position could further in-
fluence the probed wind speed, for example when measuring
at a different altitude than expected in a sheared or veered
flow. This can be corrected for, as shown by Schneemann
et al. (2021) for a long-range lidar experiment with range
gates of multiple kilometres. In the work presented here, the
probe position uncertainty is sufficiently small to neglect the
effect of wind speed gradients at the probe position (see later
in Fig. 7). The probe position is subject to the measurement
uncertainties listed in Table 3. Their propagation through
the coordinate transform in Eqs. (14)–(16) is formulated by
Eq. (19), following the GUM standard (JCGM, 2020), where
the expression (.)°2 denotes the element-wise square opera-
tion for a vector. Also, the square root is to be understood
element-wise. The uncertainties are illustrated in Fig. 7 for a
full alignment case (8= γ1 = γ2 = 228°). Note that the un-
certainties depend on the instantaneous constellation.

[
1x
1y
1z

]
WT2

=

√√√√√√√
(
∂xWT2

∂γ1
1γ1

)
°2
+

(
∂xWT2

∂γ2
1γ2

)
°2
+(

∂xWT2

∂δ
1δ

)
°2
+

(
∂xWT2

∂χ
1χ

)
°2

(19)

The uncertainty in the line-of-sight projection of the wind
speed1uh can again be expressed considering the geometry:

1uh =

√√√√√√√√
(
∂uh

∂χ
1χ

)2

+

(
∂uh

∂γ1
1γ1

)2

+

(
∂uh

∂8
18

)2

+

(
∂uh

∂δ
1δ

)2

+

(
∂uh

∂uLOS
1uLOS

)2 . (20)

The impact of the wind speed uncertainty on the wake centre
identification is investigated. If the wind speed uncertainties
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Table 3. Uncertainties in the scope of the lidar data processing; values relate to the 95 % confidence interval for normally distributed
uncertainties (i.e. a coverage factor of 2).

Quantity Variable Uncertainty

Lidar elevation δ ±2° (impacted by WT1 tilt motion)
Lidar azimuth χ ±0.5° (see Schneemann et al., 2021)
Range gate centre∗ dr 2 m
Mean wind direction 8 ±2 ° (see Schneemann et al., 2021; Simley et al., 2020)
WT1 yaw (GNSS based) γ1 ±0.5°
WT2 yaw (GNSS based) γ2 ±0.5°
LOS wind speed uLOS ±0.1 m s−1

∗ Range gate centre as a result of pulse length and time of travel; the range gate volume is considerably larger.

Figure 7. Illustration of uncertainty propagation: probe position uncertainty in x, y, and z, and horizontal wind speed uncertainty; WT2-based
coordinate system.

were randomly distributed along yWT2, the convolution inte-
gral would hardly be affected, since it smoothes on a scale of
1D. However, it is more likely to have a wind speed uncer-
tainty that is correlated along yWT2, for example as the result
of a misaligned lidar beam. This would promote wind speeds
at one end of the probing area, while suppressing them at
the other end. The bias would have a magnitude of ±5 %
within the wake probing range, as visible in Fig. 7d. Figure 8
shows a normalized wake deficit example, which is corrupted
by a linear bias of ±5 %. Applying the convolution method
according to Eq. (18) yields a mis-assessment in the order
of ±1 m (< 0.01D) for all possible wake positions yw. Note
that this is no longer a standard uncertainty according to the
GUM, since it contains the worst-case assumption of a lin-
ear bias. Also note that the mis-assessment of the method
depends on the wake deficit. A less-pronounced wake deficit
would have less impact in comparison to a correlated wind
speed uncertainty. Qualitatively, the investigation showed the
convolution method to be very robust and hardly affected by
the expected range of wind speed uncertainty. The uncer-
tainty of the probe y position and the wake centre identifi-
cation uncertainty are subsequently added. The calculation is
applied for each full lidar snapshot individually.

Figure 8. Example of convolution method to extract the wake cen-
tre position; impact of wind speed uncertainty on wake centre iden-
tification: generic double-Gaussian deficit as found in situ is dis-
torted by two exemplary linear biases of ±5 %, which can be ob-
tained from Fig. 7.

3 Results

In this section, the results of the field experiment and the
wake estimation are reported. In Sect. 3.1, the wake condi-
tions contained in the dataset are described, considering both
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Figure 9. Histogram of ambient conditions contained in the investigated dataset; all measurements refer to the met mast (except for γ1,
which is probed via GNSS on WT1).

the wake position variability and the wake deficit shape. In
Sect. 3.2, the wake position estimates of the load-based EKF
and the lidar are compared.

3.1 Wake condition characterization

This first part of the result section gives an overview of the
wake conditions contained in the test data set. A histogram
of the ambient conditions is shown in Fig. 9. In total, 1800
1 min samples (30 h) of wake constellations are contained.
The wind speed distribution does not show the converged
shape of a Weibull distribution yet, but the tendency is rec-
ognizable. A large share of high shear and low turbulence
intensity is on hand, which is an indicator for very stable at-
mospheric conditions. Note here that atmospheric stability
often follows diurnal cycles, while the dataset contains only
data from 05:00 to 21:00 UTC, since the wind turbines often
operated at a noise reduction mode during nighttime, which
would not have been representative. Also note that the indi-
cated yaw misalignment does not distinguish between inten-
tional and unintentional yaw misalignment.

3.1.1 Wake position variability

In Fig. 10, the wake position yw, as identified from the lidar
scans, is plotted versus the wind direction. It shows higher
spreading than suggested by the pure geometry, namely the
turbine positions and the assumption of linear wake propa-
gation parallel to the wind direction, indicated in red. The
spreading has a magnitude of up to ≈ 40 m or 0.3D, which
is considerably larger than the order of uncertainty con-
nected with the wake centre identification, as discussed in
Sect. 2.3.3. The spreading could originate from wake me-
andering, wind direction changes propagating through the
test field, and wake steering control. The impact of the wake
steering controller can be estimated by employing the an-
alytical wake deflection model of Jiménez et al. (2009) or
Larsen et al. (2020) and the available information of the yaw
misalignment of WT1. These models give similar results, but
the latter does not require any parameter fitting. Figure 10b
shows results for the Jiménez model, which on average suc-
cessfully encounters the direction and magnitude of wake de-
flections for the sector in which wake steering control was
active (191–259°). Note that toggling between conventional

Figure 10. Wake centre position yw in dependency of wind direc-
tion: Geometry denotes the pure consideration of farm geometry
and linear wake propagation in the main wind direction, and Ji-
menéz denotes an analytic wake deflection model. Centre lines of
zero deflection and full turbine alignment (228°) are marked.

and wake steering control was on hand, thus also many situ-
ations with no intentional yaw misalignment are contained
in the plot. While the scattering range resulting from the
Jiménez model is similar to the observed scattering seen in
the lidar data, these scatters are not necessarily concurrent in
time. Also, the double-sided deviations of the lidar-probed
wake positions from the geometry line are not captured.

3.1.2 Wake deficits

Figure 11 shows the wake deficits recorded by the lidar, su-
perimposed within wind speed bins of 0.5 m s−1. The in-
stantaneous deficits are aligned along their identified wake
centre, thus the horizontal axis in Fig. 11 is defined as
r = yWT2− yw (compare Sect. 2.3.1). Each snapshot is plot-
ted transparent, such that darker areas indicate higher occur-
rences of similar deficits. Some individual wake deficits dif-
fer considerably from the dominant bin average. The wake
deficit shows the characteristic double-Gaussian shape of a
near wake. Especially for larger wind speeds, a strong asym-
metry is observed, pronouncing the wake at negative coordi-
nates r (referring to the right side when facing downstream;
compare Fig. 6).

The co-occurrence of the asymmetry with ambient condi-
tions is documented in Fig. 12. A strong impact is visible
when filtering for the power law coefficient α, describing
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Figure 11. Spaghetti plot of the observed wake deficits per individual lidar scan, aligned along their identified wake centre, binned in steps
of 0.5 m s−1 and plotted transparent to visualize frequent occurrences of similar wake deficits.

Figure 12. Wake deficits within wind speed bin 7.5–8 m s−1: (a) colour coded for two ranges of shear profile, defined by power law
coefficient α and (b) colour coded with respect to yaw misalignment of WT1.

the shear profile. Figure 12a indicates that the wake asym-
metry is more pronounced at strong shear, connected to at-
mospheric stable conditions. For low shear coefficients, the
wake deficits are rather symmetric. Larger wind speed varia-
tions among the deficits as well as in the non-waked area are
on hand here, which again is attributed to the atmospheric
stability. Figure 12b shows a distinction of wake deficits with
respect to yaw misalignment situations, which are known to
cause a kidney-shaped curled wake (see e.g. Bartl et al., 2018
and Sengers et al., 2023). While the main asymmetry of the
double-Gaussian deficit – i.e. the magnitude difference of the
two wake peaks – is linked to the ambient shear, a tendency
towards a broader peak at the pronounced side of the wake is
seen in the case of negative yaw misalignment. This finding
is to be treated with care, since it is based on limited data
availability (compare Fig. 9). The role of the wake deficit in
this context is further discussed in Sect. 4.

3.2 Wake position estimates

This section shows the behaviour of the wake position esti-
mation via load-based EKF and lidar recordings under var-
ious ambient conditions. Details are shown in a time series
plot and lidar snapshots of the flow field, while the general
performance is seized with bar plots of performance metrics
applied on the entire dataset.

Figure 13 shows a 6 h wake position time series on 19
February 2021, including several lidar-recorded snapshots of
the instantaneous flow situation in the wind farm. The corre-
sponding ambient conditions as recorded by the nearby met
mast are shown in Fig. 14. Within the shown time span, the
wind direction changes from 250 to 200°, resulting in a full
sweep of the wake across the rotor of WT2 (full alignment is
at 228°). Constellations of partial wake, full wake, and barely
impinging wake are covered. At the same time, the wind
ramps up from 5 to 9 m s−1. The atmospheric conditions
change from unstable to stable, indicated by high TI, high
wind direction variability and low α in the afternoon com-
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Figure 13. Top: time series of wake position estimate by load-based EKF and lidar; the uncertainty range for both methods is indicated.
Bottom: snapshots of the instantaneous flow situation in the wind farm; ground-based coordinates are used. WT1 is indicated in black, WT2
in red. The time instances (a–e) refer to the indications in the time series plot on top.

Figure 14. Ambient conditions on 19 February 2021, same time
instance as shown in Fig. 13. Ambient wind speed u∞ and wind
direction 8 are shown as both 1 Hz and 10 min average. The TI
refers to 10 min bins by definition, and the same was applied to
power law coefficient α and WT1 yaw misalignment γ1−8.

pared to low TI, and low wind direction variability and high
α in the evening hours. The EKF is initialized at yw = 0 m
and converges to the approximate wake position within ap-
proximately 2 min. Snapshots associated with a variety of
conditions – labelled (a) to (e) – are analysed in detail.

a. Partial wake (at 14:16 UTC): a wake constellation at
yw ≈−D/2, which agrees with the EKF estimate. The
flow dynamics are high at this point in time, which can
be seen in the position changes captured by the EKF as
well as in the wind field.

b. Full wake (at 15:21 UTC): while correctly identified by
the EKF, the confidence interval of the EKF is slightly
increased here. This is connected to decreased observ-
ability, a result of the flat gradient ∂Mcol

∂yw

∣∣∣
yw≈0

used by

the local linearization of the measurement model.

c. Yaw misalignment (from 15:40 to 16:00 UTC): a high
yaw misalignment (≈ 15°) of WT1 is present. The wake
steering effect displays with a prominent wake position
change, which is also visible in the flow situation of
snapshot c. Both the lidar and the EKF capture the steep
change in wake position in this time span.

d. Meandering (16:30 and 16:50 UTC): The wake position
oscillates several times between 0.5D and 1D. The time
scales of these oscillations are around 300 s (referring
to spatial scales of 14D at 6 m s−1 ambient wind speed;
compare Sect. 2.2.2). This is at the higher end of the
dynamic range of the EKF, yet close to the transition
between what is defined as meandering and as farm-
effective wind direction variability.

e. Barely impinging wake (from 18:00 to 18:40 UTC): The
wind direction approaches 200°, and the average wake
position moves from 1D to 1.5D, which leads to ceas-
ing wake impingement. The loss of observability goes
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Figure 15. Power spectral density (PSD) of the wake position yw,
estimated by EKF and by lidar.

along with increased state covariance, thus a larger con-
fidence interval of the EKF estimate. In the case of no
wake impingement, the 2σ confidence is close to 0.5D
for multiple time instances in a row (in the case of a sin-
gle iteration increase, it could also mean a measurement
outlier). The EKF position estimate stays approximately
at the last known position but cannot be regarded as ex-
pressive here.

The EKF behaviour can further be assessed based on a
spectra of the wake position time series, given in Fig. 15.
The cut-off frequency of the EKF formulation fc is indicated,
which is also close to the band limit of the lidar scanning
speed. Within 10−3 to 10−2 Hz, the power spectral density
(PSD) of EKF and lidar estimates is similar and decays with
approximately−20 dB per decade. At higher frequencies, the
EKF shows a trend of −40 dB per decade, where the addi-
tional attenuation is linked to the filter formulation. The filter
also contributes to the rejection of changes in wake position
faster than fc, which might be suggested by higher-order load
variations.

The performance of the entire test dataset is ranged with
performance metrics. The estimates of lidar and EKF are
compared with the root mean square error (RMSE), defined
as

RMSE=

√√√√ 1
N

N∑
k=1

(
yEKF

w,k − y
L
w,k
)2
. (21)

The RMSE does not capture the uncertainty consideration
yet. The additional metric inRange is introduced in Eq. (22),
denoting whether the estimates are within each other’s 2σ
uncertainty range. It further accounts for the fact that no
ground truth exists. Instead, two uncertainty-containing sig-
nals are compared.

inRange=
1
N

N∑
k=1

�k (22)

Figure 16. RMSE of wake position estimate (EKF vs lidar), binned
with respect to the ambient conditions. The orange bars refer to the
right y axis and represent the inRange indicator (i.e. whether the
difference between the position estimates is covered by their uncer-
tainty intervals).

with

�k =

{
1

∣∣∣yEKF
w,k − y
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w,k

∣∣∣< 2
√

(σEKF
k )2+ (σL

k )2

0 else

The results are shown in Fig. 16, where binning with re-
spect to the ambient conditions is applied, revealing the de-
pendency on ambient wind speed, shear, TI and WT1 yaw
misalignment. The share of data within the respective data
bin is shown in Fig. 9, to allow the assessment of the results
under consideration of the underlying statistical evidence.
For example, the RMSE of a bin that contains only 3 % of
the available data can be considered less expressive than a
bin that represents 20 % of the dataset. The RMSE is gen-
erally around 0.2D and the inRange indicator around 90 %.
No clear systematic dependency towards ambient wind speed
and shear level is seen. The RMSE varies slightly among
the bins, yet the inRange indicator is not notably affected.
A trend for the turbulence intensity is visible, namely from
0.2D RMSE and inRange of 95 % at low TI to 0.3D RMSE
and inRange of 75 % at high TI. The data availability de-
creases towards higher TI, yet the trend is persistent over all
bins and for both metrics. At small yaw misalignments of
WT1, the RMSE is lowest. Strong negative yaw misalign-
ments seem to increase the RMSE. Yet, this finding is to be
treated with care, since the data availability is comparably
low here.

4 Discussion

In this section, the results are interpreted and ranged. First,
the influence of the site specifications on the results is dis-
cussed, considering the generalizability of the findings. Sec-
ond, the wake tracking performance is discussed. The com-
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parison to existing works in literature considers their individ-
ual testing conditions and performance metrics. Finally, the
applicability of the presented wake tracking in the context
of wind condition awareness and wind farm flow control is
discussed.

4.1 Evaluation of the experimental conditions and
data-processing methods

4.1.1 Site and wake conditions

The test site has very close spacing between the turbines, re-
sulting in a near wake with a characteristic double-Gaussian
deficit shape. The consequence for the estimation task is
twofold. On the one hand, the wind speed deficit is very
pronounced, so it leaves a considerable footprint on the ro-
tor of a subsequent turbine. On the other hand, a double-
Gaussian wake deficit is a more complex structure, thus re-
quiring higher degrees of freedom for its description in com-
parison to a single-Gaussian (Keane et al., 2016). The scan-
ning lidar can resolve this, and even an EKF-based four
fixed-beam staring lidar approach as described by Lio et al.
(2021) shows sufficient observability. Existing works on es-
timation using turbine measurements either do not consider
near-wake features (Doekemeijer and van Wingerden, 2020;
Cacciola et al., 2016) or assume a quasi-steady wake veloc-
ity deficit to be known a priori (Dong et al., 2021). The lat-
ter is similar to this work, where the wake deficit is implic-
itly contained in the training data. Even more complexity is
added due to the occasional wake asymmetry, reported in the
context of Fig. 11. The wake asymmetry is found to domi-
nantly co-occur with strong wind shear and to increase with
ambient wind speed, and thus also rotational speed. An in-
teraction of wake rotation and the sheared flow is assumed.
The rotational component in the wake flow, in opposite direc-
tion to the rotor rotation, could cause an “upwash” of wind
speeds from low altitudes on the right side of the rotor (facing
downstream, thus negative on the y axis) and a “downwash”
of wind speeds from higher altitudes on the left side. The
direction of wake rotation and the observed orientation of
the wake asymmetry would support this explanation. A com-
parable near-wake asymmetry is reported by Bromm et al.
(2018) in a similar field campaign. A minor co-occurrence of
wake asymmetry and large WT1 yaw misalignments (> 10°)
is found, matching the expectation with regard to the curled
wake phenomena (Bartl et al., 2018; Sengers et al., 2023).
Yet, data availability of large yaw misalignments is not con-
sidered sufficient to draw a clear conclusion on curled wakes,
which are also not a focus of this work.

Another consequence of small downstream distance is a
low meandering amplitude (Machefaux et al., 2015). It is
expected that the load-based EKF would have been able to
capture higher meandering amplitudes, as shown in a wind
tunnel experiment with tailored meandering wake conditions
(Onnen et al., 2023). In the given field setup, however, a con-

siderable share of the involved wake position dynamics can
be accounted for in wind direction changes and active yaw
control.

4.1.2 Uncertainty

The uncertainty consideration for the lidar estimate is delib-
erately chosen to be mainly based on analytical error propa-
gation rather than on statistical approaches. On the one hand,
this choice enables the user to identify and unravel the im-
pact of individual quantities’ contributions to the combined
uncertainty of the processed wake position. In this case, the
wind speed uncertainty shows negligible impact when locat-
ing a coherent flow structure. The major contributions origi-
nate from the propagation of geometric uncertainties. These
can be limited with adequately precise measurement equip-
ment, such as the GNSS encoders for the nacelle yaw prob-
ing used in this setup. On the other hand, the uncertainty is
available for every time instance independently, thus not de-
pending on the dataset size, as would be the case for a statis-
tically derived uncertainty. The lidar estimate generally has
a combined 2σ uncertainty below 0.06D, which makes it a
suitable reference in comparison to the difference between
the lidar- and the load-based method, which is at the order of
0.2D (RMSE). Trujillo (2017) names 0.05D as the accuracy
of lidar-based wake position extraction at short downstream
distances, which is very similar to this work. The uncertainty
of the EKF estimate is directly taken from its state covariance
matrix (Eichstadt et al., 2016). The involved linearization of
the measurement model is similar to the 1st-order approxi-
mations used for analytic error propagation.

4.2 Wake tracking performance

In contrast to a simulation study, a pure performance assess-
ment of one wake tracking methodology is not possible in a
field experiment, since no ground truth exists as reference.
Instead, two uncertainty-containing estimates from two dif-
ferent methods are compared. The wake position estimated
with the scanning lidar can be regarded as an attempt to pro-
vide a reference value closer to a virtual ground truth.

4.2.1 Impact of ambient conditions

The match between lidar- and load-based position estimates
shows no clear dependency on the ambient wind speed.
Small variations among the bins could originate from a lim-
ited dataset size, which might not equal out coinciding in-
stances of certain wind speeds with for example certain tur-
bulence intensities. An indication for a not fully converged
dataset is the wind speed histogram in Fig. 9, showing that
the occurring wind speeds do not fully represent the shape of
a Weibull distribution. In a simulation study, no direct impact
of the ambient wind speed on the estimation is reported, as
long as both the wake-causing turbine and the estimating tur-
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bine are not operating at the transition of partial to full load
range (Onnen et al., 2022).

The observed increase of RMSE with TI is expected
and agrees with simulation studies of load-based estima-
tion (Dong et al., 2021; Onnen et al., 2022) and field re-
sults of lidar-based wake estimation (Lio et al., 2021). Higher
turbulence intensities affect both the shape of the instanta-
neous wake deficit and the dynamics of the wake position.
The information contained in the blade root loads is typi-
cally not sufficient to distinguish between both aspects, espe-
cially when their characteristic time scales are overlapping.
The definition of the cut-off frequency in the dynamic model
of the EKF leads to a rejection of turbulent scales smaller
than the rotor scale. Deviations of the wake deficit shape that
persist at scales of multiple rotor diameters could be misin-
terpreted as a change in wake position. This holds for the
method described in this work, where wake deficit informa-
tion is indirectly contained in the training data, as well as
for methods that aim to estimate the wake deficit online, yet
on slow time scales (Lio et al., 2021). The relation between
the instantaneous wake deficit and the wake centre position
further impacts the respective definitions of the wake centre:
the convolution with density of available power (as applied
on the lidar data; compare Sect. 2.3.2) always considers the
entire wake deficit. In case of non-symmetry, it identifies its
centre with a shift towards the more pronounced side of the
wake deficit. The load-based method, however, solely judges
the share of the deficit which overlaps with the estimating
turbine.

An impact of the wind shear on of the tracking perfor-
mance could have been expected, as the asymmetry of the
wake deficit shows to be influenced. However, the low shears
often coincide with high TI, both as features of atmospheric
instability. It is not possible to fully isolate the effects from
shear and TI, and although the wake asymmetry due to high
shears would lead us to expect a worse tracking performance,
this was not observed.

4.2.2 Comparison to other wake estimation methods

The comparison to other existing methods considers the re-
spective performance metrics, the test environment (simu-
lations, wind tunnel, or field), and the underlying methods
and assumptions. Cacciola et al. (2016) show static inaccu-
racies of 0.1–0.2D for the determination of the wake centre
position at TI= 5 %, 10 % in aeroelastic simulations. Each
position estimate is based on 10 min averaging and a least-
squares fit of rotor-effective horizontal shear with respect to
the rotor loads. Bottasso et al. (2018) show detection ratios
per location interval (discretized with 0.25D) as a perfor-
mance measure. The detection method compares the differ-
ence in EKF-estimated sector-effective wind speeds with a
threshold, which again is subject to scheduling with the am-
bient conditions. It is also tested in an aeroelastic environ-
ment, both in static wake conditions and in a scenario where a

single-Gaussian wake deficit follows a sine trajectory at a fre-
quency of f ≈ u∞/(2D). The simulations allow for a ground
truth reference, but other than that, the detection ratio is sim-
ilar to the inRange metric used in this paper. Bottasso et al.
(2018) show a detection ratio close to 100 % for static wakes
and 5 % TI, which decreases to approximately 75 %–80 % at
10 % TI. This is similar to the results reported in Fig. 16.
The works also agree that ambient shear decreases the accu-
racy, while estimation is still possible under moderate yaw
misalignment of the tracking turbine. At full wake constel-
lations, the method of Bottasso et al. (2018) has no observ-
ability, because the wake-induced rotor loads are not asym-
metric. Here, the comparison between the methods lacks, be-
cause they do not use the undisturbed wind speed. But, as
also pointed out by the authors, the blind spot at full wake
could be avoided when comparing the ambient wind speed
with the rotor-effective wind speed or redundantly with the
collective blade loads, as done in this paper. Onnen et al.
(2022) test a nearly identical EKF formulation as in this work
with aeroelastic simulations using the DWM model and the
DTU 10 MW turbine. The RMSE of 0.05D, 0.1D, and 0.2D
is found for turbulence intensities of 5 %, 10 %, and 15 %, re-
spectively. A similar RMSE is shown in another aeroelastic
study by Dong et al. (2021), with a similar load-based EKF.
In general, the field test shows increased RMSE in compar-
ison to the simulation tests, which can likely be attributed
to the more uncertain environment. The qualitative tracking
ability, as quantified with the detection ratio or inRange indi-
cator is not notably impacted.

Wind tunnel results with two model turbines of 2 m diam-
eter are shown by Schreiber et al. (2016). The methodology
is similar to the one of Cacciola et al. (2016), and a time aver-
aging of 1 min is used, which corresponds to approximately
1 h in the field, considering the scaling. Static inaccuracies of
0.1–0.2D are found in sheared inflow and 8 % TI. Dynamic
wind tunnel tests are shown by Onnen et al. (2023), where a
1.8 m model turbine is exposed to wake conditions tailored
with an active grid. The estimation accuracy is below 0.1D
(RMSE). This is considerable lower than in the field tests
shown here, most likely due to the controlled environment, a
low ambient TI, and no wind direction variability.

To the authors’ knowledge, the only field test of load-based
wake estimation is reported by Schreiber et al. (2020). Qual-
itative wake impingement detection (left/right/full wake) is
successfully shown, where the farm layout and the assump-
tion of wake propagation parallel to the met mast wind di-
rection serve as a reference. The availability of a scanning
lidar in this work allows for a quantitative assessment while
probing with higher spatial and temporal resolution. Further
field experiments with scanning lidar-based wake position
identification are reported by Bromm et al. (2018), where a
propagated uncertainty of 0.05–0.1D is stated, similar to this
work. Lio et al. (2021) show wake position tracking with si-
multaneous estimation of the deficit shape and shear profile.
It is based on a few-beam staring lidar and an EKF consid-
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ering the wake meandering dynamics. An RMSE of 0.05D,
0.12D, and 0.18D is shown, for 5 %, 10 %, and 15 % TI re-
spectively. In their work, the reference is a 1 Hz least-squares
fit of a parameterized deficit to 178-point scans by three syn-
chronized lidar WindScanners. The tracking is slightly more
precise than in this work, while Lio’s method is based on dif-
ferent inputs and requires less external information.

4.3 Applicability

Load- and lidar-based wake estimation techniques have dif-
ferent outlooks for application. While lidars are still in the
early industrial adaption phase, load-based approaches can
be a reliable alternative and implemented solely using the
standard sensors of modern wind turbines. This comes at the
cost of slightly reduced observability or dependency on ex-
ternal information. The accuracy of the load-based tracking
also needs to be ranged in relation to the expected magnitude
of wake deflections due to wake steering control. At very
short turbine spacing, such as in this experiment, the uncer-
tainty of the EKF estimate is close to the expected magnitude
of wake deflections (Jiménez et al., 2009). The conclusion
is that purely using the wake position as closed-loop feed-
back is too narrow a consideration. Still, this paper shows
that satisfying wake estimation with the ability to support ro-
bust closed-loop wake steering with suitable feedback infor-
mation of high spatial and temporal resolution is possible.
The time resolution helps especially when not only consider-
ing the absolute wake position estimate (which might e.g. be
corrupted by an aberrated wake deficit) but also the change in
wake position, which can be the intended response to a wake-
steering manoeuvre. The required knowledge of the ambient
conditions can arguably be estimated by a front row wind
turbine (Soltani et al., 2013). Wake steering is, contrary to
active wake control using a de-rating strategy, mostly appli-
cable in low-turbulent stable situations. This is also where the
methodology shows best performance in the field, in agree-
ment with expectations according to simulations.

This paper focuses on the wake position as an exemplary
aspect of wind condition awareness. A similar dataset and
processing chain could also be used to validate wind farm
models or wind field reconstruction based on in situ prob-
ings. Future work will be to embed sensor-based estimation
within dynamic wind farm models (Becker et al., 2022; Leje-
une et al., 2022), thus to couple analytic models, for exam-
ple for the wake deficit or wake deflection. The relevance
of open-loop approaches in wind farm flow control persists,
since the impact of every control action is delayed by the ad-
vection duration of wakes. Closed-loop yaw control does not
necessarily need to happen at very fast time scales, where its
effect could overlap with those of wake meandering. State es-
timation could also support as a feedback, whether the open-
loop models predict as expected or if (online) re-calibration
is necessary (see Hulsman et al., 2024). Furthermore, the
estimation of wake constellations yields information on the

farm-effective wind direction. It can complement error-prone
and point-probing nacelle vane signals and thus contribute
to a consensus-based farm-effective wind direction (Annoni
et al., 2019).

5 Conclusions

The paper presents a quantitative field comparison of two
independently applied wake centre estimation methods: a
nacelle-based scanning lidar and an EKF based on rotor
loads. The methodology accounts for the fact that there is
no ground truth in the field by a detailed uncertainty evalua-
tion. The lidar estimates have an uncertainty in the order of
0.05D, which is a suitably precise reference to draw conclu-
sions regarding the load-based EKF. It is a step forward in
spatial resolution in comparison to the assumption of wake
propagation parallel to the main wind direction. Both track-
ing methods agree with an RMSE of 0.2D for low to mod-
erate TI, while increasing to 0.3D for a TI above 12 %. The
EKF formulation further yields the uncertainty of the state
estimate as a by-product, thus it self-indicates how certain or
“observable” a situation is. Insights on the full flow field with
the lidar allow the user to identify the observability limits of
the load-based EKF, for example to distinguish between the
influence of exact wake shape and the wake centre position.
Due to close turbine spacing and frequent high-shear condi-
tions, the observed wake deficits in this work are rather com-
plex, mainly double-Gaussian, often asymmetric, and thus
also influencing the wake centre definition. Yet, the method-
ology shows consistent behaviour even under these circum-
stances, which gives rise to the expectation that it would work
similarly well or even better in settings with single-Gaussian
wakes, although the wake load footprints are relative weaker
under such circumstances. While this paper focuses on the
wake position as one aspect of wind condition awareness, it
also outlines how wind farm models or turbine-based wind
field reconstruction can be validated with complementary li-
dar data.
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Appendix A: Determination of rotor angle via
edgewise blade root loads

The rotor angle of WT2 was not available to the authors. It
was reconstructed from the edgewise blade root bending mo-
ments Me. The method is based on the assumption that grav-
ity is the main force contributing to the variation of the edge-
wise blade root bending moment (RBM). Let 9 be the rotor
angle, which is defined as positive clockwise and zero for
blade 1 pointing upwards. Accordingly, each blade’s edge-
wise RBM is modelled as

Me,1 = M̂e sin(9)+Me

Me,2 = M̂e sin
(
9 +

2π
3

)
+Me

Me,3 = M̂e sin
(
9 +

4π
3

)
+Me, (A1)

where M̂e is the amplitude andMe is a non-oscillating offset,
connected to the rotor torque. Using the addition theorem of
the sine function

sin(a+ b)= sin(a)cos(b)+ sin(b)cos(a), (A2)

this can be reformulated as[
Me,1
Me,2
Me,3

]
=

 1 0 1
−

1
2

√
3

2 1
−

1
2 −

√
3

2 1

 M̂e sin(9)
M̂e cos(9)

Me



⇔

 M̂e sin(9)
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Me
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1
2
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3

2 1
−

1
2 −

√
3

2 1

−1[
Me,1
Me,2
Me,3

]
. (A3)

The rotor angle is calculated as

9 = atan

(
M̂e sin(9)

M̂e cos(9)

)
. (A4)

To mitigate the impact of the blade loads not behaving purely
harmonic, for example due to tower shadow and non-uniform
inflow, the nominator and denominator in Eq. (A4) are fil-
tered with a zero-phase low-pass filter. The filtering at this
point avoids filtering a non-continuous angle signal. The re-
sulting determination of the rotor angle is shown for field
data in Fig. A1 and shows the expected behaviour. The
method was additionally validated with the aeroelastic model
of the turbine in openFAST, where the rotor angle is avail-
able.

Figure A1. Identification of the rotor angle (on right y axis)
from edgewise blade loads (on left y axis); loads were non-
dimensionalized for confidential reasons.
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