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Abstract. Accurate wind resource assessment depends on wind speed data that capture local wind conditions,
which are crucial for energy yield estimates and site selection. While the International Electrotechnical Com-
mission (IEC) recommends at least 1 year of data collection, this duration may be insufficient to fully capture
interannual variability. Although studies often maximize data length, limited guidance exists on the minimum
sample size required to reliably estimate wind statistics and energy potential. To address this gap, we propose a
method to quantify errors in wind speed distribution parameters arising from the use of time series of varying
lengths compared with long-term reference data. This enables us to determine the minimum number of hourly
observations needed to achieve a given accuracy. We apply this method to in situ station observations and ERAS
reanalysis data at 10 and 100 m heights. Our results show that basic parameters (mean, standard deviation, and
Weibull parameters) stabilize with a sample size equivalent to ~ 1 month of hourly data (not a contiguous pe-
riod) drawn across multiple years, while higher-order moments require substantially larger samples (skewness:
equivalent to ~ 1.6 years; kurtosis: equivalent to 88.6 years). Although ERAS stabilizes faster, it exhibits sys-
tematic biases compared to in situ measurements. Moreover, random cross-year sampling yields comparable
distribution parameters to diurnally or seasonally controlled sampling, while continuous sampling demands far
longer records for the same accuracy. These findings provide a practical framework for optimizing data collection

in wind resource assessments, balancing accuracy, temporal coverage, and resource constraints.

1 Introduction

Wind energy production critically depends on the strengths
and persistence of winds in Earth’s lower atmosphere. A
precise and cost-effective assessment of wind speed is cru-
cial for evaluating wind energy potential and designing wind
farms and power generators because accurate assessments
ensure that the selected site has adequate wind conditions,
making the investment economically viable and optimizing
energy production efficiency (Wang et al., 2022). Quantify-
ing wind speed characteristics, a crucial component of wind
speed assessment, typically relies on analysing wind speed
distribution from collected data. Ideally, long-term meteo-
rological measurements at the proposed wind turbine loca-
tions are preferred as they account for a broader range of
wind variability. Wind speed measurements covering 4 years

are typically considered to be suitable for short-term analy-
sis, while datasets extending beyond this period fall into the
category of long-term analysis. A 10-year dataset is gener-
ally recommended for the most accurate wind resource as-
sessment, if available (Murthy and Rahi, 2017). However,
collecting such long-term measurements is often impractical
due to the time and financial constraints involved, particu-
larly in the early planning stages of wind farm development
(Wais, 2016).

As a more practical alternative, wind energy potential is
often assessed using wind speed data covering a single year
or a few years (Ouarda et al., 2015). A review of 46 stud-
ies revealed that 31 of them (67.4 %) used wind speed time
series of 6 years or less. However, such datasets lack year-
to-year (interannual) variability, which can significantly af-
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fect wind speed and, consequently, wind power output (Jung
and Schindler, 2018). For example, decadal changes in wind
speed can result in a 17 &£ 2 % variation in potential wind en-
ergy (Zeng et al., 2019). Since wind farms typically oper-
ate for 20 to 30 years (Pryor et al., 2020), relying on such
short-term datasets without accounting for interannual vari-
ability can introduce significant biases into wind energy as-
sessments. Additionally, short-term datasets may lack sea-
sonal or diurnal characteristics due to sampling frequency or
other factors that lead to data gaps. For instance, the Sentinel-
1 Ocean wind product, aligning well with in situ observations
and reanalysis products (Khachatrian et al., 2024), revisits
the same location only once every 1 or 2 d, making it unable
to capture the diurnal characteristics of wind speed.

This discussion highlights a critical research gap: the op-
timal duration of wind observation time series required to
adequately account for wind variability in resource assess-
ments remains poorly quantified. Specifically, is 1 year of
data, as recommended by the IEC (International Electrotech-
nical Commission, 2019), sufficient to provide accurate as-
sessments of wind distributions given the interannual vari-
ability of wind? Furthermore, considering the challenges in
obtaining long-term observations, if we must rely on short-
term datasets that may lack interannual, seasonal, or diurnal
variability, how do errors vary with the length of data time
series?

This research gap has been highlighted in previous stud-
ies. For instance, Barthelmie and Pryor (2003) and Pryor
et al. (2004) evaluated the accuracy of satellite sampling in
representing offshore wind speed distributions. They quanti-
fied the numbers of satellite observations required to estimate
key probability distribution parameters with an uncertainty of
410 %. Specifically, the mean and Weibull scale parameter
required about 60—70 randomly selected half-hourly observa-
tions, respectively. In contrast, the variance requires 150 ob-
servations, and the Weibull shape parameter and energy den-
sity require nearly 2000 observations, while skewness and
kurtosis required 9712 and more than 10000 observations.
However, these results are specific to satellite observations
and may not directly apply to in situ measurements without
further analysis. In situ measurements, such as meteorologi-
cal weather stations, are more widely distributed, accessible,
and frequently used in wind energy studies (Ouarda et al.,
2015; Wang et al., 2016). To the authors’ knowledge, rela-
tively few studies have examined in situ observations, par-
ticularly those from weather stations certified by the World
Meteorological Organization (WMO).

Our study aims to evaluate the potential biases and un-
certainties that may arise when short-term wind speed data
from WMO weather stations are used for wind energy as-
sessments. Previous work by Barthelmie and Pryor (2003)
proposed a random sampling approach to examine how sam-
pling protocols affect the estimation of wind speed distribu-
tion parameters. However, random sampling may overlook
the diurnal and seasonal cycles that are intrinsic to in situ ter-

Wind Energ. Sci., 11, 217-232, 2026

restrial wind observations and critical for reliable wind en-
ergy analysis. To address this limitation, we first compare
random sampling with sampling strategies that explicitly re-
tain diurnal and seasonal cycles. This comparison allows us
to isolate and quantify the influence of temporal structures on
wind speed statistics. In addition, we evaluate the practical
relevance of random sampling by contrasting it with contin-
uous sampling, which preserves the chronological sequence
of wind speed data and more closely reflects real-world wind
resource assessment practices. Continuous datasets, such as
those from anemometer towers, are commonly used in the
wind energy industry, typically covering at least 1 year of
measurements to characterize site-specific wind conditions
prior to turbine installation (Yang et al., 2024; Liu et al.,
2023). By integrating these multiple sampling strategies, our
study provides a comprehensive assessment of how sam-
pling choices affect the robustness of wind energy evalua-
tions based on limited-duration datasets.

We further investigate how results derived from reanalysis
products differ from those obtained using WMO weather sta-
tion data under various sampling strategies. Reanalysis prod-
ucts have emerged as a primary alternative for wind resource
assessment, especially given the spatial and temporal limi-
tations of traditional in situ observations (Gil et al., 2021;
Gualtieri, 2021). These datasets provide spatially continuous
and temporally consistent wind speed data by assimilating
observational data from multiple sources, including satellite
instruments, surface synoptic observations, ships, and drift-
ing buoys, into numerical weather prediction models (Hers-
bach et al., 2020). ERAS stands out as the most widely used
and up-to-date reanalysis product. We used ERAS in our
study because of its strong agreement with observed wind
data at turbine-relevant heights, especially across Europe and
North America (Ramon et al., 2019). ERAS provides wind
speed data at both 10 and 100 m, enabling direct analysis at
typical hub heights and thus avoiding the need for extrapo-
lation methods, such as wind profile log or power-law meth-
ods, to estimate wind speeds at hub height (e.g. Soares et al.,
2020; Jung and Schindler, 2019).

The main objectives of our study are as follows:

1. to evaluate how the wind speed statistics (e.g. distribu-
tion parameters) derived from short-term WMO station
data different those obtained from longer-term records;

2. to determine the optimal time series length required for
accurate estimation of wind speed distribution parame-
ters, with quantified uncertainty margins;

3. to explore whether ERAS reanalysis products, at both
10 and 100m heights, yield consistent results with
ground-based observations.

Through these objectives, we aim to enhance the understand-
ing of the limitations and capabilities of short-term meteoro-
logical data in wind speed assessment, contributing to more
reliable wind energy evaluations.
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2 Data and methods

2.1 Sampling methods
2.1.1  Random sampling

To determine the optimal length of wind speed series for
accurately representing wind speed distribution parame-
ters, we adopted the random sampling method proposed by
Barthelmie and Pryor (2003). In our study, this approach in-
volves comparing the distribution parameters derived from
the full 16-year hourly wind speed series (referred to as
the study datasets) with those obtained from randomly sam-
pled subsets of varying lengths. Specifically, we constructed
sample datasets ranging from 720h (30d) to 52560h (6
years), with increments of 240 h (10 d). For each sample size,
1000 synthetic datasets were generated by randomly select-
ing hourly observations with replacement from the full series
using NumPy’s “random” module.

For each generated dataset, we calculate seven parameters:
four common statistical descriptors (mean, standard devia-
tion, skewness, kurtosis), two Weibull parameters (shape and
scale), and the Weibull wind power density. To evaluate the
representativeness of these sampled subsets, we computed
the percent error between each parameter estimated from the
sample and the corresponding parameter from the full 16-
year series. Specifically, we focused on the upper and lower
bounds of the 90 % confidence interval for each parameter
across 1000 realizations at each sample size. The percent er-
rors (Y) in these bounds were then modelled as a function
of sample size (n) using non-linear least-squares fitting, re-
sulting in an equation that describes how sampling uncer-
tainty decreases with increasing sample size; the correspond-
ing bounds are +Y (n), expressed as in Eq. (1):

Y(n) =exp(aln(n) + b). (1

These fitted curves enable the estimation of the minimum
dataset length needed to achieve predefined error margins.

We selected 720 h as the starting point based on its fre-
quent use in previous wind studies (e.g. Jung and Schindler,
2019; Ouarda and Charron, 2018), while the upper limit of
52560h (equivalent to 6 years of hourly data) was based on
prior findings (Barthelmie and Pryor, 2004) showing that per-
cent errors generally stabilize before this duration.

2.1.2 Diurnal- and seasonality-retained sampling

We implemented two structured sampling methods to re-
tain key temporal patterns in the wind speed data: diurnal-
retained sampling and seasonality-retained sampling. In the
diurnal-retained approach, each synthetic dataset consists of
observations evenly distributed across four 6 h time intervals
(00:00-05:00, 06:00-11:00, 12:00-17:00, and 18:00-23:00)
to preserve daily variability. For example, when the sample
size is 720, we select 180 observations from each time in-
terval. In the seasonality-retained sampling, each dataset in-
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cludes an equal number of observations from all 12 months,
thereby maintaining seasonal structure. For a sample size
of 720, this results in 60 observations per month. For both
methods, sampling was performed with replacement, mean-
ing that the same observation could be selected in multiple
realizations.

2.1.3 Continuous sampling

The continuous sampling method is designed to simulate
real-world scenarios in which wind speed data are used in
their natural temporal sequence. Unlike the random and strat-
ified (diurnal- or seasonality-retained) sampling approaches,
this method preserves the chronological order of observa-
tions by extracting time-contiguous subsets directly from the
full series. Prior to sampling, linear interpolation was ap-
plied to fill any missing values. In this study, we investigated
sample sizes ranging from 720h (approximately 1 month)
to 103680h (12 years), increasing in 1-month (720h) in-
crements. As this method requires each extracted subset to
be continuous, the source dataset must be longer than or
equal to the target sample size. For example, given a 46-year
hourly wind speed dataset, we can extract all possible 1-year-
long continuous sequences (i.e. using a moving window of 1
year), resulting in 395 089 potential samples of 8640 hourly
observations each. Due to computational constraints, we ran-
domly selected 1000 sequences for each sample size, in line
with the approach used for the other sampling methods. The
same parameter estimation procedure was then applied to
these sequences to assess variability and to estimate confi-
dence intervals.

2.2 Probability density distributions

In this study, we exclusively employed the two-parameter
Weibull probability density function to fit wind speed data.
The function is expressed in Eq. (2):

p@)= (’g) (5 e @

where v represents the wind speed, k is the shape param-
eter, and c is the scale parameter. The Weibull distribution
is characterized by two key parameters: the dimensionless
shape parameter, which determines the curve’s shape, and
the scale parameter, which adjusts the distribution along the
wind speed axis. The distributions vary with different val-
ues of k and ¢, making it a popular choice for approximating
observed wind speed frequencies (Wais, 2017; Ouarda and
Charron, 2018; Carta et al., 2009).

To estimate the Weibull parameters, we used the
“weibull_min.fit” function from Python’s “scipy.stats”, em-
ploying the maximum likelihood estimation (MLE) method.
MLE is preferred for its superior performances in parameter
selection (Mohammadi et al., 2016). This “weibull_min.fit”
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function is particularly useful for iterative experiments re-
quiring repeated Weibull distribution fitting, such as those
with thousands of iterations.

We focused on the first four moments of the distributions,
namely the mean, standard deviation, skewness, kurtosis, and
Weibull shape and scale parameters, chosen for their impor-
tance in wind resource assessment. The standard deviation
indicates wind speed variability, while skewness and kurto-
sis provide insights into asymmetry and extreme values in the
distribution. We calculated the mean and standard deviation
using Python’s “NumPy” package, and the other parameters
were calculated with scipy.stats.

2.3 Wind resource assessment method

We used the Weibull wind power density to represent wind
resources at a specific location. The Weibull wind power den-
sity is calculated using the estimated Weibull k£ and ¢ param-
eters and is given by Eq. (3):

E=l,0c3F (1+§> , 3)
2 k

where E represents the wind power density (Wm™2), p is

air density (with 1.225kgm™3, the standard air density pro-

vided by the IEC, used for calculation), and I' is the gamma

function.

We chose the Weibull wind power density in our study for
two main reasons. First, wind power density measures the
amount of kinetic energy in airflow passing through a unit
area, which can be converted into wind energy. It is a criti-
cal metric for evaluating wind resources and has been widely
adopted in previous studies (e.g. Wang et al., 2022; Moham-
madi et al., 2016). Second, the Weibull wind power density
can be easily derived from the scale and shape parameters of
the Weibull distribution, simplifying the calculation process.

Given that our objective is to determine which sample size,
specifically, which time series length, most accurately rep-
resents long-term wind conditions, the use of Weibull wind
power density enables us to compare how the shape and
scale parameters vary with datasets of different lengths. This
approach helps us more effectively identify the time series
length that best captures long-term wind resource variability.

2.4 Data sources
2.4.1 In situ observations from weather stations

In this study, we first utilized weather station observations
from the Norwegian Meteorological Institute (MET Nor-
way). This data, accessed via their API (https://frost.met.
no/observations/v0.jsonld?; last access: 12 December 2025),
offers an hourly wind speed resolution over long periods,
which is suitable for analysing interannual variability as wind
assessments typically need at least hourly resolution (Jung
and Schindler, 2019).
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Figure 1. Distribution of the weather stations used in this study.

To compare wind distribution parameters from short-term
data with long-term series that include interannual variabil-
ity, we prioritized weather stations with the longest hourly
data series, retaining years with at least 8600 hourly obser-
vations (97.9 % of the possible 8760 or 8784 h annually).
Five stations met the criterion of having more than 16 years
of hourly data: SN50500 (18 years), SN44080 (16 years),
SN42160 (20 years), SN38140 (24 years), and SN35860 (17
years). Station details are provided in Table 1, and their lo-
cations in southern Norway are shown in Fig. 1. For consis-
tency across sites, we restricted the analysis to 16 years per
station by excluding years with fewer observations. Because
using the same calendar years across all stations was not pos-
sible due to differences in data availability, the analysed years
vary by station (Table S1 in the Supplement). The year with
the lowest coverage still contained 8648 hourly observations
(98.45 %), and the mean annual count was 8744 h (99.54 %).

Additionally, to complement the main analysis conducted
on the five Norwegian stations mentioned above, we used
two additional stations located in Copenhagen Airport (Den-
mark) and Leuchars (Scotland, UK) from another dataset,
HadISD, version v3.4.2.202501p (https://www.metoffice.
gov.uk/hadobs/hadisd/; last access: 12 December 2025;
Dunn et al. 2016). Both sites provide 46 years (1979-2024)
of hourly wind speed observations with an average data cov-
erage of 99.2 % annually (minimum yearly data coverage is
95.7 % due to untimely updated data for 2024). The data cov-
erage of each year is shown in Fig. S1.

2.4.2 ERAS5 reanalysis

For the ERAS reanalysis products, we downloaded the
“10 m u-component of wind”, “10 m v-component of wind”,
“100m wu-component of wind”, and “100m v-component
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Table 1. Details of weather stations used in this study.
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Station ID Location Data source WMO Latitude Latitude of Longitude Longitude of Height above Elevation of
number ERAS grid ERAS grid mean sea level ERAS grid
SN50500 Flesland MET Norway 1311 60.2892°N  60.25° 5.2265°E  5.25° 48m 0.3m
SN44080 Obrestad Fyr 1412 58.6592°N  58.75° 5.5553°E  5.50° 24m 5.6m
SN42160 Lista Fyr 1427  58.1090°N  58.00° 6.5675°E  6.50° 14m 127.1m
SN38140 Landvik 1464  58.3400°N  58.25° 8.5225°E  8.50° 6m 554m
SN35860 Lynggr Fyr 1467 58.6362°N  58.75° 9.1478°E  9.25° 4m 439m
061800-99999  Kastrup HadISD /  55.618°N / 12.656°E  / 52m /
031710-99999  Leuchars /  56373°N [/ 2.868°W  / 11.6m /

Note that, as the last two stations (Kastrup and Leuchars) were added specifically for the sensitivity analysis discussed in Sect. 4.1, they were excluded from the comparison with ERAS.

of wind” variables from the Copernicus Climate Data
Store (https://doi.org/10.24381/cds.adbb2d47, Hersbach et
al., 2018). We calculated the wind speed at 10 and 100 m
by taking the square root of the sum of the squares of the
u-component and v-component of wind. We used the ERAS
grid point closest to the location of each station, as indicated
in Table 1.

3 Results
3.1 Can random sampling replace
diurnal-cycle-retained or seasonality-retained
sampling?

The five Norwegian stations exhibit distinct diurnal and sea-
sonal variations (Figs. S2-S3). To assess whether random
sampling can serve as a substitute for diurnal-cycle-retained
or seasonality-retained sampling, we compared the 90 %
confidence intervals (CIs) of distribution parameters derived
from each method rather than single-point parameter esti-
mates. This comparison can also help understand how sam-
pling strategy affects uncertainty.

To visually compare the uncertainty ranges between the
sampling methods, Figs. 2 and S4 present the 90 % confi-
dence intervals (CIs) derived from each approach. It is ev-
ident that the intervals from random sampling largely over-
lap with those from diurnal- and seasonality-retained sam-
pling. To quantify these differences, we calculated the CI
differences (Fig. S5) and the root mean square error (RMSE)
of these differences (Table S2). Most parameter differences
fluctuate around zero, with magnitudes that are generally
within £0.2; power density is the only parameter showing
larger fluctuations, within £3. These differences tend to de-
crease as sample density increases (Fig. S5). Power density
also exhibits the largest RMSE, likely due to its broader value
range (from tens to hundreds), while the shape parameter
shows the smallest RMSE (Table S2).

We further examined whether similar results hold for
ERAS5 100 m wind speed data, which better reflect turbine-
relevant altitudes and help address the scarcity of high-
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elevation measurements. Similar CI overlaps were observed
(Figs. 3 and S6). The mean RMSEs of the differences in pa-
rameters from the ERAS5 100 m (0.4896 for diurnal-retained
and 1.1010 seasonal-retained) were comparable to the in situ
values: 0.2865 (diurnal-retained) and 0.3903 (seasonality-
retained). The higher values were primarily driven by power
density differences (Table S2). A similar pattern in the 90 %
confidence interval differences among the three sampling
strategies is observed in the ERAS5 100 m dataset and the in
situ observations (Fig. S7). Based on these findings, we con-
clude that random sampling is a viable method for estimating
wind distribution parameters, both at the surface and at tur-
bine hub heights. Therefore, we adopted random sampling in
subsequent analyses to determine the optimal sample size for
capturing long-term wind characteristics.

3.2 Effects of sample size on estimating wind
distribution parameters

We investigated how sample size affects the accuracy of wind
distribution parameters. Despite differences in wind condi-
tions (Table 2; Fig. S8), all five Norwegian stations exhib-
ited consistent patterns. We found that, as sample size in-
creased, the 90 % confidence intervals (CIs) for all param-
eters narrowed, though the rate of convergence varied. The
mean, standard deviation, and Weibull k and ¢ parameters
stabilized quickly, within £5 % error margins, even at 720
hourly observations (Figs. 2 and S4). In contrast, power den-
sity showed greater variability, and skewness and kurtosis
were far less robust, remaining beyond £5 % even after 6
years of hourly data due to their sensitivity to distribution
tails and extremes.

To assess systematic bias, we examined the median val-
ues across 1000 resampling iterations (Fig. S9). Skewness
and, especially, kurtosis showed notable underestimation at
low sample sizes. At 720 observations, median skewness was
over 2 % lower, and kurtosis was more than 25 % lower than
the full-series baseline. The kurtosis bias remained above
10 % until the sample size exceeded 2160 h, and SN50500
required 22 080 observations (equivalent to ~2.5 years) to
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Figure 2. Estimates of mean wind speed, Weibull scale parameter, and power density from three sampling strategies based on in situ
observations from five Norwegian stations. The 90 % confidence intervals (Cls) are shown for each sampling method: random (orange),
diurnal-cycle-retained (purple dashed), and seasonality-retained (blue dotted). Each black dot represents a parameter estimate from a single
sampling realization of random sampling; corresponding realizations for the other two methods are not shown. Sample sizes range from 720
to 52 560, increasing in 240 h increments, with 1000 realizations per size. Red asterisks indicate the reference values from the full 16-year
hourly dataset (see Table 2). Shaded areas represent the £2 % (dark blue) and £5 % (light blue) deviation ranges from full-series values.

reduce the bias to within 10 %. In contrast, other parameters
varied by less than 1 % across all sample sizes.

3.3 Determine an effective sample size for capturing
overall wind characteristics

To determine the optimal sample size for capturing wind
characteristics, we analysed the relationship between percent
errors and sample sizes (Figs. 4-5). Percent error measures
discrepancies between parameters from the full dataset and
smaller subsets. Based on the 90 % Cls derived from 1000
realizations of random sampling of the in situ observations
(orange lines in Figs. 2 and S4), we computed the percent
errors of CI bounds and fitted equations describing their de-
pendence on sample size. These fitted equations are summa-
rized in Table 3 and allow extrapolation of error margins for
any given sample size.

As expected, the percent error decreases with increasing
sample size, though the rate and extent vary across parame-
ters. For most stations, 720 hourly observations are sufficient
to constrain the percent errors within £7 % for the mean,
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standard deviation, and Weibull parameters (Fig. 4). In con-
trast, higher-order statistical moments such as skewness and
kurtosis, as well as power density, show much larger errors
under the same sampling conditions, with deviations ranging
from £10 % up to £150 %, depending on the station. These
parameters show greater variability across stations, with er-
ror differences of 4.6 % for power density, 18.1 % for skew-
ness, and 154.2 % for kurtosis compared to less than 1.5 %
for others. Errors decrease quickly below 400 observations
and more slowly above (Fig. 5). About 200 observations can
achieve £10 % error for the mean, standard deviation, and
Weibull parameters (Fig. 5). To facilitate practical use, we
calculated the minimum sample sizes required to achieve
+10%, £5 %, +2 %, and +1 % error margins for each pa-
rameter at each station (Table 4). For example, 5 % ac-
curacy requires 459 hourly observations for the mean, 470
for the Weibull scale (~20d equivalent), 796 for the stan-
dard deviation (~ 34 d equivalent), and 4031 for the power
density. Achieving £2 % and 1 % error requires 6-fold and
24-fold more observations than the &5 % case, respectively.
Skewness and kurtosis are especially data-intensive due to
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Figure 3. Estimates of mean wind speed, Weibull scale parameter, and power density from three sampling strategies based on ERAS 100 m
data. Sampling methods and visualization are consistent with Fig. 2. Red asterisks indicate values from the full 16-year ERAS 100 m dataset.
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Table 2. Distribution parameters and Weibull power density of five Norwegian stations, derived from the entirety of the datasets. Note that,
for ERAS products, the station ID indicates the corresponding grid point location.

Data products Station ID Mean SD  Skewness Kurtosis Shape k  Scalec  Power density
ms~hH  (ms™h (ms™h (Wm~2)

In situ weather stations ~ SN50500 3.53 2.66 1.12 1.81 1.51 4.07 81.08
SN44080 6.85 3.94 0.76 0.45 1.83 7.74 417.34

SN42160 6.57 3.68 0.65 0.34 1.88 7.43 358.49

SN38140 228 1.61 0.92 1.28 1.42 2.51 21.61

SN35860 4.80 2.88 0.79 0.47 1.74 541 152.15

ERAS (10m) SN50500 4.82 2.45 0.30 —0.68 2.07 5.44 126.73
SN44080 7.58 3.74 0.35 —0.36 2.13 8.55 478.87

SN42160 8.04 3.74 0.32 —0.28 2.28 9.07 539.59

SN38140 4.74 2.27 0.45 —0.15 2.20 5.35 113.61

SN35860 4.50 2.19 0.48 —0.06 2.16 5.08 98.77

ERAS5 (100 m) SN50500 6.02 2.71 0.22 —0.48 2.36 6.78 219.44
SN44080 9.42 4.83 0.40 —0.29 2.03 10.61 959.38

SN42160 9.79 4.72 0.35 —0.18 2.18 11.04 1009.61

SN38140 7.31 3.31 0.31 —0.07 2.33 8.24 396.08

SN35860 6.60 3.21 0.37 —0.13 2.15 7.44 311.57
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their sensitivity to distribution tails. For instance, SN38140 We also observe regional differences in sample require-
needs 177 390 observations (equivalent to ~ 20 years) for ments. Stations with higher wind speed variability but lower
+10 % error, while SN50500 needs 1541437 observations skewness and kurtosis tend to require fewer samples. For
(equivalent to ~ 176 years). example, SN50500 and SN38140, with the highest skew-

ness and kurtosis, require more observations. Power density
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has the largest regional difference (max-to-min ratio =2.1),
while the Weibull shape shows the least (1.2). Skewness and
kurtosis are sensitive to wind characteristics, with required
samples increasing from 3.96 to 6.10 and from 8.69 to 13.16,
respectively, when error margins decrease from +10 % to
+1 %.

3.4 Does ERAS5 reanalysis (10 and 100 m) show similar
results with in situ observations?

To assess the consistency of reanalysis data with in situ mea-
surements, we compared ERAS (10 and 100 m) and in situ
observations. At four out of five stations, ERAS5 overesti-
mated mean wind speeds in both the full time series (Ta-
ble 2) and sampling experiments (Figs. 6 and S10), likely
due to an overrepresentation of low to moderate wind speeds
(Fig. S8). This bias also led to overestimation of the Weibull
scale parameter at stations with higher wind speeds and un-
derestimation at those with lower speeds. Additionally, the
Weibull shape parameter was consistently higher in ERAS,
often exceeding 2, indicating a potential bias in overestimat-
ing high-wind events. These biases collectively contributed
to systematic overestimation in Weibull power density (Ta-
ble 2 and Figs. 6 and S10).

Both in situ and ERAS distributions were positively
skewed (Fig. S8), but in situ data had higher skewness (Ta-
ble 2). ERAS consistently showed lower skewness (Fig. S10).
For kurtosis, in situ observations show positive values (Ta-
ble 2), indicating more peaked distributions, whereas ERAS
exhibited negative values, reflecting a flatter, less vari-
able distribution. The largest divergence was observed at
SN50500 and SN38140 (Fig. S10), where in situ kurtosis
varied substantially, while ERAS values remained compar-
atively uniform (Fig. S10).

These differences influence sample size requirements. For
the mean, standard deviation, Weibull scale, and power den-
sity, ERA5 (10m) generally required fewer data points to
achieve the same error margin thresholds (Table S3). How-
ever, for tail-sensitive parameters like shape, skewness, and
kurtosis, ERAS requires a larger sample size. Additionally,
ERAS showed lower inter-station variability, as indicated by
overlapping percent error curves (Figs. S11-S12). The equa-
tions used to estimate percent errors under different sample
sizes for ERA5 10 m are summarized in Table S4.

We further analysed the ERA5 100 m dataset, which aligns
more closely with hub heights. As shown in Figs. S13-S14,
most parameters had similar data density requirements com-
pared to those of the ERA5 10 m dataset, though it can vary
by station. For instance, SN42160 had the highest error in the
10 m dataset, while SN35860 showed nearly double the error
under the same density. Table S5 summarizes the required
sample sizes, showing broadly similar patterns across both
heights, but the 100 m dataset consistently required more
data for the shape parameter. The equations used to estimate

https://doi.org/10.5194/wes-11-217-2026

Table 3. Fitted equations describing the relationship between percent error (¥) and sample size (n) based on random sampling results from five in situ weather stations. Each equation

corresponds to a power-law fit of the 90 % confidence interval bounds, positive (P) and negative (N), for each parameter across sample sizes from 720 to 52 560 h.
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exp[—0.4941In(n) +4.536]
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SN44080
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Table 4. Required number of randomly selected in situ observations (unit: hours) to obtain an estimate within £10 %, +5 %, £2 %, and
£1 % of the parameters from the entire observed time series (157 465 data points), calculated at the 90 % confidence level. The fits to get the

required data density are shown in Table S2.

Error margins  Location Mean SD  Skewness Kurtosis  Shape k& Scale ¢ Power density
+10% SN50500 170 279 14297 1541437 166 162 1489
SN44080 92 162 4505 262169 157 93 813
SN42160 83 160 6658 801270 177 84 709
SN38140 135 228 7673 177390 198 153 1211
SN35860 98 175 3611 204 844 169 101 853
average 116 201 7349 597422 174 119 1015
+5% SN50500 659 1087 63795 7545102 649 629 5836
SN44080 365 655 17944 1058755 623 368 3202
SN42160 335 640 26968 3458 621 700 338 2859
SN38140 541 905 30229 777573 774 610 4840
SN35860 393 691 14084 847284 657 404 3417
average 459 796 30604 2737467 681 470 4031
+2% SN50500 3956 6576 484327 61581562 3936 3770 35501
SN44080 2256 4165 111517 6790761 3853 2276 19931
SN42160 2113 4008 174520 23905 124 4321 2131 18057
SN38140 3379 5593 200542 5484926 4689 3793 30218
SN35860 2445 4262 88940 5535245 3956 2513 21623
average 2830 4921 211970 20659 524 4151 2897 25066
+1% SN50500 15531 25766 2244402 301432368 15383 14785 139117
SN44080 8944 16876 444166 27700221 15295 9032 81625
SN42160 8503 16046 733004 103184595 17126 8585 72806
SN38140 13574 22191 844568 24042 683 18315 15117 120783
SN35860 9757 16870 368 113 22895088 15391 10011 88205
average 11262 19550 926851 95850991 16302 11506 100507

the required sample sizes for ERAS 100 m are summarized
in Table S6.

4 Discussions and implications
4.1 Sensitivity to sampling strategy and climatic
non-stationarity

In wind energy assessments, continuous sampling is more
commonly used than random sampling because it preserves
the temporal structure and seasonal variability in wind speed
time series, and, most importantly, only long-term data are
not available. However, continuous sampling may also in-
troduce systematic bias, particularly over short durations,
due to temporal autocorrelation and underlying climatic non-
stationarity. To investigate the extent of this effect and to
assess the generalizability of random sampling, we con-
ducted a sensitivity analysis using 46 years (1979-2024) of
hourly wind speed data from two coastal meteorological sta-
tions: Copenhagen Airport (061800-99999, Denmark) and
Leuchars (031710-99999, Scotland). These sites were cho-
sen for their long-term records and meteorological similarity
compared to the five Norwegian locations analysed earlier.
Copenhagen station exhibits a long-term decreasing wind

Wind Energ. Sci., 11, 217-232, 2026

speed trend (Fig. S1), consistently with broader global ob-
servations (Zeng et al., 2019).

Our results show that continuous sampling generally re-
quires significantly longer periods to achieve the same level
of uncertainty in estimated distribution parameters compared
to random sampling (Fig. 7). This discrepancy arises because
random sampling draws from multiple years, thereby cap-
turing a wider range of interannual variability and reduc-
ing exposure to temporal clustering. Consequently, the 90 %
confidence intervals (CIs) under random sampling are sym-
metric for all parameters, while, under continuous sampling,
only the CIs for mean wind speed, Weibull scale parameter,
and power density are symmetric. Shape-sensitive parame-
ters, including standard deviation, skewness, kurtosis, and
especially the Weibull shape parameter, exhibit pronounced
asymmetries under continuous sampling, particularly at short
durations (<2 years). This suggests that the presence of sys-
tematic climatic anomalies in continuous subsets may bias
shape estimation.

These findings support earlier recommendations by
Murthy et al. (2017), who advocated for using at least 4 to 10
years of data for reliable wind energy assessments. Our re-
sults suggest that, when using continuous sampling, at least

https://doi.org/10.5194/wes-11-217-2026



L. Zhou and I. Esau: Data length for wind resource assessment 227

SN50500 SN44080 SN42160 SN38140 SN35860
59) iiii'————:::—; .
— LU
7 5.5 1
9] 4]
IS ERA5 10m
% = In-situ
9] 31
=
e — |
6.0 ; ; 6.0 dr ; ; 2 Aoy ; .
103 104 105 103 104 10° 103 104 105
6 A
& I ———
: e
0 54
g
o 4 4
3
.6 3 -
= B—
: : ; 2 Ay : ;
103 104 105 103 104 10° 103 104 105
§” 160 200
E . 600 - 600
s 140 4 Misiiac s . #1751
; 120 4 I "“# *|' 5004 500 150
= e
1]
$ 100 125
S 400 - 400 .
& 801 100 4| [jiim——
= [I""
O 60l : — 300 . — 300 4 : : 0 e : . 75 : :
103 104 105 103 104 105 103 104 105 103 104 105 103 104 105

Number of data Number of data

Number of data

Number of data Number of data

Figure 6. Estimates of mean wind speed, Weibull scale parameter, and power density based on random sampling of ERAS 10 m reanalysis
data (black dots) across five Norwegian stations. The sampling strategy is consistent with Fig. 2. The 90 % confidence intervals (Cls) are
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5 years of data may be required to achieve +10 % relative un-
certainty in power density estimates, although this threshold
is site-specific (e.g. Copenhagen station requires more than
10 years). We further recommend that random sampling be
considered to be a complementary tool to identify potential
biases in short-term continuous assessments.

The uncertainty bounds acquired by the random sampling
were claimed by Barthelmie and Pryor (2003) to be robust
and applicable to all remote sensing wind speed time se-
ries. Specifically, they reached this conclusion by finding a
similar required sample size with an uncertainty of £10 %
from five different locations, including Denmark, the eastern
North Pacific, the Gulf of Mexico, the Gulf of Alaska, and
the western Atlantic (Barthelmie and Pryor, 2003; Pryor et
al., 2004). However, upon replicating their methods using in
situ wind speed measurements from WMO stations, we are
reluctant to draw the same conclusion. However, when us-
ing the same error margin (10 %) as Barthelmie and Pryor
(2003), we obtain similar results. As the error margins nar-
row (from £10 % to 1 %), the discrepancy among stations
becomes significant. Therefore, we suggest that the uncer-

https://doi.org/10.5194/wes-11-217-2026

tainty bounds presented in Table 3 exhibit robustness and are
applicable only under higher error margins, such as those ex-
ceeding £10 %. Additionally, lower-order moments and two
Weibull parameters showed higher robustness.

Furthermore, although we provided the uncertainty
bounds for datasets with fewer than 720 samples, it is im-
portant to note that we calculated these values based on an
exponential function fitted to the results derived from 720 to
52560 points. As a result, the curve may be biased due to
the potential asymmetry in the distribution of the parameters
(Barthelmie and Pryor, 2003).

Our results indicated that ERAS5 tends to overestimate the
mean and Weibull scale parameters. Discrepancies between
ERAS and observational data are unsurprising as previous
studies have noted differences in magnitude and trends (Zhou
et al., 2021; Torralba et al., 2017). These discrepancies can
be partly attributed to ERAS not assimilating in situ land
observations and the inherent limitations of the ERAS re-
analysis (Hersbach et al., 2020), such as its inability to ac-
curately reproduce mesoscale dissipation rates (Bolgiani et
al., 2022). Additionally, modern data assimilation systems

Wind Energ. Sci., 11, 217-232, 2026
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Figure 7. Distribution parameters and Weibull power density de-
rived from random sampling (orange lines) and continuous sam-
pling (black lines) based on in situ measurements from weather
stations. The x axis shows the number of hourly observations, and
a secondary top axis indicates the equivalent number of years (1
year =8760h). Asterisks indicate values computed from the full
46-year dataset. Details of the experimental setup and sampling pro-
cedures are provided in the “Data and methods” section.
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still struggle to adequately correct the inevitable errors in
model-generated guess fields at these smaller scales (Wang
and Sardeshmukh, 2021). Consequently, ERAS may under-
estimate variability and fail to capture local extremes ob-
served in in situ data, leading to discrepancies in parameters
like skewness and kurtosis. For instance, at stations SN50500
and SN38140, in situ data show significantly more wind ob-
servations close to zero compared to ERAS datasets, result-
ing in distinct wind characteristics such as differing skewness
and kurtosis.

4.2 Evaluation of global wind atlas estimates against
observations

Since the publication of the first European Wind Atlas in
1989 (Dorenkdmper et al., 2020), the wind atlas method-
ology has been widely adopted for regional wind resource
assessments, including in countries such as Finland (Tam-
melin et al., 2013) and Greece (Kotroni et al., 2014). The
Global Wind Atlas (GWA), developed by the Technical Uni-
versity of Denmark, applies the well-established numerical
wind atlas method to downscale coarse-resolution reanalysis
data to microscale levels. This is achieved using linearized
flow models and topographic corrections based on the WAsP
model. The GWA provides publicly accessible estimates of
mean wind speed and power density, which have been used
in applications such as bias correction of reanalysis data for
wind power simulations (Gruber et al., 2022).

Given the energy-focused perspective of this study, it is
relevant to compare our results with GWA estimates. We ex-
tracted GWA values at the nearest grid points for selected sta-
tions and compared them with observational estimates based
on the full time series. Table S7 presents this comparison, fo-
cusing on two key metrics in wind energy assessments: mean
wind speed and power density. The results show that GWA
consistently overestimates both wind speed and power den-
sity relative to our station-based observations.

One likely explanation for this discrepancy lies in the
different ways topographic effects are incorporated. As de-
scribed by Davis et al. (2023), the GWA estimates the
predicted wind climate (PWC) by applying high-resolution
topographic perturbations to the generalized wind climate
which is based on coarse reanalysis fields. The PWC is rep-
resented by a set of Weibull distributions and directional fre-
quencies for each of the 12 directional sectors, and these are
used to calculate derived variables such as mean wind speed
and power density.

4.3 Implications

Both onshore and offshore sites exhibit seasonal varia-
tions, with onshore and near-coast locations often experienc-
ing significant diurnal cycles (Barthelmie and Pryor, 2003;
Barthelmie et al., 1996; Ashkenazy and Yizhaq, 2023). Our
findings indicate that random sampling can effectively anal-
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yse wind distribution parameters, even when dealing with
discontinuous data that lack explicit diurnal- or seasonal-
cycle information. This is particularly important given the
challenges associated with accurately collecting data that re-
flect these cycles; factors such as anemometer malfunctions,
site relocations, and other disruptions can create gaps in the
wind speed data series, leading to non-continuous records
(Liu et al., 2024). For instance, the Sentinel-1 Level-2 OCN
ocean wind field product (1 km resolution), while perform-
ing well in offshore areas, has a revisit frequency of 1 to 2d
that may not sufficiently capture rapid temporal variations
(Khachatrian et al., 2024).

It was noted that this finding is drawn from analyses uti-
lizing a 90 % confidence interval. This confidence level indi-
cates that, while minor discrepancies may exist in the data,
they are considered to be negligible under specific statisti-
cal assumptions. Therefore, we conclude that random sam-
pling provides a practical and statistically robust alternative,
particularly in scenarios where it is not feasible to retain the
characteristics of diurnal cycles or seasonality.

4.4 Limitations of this study

While our study focuses on long-term wind data from five
coastal onshore stations in Norway, it may not fully repre-
sent offshore wind conditions. Although these stations are all
located at low elevations and near the coastline, their degree
of exposure to open-sea winds varies due to local topogra-
phy, coastal geometry, and sheltering effects (Fig. S15). For
example, SN35860 and SN44080 are directly exposed to the
open sea, while SN38140 is partially sheltered by inland ter-
rain and surrounding vegetation. Offshore winds can differ
significantly from those onshore. In our study, ERAS data
tend to overestimate the frequency of high-wind events at
coastal sites. By contrast, a recent study indicates that ERAS
may underestimate strong wind speeds offshore (Gandoin
and Garza, 2024), suggesting that discrepancies may stem
from differences in surface roughness, atmospheric stability,
and model representation of marine boundary layers. This
highlights the need for targeted offshore studies, for exam-
ple, using buoy-based wind measurements (Morgan et al.,
2011). Furthermore, our analysis does not include complex
inland terrains such as mountainous regions or deep valleys,
where wind speed distributions can be bimodal (Jaramillo
and Borja, 2004) or strongly affected by topographic chan-
nelling. These environments are likely to show different sen-
sitivities to sampling strategies, especially regarding shape-
related distribution metrics. We therefore recommend that fu-
ture research apply this framework to both offshore locations
and inland complex terrain to better capture the full range of
wind resource variability and distributional stability.
Moreover, we compared the surface elevation of the ERAS
grid cells with the actual heights of the five Norwegian
weather stations (Table 1). While all stations are situated near
sea level (ranging from 4 to 48 m above mean sea level),
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ERAS grid elevations differ substantially, with four out of
five stations showing discrepancies exceeding 40 m and one
exceeding 110m. Specifically, ERAS overestimates eleva-
tion at three stations and underestimates it at two. Interest-
ingly, despite the mix of elevation biases, ERAS wind speeds
are overestimated at four stations and underestimated at only
one. A station where ERAS overestimated elevation is also
the one where wind speed is underestimated. This suggests
that elevation mismatch alone cannot fully explain the direc-
tion or magnitude of wind speed biases. Other factors, such
as surface roughness and land use type, may also contribute
to the discrepancies.

Another limitation is the time resolution of the wind speed
data we used. We utilized hourly data instead of higher-
temporal-resolution data, such as with 10 min intervals, for
wind distribution assessments. Despite this, Yang et al.,
(2024) demonstrated that hourly wind speed data provide
sufficiently accurate estimations of wind power density, with
errors smaller than £2 % when compared to 10 min reso-
lution data. This suggests that hourly data are suitable for
such analyses. Additionally, Effenberger et al. (2024) showed
that 3- or 6-hourly instantaneous wind speed data can effec-
tively preserve the distribution characteristics of 10 min wind
speeds. Therefore, it is reasonable that hourly wind speed
can adequately represent the characteristics of 10 min wind
speeds.

It is worth noting that the hourly data provided by MET
Norway represent the average wind speed over the last
10 min of each hour rather than the entire hour. Despite this,
previous research found that Weibull distribution parameters
remain consistent across different averaging periods (e.g. 1
and 30 min) (Barthelmie and Pryor, 2003). Based on these
findings, we believe that our use of the last 10 min averages
is unlikely to significantly impact the accuracy of the Weibull
distribution parameters compared to full-hour averages.

Additionally, our study focuses on near-surface wind
speeds (10 m), raising questions about whether our conclu-
sions hold at turbine-height winds. Prior studies indicate
a height dependency for Weibull distribution parameters,
with higher altitudes typically showing higher means (and
scale parameters), variances, skewness, and kurtosis, while
the shape parameter remains height-independent (Barthelmie
and Pryor, 2003; Dixon and Swift, 1984). Due to the ab-
sence of observational data at heights other than 10 m, we
utilized the ERAS5 dataset to compare distribution parameters
at 10 and 100 m heights. For the five locations studied, only
the mean (and Weibull scale parameter) and variance show
height dependency, with other parameters (skewness, kurto-
sis, Weibull shape parameter) showing independence from
height.
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5 Conclusions

Our study quantifies the errors in estimating wind speed dis-
tribution parameters using time series of varying lengths, ac-
counting for interannual variability. We find that skewness
and kurtosis, particularly kurtosis, are systematically under-
estimated with small sample sizes, and this underestimation
is more pronounced in datasets with higher skewness and
kurtosis levels, necessitating significantly larger sample sizes
for accurate estimates. While the mean and standard devi-
ation stabilize with a few hundred hourly samples, skew-
ness requires at least 14 084 h and kurtosis requires at least
777573 h to meet a +5 % error margin (1.6 years and 88.6
years equivalent, respectively). Here, “years equivalent” de-
notes the number of hourly observations equal to the hours in
that duration and does not imply a contiguous period (obser-
vations are randomly drawn across years). These results em-
phasize that the required sample size is strongly dependent
on the shape of the underlying distribution, with regional dif-
ferences becoming more pronounced as accuracy demands
increase, particularly for higher-order statistical moments
like skewness and kurtosis.

These findings have important implications for wind re-
source assessment, particularly in regions characterized by
highly variable wind regimes. In such areas, extended data
collection periods or alternative strategies such as data fu-
sion or machine learning may be essential to accurately cap-
ture higher-order statistical properties, which directly affects
energy yield estimates and turbine design standards. Future
studies should focus on mitigating biases in higher-order mo-
ment estimation. Moreover, extending this analysis to differ-
ent terrain types and hub heights can further improve the re-
liability and generalizability of wind energy assessments.

We also compare different sampling strategies. Our results
show that random cross-year sampling yields more statis-
tically efficient estimates than continuous sampling, which
preserves temporal correlation and diurnal patterns but in-
troduces greater variability in estimated parameters. For in-
stance, achieving +10 % uncertainty in power density may
require at least 5 years of continuous data, whereas an equiv-
alent sample of 2 months of randomly sampled hourly data
drawn across multiple years may suffice. This suggests that
flexible sampling approaches may be feasible in data-limited
environments, provided the sampling design avoids strong
temporal clustering. An additional application of this result
is to long-term high-resolution climate simulations: rather
than processing the full, continuous multi-decadal time se-
ries, a relatively small, randomly sampled set of hourly out-
puts spanning multiple years can recover the key wind dis-
tribution characteristics. The required sample size can be de-
termined from our sample size—uncertainty relationships to
meet a prescribed accuracy bound, while model biases and
non-stationarity should be addressed separately.

Finally, our evaluation of ERAS reanalysis data reveals
that, although such datasets require fewer data points for the
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same error margin, they introduce systematic biases, such as
underestimating skewness and overestimating Weibull shape
parameters, compared to in situ measurements. This under-
scores the need for caution when using reanalysis data in
wind resource assessments, particularly in regions with com-
plex wind regimes.
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