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Abstract. The concepts of energy islands or energy hubs have gained attention in Europe as a means to enhance
offshore wind integration and regional energy systems. These islands can incorporate high-voltage alternating
current (HVAC) and high-voltage direct current (HVDC) transmission systems, battery energy storage systems
(BESS), and hydrogen production, requiring advanced operational strategies to manage the inherent nonlineari-
ties and time dependence of their subsystems. To address these challenges, this work proposes a comprehensive
framework for the optimal operation of hybrid AC/DC energy islands, addressing (i) active and reactive power
dispatch, incorporating BESS and hydrogen production; (ii) a detailed wind resource characterization based on
1 year of hourly data obtained using a realistic wind model with local measurements, including wake losses and
turbine-level forecasts, used to define representative seasonal and spatial production patterns that inform typical
operating conditions; (iii) operational optimization of a realistic test system based on the Princess Elisabeth En-
ergy Island, and (iv) uncertainty analysis via Monte Carlo simulations, quantifying the impact of wind power and
electricity price forecast errors, set up using commercial wind power planning tools and advanced forecasting

software, and verified with Pyomo/Python.

1 Introduction

Offshore regions hold significant potential for wind energy
generation, which has led to an accelerated development of
offshore wind farms. In this context, the concept of energy
islands has emerged as a powerful framework for planning
and interconnecting these offshore wind projects. Energy is-
lands offer a promising approach for the creation of a re-
silient and flexible power system, underpinned by regional
interconnections. Their strategic positioning enables the in-
tegration of responsive technologies such as energy stor-
age systems and green hydrogen production, which are vital
for mitigating challenges often faced by renewable-energy-
dominated power grids. These challenges include issues re-
lated to voltage and frequency stability, curtailment, and fluc-

tuations caused by the inherent intermittency of renewable
energy sources, as well as grid constraints and low system in-
ertia. Furthermore, energy islands offer the flexibility needed
to address these challenges, improving the overall reliabil-
ity and efficiency of power systems that increasingly rely on
renewable energy sources. In particular, the study by Teng
et al. (2019) proposes a coordinated optimization to improve
flexibility within multi-energy systems by integrating hydro-
gen and energy storage systems, thereby reducing the cur-
tailment of renewable energy in the power grid. The report
by Williams and Zhao (2023) emphasizes the role of Power-
to-X technologies in the energy transition, positioning en-
ergy islands as strategic locations for green hydrogen pro-
duction while enhancing power grid flexibility through wind-
to-hydrogen systems and hydrogen storage, thereby reducing
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curtailments imposed by grid restrictions. Likewise, Yang
et al. (2023) explore a multi-energy system with storage and
hydrogen supply, optimizing combined power and hydrogen
delivery to enhance energy utilization and reduce curtail-
ment. Finally, the works by @stergaard et al. (2023), Useche-
Arteaga et al. (2025), and Liith et al. (2024) discuss the piv-
otal role of energy islands in the future of power systems,
highlighting their potential as offshore energy hubs that in-
tegrate renewable generation, hydrogen production, and en-
ergy storage to enhance system flexibility, address grid inte-
gration challenges, and support long-term energy transition
goals.

The optimal operation of energy islands is crucial for
achieving the efficient integration of offshore wind power
while ensuring the safe operation of power systems. Since
energy islands serve as multi-energy hubs that combine hy-
brid AC/DC power systems, energy storage, and green hy-
drogen production, sophisticated coordination strategies are
required to ensure their optimal operation. The complexity
of the optimal operation of these systems arises from the
nonlinear interactions between their subsystems, the fluc-
tuating availability of wind power, and the requirement to
comply with fundamental physical and steady-state secu-
rity constraints, namely the voltage magnitude limits, the
thermal loading limits of AC and DC transmission lines,
and the power ratings of converters and other power system
components. Addressing these complexities requires detailed
AC/DC grid models, accurate wind power forecasts, and ad-
vanced mathematical programming techniques to optimize
performance, security, and cost-effectiveness. Consequently,
an optimal operational strategy must achieve three key objec-
tives: coordinate power flows efficiently, ensure safe system
operation, and maximize energy utilization. This involves op-
timizing wind power plant dispatch, defining the set points
for HVDC power converters, and strategically managing en-
ergy storage and hydrogen production.

The optimization of energy island operations lacks a uni-
fied methodology, primarily due to the nonlinear and non-
convex nature of the power flow equations in the grid power
model. These equations, which contain trigonometric terms,
can be represented in polar or complex notation, influenc-
ing the choice of optimization approach. The main strategies
include linear, convex, and nonlinear methods. Linearization,
commonly referred to as DC power flow approximation, sim-
plifies the relationships between voltage magnitudes and an-
gles by neglecting reactive power flows and assuming flat
voltage profiles, as presented in Ju et al. (2018). Although
computationally very efficient, this approach is inadequate
for energy islands because it cannot dispatch reactive power
from wind turbines or the battery energy storage system;
it does not model voltage magnitude constraints, which are
frequently binding in long offshore collector systems, and
it systematically underestimates active power losses, since
optimal reactive support can reduce resistive losses. In the
complex domain, linearization employs Wirtinger’s calcu-

Wind Energ. Sci., 11, 349-372, 2026

lus, as power flow equations lack conventional derivatives
in complex numbers, as proposed by Garces (2022). An-
other methodology that has gained significant relevance in
power system analysis is convex programming, as it en-
sures a global optimum and unique solution under well-
defined conditions, while also guaranteeing algorithmic con-
vergence, as analyzed by Arteaga et al. (2023). These ad-
vantages make convex programming a powerful tool for op-
timizing energy island operations. On the other hand, de-
spite its high computational burden, nonlinear programming
(NLP) allows for precise modeling of voltage—current re-
lationships and active-reactive power interactions, as pre-
sented in Useche-Arteaga et al. (2024). Recent advancements
in numerical optimization algorithms and high-performance
computing have improved NLP’s tractability, as explained by
Liu et al. (2022), allowing it to explore realistic operational
scenarios.

AC-based energy islands, as studied by Useche-Arteaga
et al. (2024), have been identified as potentially cost-
effective solutions for short- and medium-distance applica-
tions through the integration of storage and hydrogen produc-
tion systems. However, their efficiency significantly declines
in long-distance and high-power transmission scenarios due
to increased power losses and voltage deviations, as analyzed
in Useche-Arteaga et al. (2025). Consequently, recent de-
velopments increasingly favor HVDC-based configurations,
which offer inherent technical advantages such as reduced
losses, enhanced voltage control, and flexible power flow
management. Building upon these trends, hybrid AC/DC
configurations have been proposed to leverage the benefits
of both technologies; however, their operational coordina-
tion remains relatively underexplored. To address this gap in
existing optimal power flow (OPF) methodologies, specifi-
cally the limited ability of current models to represent the op-
erational interactions and requirements characteristic of hy-
brid AC/DC energy islands, AC/DC OPF frameworks offer
a promising foundation for developing more comprehensive
and realistic operational strategies. Prior research has demon-
strated that OPF formulations can enhance system efficiency,
ensure secure operation, and facilitate large-scale renew-
able energy integration. Addressing this gap, AC/DC OPF
methodologies offer a promising framework for improving
the performance of hybrid AC/DC grids. Existing studies ap-
ply OPF models to improve system efficiency, ensure op-
erational safety, and facilitate renewable energy integration.
For instance, Ergun et al. (2019) introduced a convexified
and linearized OPF formulation tailored for hybrid AC/DC
grids, prioritizing computational tractability without com-
promising solution accuracy. Similarly, security-constrained
OPF (SCOPF) approaches have been developed to enhance
grid reliability under contingency scenarios in large-scale hy-
brid systems, as explained by Mohy-ud-din et al. (2024).
The work by Cao and Yan (2016) further incorporates wind
farm variability into AC/DC OPF models through iterative
methods. Despite these advances, a critical gap persists: cur-
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rent methodologies lack explicit consideration of technolo-
gies central to AC/DC energy islands, such as HVDC sys-
tems, energy storage, and green hydrogen production. This
gap underscores the need for novel operational strategies that
holistically address the specific challenges of AC/DC energy
islands.

Therefore, this paper proposes a comprehensive frame-
work for the optimal operation of AC/DC energy islands us-
ing nonlinear programming, with four key contributions:

1. Development of a detailed optimization model inte-
grating active and reactive power dispatch, incorporat-
ing battery energy storage system (BESS) management
and hydrogen production, while leveraging the reactive
power capabilities of wind power plants, BESS, and
HVDC systems to minimize power losses and enhance
voltage regulation;

2. Detailed wind resource characterization based on 1 year
of hourly data generated using a realistic method with
local measurements from the Federal Public Service
Economy of Belgium (2024), including wake losses and
turbine-level forecasts, to identify representative sea-
sonal and spatial patterns that define typical daily op-
erating conditions;

3. Application of the proposed framework to a realistic test
system modeled after the Princess Elisabeth Energy Is-
land, incorporating detailed turbine layout designs for
offshore wind power plants;

4. Uncertainty analysis via Monte Carlo simulations to
quantify the economic impact of wind power and elec-
tricity price forecast errors, enabling robust operational
planning under uncertainty.

The remainder of this paper is organized as follows: Sect. 2
introduces strategies for the optimal operation of AC/DC en-
ergy islands. Section 3 presents the corresponding mathemat-
ical programming models. Section 4 comprises three main
components: (i) a description of the test system based on the
Princess Elisabeth Energy Island, defined using the Youwind
platform; (ii) the hydrogen test system model; and (iii) a
methodology for estimating hydrogen production model pa-
rameters using a measurement-based optimization frame-
work. Section 5 presents the results of the simulation scenar-
ios to evaluate operational challenges in offshore energy sys-
tems, leveraging Youwind’s wind power forecasts, perform-
ing numerical verifications to assess system performance and
the effectiveness of the proposed strategy, and conducting a
Monte-Carlo-based uncertainty analysis to quantify the eco-
nomic impact of wind power and electricity price forecast
errors. Finally, Sect. 6 draws conclusions, followed by the
references.
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2 General concept and operational strategies of
AC/DC energy islands

Energy islands are designed to integrate multi-energy sys-
tems by combining hybrid AC/DC grids, energy storage sys-
tems, and Power-to-X technologies, as illustrated in Fig. 1.
Their general design typically employs AC technology for
the export cables of wind power plants, particularly for short-
to medium-distance applications. However, the vast wind en-
ergy potential in far offshore areas has driven the develop-
ment of energy islands toward long-distance transmission
systems. Consequently, HVDC technology has become the
preferred choice for most energy island projects due to its
ability to efficiently transport large-scale power over ex-
tended distances, meeting the operational requirements of
these systems, as explained by Ansari et al. (2020), Ko-
rompili et al. (2016), and Rodrigues et al. (2015).

Beyond transmission considerations, energy islands can
incorporate flexible infrastructure to enhance system adapt-
ability. For instance, energy storage systems help to miti-
gate wind power intermittency and grid constraints. Con-
ventional battery energy storage systems (BESSs) with in-
tegrated power converters enable both active and reactive
power control, reducing curtailments and supporting the re-
active power needs of AC energy islands.

In addition to storage solutions, green hydrogen produc-
tion plays a crucial role in energy islands. Hydrogen’s high
energy density makes it particularly valuable for energy-
intensive industries such as steel, non-ferrous metals, and ce-
ment, as outlined by Neuwirth et al. (2022). Furthermore,
as technological advancements and economies of scale drive
cost reductions, hydrogen is expected to become a key player
in the energy transition, as explained in the work by Ueckerdt
et al. (2024). Therefore, integrating green hydrogen systems
within energy islands will be essential for future power sys-
tems.

The operational strategy proposed for AC/DC energy is-
lands adopts a centralized approach, where a central con-
troller processes all relevant information to determine the op-
timal operating configuration, as illustrated in Fig. 2. The in-
puts to this strategy include: (i) the AC grid model, which
represents the topology and electrical parameters of the ar-
ray and export cables; (ii) the DC grid model, which charac-
terizes the HVDC system connecting the energy island with
the main grid; (iii) wind power forecasts for each individual
turbine within the offshore wind power plants; and (iv) the
physical and security constraints required to ensure safe sys-
tem operation. These constraints encompass the nodal volt-
age limits, the thermal ratings of transmission lines, and the
operating limits of generators and converters within the elec-
trical infrastructure. Additionally, operational setpoints spec-
ified by the transmission system operator (TSO) can be inte-
grated into the energy management scheme to align the is-
land’s operation with system-wide requirements.
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Figure 1. AC/DC energy island considering energy storage and hydrogen production.
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Figure 2. Diagram of the operational strategy for AC/DC energy islands.

Based on these inputs, as shown in Fig. 2, the centralized
controller determines the optimal operating configuration of
the energy island by simultaneously coordinating (i) the ac-
tive and reactive power dispatch of the wind power plants, (ii)
the setpoints of the HVDC converters, (iii) the operation of
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the hydrogen production system, and (iv) the management of
the BESS. This integrated coordination framework ensures
secure and efficient operation under varying system condi-
tions. To implement this strategy, this paper proposes a math-
ematical programming approach, detailed in Sect. 3, which
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optimally schedules these four subsystems within a unified
decision-making model.

3 Mathematical formulation for the optimal
operation of AC/DC energy islands

This study addresses the operation of AC/DC energy islands
using a predictive nonlinear mathematical programming ap-
proach. Managing these complex systems requires a struc-
tured methodology to optimize decision-making while en-
suring technical feasibility. The mathematical formulation of
an optimization problem consists of an objective function to
be maximized or minimized, subject to a set of constraints.
In this context, the objective function represents the opera-
tional goals of the energy island, while the constraints ensure
adherence to the physical and technical limitations of its sub-
systems.

The predictive component of the proposed approach is in-
spired by the principles of model predictive optimization, us-
ing forecasts of time-dependent operational variables, such
as wind power and generation costs, over a finite horizon
to guide steady-state operational decisions. By anticipating
grid conditions based on these forecasts, the approach en-
ables proactive adjustments to operation actions, ensuring
optimal performance under evolving scenarios. Furthermore,
the nonlinear formulation is crucial for maintaining the phys-
ical accuracy of AC/DC power flow equations, which inher-
ently exhibit nonlinear characteristics due to the coupling of
voltage magnitudes, active power, and reactive power.

This section describes the mathematical programming
models for the subsystems of the AC/DC energy island, de-
tails the objective function, and presents the complete opti-
mization problem governing its operation. Note that the pri-
mary sources of nonlinearity in our model arise from the
power flow equations for both AC and DC systems, where the
state variables are the voltages. In the AC system, voltages
are represented in polar form as V = v /6, where v denotes
the voltage magnitude and 6 represents the voltage angle.
In the DC system, node voltages are denoted by u. Specif-
ically, the mainly nonlinearities stem from the trigonometric
expressions in the AC power flow equations and the model
of the HVDC converter station. Furthermore, quadratic terms
in the AC and DC power flow equations introduce additional
nonlinearities.

3.1 Power grid model

The power grid model ensures the power balance of the en-
ergy island and the conditions for the secure operation of the
system, as outlined below.

3.1.1 Export and array cables of the wind power plants

The export cables refer to the export and array cables, and
the offshore transmission lines that connect the wind power
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plants to the energy island, typically using AC technology.
This subsystem is modeled in the mathematical program-
ming model using the 7 representation for the AC power
lines, while the AC power grid is represented by the AC ad-
mittance matrix. As a result, export and array cables of the
wind power plants are included in the mathematical program-
ming model through the power balance of the AC system, as
follows:

Pio=vie Y (vmi[gimcosOii —Om)

meNye
+bimsin(®;,r — Om1)]), Vi € Nye, Vi €T )
Qi =vii Y (Vs [8imsin(bis —Op)
meNye
—bim €080 s —Om,1)]), Vi € N, VI €T. 2)

Here, v; ; denotes the magnitude of the bus voltage at node i
during period ¢, while 6; ; represents the corresponding volt-
age phase angle. The parameters g;,, and b;,, correspond to
the real and the imaginary parts of the imth element of the
system’s admittance matrix, respectively. Finally, AV, repre-
sents the set of AC nodes in the network, and 7 is the set of
periods considered within the analyzed time window.

3.1.2 HVDC grid

The HVDC branch model for steady-state studies, such as
the operation problem of energy islands, is represented by a
series resistance. This HVDC branch model does not exhibit
capacitive or inductive effects, which distinguishes it from
HVAC systems. This results in lower power losses, which can
be considerable in comparable offshore AC transmission sys-
tems. The mathematical programming model of the HVDC
grid is presented as follows:

Poc, =p-ttiy Y Yacy iz —uj o), ¥i € Nge, Vi€ T, (3)
J€Nge
JA#
where u; , represents the DC nodal voltage at node i dur-
ing period 7, ydc;; denotes the DC admittance of the HVDC
branch connecting nodes i and j, and p is a constant indicat-
ing the polarity of the HVDC branch.

3.1.3 HVDC converter station

Figure 3 illustrates the general model of a conventional
HVDC converter station, which plays a crucial role in facil-
itating the conversion between AC and DC power. This con-
version process is essential for integrating HVDC transmis-
sion systems with AC grids. The model includes key compo-
nents such as the AC filter (which mitigates harmonics and
enhances power quality), the phase reactor, and the power
transformer.

The AC-to-DC conversion process involves switching op-
erations that contribute to power losses in converters. These
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Figure 3. General scheme of a VSC-HVDC station.

losses depend on switching time, as power electronic devices
dissipate energy during transitions between on and off states.
To account for this, power losses are incorporated into the
optimization model through the following constraint, where
a, b, and c are loss constants of the HVDC converter station,
and I represents the converter current, as explained in the
work by Valerio et al. (2025). The connection between AC
and DC networks is modeled through the following power
balance constraints:

Poss=a+b-I.+c-1? )
Pic; = —Pe; — Ploss;» Vi € Ny, (5)
where Pjoss represents the active power losses in the HVDC
converters, modeled as a quadratic function of the converter
current I, with a, b, and ¢ being loss coefficients. The sec-
ond equation defines the power withdrawn from the DC grid
atnode i, where Pyc; denotes the DC power demand, P, cor-
responds to the converter’s output power, and Pjoss; accounts
for the losses at node i. The set Ny includes all DC nodes in
the system.

The power flow equations for the elements of the HVDC
converter station, as depicted in Fig. 3, are given by

Py = —U2Gyt + UsUg(Ggcos(8s — 8¢) + Bysin(8s — &) (6)
Qs = U Bys + UsUg(Gyesin(8s — 8¢) — Bygcos(8s — 6y)) (7

P. = UG — UUc(Ge cos(8¢ — 8c) — Be sin(d; — &) ®)
Qc = —UZ2Bc + UtUc (Ge sin(8; — 8c) + Becos(r — &) (9)
QOr=—-U?}By (10

Py = U}Gyg — UtUs (Gygcos(8s — 8r) — Bysin(s — &) (1)
Oyt = —U? By + UgUs (G Sin(8s — 8p) + Bircos(ds — 8))  (12)
Pop = —UFGe — UpUc (G cos(S5 — 8c) + Besin(sg — &) (13)
Qct = U? B + UpUc (G sin(8¢ — 8c) — Becos(8r — 8c)).  (14)

Here, P; and Qg represent the active and reactive power at
the grid side, while P, and Q. correspond to the active and
reactive power at the converter side, respectively. The reac-
tive power at the filter, denoted as Qy, depends on the filter
susceptance Bf. The power transfer through the transformer
is characterized by Psr and Qgf, whereas Pcr and Qr describe
the power flow through the phase reactor. The parameters G¢
and By define the transformer conductance and susceptance,
respectively, while G and B, account for the phase reactor
parameters. The voltage magnitudes and angles at different
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points of the converter station are given by Us, Uy, and Uk,
and &g, df, and &, as shown in Fig. 3.

3.2 Security constraints and physical limits

The mathematical programming model for operating energy
islands must account for constraints related to both the phys-
ical limits of power grid components and operational limits
to ensure safe system operation. Specifically, the proposed
model includes thermal limits for AC lines (Eqgs. 15-16)
and HVDC lines (Eqgs. 17-18), power limits for converters
(Eq. 19), AC nodal voltage bounds (Eq. 20), and DC nodal
voltage bounds (Eq. 21).

i [yij ie = v O < S, Vij € Lac, VEET (15)
e [rm (v, = vi, DT | < S5, Vij € Lo, ¥t €T (16)
lpuieyij(ui —ujOll < P, Vij € Lac, V€T (17
lpwjeyijuje —ui )l < PF™, Vij € Lac, YVt €T (18)

s, Il < Sénax’ St = Peji+ jqes, V€T (19)
VI <l Il < VI W€ Nye, Vi e T (20)
URN < y; p <UD Wi € Nge, V€T 1)

Here, Egs. (15) and (16) ensure that the apparent power
flow through AC transmission lines does not exceed the ther-
mal limits imposed by their capacity, denoted as S;}‘ax. Sim-
ilarly, Egs. (17) and (18) enforce the maximum permissible
power transfer on DC transmission lines, defined by Pl.rj‘.‘a".
The converter operational limits are enforced by Eq. (19),
which constrains the apparent power s, within the con-
verter’s rated capacity s2'®*. Voltage magnitude constraints
for AC and DC nodes are imposed by Egs. (20) and (21), en-
suring that nodal voltages remain within the prescribed oper-
ational limits of Va‘Qi“and VaadX and U (ffcli“and U™, respec-
tively.

The proposed strategy for AC/DC energy islands includes
the active power dispatch of wind farms, constrained by wind
power availability. Forecast wind power values are integrated
into the model through Eq. (22). Additionally, wind turbines
can contribute to reactive power support, which is particu-
larly relevant in offshore AC applications. The proposed ap-
proach accounts for this by incorporating reactive power dis-
patch. This capability is modeled by including the turbine’s
capability curve, which is approximated by limiting the wind
turbine’s apparent power to its maximum value, as defined in
Eq. (22).

R(s) < fir- Plooms YIET (22)
s < 8 naxe Si = Pio+iar. VEeT, (23)

where sl?f’t € C represents the complex power generated by
the wind turbine i at period ¢, with pivj’t € R and qi‘”"t eR
denoting its active and reactive power components, respec-
tively. The parameter f;; € R corresponds to the forecasted
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available wind power for turbine i at time ¢, while PiWnom eR

represents its nominal active power capacity. The variable
W .

S max € R deﬁnes the maximum apparent power output of

the wind turbine. The notation %(-) extracts the real part of a

complex number, and || - || denotes the Euclidean norm.

3.3 Battery energy storage system model

Energy islands could improve flexibility by integrating en-
ergy storage systems to manage wind power intermittency,
grid constraints, and curtailments. Conventional BESS,
equipped with power converters, regulate both active and re-
active power, minimizing curtailments while enhancing re-
active power support for AC energy islands. The energy stor-
age system is represented by Egs. (24)—(29), following the
linear model in Pozo (2022). This approach determines the
BESS energy state using the previous state within the pre-
diction horizon. Charging and discharging losses are incor-
porated through efficiency rates ¢ and n9. To ensure conti-
nuity between time windows, the initial (Ep) and final (Ef)
energy states are enforced in Eq. (26), ensuring that the en-
ergy state of the system is consistent and maintains a seam-
less transition from one time window to the next. Addition-
ally, BESS power and storage capacity limits are imposed by
Egs. (27)—(29). Here, ¢, represents the state of energy (SoE)
of the BESS at period ¢, while e¢;_1 corresponds to the SoE
from the previous period. The variables p¢ and p¢ denote
the charging and discharging power of the BESS at period #,
respectively. The parameters ¢™" and ™ define the mini-
mum and maximum allowable SoE, while P¢maX gpd pd.max
impose the upper bounds on charging and discharging power.

er=e_1+nPf — %P;‘, VieT (24)
ery = Eo (25)
e = Er (26)
M < o, <M Wi e T 27)
0<PS<P™ VteT (28)
0<Pl<pdm™ vieT (29)

Similar to wind turbines, BESS can provide reactive power
support through the Q-control of their converters, enabling
additional grid services. This capability is modeled as a con-
trol variable in the optimization framework to meet the re-
active power demands of the AC grid. To this end, the con-
verter’s capability curve is incorporated by limiting its appar-
ent power to the maximum allowable value, as shown in the
following equations:

s =(pl=pf)+iah Vi eT (30)
ISPl < s, Ve e T, 31)

where the complex power injected or absorbed by the BESS
at period ¢ is denoted as s}’, which consists of an active power
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component (pd — p¢) and a reactive power component ¢°.
Additionally, Eq. (31) ensures that the apparent power of the

BESS does not exceed its nominal capacity, denoted as s;'**.

3.4 Green hydrogen production model

Hydrogen production systems exhibit inherently nonlinear
behavior, particularly in electrolyzers, where efficiency de-
pends on factors such as voltage, current density, temper-
ature, and degradation effects. This nonlinearity primarily
stems from the electrochemical relationship between elec-
trolyzer voltage and current density, which influences power
input and hydrogen output, as explained in the work by Ra-
heli et al. (2023). Common modeling approaches include
constant-efficiency, polynomial, piecewise linear, and convex
approximations, as discussed by Werner (2023) and Matute
et al. (2021). Although constant-efficient models are widely
used, such as the works by Useche-Arteaga et al. (2024) and
Matute et al. (2021), they have limitations in capturing these
nonlinear dynamics. To enhance accuracy, the proposed ap-
proach incorporates a linear model, formulated through the
following constraints:

My=M,_1+h VieT (32)
hy=b"PS+ct VieT (33)
M, =M, VieT (34)
My=M,VteT (39)
0<M, <M, VteT, (36)

where h; ; represents the hydrogen produced at node i during
period ¢. In addition, the model considers the initial cumula-
tive hydrogen state M, ;, and its final state M; 5, which cor-
respond to the hydrogen demand for the analysis period. Fi-
nally, Pl.e,t represents the demanded power of the electrolyzer,

and bf’ and cf’ denote the parameters of the linear model for
the green hydrogen production system.

3.5 Objective function

The objective function of the proposed framework is de-
signed to maximize revenue from offshore wind power gen-
eration, reflecting the primary economic driver of hybrid
AC/DC energy islands. This focus ensures optimal utiliza-
tion of renewable energy resources while indirectly minimiz-
ing system power losses through efficient active and reactive
power dispatch. By optimizing resource allocation within the
nonlinear AC/DC power flow model, the framework achieves
areduction in power losses, as demonstrated in Sect. 5.2. Ad-
ditionally, the model accounts for curtailments through net-
work constraints, with BESS and hydrogen production miti-
gating potential curtailments by storing or converting excess
energy, as detailed in Sect. 5.3. This approach enhances op-
erational efficiency and economic performance while main-
taining computational tractability for multi-period and sea-
sonal analyses. The mathematical expression for the revenue
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maximization objective is as follows:

maxz=» Y Ci, P/}, 37

teTieC

where C; ; represents the power price at country i during pe-
riod ¢t and Pif’} is the optimization (decision) variable repre-
senting the active power delivered to country i in period ¢
within the time window 7.

3.6 Uncertainty modeling in energy island operation

Accurate forecasting of wind power generation and elec-
tricity market prices is critical for the optimal operation
of AC/DC energy islands. However, forecast errors are in-
evitable due to the inherent variability of wind and the
stochastic nature of electricity markets. Ignoring these uncer-
tainties can lead to suboptimal decisions and potential eco-
nomic losses. Therefore, it is essential to evaluate the robust-
ness of the proposed optimization framework under realistic
conditions that account for forecast inaccuracies.

To this end, a probabilistic power flow (PPF) analysis was
performed to assess the impact of uncertainty on the system.
A Monte Carlo simulation approach was applied, where mul-
tiple realizations of the uncertain input variables — namely,
wind power generation and energy prices — were generated
according to their probabilistic distributions and used as in-
puts to the nonlinear optimization model. This methodology
enables a systematic evaluation of how variability in fore-
casts affects the operational performance and economic out-
comes of the energy island. The detailed methodology and
results of this analysis are presented in Sect. 5.4.

4 Energy island Princess Elisabeth: test system
description and simulation scenarios

This section evaluates the proposed optimization model
through a case study. It introduces the test system based
on the Princess Elisabeth Energy Island, defines simulation
scenarios to assess offshore operational challenges, and con-
ducts numerical verifications to analyze system performance
and strategy effectiveness.

4.1 Test system definition: setup based on the Princess
Elisabeth Energy Island

The Princess Elisabeth Energy Island is planned for construc-
tion by the Belgian Transmission System Operator (TSO)
Elia in the Belgian sector of the North Sea, approximately
45 km offshore, as described in Williams and Zhao (2023),
Viaene et al. (2022), and Van der Straecten (2022), and illus-
trated in Fig. 4. The energy island is designed to integrate
three future offshore wind power plants: a 700 MW instal-
lation (PE-I), expected to be operational by 2028, and two
additional wind power plants (PE-II and PE-III), each with a
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GERMANY

Figure 4. Test system based on the Princess Elisabeth Energy Is-
land.

capacity of up to 1400 MW, planned for 2029, as shown in
Fig. 5a.

The infrastructure will incorporate both AC and DC tech-
nologies, where AC cables will be used for wind farm col-
lection, while high-voltage direct current (HVDC) connec-
tions will facilitate interconnections. The HVDC links with
Denmark and Great Britain are scheduled for commission-
ing in the future. While some elements, including the full
3.5 GW capacity and the hybrid interconnector with the UK,
may be postponed or scaled back (Elia Group, 2025), the
core construction of the island and HVAC infrastructure for
the initial 2.1 GW offshore wind connection continues unin-
terrupted. Given that these wind farms are yet to be devel-
oped, this study defines and simulates their turbine position
layout within the designated areas, employing commercially
available tools from Youwind (2025). Assuming full capacity
utilization, the layout is designed using the IEA-22 MW ref-
erence wind turbine defined in Zahle et al. (2024), applying
a staggered grid arrangement with optimized row orientation
and spacing for the local wind rose to minimize wake losses,
as shown in Fig. 5a. Wind power plant PE-I contains 32 tur-
bines, while wind power plants PE-II and PE-III contain 64
turbines.

The system includes a green hydrogen production unit and
a battery energy storage system to utilize surplus wind en-
ergy for industrial decarbonization. Hydrogen is expected to
play a critical role in decarbonizing hard-to-abate sectors,
such as steelmaking, ammonia production, and heavy trans-
port, due to its high energy density and versatility, as high-
lighted by the International Energy Agency (2021) and the
European Commission (2020). Given the current absence of
a mature hydrogen market, a fixed daily hydrogen production
quota is assumed to represent anticipated demand, reflect-
ing policy-driven or contractual obligations to supply indus-
trial end-users. For downstream logistics, hydrogen is trans-
ported offshore via marine carriers rather than pipelines, mo-
tivated by: (i) geographical flexibility, enabling delivery to
multiple European ports, aligning with the cross-border hy-
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Figure 5. AC/DC energy island and grid layout configurations. (a) Array cable layout of wind power plants PE-I, PE-II, and PE-III. (b)
Topology of the AC/DC energy island with BESS and hydrogen production.

drogen economy vision European Commission (2020); (ii)
operational flexibility, allowing production during high wind
generation periods to reduce curtailment; and (iii) infrastruc-
ture scalability, avoiding large upfront investments in dedi-
cated pipelines while offering a modular solution for future
hydrogen value chains.

To support the analysis, Fig. 5b presents the single-line di-
agram of the test system, conceptually based on the Princess
Elisabeth Energy Island. The diagram illustrates the topo-
logical structure, including offshore wind farms, internal AC
collection systems, HVDC converters, storage options, and
export transmission links to multiple regions. This configura-
tion serves as the foundation for simulation scenarios used to
verify the proposed optimization framework. The main tech-
nical parameters are summarized in Table 1, including the
parameters of the BESS, which are based on the study by
Pozo (2022), and the parameters of the green hydrogen sys-
tem, calculated as explained in Sect. 4.2 and 4.3.

4.2 Hydrogen production system: electrolyzer model
description

The hydrogen production system in this study was mod-
eled in more detail and implemented in MATLAB Simulink,
from which measurements were obtained to identify the pa-
rameters of a linear hydrogen production model, consider-
ing both the electrical and downstream components of an
electrolyzer. The electrical model is based on a voltage—
current characteristic, using an empirical formula with ap-
proximated parameters for alkaline electrolyzers from Ulle-
berg (2003). The downstream model links the electrolyzer
current to the hydrogen production rate via chemical coef-

https://doi.org/10.5194/wes-11-349-2026

ficients and Faraday efficiency, following the equations and
parameters from Dozein et al. (2023). The electrolyzer stack
is modeled as a series connection of cells, introducing non-
linearity between consumed power and hydrogen production
due to the voltage—current characteristic and Faraday effi-
ciency effects at low current levels. Additionally, the mea-
surements are taken on the DC side, excluding power supply
losses. Finally, the parameters used for the measurements are
detailed in Table 2.

4.3 Measurement-based optimization for estimating
green hydrogen production models

A significant challenge in modeling hydrogen production
systems is accurately estimating the parameters of the model
presented in the Sect. 3.4. This section presents a methodol-
ogy for estimating the parameters of the green hydrogen pro-
duction model through an optimization approach. Accord-
ingly, the following optimization problem is proposed:

M

argming o Z Ex
k=1

s.t. Ex = |lhg — hll,
hkzth]f—i—ch, (38)

where Ay is the measurement of the hydrogen produced with
the power P{, hy is the hydrogen production estimation
based on the linear model presented in Eqs. (32)-(35), and
b" and ¢’ are the parameters estimated by the optimization
problem presented in Eq. (38). Similarly, the parameter of

Wind Energ. Sci., 11, 349-372, 2026




358 M. Useche-Arteaga et al.: Optimizing the operation of energy islands with predictive nonlinear programming

Table 1. Technical parameters of BESS, green hydrogen production, and HVDC connections.

Battery energy storage system (BESS)

Capacity [MWh] E [MWh] E [MWh] P°[MW] 7 IMW]  7¢[%] n9[%] Eolpul Ef[pu]
3500 350 3500 1155 1155 85 90 0.5 0.5
Green hydrogen production system
PSax IMW]  PS. [MW] My kgl My lkgl by [keMWh™'] ¢ [ke]
150 22.5 0 43448 16.058 8.219
HVDC interconnections to onshore grids
Parameter Belgium  United Kingdom  Denmark
Distance [km] 40 70 600
Capacity [MW] 3500 1400 2000
Voltage [kV] 345 345 345

Table 2. Hydrogen electrolyzer nominal operating point.

Parameter Value
Nominal voltage 1kV
Number of cells 455
Nominal cell voltage 2.2V
Temperature 30°C

the constant-efficiency model is estimated using the problem
model presented in Eq. (38), with ¢ = 0.

The estimated parameters of the linear model for the hy-
drogen system are presented in Table 3. Figure 6a illustrates
the estimation performance of the hydrogen production sys-
tem using both constant-efficiency and linear models, iden-
tified against the measured data. The associated modeling
errors are presented in Fig. 6b. The linear model achieves
a maximum error of approximately 12.91 %, with an aver-
age and median error of 1.20 % and 0.69 %, respectively. In
comparison, the constant-efficiency model exhibits a higher
maximum error of 14.95 %, along with an average and me-
dian error of 3.98 % and 2.08 %. These results clearly indi-
cate the improved accuracy of the linear approach. In partic-
ular, the significantly lower mean and median errors of the
linear model reflect its enhanced robustness and sensitivity
in capturing variations in the input power to the hydrogen
electrolyzer, making it more suitable for dynamic operational
conditions.

As observed in Fig. 6b, the largest discrepancies in hydro-
gen production estimation occur when the electrolyzer oper-
ates at low power levels. However, as shown in Fig. 15 in
Sect. 5.2, the hydrogen production system operates most of
the time close to its nominal capacity across different sea-
sons. Consequently, the practical impact of estimation errors
at low power levels is limited, as the system predominantly
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Table 3. Estimated parameters of the linear model for the hydrogen
system.

Parameter Value  Units
bh 1631 kgMWh™!
ch 6.24 kg

operates at levels where the linear model demonstrates high
accuracy.

5 Results and analysis of the Princess Elisabeth
Energy Island operation

5.1 Wind power profile analysis of the Princess
Elisabeth Energy Island

This section analyzes the wind power profiles of the three
offshore wind power plants integrated into the Princess Elisa-
beth Energy Island. The objective is to characterize both sea-
sonal and spatial patterns in the available power, based on
hourly production data over a full year. The production data
were generated by a simulation of the wind parks with wake
losses in the Youwind platform with the Niels Otto Jensen
wake model (Katic et al., 1987; Youwind, 2025), using wind
speed and direction time series provided by the Federal Pub-
lic Service Economy of Belgium (2024), which are based
on LiDAR measurements at the PE sites. These patterns are
used to identify representative daily profiles for each season,
which are later used to define typical operating conditions in
the optimization framework. The analysis includes the statis-
tical distribution of daily average power, representative daily
curves, and turbine-level power output for a representative
day.
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Figure 6. Results of the hydrogen production system modeling. (a) Estimation of the hydrogen production system. (b) Error of the linear

and constant-efficiency models.
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Figure 7. Seasonal distribution of average daily power for the three wind power plants over a year: (a) PE-I, (b) PE-II, and (c) PE-IIL

Figure 7 shows the seasonal distribution of average daily
power for each of the three wind power plants. The boxplots
summarize the statistical variability of the available power
across the four seasons, based on daily average values. The
central line indicates the median, the box spans the interquar-
tile range (25th to 75th percentiles), and whiskers extend to
1.5 times the interquartile range. Autumn shows the highest
median daily power across all wind power plants, while sum-
mer consistently presents the lowest. Spring and winter ex-
hibit intermediate values, with winter showing greater vari-
ability. Rather than using a full year of data, we demonstrate
the optimization on representative days for each season, to
keep the calculation time for the study limited, while still
capturing the key seasonal characteristics of offshore wind
variability. Based on these analyses, we obtained turbine-
level power forecasts, which constitute one of the key inputs
for implementing the proposed optimization approach.

Figure 8 shows the representative daily time series of
hourly wind power generation for each wind power plant: (a)
PE-I, (b) PE-II, and (c) PE-III. For each season, a represen-
tative day was selected by identifying the daily profile whose
average total power was closest to the seasonal median. The
curves reflect typical intraday generation behavior under sea-
sonal wind conditions. These profiles provide seasonally re-
alistic input scenarios for the operation of the hybrid energy
island.

Finally, Fig. 9 shows the hourly wind speed and power out-
put per turbine in PE-I for the representative winter day. The
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plot illustrates the spatial variability in turbine performance
over the course of a day, influenced by wake effects and wind
direction, and highlights the importance of considering spa-
tial resolution in wind power modeling.

5.2 Energy management and optimization for
representative days on the Princess Elisabeth
Energy Island

In this subsection, we evaluate the performance of the op-
timal operation strategies proposed for the Princess Elisa-
beth Energy Island, focusing on representative days that cap-
ture typical seasonal variations in wind power availability
and electricity prices. The nonlinear mathematical program-
ming model, developed in Sect. 3, is implemented using the
Python-based optimization modeling library Pyomo, as de-
scribed by Bynum et al. (2021) and solved with the IPOPT
solver, developed by Wichter and Biegler (2006). It employs
a primal-dual interior-point algorithm with a filter line-search
method to efficiently handle the nonlinearities inherent in the
system.

However, before proceeding with the multi-period and
seasonal analyses, a preliminary verification of the proposed
optimization approach was conducted to ensure its relia-
bility under nominal operating conditions. Specifically, a
cross-check was performed using the Python-based power
flow tool pyflow_acdc, developed by Valerio et al. (2025).
pyflow_acdc is an open-source library designed for power
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Figure 8. Seasonal representative daily profiles of hourly power generation for the three wind power plants: (a) PE-I, (b) PE-II, and (c) PE-III.
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Figure 9. Hourly turbine-level wind speed and power output in PE-I on a representative winter day, illustrating spatial variability and wake
effects across the wind power plant. (a) Wind speed per turbine. (b) Power output per turbine.

flow and optimal power flow (OPF) studies in hybrid AC/DC
networks. However, it does not support the modeling of en-
ergy storage systems or green hydrogen production units,
which are essential for the comprehensive operation of en-
ergy islands. Therefore, the verification was limited to a
simplified case excluding BESS and hydrogen production.
The comparison shows that both approaches yield very sim-
ilar results, with the proposed method achieving a 1.5 %
improvement in the objective function value compared to
pyflow_acdc, thereby confirming the accuracy and robust-
ness of the proposed optimization framework.

After verifying the proposed approach, the analysis fo-
cuses on the representative days selected to characterize the
seasonal operation of the energy island. Figure 8 illustrates
the seasonal representative daily profiles of hourly power
generation for the three wind power plants (PE-I, PE-II, and
PE-III) integrated into the energy island, with each plant’s
profile displayed in dedicated panels. These profiles provide
a detailed representation of wind power availability across
different seasons, serving as a fundamental input for the opti-
mization model. Complementing this, Fig. 11 shows the day-
ahead electricity price profiles for the representative seasonal
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day in the Great Britain, Belgium, and Denmark, which are
pivotal for the economic optimization of the energy island’s
operation. The electricity price data for Belgium and Den-
mark were obtained from ENTSO-E (2025), while the Great
Britain prices were sourced from Elexon (2025). Leveraging
these wind power and electricity price profiles, the nonlinear
model optimizes the power dispatch from the wind turbines,
the charging and discharging schedules of the battery energy
storage systems, and the production rates of green hydrogen,
while accounting for the detailed characteristics of the en-
ergy island’s AC/DC infrastructure. The results demonstrate
the effectiveness of the proposed optimization framework in
coordinating the energy island’s resources, ensuring both op-
erational efficiency and system reliability across diverse con-
ditions.

To facilitate a structured analysis, the evaluation has been
divided into two stages. First, we present a detailed opera-
tional analysis of a representative day for the autumn season.
This focused assessment allows for an in-depth examination
of the system’s performance throughout a typical day under a
specific seasonal scenario. Subsequently, we extend the anal-
ysis by presenting the representative daily profiles for all four
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seasons. This broader assessment demonstrates the capabil-
ity of the proposed approach to adapt the optimal operational
strategy to the varying conditions across the year.

Figure 10 presents the nodal voltages and turbine-level re-
active power injections for the representative autumn sce-
nario, clearly evidencing the correlation between reactive
power dispatch and voltage magnitudes. This relationship is
fundamental in offshore AC networks, where voltage regula-
tion plays a critical role in ensuring system stability — partic-
ularly during periods of high wind generation or significant
power export. Capturing this interaction requires a modeling
framework capable of representing both voltage magnitudes
and reactive power flows, which is not possible in simplified
DC power flow approximations where reactive power is ne-
glected and voltages are assumed constant. To address this,
the proposed nonlinear AC power flow formulation explic-
itly models and optimally dispatches reactive power from
both the wind turbines and the battery energy storage sys-
tem (BESS), enabling coordinated voltage support and a re-
duction in active power losses. In our case study, dispatch-
ing reactive power from the wind turbines and the BESS re-
duced total system losses by approximately 1 % compared to
an equivalent scenario without such reactive power support.
Furthermore, the high sparsity of the network admittance ma-
trix ensures competitive computational performance despite
the increased modeling detail: for example, the autumn rep-
resentative day simulation was completed in approximately
27 s on a standard laptop (Intel Core i5-1235U, 16 GB RAM,
Python 3.11). This demonstrates that the AC-based nonlin-
ear formulation not only delivers a more accurate and oper-
ationally meaningful representation of the energy island but
also remains computationally tractable for extended multi-
period and seasonal analyses.

Figure 11 presents the representative autumn daily pro-
files of electricity prices and dispatched power for Belgium
(BE), Great Britain (GB), and Denmark (DK). The top panels
show that electricity prices peak around EUR 199 MWh~!
at hour 10 in BE, EUR 191 MWh~! at hour 6 in GB, and
EUR 199 MWh~! at hour 10 in DK. In response, the bottom
panels illustrate the dispatched power profiles optimized ac-
cording to these electricity price profiles. In BE, substantial
exports occur between hours 8 and 22, with a maximum dis-
patch of approximately 3.43 GW at hours 19-20, coinciding
with the higher electricity prices observed during these peri-
ods. In GB, exports are concentrated around hours 4-7 and
15-18, following the increases in electricity prices during the
early morning and late afternoon. Despite similar price lev-
els between BE and DK, dispatched power to DK remains
lower, with peaks around 656 MW at hour 19, primarily due
to the greater distance and associated transmission losses
between the energy island and the Danish grid. The opera-
tion of the BESS, as illustrated in Fig. 12, further enhances
the dispatch strategy: the BESS charges predominantly dur-
ing lower-price periods around hours 15-18 and 22-24, with
charging powers up to 1155 MW, and discharges during high-
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price intervals, notably at hours 10 and 19-20 with discharg-
ing peaks above 1140 MW. The hydrogen production sys-
tem dynamically adjusts its operation, reducing electrolyzer
power to 22.5 MW at hours 10 and 19-20 to prioritize elec-
tricity exports during price peaks, while otherwise absorbing
surplus renewable generation, thus guaranteeing the fulfill-
ment of the daily hydrogen production demand, which con-
stitutes a critical operational constraint for the energy island.

Figures 13, 14, and 15 illustrate the seasonal operation
of the energy island, covering the hourly electricity prices,
the dispatched power to the onshore grids, and the perfor-
mance of the battery and hydrogen production systems. The
results clearly reflect the seasonal variability in both offshore
wind generation and market prices. Despite these fluctua-
tions, the proposed optimization framework dynamically ad-
justs energy dispatch, BESS management, and hydrogen pro-
duction to maximize economic revenues while ensuring the
secure operation of the energy island and the power system.
In the representative days analyzed, the dispatched energy
varies from 15506 MWh in summer to 51246 MWh in win-
ter, with intermediate values of 23018 MWh in spring and
43971 MWh in autumn. Similarly, the revenues range from
approximately EUR5.31 million in spring to EUR 10.14
million in winter, with EUR 6.27 million in summer and
EUR 7.26 million in autumn.

5.3 Optimizing curtailment mitigation with BESS and
hydrogen systems under constrained transmission
conditions

This section presents a case study to evaluate the effective-
ness of the proposed approach in mitigating curtailments un-
der constrained transmission conditions. To simulate a con-
tingency scenario, the capacity of all HVDC transmission
interconnections is reduced to 33 % of their nominal value,
representing a severe limitation in power export capabil-
ity, such as might occur during maintenance or unexpected
outages. This case scenario analysis tests the robustness of
the proposed nonlinear optimization framework, described in
Sect. 3, by assessing its performance under atypical operat-
ing conditions. The optimization objective, focused on max-
imizing revenue from offshore wind generation, indirectly
minimizes curtailments by prioritizing efficient resource al-
location, including BESS charging/discharging and hydro-
gen production scheduling. The results demonstrate how the
BESS stores excess energy during periods of high wind gen-
eration and constrained transmission, while the hydrogen
production system absorbs surplus power to meet daily pro-
duction targets, thereby reducing curtailments and enhancing
economic performance.

Figure 16 illustrates the dispatched power profiles to the
onshore grids of Belgium (BE), Great Britain (GB), and Den-
mark (DK), alongside the operational profiles of the BESS
and hydrogen production systems for the representative day
under constrained HVDC capacity. During hours 4-8, the op-
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timization framework prioritizes power dispatch to GB, as
shown in Fig. 16, driven by peak electricity prices in GB
during this period, as observed in Fig. 13. This strategic al-
location maximizes revenue by capitalizing on high market
prices, aligning with the optimization objective.

From hour 8 onward, the dispatched power to Belgium
reaches the maximum allowable capacity under the con-
strained HVDC limits, as depicted in Fig. 16. This prefer-
ence for Belgium is primarily due to its proximity to the
Princess Elisabeth Energy Island, which minimizes transmis-
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sion losses compared to GB and DK. Additionally, electricity
prices in Belgium during these periods are generally compa-
rable to or higher than those in GB and DK, as shown in
Fig. 13, further incentivizing exports to Belgium. In contrast,
the dispatched power to GB exhibits lower peaks around
hours 8 and 12, as seen in Fig. 16, reflecting the influence
of lower electricity prices in GB during these hours, consis-
tent with Fig. 13.

Beyond hour 8, the dispatched power to all three coun-
tries frequently reaches the maximum constrained HVDC ca-
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Figure 11. Representative autumn daily profiles. Top row: hourly electricity prices for Belgium (BE), Great Britain (GB), and Denmark
(DK). Bottom row: dispatched power to the corresponding onshore grids.

(a) (b)

o 10t
; 150 e

£, 100 =

= =2

0 4 8 12 16 20 24

Time [h] Time [h]

“4(t) [MW]

0 4 812162024&

(©) (d)

1000 | — pe - 08
1 2 06

500 P m 04
o n B 02

0 4 8 12 16 20 24
Time [h]

0 4 8 12 16 20 24
Time [h]

Figure 12. Operational profiles of the hydrogen production and battery storage systems during a representative autumn day: (a) electrolyzer
power Pe(r), (b) cumulative hydrogen production M, (¢), (¢) BESS power charging/discharging rates p®(r) and pd(t), and (d) battery state

of energy (SoE).

pacity, as observed in Fig. 16. This behavior is driven by a
significant increase in available wind power from the wind
power plants (WPPs), particularly WPP PE-I around hour 12
and WPP PE-III from hour 16 onward, as indicated by the
wind profiles in Fig. 13. To mitigate curtailments under these
conditions, the optimization framework prioritizes hydrogen
production from hour 8, as shown in Fig. 16, where the elec-
trolyzer power Pe(t) increases to absorb surplus wind gen-
eration, ensuring that daily hydrogen production targets are
met while minimizing unutilized renewable energy.

The BESS complements the hydrogen production system
by dynamically adjusting its operation to balance the con-
strained transmission capacity and variable wind generation.
As illustrated in Fig. 16, the BESS discharges during the
early hours when wind power availability is low, supporting
power exports to the onshore grids. During periods of high
wind generation, particularly around hour 12 for wind power
plant PE-I and from hour 16 for wind power plant PE-III, the
BESS charges to store excess energy, as shown in Fig. 16,
thereby preventing curtailments.

5.4 Impact of wind and price uncertainty using Monte

Carlo analysis

This section presents a probabilistic assessment of the en-
ergy island’s operation under uncertainties in wind power
and electricity prices, using Monte Carlo simulations to eval-
uate variability in key performance indicators, as detailed in
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Sect. 3.6. In this study, wind power generation and electric-
ity market prices were modeled with Gaussian-distributed
uncertainty, using the forecasted value as the mean and a
standard deviation of 10 %, consistent with the approaches
in Yang et al. (2019) and Xiang et al. (2020).

A Monte Carlo simulation approach was applied to evalu-
ate the impact of these uncertainties on the operational per-
formance of the energy island. Multiple realizations of the
uncertain input variables were generated and used as inputs
to the nonlinear optimization model. A total of 1000 simu-
lation runs were performed per scenario, and the statistical
distribution of the resulting economic benefits was analyzed
to quantify the impact of forecast uncertainty. Finally, a sta-
tistical analysis of the output values is performed, studying
key indexes to evaluate and visualize the probability distri-
bution of the resulting effect of the uncertainty of energy
price and wind power forecasting on the operation of the en-
ergy island. Three scenarios were considered: (i) uncertainty
in wind power forecasts, (ii) uncertainty in electricity price
forecasts, and (iii) combined uncertainty in both wind power
and prices. Table 4 summarizes the key statistical indicators
of the economic profit obtained for the simulations of each
scenario.

The following points highlight the primary findings from
the Monte Carlo analysis of wind power and price uncer-
tainty impacts on the energy island’s economic performance:
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Figure 13. Hourly energy prices (top row) and dispatched power (bottom row) for Belgium (BE), Great Britain (GB), and Denmark (DK)
for representative days in the four seasons.
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Figure 14. Seasonal variation of battery operation: (a) charging power p°(¢), (b) discharging power pd(t), and (c) state of energy SoE(?).
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(upside potential), while CVaR drops by 2.34 % (down-
side risk).

Figure 15. Hydrogen system operation across seasons. (Top) elec-
trolyzer power Pe(t) in [MW] and (bottom) cumulative hydrogen
production My, (¢) in [kg].

In all scenarios, the deterministic profit (EUR 7.26 mil-
lion) lies within the interquartile ranges, but the VaR and
CVaR metrics reveal that extreme realizations can sig-
nificantly reduce profits. The percentage comparisons

— Wind power uncertainty alone has a minor effect on eco-
nomic profits, as indicated by the very low coefficient
of variation (0.14 %) and narrow percentile range. The

mean and median are almost identical, highlighting the
symmetry of the distribution. Relative to the determinis-
tic case, this scenario reduces the mean profit by about
2.20 %, with risk metrics like the conditional value at
risk (CVaR) showing a slightly larger drop of 2.48 %.

Price uncertainty introduces substantially higher vari-
ability (CV ~1.86 %), with wider percentiles and a
more pronounced impact on the value at risk. This in-
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emphasize that wind uncertainty tends to bias profits
downward, while price uncertainty can boost averages
but introduces two-tailed risks. This highlights the im-
portance of probabilistic assessment for robust opera-
tional planning.
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Figure 16. Dispatched power and operational profiles for the curtailment analysis case study with constrained HVDC capacity. Top row:
dispatched power to Belgium, Great Britain, and Denmark. Bottom row: electrolyzer power Pe(t), cumulative hydrogen production My, (¢),

BESS charging/discharging power p€(r) and pd(t), and battery state of energy (SoE).

Table 4. Statistical indicators of economic profit under different forecast uncertainty scenarios. All values are in millions of euros.

Scenario Mean Median SD  CV (%) p5 p95 VaRsg, CVaRjsgq, Comparison vs.

deterministic (%)
Wind power 7.10 7.10 0.01 0.14 7.09 7.12 7.09 7.08 —2.20
Price 7.52 7.52  0.14 1.86 7.29 17.75 7.29 7.23 3.58
Combined 7.36 7.36  0.13 1.81 7.14 7.58 7.14 7.09 1.38

6 Conclusions

This study presents a predictive nonlinear optimization
framework for the operation of AC/DC energy islands, ver-
ified through a case study of the Princess Elisabeth En-
ergy Island. The nonlinear power flow formulation facili-
tated reactive power dispatch from wind turbines and the
battery energy storage system, reducing system losses by ap-
proximately 1 % and enhancing voltage regulation. The lin-
ear model for green hydrogen production, derived through
measurement-based optimization, achieved a mean model-
ing error below 1.5 %, surpassing conventional constant-
efficiency models. Seasonal analyses underscored the frame-
work’s adaptability, optimizing energy dispatch, battery
management, and hydrogen production to maximize eco-
nomic revenues while ensuring secure operation. Monte
Carlo simulations evaluating wind power and electricity
price uncertainties revealed that price uncertainty signif-
icantly impacts economic profits, increasing mean profits
by 3.58 % compared to the deterministic case. Meanwhile,
wind uncertainty reduces profits by 2.20 %, and combined
uncertainty yields a modest 1.38 % increase, highlighting
the need for probabilistic assessments in operational plan-
ning. Realistic offshore wind conditions, modeled using the
Youwind platform with wake effects, provided seasonally
representative inputs. The proposed framework effectively
adapts to seasonal variability, ensuring operational efficiency
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and economic performance while maintaining computational
tractability for future hybrid AC/DC energy island applica-
tions.

Potential directions for future research may include the
following:

i. Integrate detailed techno-economic assessments of sub-
systems into the planning framework for hybrid energy
islands to evaluate their impact on overall system per-
formance and cost-effectiveness.

ii. Apply stochastic optimization techniques to extend the
proposed strategies, enabling robust planning of hybrid
energy islands across both representative days and long-
term horizons under uncertainty.

iii. Extending the analysis to other energy island projects,
such as Denmark’s energy islands and the Bornholm
Energy Island, to verify the proposed methodology
across different geographical and operational contexts,
leveraging project-specific data and configurations to
enhance the generalizability of the model.
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Appendix A: Array cable parameters

Table A1. Technical parameters of wind power plant PE-I.

Connection Length (km) Cable type Voltage (kV)
Turbine 4-Turbine 10 1.46 NREL XLPE 630 mm 66
Turbine 10-Turbine 20 1.48 NREL XLPE 185 mm 66
Turbine 20-Turbine 31 1.49 NREL XLPE 185 mm 66
Turbine 4-Offshore Substation 1.46 NREL XLPE 630 mm 66
Turbine 25-Turbine 30 1.34 NREL XLPE 185 mm 66
Turbine 14-Turbine 25 1.49 NREL XLPE 185 mm 66
Turbine 6-Turbine 14 1.48 NREL XLPE 630 mm 66
Turbine 6-Offshore Substation 2.26 NREL XLPE 630 mm 66
Turbine 19-Turbine 24 1.34 NREL XLPE 185 mm 66
Turbine 13-Turbine 19 1.35 NREL XLPE 185 mm 66
Turbine 9-Turbine 13 1.35 NREL XLPE 630 mm 66
Turbine 9-Offshore Substation 5 3.33 NREL XLPE 630 mm 66
Turbine 18-Turbine 29 1.93 NREL XLPE 185 mm 66
Turbine 3-Turbine 18 3.54 NREL XLPE 185 mm 66
Turbine 1-Turbine 3 1.32 NREL XLPE 630 mm 66
Turbine 1-Offshore Substation 5 1.04 NREL XLPE 630 mm 66
Turbine 2-Turbine 5 1.35 NREL XLPE 630 mm 66
Turbine 5-Turbine 8 1.35 NREL XLPE 185 mm 66
Turbine 8-Turbine 12 1.34 NREL XLPE 185 mm 66
Turbine 2—-Offshore Substation 5 1.61 NREL XLPE 630 mm 66
Turbine 17-Turbine 22 1.33 NREL XLPE 185 mm 66
Turbine 22-Turbine 28 1.33 NREL XLPE 185 mm 66
Turbine 23—Turbine 28 1.32 NREL XLPE 185 mm 66
Turbine 22—-Offshore Substation 5 6.28 NREL XLPE 630 mm 66
Turbine 11-Turbine 16 1.31 NREL XLPE 185 mm 66
Turbine 7-Turbine 11 1.32 NREL XLPE 630 mm 66
Turbine 16-Turbine 27 1.47 NREL XLPE 185 mm 66
Turbine 7-Offshore Substation 5 2.56 NREL XLPE 630 mm 66
Turbine 21-Turbine 26 1.34 NREL XLPE 185 mm 66
Turbine 26-Turbine 32 1.35 NREL XLPE 185 mm 66
Turbine 15-Turbine 21 1.34 NREL XLPE 630 mm 66
Turbine 15-Offshore Substation 3.83 NREL XLPE 630 mm 66

Table A2. Technical parameters of the export cable system for wind power plant PE-I. The system consists of four identical cables connected
in parallel.

Length Voltage  Max. capacity  Resistance Inductance Capacitance

10.04km  220kV 400 MW 0.03Qkm~! 04mHkm~! 0.17 yFkm™!
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Table A3. Technical parameters of array cables for wind power plant PE-II (Part I).

Connection Length (km) Cable type Voltage (kV)
Turbine 16-Turbine 26 1.34 NREL XLPE 185 mm 66
Turbine 15-Turbine 16 2.18 NREL XLPE 185 mm 66
Turbine 26-Turbine 27 2.19 NREL XLPE 630 mm 66
Turbine 27-Offshore Substation 11.48 NREL XLPE 630 mm 66
Turbine 38-Turbine 51 3.31 NREL XLPE 630 mm 66
Turbine 17-Turbine 38 4.54 NREL XLPE 185 mm 66
Turbine 8-Turbine 17 3.32 NREL XLPE 185 mm 66
Turbine 51-Offshore Substation 495 NREL XLPE 630 mm 66
Turbine 18-Turbine 28 1.34 NREL XLPE 630 mm 66
Turbine 9-Turbine 18 3.32 NREL XLPE 185 mm 66
Turbine 1-Turbine 9 1.33 NREL XLPE 185 mm 66
Turbine 28—-Offshore Substation 9.44 NREL XLPE 630 mm 66
Turbine 29-Turbine 39 1.34 NREL XLPE 630 mm 66
Turbine 10-Turbine 29 4.54 NREL XLPE 185 mm 66
Turbine 2-Turbine 10 1.32 NREL XLPE 185 mm 66
Turbine 39—Offshore Substation 6.19 NREL XLPE 630 mm 66
Turbine 11-Turbine 19 1.34 NREL XLPE 185 mm 66
Turbine 3—Turbine 11 1.32 NREL XLPE 185 mm 66
Turbine 19-Turbine 52 5.78 NREL XLPE 630 mm 66
Turbine 52-Offshore Substation 1 2.98 NREL XLPE 630 mm 66
Turbine 30-Turbine 40 1.35 NREL XLPE 630 mm 66
Turbine 20-Turbine 30 1.34 NREL XLPE 185 mm 66
Turbine 12-Turbine 20 1.34 NREL XLPE 185 mm 66
Turbine 40-Offshore Substation 426 NREL XLPE 630 mm 66
Turbine 4-Turbine 5 2.16 NREL XLPE 185 mm 66
Turbine 5-Turbine 13 1.33 NREL XLPE 185 mm 66
Turbine 13-Turbine 62 497 NREL XLPE 630 mm 66
Turbine 62—-Offshore Substation 1 1.46 NREL XLPE 630 mm 66
Turbine 14-Turbine 21 1.33 NREL XLPE 185 mm 66
Turbine 21-Turbine 31 1.34 NREL XLPE 630 mm 66
Turbine 6-Turbine 14 1.32 NREL XLPE 185 mm 66
Turbine 31-Offshore Substation 3.86 NREL XLPE 630 mm 66
Turbine 22-Turbine 41 1.49 NREL XLPE 630 mm 66
Turbine 7-Turbine 22 1.36 NREL XLPE 185 mm 66
Turbine 22-Turbine 23 1.86 NREL XLPE 185 mm 66
Turbine 41-Offshore Substation 2.60 NREL XLPE 630 mm 66
Turbine 32-Turbine 42 1.34 NREL XLPE 185 mm 66
Turbine 32-Turbine 53 1.55 NREL XLPE 630 mm 66
Turbine 42—-Turbine 43 2.18 NREL XLPE 185 mm 66
Turbine 53-Offshore Substation 1 1.91 NREL XLPE 630 mm 66
Turbine 54-Turbine 63 1.32  NREL XLPE 630 mm 66
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Table A4. Technical parameters of array cables for wind power plant PE-II (Part II).

Connection Length (km) Cable type Voltage (kV)
Turbine 54-Turbine 63 1.32 NREL XLPE 630 mm 66
Turbine 54-Turbine 64 1.33 NREL XLPE 185 mm 66
Turbine 55-Turbine 64 1.33 NREL XLPE 185 mm 66
Turbine 63—-Offshore Substation 1 2.84 NREL XLPE 630 mm 66
Turbine 56-Turbine 57 2.18 NREL XLPE 185 mm 66
Turbine 57-Turbine 58 2.18 NREL XLPE 185 mm 66
Turbine 58-Turbine 61 6.52 NREL XLPE 630 mm 66
Turbine 61-Offshore Substation 1 3.62 NREL XLPE 630 mm 66
Turbine 44-Turbine 45 2.17 NREL XLPE 185 mm 66
Turbine 45-Turbine 46 2.18 NREL XLPE 185 mm 66
Turbine 46-Turbine 59 7.52 NREL XLPE 630 mm 66
Turbine 59—Offshore Substation 7.97 NREL XLPE 630 mm 66
Turbine 47-Turbine 48 2.17 NREL XLPE 185 mm 66
Turbine 48-Turbine 60 5.41 NREL XLPE 630 mm 66
Turbine 33-Turbine 47 5.41 NREL XLPE 185 mm 66
Turbine 60—Offshore Substation 5.85 NREL XLPE 630 mm 66
Turbine 24-Turbine 34 1.34 NREL XLPE 185 mm 66
Turbine 34-Turbine 35 2.18 NREL XLPE 185 mm 66
Turbine 35-Turbine 49 5.41 NREL XLPE 630 mm 66
Turbine 49—Offshore Substation 1 9.10 NREL XLPE 630 mm 66
Turbine 36-Turbine 37 2.18 NREL XLPE 185 mm 66
Turbine 37-Turbine 50 3.31 NREL XLPE 630 mm 66
Turbine 25-Turbine 36 3.32 NREL XLPE 185 mm 66
Turbine 50-Offshore Substation 7.01 NREL XLPE 630 mm 66
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Table A5. Technical parameters of array cables for wind power plant PE-III (Part I).

Connection Length (km) Cable Type Voltage (kV)
Turbine 25-Turbine 34 1.40 NREL XLPE 630 mm 66
Turbine 16-Turbine 25 1.41 NREL XLPE 185 mm 66
Turbine 8-Turbine 16 1.40 NREL XLPE 185 mm 66
Turbine 34—Offshore Substation 3.06 NREL XLPE 630 mm 66
Turbine 35-Turbine 44 1.41 NREL XLPE 630 mm 66
Turbine 17-Turbine 35 1.49 NREL XLPE 185 mm 66
Turbine 9-Turbine 17 1.40 NREL XLPE 185 mm 66
Turbine 44-Offshore Substation 2.29 NREL XLPE 630 mm 66
Turbine 1-Turbine 10 1.40 NREL XLPE 185 mm 66
Turbine 10-Turbine 18 1.41 NREL XLPE 185 mm 66
Turbine 18-Turbine 26 1.41 NREL XLPE 630 mm 66
Turbine 26—Offshore Substation 4.53 NREL XLPE 630 mm 66
Turbine 45-Turbine 55 1.39 NREL XLPE 630 mm 66
Turbine 36-Turbine 45 1.39 NREL XLPE 185 mm 66
Turbine 2-Turbine 36 3.68 NREL XLPE 185 mm 66
Turbine 55-Offshore Substation 2.16 NREL XLPE 630 mm 66
Turbine 19-Turbine 27 1.41 NREL XLPE 630 mm 66
Turbine 11-Turbine 19 1.40 NREL XLPE 185 mm 66
Turbine 3—-Turbine 11 1.40 NREL XLPE 185 mm 66
Turbine 27-Offshore Substation 6.14 NREL XLPE 630 mm 66
Turbine 4-Turbine 12 1.39 NREL XLPE 185 mm 66
Turbine 12-Turbine 20 1.39 NREL XLPE 185 mm 66
Turbine 20-Turbine 28 1.39 NREL XLPE 630 mm 66
Turbine 28-Offshore Substation 8.06 NREL XLPE 630 mm 66
Turbine 37-Turbine 46 1.38 NREL XLPE 630 mm 66
Turbine 5-Turbine 37 7.40 NREL XLPE 185 mm 66
Turbine 5-Turbine 6 2.47 NREL XLPE 185 mm 66
Turbine 46—Offshore Substation 5.41 NREL XLPE 630 mm 66
Turbine 13-Turbine 21 1.38 NREL XLPE 185 mm 66
Turbine 21-Turbine 29 1.38 NREL XLPE 185 mm 66
Turbine 29-Turbine 56 6.09 NREL XLPE 630 mm 66
Turbine 56—Offshore Substation 4.10 NREL XLPE 630 mm 66
Turbine 14-Turbine 22 1.39 NREL XLPE 185 mm 66
Turbine 14-Turbine 15 2.32 NREL XLPE 185 mm 66
Turbine 22-Turbine 38 479 NREL XLPE 630 mm 66
Turbine 38—Offshore Substation 8.82 NREL XLPE 630 mm 66
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Table A6. Technical parameters of array cables for wind power plant PE-III (Part II).

Connection Length (km) Cable type Voltage (kV)
Turbine 30-Turbine 39 1.38 NREL XLPE 185 mm 66
Turbine 23-Turbine 30 3.53 NREL XLPE 185 mm 66
Turbine 39-Turbine 47 3.52 NREL XLPE 630 mm 66
Turbine 47-Offshore Substation 7.54 NREL XLPE 630 mm 66
Turbine 31-Turbine 40 1.39 NREL XLPE 185 mm 66
Turbine 40-Turbine 48 3.51 NREL XLPE 185 mm 66
Turbine 48-Turbine 57 3.52 NREL XLPE 630 mm 66
Turbine 57-Offshore Substation 6.26 NREL XLPE 630 mm 66
Turbine 32-Turbine 41 1.36 NREL XLPE 185 mm 66
Turbine 41-Turbine 49 3.51 NREL XLPE 185 mm 66
Turbine 49—Turbine 58 3.53 NREL XLPE 630 mm 66
Turbine 58—Offshore Substation 8.48 NREL XLPE 630 mm 66
Turbine 42-Turbine 51 1.38 NREL XLPE 185 mm 66
Turbine 50-Turbine 51 2.32 NREL XLPE 185 mm 66
Turbine 50-Turbine 59 3.53 NREL XLPE 630 mm 66
Turbine 59—Offshore Substation 10.71 NREL XLPE 630 mm 66
Turbine 52-Turbine 62 1.39 NREL XLPE 185 mm 66
Turbine 61-Turbine 62 2.33 NREL XLPE 185 mm 66
Turbine 60-Turbine 61 2.33 NREL XLPE 630 mm 66
Turbine 60—Offshore Substation 1296 NREL XLPE 630 mm 66
Turbine 53-Turbine 63 1.41 NREL XLPE 185 mm 66
Turbine 53-Turbine 64 1.40 NREL XLPE 630 mm 66
Turbine 33-Turbine 53 1.48 NREL XLPE 185 mm 66
Turbine 64-Offshore Substation 2.09 NREL XLPE 630 mm 66
Turbine 43-Turbine 54 1.41 NREL XLPE 630 mm 66
Turbine 24-Turbine 43 1.48 NREL XLPE 185 mm 66
Turbine 7-Turbine 24 1.48 NREL XLPE 185 mm 66
Turbine 54—Offshore Substation 1.73 NREL XLPE 630 mm 66

Table A7. Technical parameters of the transformers for wind power
plants PE-I, PE-II, and PE-III, referred to a 3500 MVA base.

Wind Power  Rated capacity  r (p.u.) x (p.u.)
Plant (MVA)

PE-I 700 0.00018 0.75
PE-II 1400  0.00009 0.375
PE-III 1400  0.00009 0.375

Code and data availability. The data and software codes to
run the simulations are available in the Zenodo repository at
https://doi.org/10.5281/zenodo.18414805 (Useche-Arteaga et al.,
2026).
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