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Abstract. We present a digital shadow Kalman filtering framework based on the direct linearization of a trusted
multibody aeroservoelastic wind turbine model. In contrast to shadowing based on ad hoc modeling approaches,
reusing validated industrial or research-grade models reduces the development effort, leverages resources in-
vested in tuning and validation, and, eventually, increases confidence in the results.

Building on earlier work, the filter-internal model is extended to improve applicability under non-symmetric,
waked, and yaw-misaligned inflow conditions. In addition to tower fore–aft and rotor-speed dynamics, the model
incorporates tower side–side motion as well as blade flapwise and edgewise degrees of freedom. Real-time inflow
observers estimate rotor-equivalent wind speed, vertical and horizontal shear, and yaw misalignment, enabling
operating-point-dependent scheduling of the linearized model. To further enhance predictive accuracy, the white-
box model is augmented with data-driven corrections, considering both a bias-correction approach that acts on
states and outputs, and a neural-network-based output correction.

The proposed method is validated in simulation under freestream, waked, and wake-steering scenarios and
subsequently on field data from an instrumented wind turbine. Additional field cases with extreme shear and
waked operation are used to assess robustness. Even without data-driven correction, damage-equivalent loads
estimated from field data exhibit accuracy comparable to simulation-based results. When correction strategies
are applied, accuracy improves substantially, with damage-equivalent load errors reduced to only a few percent.

1 Introduction

Digital twins for wind turbine applications have recently
garnered significant attention, emerging as key components
of modern wind systems. They support control (Anand and
Bottasso, 2023), lifetime estimation (Branlard et al., 2020b;
Song et al., 2023), and asset monitoring (Olatunji et al.,
2021). Because wind turbines operate autonomously in com-
plex and variable conditions, the ability to mirror the behav-
ior of each asset offers substantial potential. Combined with
machine learning and artificial intelligence, digital represen-
tations can continually improve, thereby enhancing produc-
tivity and profitability.

Digital twins build on the predictive abilities of digital
shadows, which rely on a one-way data flow from the physi-
cal asset to the model, unlike twins, where the loop is closed
(Sepasgozar, 2021). As this work focuses solely on accu-

rate mirroring, we adopt the term digital shadow (Hoghooghi
et al., 2024).

Among the many possible formulations, we follow and ex-
tend an approach that integrates an aeroservoelastic model
with a Kalman filter (Grewal and Andrews, 2014; Branlard,
2019; Branlard et al., 2024a; Hoghooghi et al., 2024). Wind
turbine manufacturers already maintain trusted and validated
aeroservoelastic models, which are ideal candidates for the
development of digital shadows. Using these models elim-
inates the need to rebuild ad hoc representations and pro-
vides immediate predictive capabilities, even without exten-
sive field datasets – an advantage over purely data-driven
approaches that require lengthy and expensive measurement
campaigns. Moreover, a white-box model can later be aug-
mented with data-driven corrections, evolving into an adap-
tive gray model.
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Following Branlard (2019) and Branlard et al. (2024a), an
aeroservoelastic model is linearized around multiple operat-
ing conditions, yielding a linear state-space internal model
updated at each time step via SCADA measurements. Here,
we improve this framework in four main ways.

First, the internal model is expanded beyond tower fore–
aft and rotor-speed dynamics to include tower side–side mo-
tion and blade flapwise and edgewise degrees of freedom
(DOFs). This richer representation extends applicability to
strongly sheared, waked, and yaw-misaligned conditions rel-
evant to wake-steering control.

Second, the wider operating envelope requires more ad-
vanced scheduling. Accordingly, the model is scheduled not
only by wind speed but also by vertical shear, horizontal
shear (capturing wake impingement), and yaw misalignment.
These inflow parameters are estimated in real time using ded-
icated observers (Kim et al., 2023; Bertelè et al., 2024).

Third, a bias-correction procedure improves the accuracy
of both state and output equations. State biases are compen-
sated through additive error terms in the dynamic equilib-
rium, calibrated as a function of the current operating state.
Output biases are promoted to state variables governed by
process noise. Although more general nonlinear corrections
(Bottasso et al., 2006) are possible, the adopted approach al-
ready delivers substantial improvements in fatigue-damage
estimation.

Fourth, for condition monitoring applications, the model
is enhanced via a data-driven learning element that corrects
selected outputs using measurements from onboard sensors.
A neural-based term is trained on the observed discrepancies
and added to the corresponding model equations, yielding
highly accurate predictions suitable for anomaly detection.

The digital shadow is demonstrated in simulation under
clean freestream, waked, and wake-steering conditions, and
validated with field data from an instrumented multi-MW
turbine under both clean and complex inflow. The imple-
mentation utilizes OpenFAST and its associated tools (Open-
FAST, 2024; Jonkman and Shaler, 2021; TurbSim, 2023),
with the filter realized in MATLAB (The MathWorks, Inc.,
2022), although the methodology is general and software in-
dependent.

Fatigue-related applications of digital twins are exten-
sively documented (Bernhammer et al., 2016; Hoghooghi
et al., 2019a, b), as fatigue loads affect all major compo-
nents (IEC, 2019; Hoghooghi, 2021) and directly influence
lifetime, performance, and cost (Bottasso et al., 2013; Loew
and Bottasso, 2022; Dimitrov et al., 2018). Condition mon-
itoring (CM) supports proactive maintenance and improved
operational efficiency (Chen et al., 2016; Wu et al., 2021; Liu
et al., 2023), with several methods leveraging machine learn-
ing (Bangalore et al., 2017; Hoghooghi et al., 2020a, b, 2021;
Surucu et al., 2023). Numerous load-estimation techniques
also exist, ranging from hybrid physics-data methods (Noppe
et al., 2016) to lookup tables (Mendez Reyes et al., 2019),
modal expansion (Iliopoulos et al., 2016), ensemble-based

fatigue aggregation (Abdallah et al., 2017), machine learn-
ing (Evans et al., 2018), neural networks (Schröder et al.,
2018), polynomial chaos (Dimitrov et al., 2018), deconvolu-
tion (Jacquelin et al., 2003), load extrapolation (Ziegler et al.,
2017), virtual sensing via ROM–FE coupling (Vettori et al.,
2022), and NN-based surrogates (Guilloré et al., 2024).

This brief overview illustrates the broad relevance of dig-
ital shadows for turbine health monitoring and fatigue esti-
mation. The present work contributes by formulating a gen-
eral procedure for digital shadow development that leverages
trusted multibody models, linearization for computational ef-
ficiency, and adaptive corrections informed by inflow estima-
tors and learning elements for improved accuracy.

The paper is organized as follows. Section 2 describes the
methodology, including the internal model, its scheduling,
and correction strategies. Section 3 evaluates performance in
simulation and field conditions. Section 4 summarizes find-
ings and outlines future work.

2 Methods

Figure 1 illustrates the main components of the proposed
digital shadow workflow. A Kalman filter combines SCADA
measurements with the predictions of a turbine ROM to esti-
mate system states and additional outputs. The filter-internal
model is obtained by linearizing a higher-fidelity multibody
model of the turbine. Blade-load measurements are com-
bined with SCADA data to infer key inflow characteristics in
real time. These inflow parameters are then used to schedule
the coefficients of the filter-internal model, enabling the filter
to adapt to the full range of operating and inflow conditions
experienced by the turbine.

The proposed digital shadow combines a physics-based
reduced-order model with real-time measurements to contin-
uously estimate the turbine dynamic state and selected un-
measured loads. The Kalman filter serves as the core data-
fusion mechanism, propagating the turbine response using
the linearized aeroelastic model and correcting these predic-
tions whenever new measurements become available. Model
scheduling ensures that the filter remains valid across vary-
ing inflow and operating conditions by adjusting the model
coefficients in real time.

2.1 Filter-internal model

We consider a nonlinear multibody model of a wind turbine,
expressed in terms of generalized displacements q, veloci-
ties v, and inputs u. Noisy measurements ν affect the out-
puts y used by the filter to update the model states, while
z denotes additional outputs of interest that do not partici-
pate in the innovation step. The filter ROM is obtained by di-
rectly linearizing the nonlinear model around multiple equi-
librium conditions, with equilibrium vectors q0, v0, u0, y0,
and z0. The resulting filter-internal linear model is formu-
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Figure 1. Schematic representation of the proposed digital shadowing approach.

lated in terms of increments δ(·) as

δ̇q = δv, (1a)

δ̇v =−M−1(Cδv+Kδq +Uδu+ω), (1b)
δy = Dvδv+Dqδq +Eδu+ ν, (1c)
δz= Fvδv+Fqδq +Gδu. (1d)

The Kalman filter integrates the linearized model by first pre-
dicting the system states and their uncertainties, and then cor-
recting these predictions using the available measurements
and their associated noise characteristics. Because the under-
lying model is linearized, the nonlinear values of all quan-
tities are recovered by adding the perturbations to the cor-
responding equilibrium values, e.g. q = q0+ δq, and analo-
gously for all other vectors in Eq. (1).

Equation (1a) represents the (noise-free) kinematic rela-
tions, while Eq. (1b) expresses the dynamic equilibrium af-
fected by process noise ω, with M, C, K, and U denoting the
mass, damping, stiffness, and control matrices, respectively.
Equations (1c) and (1d) give the linearized output relations
for y and z, respectively. All noise terms are assumed to be
zero-mean and uncorrelated (Grewal and Andrews, 2014).

Although a standard linear Kalman filter would be suffi-
cient for the present linearized state-space model, we adopt
the unscented Kalman filter (UKF) implementation of MAT-
LAB (Wan and Van Der Merwe, 2000; The MathWorks, Inc.,
2022). This choice is motivated by anticipated future exten-
sions to nonlinear filter-internal models. While the use of the
UKF is therefore not strictly necessary in the present linear
case, it remains fully applicable to linear systems, albeit with
somewhat higher computational cost compared to a standard
linear Kalman filter.

Because the equilibrium conditions are generally periodic,
the matrices associated with rotating quantities – and the cor-
responding states, inputs, and outputs – depend on the rotor
azimuth. To avoid dealing with periodic systems, this depen-
dence is removed by averaging over one full revolution.

In the present implementation, the filter-internal model in-
cludes 9 DOFs, and the generalized displacement vector is
defined as

q =
{
dFA

T ,dSS
T ,ψ,dF

B1,d
F
B2,d

F
B3,d

E
B1,d

E
B2,d

E
B3

}T
, (2)

where dFA
T and dSS

T are the tower FA and SS deflections, re-
spectively; ψ is the rotor azimuthal position; and dF

Bi and dE
Bi

are respectively the flapwise and edgewise DOFs of the ith
blade. The associated velocities are v = q̇.

The input vector u contains eight entries and is defined as

u=
{
V,α,γ,θ1,θ2,θ3,θcoll,Qgen

}T
, (3)

where V is the wind speed, α the vertical power-law shear
exponent, γ the yaw misalignment angle, θi the total pitch
of blade i, θcoll the collective pitch, and Qgen the generator
torque. Individual pitch control introduces a blade-specific
pitch component θi−θcoll, whereas θi = θcoll when only col-
lective pitch is active. The input vector thus includes not only
commands from the onboard controller but also exogenous
terms associated with the ambient inflow. The present set of
inputs corresponds to those used for linearization in Open-
FAST (Jonkman et al., 2018; NREL Forum, 2023); other
simulation tools may use different inflow descriptors (e.g.,
including horizontal shear).

We assume that a biaxial accelerometer provides tower-top
accelerations, an encoder measures rotor speed, and blade-
root loads are available in flapwise and edgewise directions
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for each blade. The output vector y, therefore, contains nine
components and is defined as

y =
{
d̈FA

T , d̈SS
T , ψ̇,mF

B1,m
F
B2,m

F
B3,m

E
B1,m

E
B2,m

E
B3

}T
. (4)

The FA and SS tower-top accelerations are denoted by d̈FA
T

and d̈SS
T , respectively. The rotor angular speed is ψ̇ =�,

while the flapwise and edgewise bending moments of blade i
are indicated by mF

Bi and mE
Bi.

The model is completed by defining additional to-be-
estimated quantities collected in the vector z, which do not
participate in the filter innovation step. This exclusion may
occur for two reasons:

– The digital shadow operates as a virtual sensor for quan-
tities that are not physically measured due to technical
or economic constraints.

– The digital shadow supports a condition monitoring sys-
tem, where predicted and measured values are com-
pared to detect anomalies or faults.

Both scenarios are illustrated later in this work. In the
present implementation, the z outputs include the tower-
base bending moment components mFA

TB and mSS
TB, as well

as the flapwise and edgewise bending moments mF
Bi-15 % and

mE
Bi-15 % at the 15 % blade span. Other quantities could be

selected depending on the specific application.

2.2 Model scheduling

To be usable in practice, the filter-internal model is scheduled
as a function of a small set of parameters s, selected to char-
acterize the equilibrium operating condition about which the
linearization is performed. Consequently, all matrices in the
state-space representation of Eq. (1) depend on s. For exam-
ple, the mass matrix becomes M=M(s) and similarly for all
other system matrices. The equilibrium values of the states,
inputs, and outputs also vary with s; for instance, the gener-
alized displacements satisfy q0 = q0(s), with analogous re-
lations holding for the remaining vectors.

The vector of scheduling parameters is defined as

s = {V,α,kh,γ }
T . (5)

The first two entries capture the dependency of the model
on the ambient conditions through the wind speed V and the
vertical power-law shear exponent α. The third entry is the
horizontal shear kh, accounting for wakes; and the fourth is
the yaw misalignment γ , relevant for wake steering.

The scheduling vector enables the model and filter to re-
main aware of operating conditions that would otherwise be
lost after linearization. The nonlinear model is linearized at a
set of discrete s values spanning the full operational and am-
bient range, and the corresponding matrices and equilibrium
quantities are stored in lookup tables (LUTs). During oper-
ation, s is estimated in real time (Sect. 2.3), and the model

matrices and equilibrium values are interpolated accordingly,
allowing the incremental filter predictions to be mapped back
to the nonlinear physical quantities.

2.3 Observers

As previously noted, the filter-internal model is scheduled
with respect to the parameters s, here chosen as the wind
speed, the vertical and horizontal shears, and the misalign-
ment angle. These quantities are estimated in real time during
operation and used to update the filter-internal model accord-
ingly. The present sequential setup – where observers supply
s to the Kalman filter – is adopted for simplicity, as legacy
observers were already available (Hoghooghi et al., 2024).
However, an augmented Kalman filter could alternatively es-
timate s directly.

Since the actual misalignment can differ substantially
from the commanded one, γ is estimated via an observer
rather than taken from the controller demand.

2.3.1 Simple wind speed observer

A rotor-equivalent wind speed is obtained by inverting the
expression of the power coefficient:

Cp(θcoll,λ)=
Qaero�

0.5ρAV 3 , (6)

where λ=�R/V is the tip-speed ratio, R is the rotor radius,
A= πR2 is the rotor-swept area, Qaero is the aerodynamic
torque, and ρ is the air density. The power coefficient Cp is
obtained from dynamic simulations of the full aeroservoelas-
tic model in steady wind conditions for a reference density
ρref. After transient effects decay, the response is averaged
over several rotor revolutions to extract the steady-state val-
ues. These results populate an LUT, providing a mapping for
the rotor-equivalent wind speed as a function of pitch, rotor
speed, aerodynamic torque, and density:

V = LUTCp (θcoll,�,Qaero,ρ/ρref). (7)

At run time, the LUT provides an estimate VE of the rotor-
equivalent wind speed. The current pitch θcoll and rotor speed
� are read from onboard sensors. The aerodynamic torque is
computed asQaero ≈Qgen+J �̇, whereQgen is the measured
generator torque and �̇ is obtained by numerically differen-
tiating �, with J the rotor inertia. Air density ρ is computed
via the gas law using the measured temperature.

2.3.2 Shear and misalignment observers

The horizontal and vertical shears, as well as the wind mis-
alignment, are estimated using the “rotor as a sensor” ap-
proach (Kim et al., 2023; Bertelè et al., 2024), which exploits
the fact that these inflow characteristics imprint distinctive
signatures in the blade-load response. By inverting these sig-
natures, the corresponding inflow quantities can be inferred.

Wind Energ. Sci., 11, 373–393, 2026 https://doi.org/10.5194/wes-11-373-2026



H. Hoghooghi and C. L. Bottasso: A wind turbine digital shadow for complex inflow conditions 377

Here, we adopt the harmonic-amplitude-based formula-
tion of the rotor-as-a-sensor method (Kim et al., 2023;
Bertelè et al., 2024). The estimator is written as

cE = NN(p, iM), (8)

where cE is the estimated inflow quantity (either α, kh, or γ ),
NN(·, ·) is a single-output NN with parameters p, and iM is
the vector of measured inputs. A separate NN is used for each
of the three inflow parameters. The input vector is defined as
iM = {m

T ,V ,ρ}T , where m collects the relevant blade-load
harmonics. Since the estimation of shears and misalignment
only requires 1P content (Kim et al., 2023; Bertelè et al.,
2024), we define

m= {mOP
1c ,m

OP
1s ,m

IP
1c,m

IP
1s}

T , (9)

where subscripts (·)1c and (·)1s denote 1P cosine and sine
terms, respectively, and superscripts (·)OP and (·)IP refer to
out- and in-plane load components. These components are
obtained by transforming the measured flapwise and edge-
wise loads to the rotor disk frame based on the current blade
pitch.

The NNs are simple single-hidden-layer feed-forward
models with sigmoid activation. Parameters p are trained via
backpropagation with Bayesian regularization (MATLAB,
2023; Burden and Winkler, 2009) using simulations from
the full OpenFAST aeroelastic model (OpenFAST, 2024).
At each simulation step, the inflow quantities are extracted
from the TurbSim field (TurbSim, 2023) by best-fitting over
the rotor disk, and load harmonics are computed via the
Coleman–Feingold transformation (Coleman and Feingold,
1958) and subsequently filtered. During operation, Eq. (8)
provides real-time estimates of α, kh, and γ using the mea-
sured load harmonics, the rotor-equivalent wind speed from
Eq. (7), and air density ρ.

2.4 Model error correction

In practice, some mismatch between the plant and the filter-
internal model is unavoidable, and this affects the perfor-
mance of the digital shadow. Such discrepancies can be miti-
gated through model-parameter tuning, dynamic data-driven
model adaptation (Anand and Bottasso, 2023; Bottasso et al.,
2006), bias-correction strategies (Chui and Chen, 1999; Dré-
court et al., 2006; Grewal and Andrews, 2008), or adapting
the process noise to account for unmodeled physics (Bran-
lard et al., 2020a). In this work, we focus on two approaches:
a bias-correction method and a data-driven correction applied
only to the output equations.

2.4.1 Bias correction

First, we address bias correction (BC), interpreted as additive
errors in the model. To this end, the filter-internal model of
Eq. (1) is modified as

δ̇q = δv, (10a)

δ̇v =−M−1(Cδv+Kδq +Uδu+f 0+ω), (10b)

ḃ = ωb, (10c)
δy = Dvδv+Dqδq +Eδu+ b+ ν, (10d)
δz= Fvδv+Fqδq +Gδu. (10e)

With respect to Eq. (1), the model is modified to include two
corrections.

The first correction term is the static force f 0, which in-
duces a steady extra deflection in the generalized displace-
ments to compensate model biases. As with all model terms,
f 0 depends on the operating condition through the schedul-
ing vector s.

A second correction is the additive term b in the output
equation (Eq. 10d), which accounts for sensor biases. Fol-
lowing standard practice (Chui and Chen, 1999; Drécourt
et al., 2006; Grewal and Andrews, 2008), b is promoted to
a state undergoing a random walk, driven by process noise
ωb, as in Eq. (10c).

Because f 0 and b can be collinear, their effects may not
be uniquely separable: a correction on the generalized dis-
placements performed by f 0 will in turn correct the outputs
through the δq term in Eq. (10d), eventually affecting b. To
mitigate this, f 0 is first calibrated with b disabled; once suit-
able values for f 0 for varying s have been obtained, then f 0
is frozen and the bias b is activated in the filter. This two-step
process is demonstrated later. For simplicity, one may omit
f 0 entirely and rely only on b, accepting possible displace-
ment errors. Iterative tuning of both terms is also possible.

Finally, tuning is based solely on the measured outputs y,
since neither states nor sensor biases are directly measurable.

2.4.2 A posteriori error correction for condition
monitoring applications

Next, we consider a CM-oriented scenario in which the digi-
tal shadow predicts selected quantities of interest while mea-
surements of the same quantities are also available at run
time. A CM system can then compare predictions and mea-
surements to detect faults or anomalies. For this redundancy
to be effective, the digital shadow must closely match the
measured behavior under nominal conditions. In practice, the
baseline model of Eq. (1) cannot typically achieve such ac-
curacy.

To improve agreement, the linearized output equations for
z (Eq. 1d) are augmented with a correction term ε:

δz= Fvδv+Fqδq +Gδu+ ε. (11)
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For complete generality, the error correction term is assumed
to depend on the states δq and δv, inputs δu, and scheduling
parameters s, and it is approximated using a neural network:

ε = NNε(pε,s,δq,δv,δu), (12)

where pε are the free network parameters.
Note that this approach does not modify the governing

dynamics in Eq. (1b). Consequently, the filtered states will
generally not coincide with the true (and typically unknown)
plant states. However, accurate estimates of the outputs of in-
terest z can still be achieved by training the correction term
to learn the measured outputs zM.

As before, a simple single-hidden-layer feed-forward NN
provides sufficient accuracy. Training is performed by back-
propagation (MATLAB, 2023), with Weibull weighting ap-
plied to emphasize the most probable operating conditions
(Bangalore et al., 2017; Surucu et al., 2023; Anand and Bot-
tasso, 2023).

3 Results

3.1 Simulation-based results

We assess the digital shadow in simulation using the IEA-
3.4-130 reference wind turbine (RWT) (IEA 3.4-MW On-
shore Reference Wind Turbine , 2023) implemented in Open-
FAST (OpenFAST, 2024). The aeroelastic model was lin-
earized for wind speeds from 5 to 25 ms−1, vertical shear
exponents from 0 to 0.48, horizontal shear from −0.1 to 0.1,
and yaw misalignments of 0 and −30°. The filter, imple-
mented in MATLAB (The MathWorks, Inc., 2022), required
about 6 min to simulate 10 min of physical time at 100 Hz on
a standard single-CPU laptop.

Turbulent inflow fields were generated with Turb-
Sim (TurbSim, 2023) for wind speeds of 5–11 ms−1, a ver-
tical shear exponent of 0.2, and turbulence intensities (TIs)
of 6% and 18%. Simulations followed standard 10 min runs
with six random seeds. Gaussian noise, equal to 10% of
the standard deviation of each signal, was added to emu-
late SCADA sensor uncertainties (Branlard et al., 2020b, a).
Damage-equivalent loads (DELs) were computed via rain-
flow counting (Natarajan, 2022). Unless stated otherwise, all
results presented in this section refer to the representative op-
erating condition described below in Sect. 3.1.1.

Estimation accuracy depends strongly on the choice of
process and measurement covariance matrices (Branlard
et al., 2020a). Measurement covariance reflected expected
sensor noise, while process covariance was tuned empiri-
cally. The resulting values showed little dependence on the
operating condition and delivered consistent performance
across all cases.

3.1.1 Representative example and input data

To illustrate the digital shadow workflow and clarify the as-
sociated input data, we provide a brief summary of a rep-
resentative simulation case that is used repeatedly through-
out Sect. 3.1. The reference example corresponds to a single
IEA 3.4-130 RWT (IEA 3.4-MW Onshore Reference Wind
Turbine , 2023) operating in Region II at a mean wind speed
of 7ms−1, with a vertical power-law shear exponent of 0.2
and TIs of 6% and 18%. Turbulent inflow fields are gener-
ated with TurbSim (TurbSim, 2023) using standard 10 min
realizations and six random seeds.

The digital shadow receives as inputs the measured ro-
tor speed, generator torque, selected blade-root and tower
load measurements, and air density (assumed to be known).
Gaussian noise with a standard deviation equal to 10% of
each signal standard deviation is superimposed to emulate
SCADA sensor uncertainty. These measurements are pro-
cessed by the filter to estimate rotor-equivalent wind speed,
vertical and horizontal shears, structural states, and fatigue-
relevant load quantities. This representative case is used
in Figs. 2–5 to demonstrate observer performance, bias-
correction behavior, and state and load-estimation accuracy
before extending the analysis to waked and yaw-misaligned
turbines in Sect. 3.1.5.

3.1.2 Estimation of wind speed and shears

We first assess the accuracy of the estimated wind speed and
shear used to schedule the model coefficients. Ground-truth
values were extracted directly from the TurbSim longitudi-
nal wind field: the rotor-average wind speed was computed
by disk averaging, while vertical and horizontal shears were
obtained by fitting a power-law and a linear profile over the
rotor disk, respectively.

Figure 2 compares the reference rotor-average speed
(dashed blue line) with the estimated rotor-equivalent wind
speed VE from Eq. (7) (solid red line) for a representative
Region II simulation at 7ms−1 and TIs of 6% (Fig. 2a) and
18% (Fig. 2b). To compute VE, rotor speed and torque were
low-pass filtered with a fifth-order Butterworth filter with a
−3 dB cutoff frequency of 8 rpm (Schreiber et al., 2020b),
removing high-frequency turbine dynamics and measure-
ment noise.

For the same operating condition, Fig. 2c compares the
reference power-law vertical shear (dashed blue line) with
its estimate from Eq. (8) (solid red line). Figure 2d shows
the reference linear horizontal shear and its estimate for a
fully waked turbine (Sect. 3.1.5), a case selected because
wake meandering induces clear horizontal shear fluctuations,
unlike the modest variations typically observed in ambient
TurbSim flow fields.

Shear estimation relies on load harmonics obtained via the
Coleman–Feingold transformation (Coleman and Feingold,
1958), followed by low-pass filtering (Bertelè et al., 2021).
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Figure 2. Time histories of the rotor-average wind speed from TurbSim and from Eq. (7) at a wind speed of 7ms−1 and at TIs of 6% (a)
and 18% (b), respectively. (c) Time histories of the power-law vertical shear from TurbSim and from Eq. (8), a wind speed of 7ms−1, and
TI equal to 6%. (d) Time histories of the linear horizontal shear from TurbSim and from Eq. (8) for the downstream turbine in full-waked
conditions (see Sect. 3.1.5). Reference results from TurbSim: dashed blue line; estimates: solid red line.

The network also receives the estimated rotor-equivalent
wind speed VE from Eq. (7) and the air density (assumed
to be known).

Across all cases, the observers track the ground truth rea-
sonably well but miss some higher-frequency content. This
loss is expected, as VE is inferred from turbine response –
filtered by rotor inertia and control action – while the shear
observers rely on load harmonics that similarly smooth the
blade response. Because these quantities are used solely to
schedule (interpolate) the model matrices and equilibrium
conditions, omitting high-frequency components is arguably
beneficial.

Over the entire range of simulations, the average abso-
lute errors were 2.4 % for wind speed, 14.5% for the vertical
power-law shear exponent, and 11.1% for the linear horizon-
tal shear. In wake-steering scenarios (Sect. 3.1.5), the mean
yaw-misalignment estimation error was 14.5%.

3.1.3 Performance of the bias-correction approach

To assess the BC approach of Sect. 2.4.1 and examine the
roles of the two correction terms, we used the same tur-
bine in a clean low-TI inflow as in Sect. 3.1.2. BC terms
were initially disabled to establish the baseline of the un-

corrected model. Figure 3a shows tower-top FA deflection
from OpenFAST (dashed blue line), the uncorrected digital
shadow (solid red line), and the BC-corrected estimate (solid
yellow line) at 7ms−1 and TI of 6%.

Introducing the static corrective force f FA
0 reduces the av-

erage absolute error from 16.4% to 2.5%. Figure 3b illus-
trates the dependence of this static force on wind speed, nor-
malized to unity at rated wind speed. Similar analyses were
performed for other DOFs but are omitted for brevity. The re-
maining discrepancies between the linear and nonlinear mod-
els stem from factors such as shaft tilt, structural deflections,
gravity loads, small azimuth differences due to slight rotor-
speed deviations (NREL Forum, 2023), and errors in estimat-
ing the scheduling vector s.

Bias in blade sensors is common (Pacheco et al., 2024).
To assess the effect of the b term for sensor-bias correction
(Sect. 2.4.1, Eq. 10c), we artificially added Gaussian noise to
the blade 1 strain gauge, with a standard deviation of 0.01%
and a mean equal to 10% of the mean flapwise bending mo-
ment. Figure 4a shows the unbiased OpenFAST measure-
ments (dashed blue line) and the biased ones (dashed teal
line). Figure 4b illustrates how b (dashed teal line) converges
to the injected bias (solid yellow line), effectively correct-

https://doi.org/10.5194/wes-11-373-2026 Wind Energ. Sci., 11, 373–393, 2026



380 H. Hoghooghi and C. L. Bottasso: A wind turbine digital shadow for complex inflow conditions

Figure 3. Time histories of tower-top FA deflection as measured on the OpenFAST model (dashed blue line), uncorrected estimates from
the digital shadow (solid red line), and corrected estimates using the BC approach (solid yellow line) at a wind speed of 7ms−1 and a TI
of 6 % (a). Variation of the static corrective force f FA

0 for the tower-top FA deflection with respect to wind speed (b). The static force is
normalized to one at the rated wind speed to highlight relative variations.

ing the measurement. Figure 4c compares the blade 1 deflec-
tion from the unbiased OpenFAST model (dashed blue line),
the biased case (dashed teal line), and the BC-corrected dig-
ital shadow (solid yellow line). The average absolute error is
3.61% without the artificial bias and 3.67% with compensa-
tion, indicating that the correction removes the bias without
degrading accuracy. Similar performance was obtained when
different biases were applied to each blade sensor.

3.1.4 Application to a freestream turbine

For the same individual turbine in a clean low-TI inflow of
Sect. 3.1.2, Fig. 5a–d show the tower-top FA and SS displace-
ments and the blade tip flapwise and edgewise deflections
measured in OpenFAST (dashed blue line) and estimated by
the digital shadow with BC (solid yellow line). Figure 5e and
f report the tower-base resultant bending moment and the
blade resultant bending moment at 15 % span. The figures
show a representative case at 7ms−1 and TI = 6%. Table 1
summarizes the performance across all simulations by listing
the average absolute errors.

Results show that the average absolute errors of the es-
timated turbine states remain below 10% for all simula-
tions. DELs were computed for the tower-base resultant mo-
ment MTB and the blade resultant moment at 15 % span
MB–15 %. Their average absolute errors fall in the 5%–15%
range, with standard deviations of about 2.7% for MTB
and 4.5% for MB-15 % across all scenarios. As expected, er-
rors increase with TI. The overall error levels are consistent
with previous studies (Abdallah et al., 2017; Branlard et al.,
2020a, b, 2024a), although those works relied on fewer DOFs
and did not include blade dynamics.

3.1.5 Application to waked turbines in a small cluster

To evaluate the method under more complex inflow condi-
tions, we simulated a small turbine cluster using FAST.Farm
(Jonkman and Shaler, 2021). The cluster consists of three
IEA 3.4-130 RWTs (IEA 3.4-MW Onshore Reference Wind
Turbine , 2023) arranged in a row (Fig. 6), denoted as WT1,
WT2, and WT3 from upstream to downstream.

Two scenarios were investigated:

– In the first, WT1 is aligned with the wind at rated speed
(9.8ms−1) and TI= 6%. WT2 lies fully in the wake of
WT1, and WT3 in the consecutive wakes of WT1 and
WT2. The digital shadow is applied to WT2 and WT3.

– In the second, ambient conditions are the same, but
WT1 is yawed by −30°. WT2 is then partially waked
by WT1, while WT3 is fully waked by WT2 and par-
tially by WT1. The digital shadow is applied to WT1,
WT2, and WT3.

Table 2 summarizes the average absolute errors and DEL
estimates for both scenarios. For waked and yawed turbines,
blade DEL errors remain comparable to those obtained in
Sect. 3.1.4 for a single turbine in high-TI inflow, whereas
tower DEL errors are higher. This is consistent with the
added wake turbulence impinging on downstream machines.
While tower DEL errors are similar for WT1 under yaw mis-
alignment and WT2 under partial waking, blade DEL errors
are larger for WT2, likely due to the complex, asymmetric
inflow induced by the deflected wake.

Despite the low ambient TI, tower DEL errors are some-
what larger for the yawed WT1 than for the downstream
turbines. This may reflect the complex rotor aerodynamics
in yaw, which are not fully captured by the filter-internal
model. Moreover, even BEM-based aerodynamics in Open-
FAST can be inaccurate in strong yawed-flow conditions

Wind Energ. Sci., 11, 373–393, 2026 https://doi.org/10.5194/wes-11-373-2026



H. Hoghooghi and C. L. Bottasso: A wind turbine digital shadow for complex inflow conditions 381

Figure 4. Time histories of blade 1 flapwise bending moment (mB1
F ) as measured on the OpenFAST model without bias (dashed blue line)

and with artificially introduced non-zero Gaussian noise (dashed teal line) (a). Convergence of the term b (dashed teal line) to the mean of
the artificially added bias (solid yellow line) (b). Time histories of the estimated blade 1 deflection as measured on the OpenFAST model
without bias (dashed blue line), with artificially introduced non-zero Gaussian noise (dashed teal line), and as estimated by the digital shadow
using the BC approach (solid yellow line) (c). Results correspond to a wind speed of 7ms−1 and a TI of 6%.

(Branlard et al., 2024b), where CFD or free-vortex methods
can provide more reliable physics (Boorsma et al., 2018).

To further interpret these results, Fig. 7a–d show the nor-
malized FFT amplitudes of the tower-base bending moment
and the blade bending moment at 15 % span for a single tur-
bine in clean inflow and for WT2 in partially waked condi-
tions. OpenFAST measurements (dashed blue line) are com-
pared with digital shadow estimates (solid yellow line). The
digital shadow reproduces the main spectral features, partic-
ularly around the 1P–3P harmonics, and captures the increase
in load amplitudes from aligned to waked inflow. Under
waked conditions, OpenFAST peak amplitudes rise by fac-
tors of about 5 (tower) and 3 (blade). The digital shadow er-
rors in peak amplitude are 14% (clean) and 46% (waked) for
the tower-base moment, and 18% (clean) and 34% (waked)
for the blade moment.

Although the proposed digital shadow is clearly not pro-
viding an exact representation of the turbine behavior, the ac-
curacy of the blade response in complex partially waked and
misaligned conditions is only slightly worse than the tower
response provided by recent simpler digital shadows (Bran-
lard et al., 2020b, 2024b), which would not be applicable in
such non-symmetric conditions.

3.2 Validation against field measurements

Next, the digital shadow is evaluated under real-world condi-
tions using measurements from a 3.5 MW eno wind turbine
(eno energy GmbH, 2024). Available signals include gener-
ator torque, rotor speed, pitch angle, tower-top FA/SS accel-
erations, and blade-root flapwise and edgewise bending mo-
ments, as well as strain-gauge measurements of two compo-
nents of the tower-base moment and of the blade moment
at 25 % span. All data are sampled at 10 Hz. These mea-
surements serve two purposes: (i) to assess the prediction
quality of the digital shadow (Sect. 3.2.2); and (ii) to train
a data-driven correction of the output model using Eq. (11)
(Sect. 3.2.4). Following the procedure of Sect. 2.1, the filter-
internal model is built by linearizing an existing OpenFAST
model of the turbine over a range of operating points from
cut-in to cut-out.

3.2.1 Test site

The dataset used in this study was collected at a test site dur-
ing two periods (15–30 October 2020 and 23–26 February
2021) as part of an unrelated project. The measurements were
used as recorded, without calibration or post-processing, and
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Figure 5. Time histories of tower-top FA deflection (a), tower-top SS deflection (b), and blade tip flapwise (c) and edgewise (d) deflections,
tower-base bending moment (e), and blade bending moment at 15 % blade span (f), as measured on the OpenFAST model (dashed blue line)
and estimated by the digital shadow using BC (solid yellow line). A wind speed of 7ms−1 and TI equal to 6% is considered.

Table 1. Average absolute errors for all conducted simulations for clean inflow conditions.

Situation
Avg. estimation error [ %]

dFA
T dSS

T dF
B

dE
B

MTB DELs MB-15 % DELs

No wake, TI= 6 % 3.1 1.7 3.8 4.4 5.1 12.2
No wake, TI= 18 % 6.9 3.5 5.6 6.0 6.9 13.0

Average 5.0 2.6 4.7 5.2 6.0 12.6
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Table 2. Average absolute errors of the estimated outputs for all considered situations with complex inflow conditions, encompassing fully,
partially, and overlapping waked conditions.

Scenario Turbine Condition
Avg. estimation error [ %]

MTB DELs MB-15 % DELs

No wake steering
WT2 Fully waked 13.0 14.2
WT3 Fully waked 10.1 13.4

Wake steering
WT1 Misaligned 16.1 13.4
WT2 Partially waked 15.5 16.7
WT3 Overlapping wakes 10.5 15.7

Average estimation error over all complex inflow conditions 13.0 14.7

Figure 6. Layout of a small cluster of three IEA 3.4-130 RWTs.
For all considered cases, the wind direction (indicated by the blue
arrow) is parallel to the row of turbines.

filtered only to remove gaps, stops, faults, and other non-
power-production conditions.

The test site, illustrated in Fig. 8, is located in northeast
Germany, near the village of Kirch Mulsow, in the Ros-
tock district of Mecklenburg-Vorpommern, a few kilometers
from the Baltic Sea. The terrain comprises gentle hills, open
fields, and forests. Four turbines, manufactured by eno en-
ergy GmbH (eno energy GmbH, 2024), are installed at the
site. The digital shadow was applied to replicate the response
of WT3. The main technical specifications of WT3 and WT4
are summarized in Table 4; WT1 and WT2 are not described
further, as they played no role in the present experiment.

The testing period was categorized into different inflow
conditions, as summarized in Table 3. After filtering out
gaps and non-power-production periods, approximately 49h
of clean freestream data were retained. This dataset was split

into two subsets: the first 38h (about 77%) were used to train
the correction approaches described in Sect. 2.4, while the
remaining 11h were kept for validation and correspond to 1
representative day of clean inflow.

Furthermore, as indicated in Table 3, data from selected
days with complex inflow were used to evaluate the digital
shadow under more challenging conditions. Importantly, no
data from complex inflow scenarios were used in tuning the
correction terms presented in Sect. 2.4.1.

Wind speed and shear estimators for these turbines were
developed and validated in previous studies (Schreiber et al.,
2020a; Bertelè et al., 2021).

3.2.2 Digital shadow performance without correction

First, we assess the ability of the digital shadow to estimate
quantities of interest when no physical sensors are available.
To this end, the digital shadow is fed with SCADA data,
blade-root load measurements, and the inflow quantities pro-
duced by the wind observers, but not with the tower-base
and 25 %-span blade measurements. These withheld mea-
surements are instead used to evaluate the quality of the cor-
responding estimates.

Figure 9a and b show the normalized measured (dashed
blue line) and estimated (solid red line) tower-base bend-
ing moment resultant and blade bending moment resultant
at 25 % blade span, respectively, over 11h on a sample day
(20 October 2020) under clean freestream conditions, char-
acterized by an average TI of 13.5% (met mast). The zoomed
insets reveal that the digital shadow captures both low- and
high-frequency variations well, although a clear offset is
present due to the plant/internal-model mismatch between
the real turbine and the approximate aeroelastic model – an
effect not observed in the simulated study of Sect. 3.1.4,
where the same OpenFAST model served as both plant and
filter-internal model.

For this sample day, the average absolute errors are 5.9%
for the tower-base bending moment resultant and 21.3% for
the 25 %-span blade bending moment resultant. Over the full
training dataset, the tower-base error averages 12.4% (min:
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Figure 7. Spectra of the tower-base bending moment (a, b) and the blade bending moment at 15 % blade span (c, d) under clean inflow and
partially waked conditions, respectively. The results are shown as measured on the OpenFAST model (dashed blue line) and as estimated by
the digital shadow using BC (solid yellow line). The frequencies are normalized by the mean rotor speed, and all FFT amplitudes are scaled
relative to the peak amplitude recorded by OpenFAST.

Table 3. Inflow conditions during the testing period.

Inflow conditions Specific conditions Wind direction [°] Time period Total hours Data split [h]

Clean freestream Normal 145–335 17–31 Oct 2020 49 38 (training)/11 (testing)

Complex inflow
Extreme vertical shear 145–335 26 Oct 2020 3 3 (testing)
Wake steering via yaw control 200–230 23 Feb 2021 2.5 2.5 (testing)
Waked 40–70 15 Oct 2020 2 2 (testing)

9.7%, max: 19.7%), while the 25 %-span blade error aver-
ages 18.7% (range: 13.7%–23.7%).

3.2.3 Virtual sensing (bias correction)

Second, to remove the observed offset, the correction of both
outputs and states is performed using the BC approach de-
scribed in Sect. 2.4.1 and based on Eq. (10). The tuning of
the correction terms followed the procedure of Sect. 3.1.3,
relying on tower-top and blade-root measurements collected
during the testing period.

First, the static force term f 0 was adjusted through an it-
erative tuning process until no further improvement was ob-
tained. This term was found to depend mainly on wind speed,
whereas the other scheduling variables s had negligible in-

fluence under clean freestream conditions. While a manual
tuning strategy was adopted in this work, more systematic
or automated optimization approaches (e.g., gradient-based,
Bayesian, or heuristic methods (Nocedal and Wright, 2006))
could be employed and represent a promising direction for
future development. Next, the bias term b was activated, and
its driving process noise was tuned to further reduce mea-
surement errors. As with the process noise affecting the dy-
namic equilibrium equations, no significant dependency on
wind speed or turbulence intensity was observed. After tun-
ing, the average absolute errors over the training dataset were
3.1% for the tower-top acceleration resultant and 3.5% for
the blade-root bending moment resultant.

Table 5 summarizes the average absolute errors and output
DELs for the full dataset, grouped by the inflow classes de-
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Table 4. Technical specifications of the WT3 and WT4 turbines at the test site.

Wind turbine
Turbine specifications

Turbine model Rotor diameter [m] Hub height [m] Rated power [MW] Cut-in, rated, cut-out speeds [ms−1
]

WT3 eno126 126 117 3.5 3.0, 12.5, 25.0
WT4 eno126 126 137 3.5 3.0, 12.5, 25.0

Figure 8. Layout of the test site, showing the turbine locations. The
digital shadow is tested for the response of WT3. The sectors high-
lighted in red and yellow indicate the wind direction range during
the testing period, which are characterized by clean freestream and
waked conditions, respectively.

fined in Table 3. For the same sample day shown in Fig. 10,
the bias correction reduces the average absolute errors for
MTB and MB-25 % to 4.2% and 2.7%, respectively, indicat-
ing that the offset has been effectively removed. The corre-
sponding DEL estimation errors are 4.3% forMTB and 9.1%
for MB-25 %. Overall, the BC approach accurately tracks
both low- and high-frequency fluctuations, providing reliable
DEL estimates for the quantities of interest.

It is worth noting that the BC method proves more ef-
fective in the field than in the simulation environment. This
may stem from the higher TI and the tenfold faster sampling
rate used in simulations, which introduces additional high-
frequency fluctuations that are harder to estimate accurately.

Given the strong and generalizable performance of the BC
approach, all remaining results for complex inflow condi-
tions are obtained using this method. This choice also aligns
with a key application of the digital shadow as a virtual sen-
sor for quantities that cannot be directly measured for tech-
nical or economic reasons. For brevity, time-history plots
are shown only for the waked inflow case (Fig. 11), as this

scenario is particularly informative regarding model behav-
ior under complex aerodynamic interactions. Figures for the
other inflow classes are omitted for conciseness.

– Extreme vertical shear. The BC correction – tuned ex-
clusively on the training dataset defined in Table 3 – was
developed without using any complex inflow data. Even
so, the average absolute errors forMTB andMB-25 % are
6.0% and 2.4%, respectively, for the extreme vertical
shear dataset. The corresponding DEL estimation errors
are 6.7% and 7.3%. These results confirm that the BC
approach maintains errors below 10% even under se-
vere shear conditions, where the power-law exponent
ranges from 0.15 to 0.72 (average 0.42).

– Wake steering via yaw control. For the wake-steering
scenario, the average absolute errors for MTB and
MB-25 % are 6.2% and 2.3%, respectively, while the
DEL estimation errors are 0.9% and 8.0%. Yaw mis-
alignment varies between −16 and 11°. Despite the in-
herently more complex dynamics associated with wake
steering, the digital shadow continues to perform ro-
bustly under these conditions.

– Waked. Figure 11a through d show the tower-base bend-
ing moment, the 25 %-span blade bending moment re-
sultant, and the vertical and horizontal shears for the
waked dataset. Measurements are shown as dashed blue
lines, and BC-corrected estimates as solid yellow lines.
The power-law vertical shear has an average value of
−0.15 (dashed dark-red line), attributed to the higher
hub height of WT4 and its wake influence on WT3. The
horizontal shear averages−0.12 (dashed light-red line),
further confirming strongly waked conditions.

For this dataset, the average absolute errors for MTB
and MB-25 % are 11.4% and 5.1%, respectively, while
the DEL estimation errors are 0.9% and 13.3%. Al-
though the BC approach generally performs well, the
complex turbine dynamics and large variations in verti-
cal and horizontal shear under wake conditions result in
slightly higher errors, with some values exceeding 10%.

Overall, the range of average estimation errors is con-
sistent with the findings of previous studies (Abdallah
et al., 2017; Branlard et al., 2020a, b, 2024a), which re-
lied on fewer DOFs and neglected blade dynamics, and
were not validated under complex inflow.
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Figure 9. Time histories of tower-base bending moment (a) and blade bending moment at 25 % blade span (b), as measured (dashed blue
line) and estimated by the digital shadow (solid red line) for 11 h on a sample day (20 October 2020) in the available dataset under clean
freestream conditions. All values have been normalized using the same factor to preserve the confidentiality of the turbine data.

Table 5. Overview of average absolute errors and estimated output DELs under various inflow conditions.

Inflow conditions Time duration [h]
Estimation error [ %]

MTB avg. abs. MB-25 % avg. abs. MTB DELs MB-25 % DELs

Clean freestream 11 4.2 2.7 4.3 9.1
Extreme vertical shear 3 6.0 2.4 6.7 7.3
Wake steering via yaw control 2.5 6.2 2.3 0.9 8.0
Waked 2 11.4 5.1 0.9 13.3

While the digital shadow remains effective under all
tested conditions, the slightly higher errors in complex
inflow suggest that further refinement could be achieved
with a larger dataset. In particular, the tuning of the BC
correction terms may benefit from explicitly incorpo-
rating – in addition to wind speed – also variations in
vertical and horizontal shear and yaw misalignment.

3.2.4 Condition monitoring

Next, measurements of the tower-base and 25 %-span blade
bending moments were used to implement and validate a
data-driven a posteriori correction of the corresponding out-
put equations, following Eq. (11), to obtain high-quality pre-
dictions of these quantities. In this configuration, the tur-
bine is permanently instrumented, and the digital shadow
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Figure 10. Time histories of the tower-base bending moment (a) and blade bending moment at 25 % blade span (b) for 11 h on a sample
day (20 October 2020) in the available dataset under clean freestream conditions. Measurements: dashed blue line; corrected estimates of
the digital shadow using BC: solid yellow line. All values have been normalized using the same factor to preserve the confidentiality of the
measured turbine data.

provides expected values under the current operating condi-
tions. A CM activity (not further discussed here) may then
compare predictions and measurements to detect anomalies.
Prediction quality is quantified using the root mean squared
percentage error (RMSPE), commonly adopted in CM (Liu
et al., 2023).

The same dataset used in Sect. 3.2.2 was employed, with
a sample day reserved for validation. The NN-based correc-
tion term was implemented using the MATLAB Deep Learn-
ing Toolbox (The MathWorks, Inc., 2022). A basic trial-and-
error study led to a neural network with one hidden layer
of 16 neurons. During training, the Polak–Ribiére conju-
gate gradient algorithm (traincgp) and Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton backpropagation
(trainbfg) yielded the best performance for the tower-base
and 25 %-span blade bending moment, respectively. The re-
sulting RMSPEs during training were approximately 0.8%

for the tower-base and 0.9% for the 25 %-span blade bend-
ing moment.

Figure 12a and b reports time histories of the tower-base
and 25 %-span blade bending moment resultants, respec-
tively. Measurements are shown with a dashed blue line and
the corrected estimates with a solid green line. Before im-
plementing the a posteriori error correction, the RMSPE for
MTB and MB-25 % were 6.1% and 21.6%, respectively. Af-
ter data-driven correction, these values dropped to 1.3% and
1.5%, respectively.

A closer inspection of the time series also shows that the
NN-corrected model captures most of the short-term inter-
mittency present in the measured loads, including the ma-
jority of fast fluctuations driven by turbulent inflow. The
sharpest intermittent spikes observed in real turbine data are
only partially reproduced, reflecting the inherent smoothing
of the underlying linear model. Nevertheless, the dominant
variability and overall intermittency level are matched well
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Figure 11. Time histories of the tower-base bending moment (a), blade bending moment at 25 % blade span (b), vertical shear (c), and
horizontal shears (d). Measurements: dashed blue line; corrected estimates of the digital shadow using BC: solid yellow line. The shears are
shown with solid red lines, with an average value marked by dashed red lines. All values have been normalized using the same factor to
preserve the confidentiality of the measured turbine data.
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Figure 12. Time histories of the tower-base bending moment (a) and blade bending moment at 25 % blade span (b). Measurements: dashed
blue line; corrected estimates of the digital shadow using NN: solid green line. All values have been normalized using the same factor to
preserve the confidentiality of the measured turbine data.

enough for the CM application considered here. Overall, it
appears that the proposed data-driven approach is highly ef-
fective in correcting the output equations, as both slow and
fast fluctuations of the two quantities of interest are tracked
with remarkable accuracy, although it cannot improve the
state model.

4 Conclusions

We have presented, verified, and validated a digital shadow
of a wind turbine, first in a simulation environment under
freestream, waked, and wake-steering scenarios, and then
against a field dataset. Building on a classical Kalman fil-
tering framework, the approach linearizes an existing and
trusted aeroservoelastic model to derive the filter-internal lin-
ear model. Reusing such models reduces development time,
leverages prior tuning and validation efforts, increases confi-
dence in results, and avoids duplication of work.

Departing from existing studies, tower side–side and ro-
tor blade DOFs were included to support more general op-

erating conditions, such as sheared inflow, waked flow, and
yaw misalignment. Since the linearization must now span a
broader solution space, the filter-internal model is scheduled
with respect to parameters representing the main drivers of
the turbine response. These scheduling parameters are es-
timated in real time using the rotor-as-a-sensor technology
from SCADA and blade-load measurements.

Simulation testing showed state-estimation errors gener-
ally below 10% across all conditions. DEL errors ranged
from 5% to 15%, with higher values under elevated turbu-
lence and waked inflow, as expected. Slightly larger errors
(16.1%) occurred under yaw misalignment, reflecting limits
of the linearized model. Field results were remarkably sim-
ilar to those in simulation, even without ad hoc tuning, al-
though clear biases indicated limitations of the underlying
filter-internal model.

A key limitation of a digital shadow is its dependence on
a white state-space model, which is inevitably affected by
modeling errors. To address this, two alternative data-driven

https://doi.org/10.5194/wes-11-373-2026 Wind Energ. Sci., 11, 373–393, 2026



390 H. Hoghooghi and C. L. Bottasso: A wind turbine digital shadow for complex inflow conditions

correction strategies were examined, yielding gray models
with substantially improved prediction accuracy.

The BC approach performed robustly under complex in-
flow conditions, including extreme vertical shear, waked
flow, and wake-steering control. Errors remained small in
all cases, demonstrating strong reliability and adaptability.
Overall, the BC method reduced average absolute errors from
roughly 20% to 2 %–11%, and DEL estimation errors to
1%–13%. This represents a significant improvement over re-
cent literature and underscores its potential for fatigue anal-
ysis, lifetime estimation, and load-aware control. In parallel,
the NN-based a posteriori output correction proved highly ef-
fective, reducing load RMSPE from 10%–15% to about 1%,
which is particularly promising for CM applications.

Several improvements are possible. Additional inflow
quantities may further enhance scheduling of the filter-
internal model; for instance, veer could be included and esti-
mated using rotor-as-a-sensor technology by extending the
harmonic content to 2P (Bertelè et al., 2024). Validation
should also be expanded to larger field datasets covering
broader inflow and operating conditions, as well as differ-
ent turbine types. Moreover, the tuning of the BC correction
term could be refined by accounting for variations in vertical
and horizontal shear, as well as yaw misalignment, which
would require more extensive data. We also note that the
wind speed and shear observers smooth some high-frequency
content; however, since these quantities are used solely for
model scheduling, this limitation has limited practical im-
pact.

Appendix A: Nomenclature

b Vector of sensor biases
f 0 Static correction force
i Input vector of the inflow estimator
m Vector of bending moments
p Vector of free network parameters
q Vector of generalized displacements
s Vector of scheduling parameters
u Input vector
v Vector of generalized velocities
y Vector of outputs for Kalman innovation
z Vector of other outputs of interest
ν Measurement noise vector
ω Process noise vector
A Rotor-swept area
c Generic output of the wind inflow

observer
Cp Power coefficient
d Displacement
J Rotor inertia
kh Horizontal shear
M Bending moment resultant
m Bending moment component
Q Torque
R Rotor radius
V Wind speed
α Vertical power-law shear exponent
γ Misalignment angle
ε Output correction term
θ Blade pitch angle
λ Tip-speed ratio
ρ Air density
ψ Rotor azimuthal position
� Rotor rotational speed
(·)E Edgewise component
(·)F Flapwise component
(·)FA Fore–aft component
(·)SS Side–side component
(·)IP In-plane component
(·)OP Out-of-plane component
(·)NN Quantity corrected by a neural network
(·)1c 1P cosine component
(·)1s 1P sine component
(·)Bi Quantity referred to the ith blade
(·)B-s % Quantity referred to the s % spanwise location
(·)TB Quantity referred to the base of the tower
(·)E Estimated quantity
(·)M Measured quantity
(·)0 Reference equilibrium condition
δ(·) Perturbation about a reference equilibrium

condition

Wind Energ. Sci., 11, 373–393, 2026 https://doi.org/10.5194/wes-11-373-2026



H. Hoghooghi and C. L. Bottasso: A wind turbine digital shadow for complex inflow conditions 391

BEM Blade element momentum
CFD Computational fluid dynamics
CM Condition monitoring
DEL Damage-equivalent load
DOF Degree of freedom
FA Fore–aft
FEM Finite element method
FFT Fast Fourier transform
LUT Lookup table
NN Neural network
BC Bias correction
PSD Power spectral density
RMSPE Root mean squared percentage error
ROM Reduced-order model
RWT Reference wind turbine
SCADA Supervisory control and data acquisition
SS Side–side
TI Turbulence intensity
WT Wind turbine

Data availability. All figures, and the data used to generate them,
can be retrieved in Pickle Python and MATLAB formats at
https://doi.org/10.5281/zenodo.11519470 (Hoghooghi, 2024). The
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