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Abstract. Site-specific fatigue estimation is an essential part of wind turbine lifetime extension, with various
methods depending on data availability.

The present study compares probabilistic lifetime extension assessment results for rotor blades with and with-
out load measurements. It also addresses two key questions in such assessments: the applicability of the Frandsen
model for estimating waked turbulence under complex and mixed wake conditions and the extrapolation of mid-
term data over longer time periods.

The case study wind turbine is SWT-2.3-93, located at the edge of the Lillgrund wind farm, situated in the
@resund Strait between Denmark and Sweden. The turbine is extensively instrumented, with 5 years of data
available from its supervisory control and data acquisition (SCADA) system.

Although the Frandsen turbulence estimates deviate in a different manner from measurements at below- and
above-rated mean wind speeds, the model remains a conservative approach for fatigue load prediction and relia-
bility.

In the current case study, the site-specific assessment using strain gauge measurements yields a 33 % higher
annual fatigue reliability index after 35 years compared to a scenario based on the Frandsen estimation combined
with ambient environmental data and a generic aeroelastic model. The results also demonstrate that the sensitivity
of fatigue reliability to load uncertainty is negligible when load measurements are used directly but relatively
high when relying on the Frandsen model in combination with a generic aeroelastic model. Overall, the high
variability of the lifetime extension in different scenarios of data availability and accuracy shows the importance
and added value of high-quality measurements combined with wind-farm-level SCADA and a model updated in

real time (digital twins).
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U.S. Department of Energy (DOE), operated under Contract No.
DE-AC36-08G028308. The U.S. Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of
this work, or allow others to do so, for U.S. Government purposes.

1 Introduction

Exposure of wind turbines to the wakes within a wind farm
increases the fatigue loads they experience (Kim et al., 2015;
Lee et al., 2013; Frandsen, 2007). However, the design as-
sumptions in the IEC 61400-1 standard are often conserva-
tive enough to allow seeking an extension of the operation
time even after experiencing the high fatigue loads caused
by wakes in wind farms. Extending the operation time above
the design service life (typically 20-25 years), in cases where
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maintaining safety is possible, is environmentally beneficial
and can reduce the levelized cost of energy (Dimitrov and
Natarajan, 2020; Natarajan et al., 2020).

When it comes to lifetime extension of wind turbines in a
wind farm, one must reassess the service lifetime by replac-
ing the design assumptions with the conditions experienced
at the site as the analytical part (DNV-ST-0262, 2016). In
such reassessments, fatigue is typically the primary focus, as
it represents one of the most critical time-dependent degra-
dation mechanisms. Information about in situ lifetime can be
obtained in various ways, depending on data availability. Of-
ten, the turbine model is not available and generic models are
used. Some of the common scenarios under this condition in-
clude the following:

1. Often, high-quality environmental measurements at the
turbine’s specific location are not available, whereas
freestream turbulence measurements are. In such cases,
waked turbulence at each turbine location can be es-
timated using simplified models such as the Frandsen
model (Frandsen, 2007; Frandsen and Madsen, 2003),
suggested by International Electrotechnical Commis-
sion (2019) for site-suitability checks. The resulting es-
timates are then used to perform aeroelastic simulations
with a generic turbine model, from which site-specific
lifetime can be assessed.

2. In some cases, structural response measurements (e.g.,
load or displacement) are available for a limited dura-
tion and at specific hotspot locations. Direct use of these
measurements for lifetime extension assessment is pos-
sible, but it involves challenges, such as spatial extrap-
olation (from one location in the structure to another)
and temporal extrapolation (from one point in time to
another).

3. When structural response measurements are comple-
mented by supervisory control and data acquisition
(SCADA) data and high-quality environmental mea-
surements, a digital twin can be developed to estimate
loads accurately in all components or locations within
the turbine.

Often, structural response measurements collected at the
site are owned by the turbine manufacturer and are not ac-
cessible to the wind farm owner or developer. Moreover,
when available, such measurements are typically limited in
both duration and spatial coverage. This research compares
lifetime extension assessments for two scenarios, using a
case study in which both scenarios can be explored. Be-
cause of the inaccuracy of the wind measurements from the
anemometer — due to the location of the met mast and un-
availability of the SCADA of the neighboring wind turbines
— the measurements are not directly used in waked directions.
Freestream measurements are used for model validation (see
Appendix). In addition, the study addresses two common
challenges encountered in these scenarios, as outlined below:
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1. evaluating the performance of the Frandsen model, a
simplified method for estimating wake-induced turbu-
lence, in a compact wind farm layout (scenario 1)

2. developing a method for the statistical extrapolation of
mid-term strain gauge data to estimate long-term fatigue
loads (scenario 2).

The Frandsen model is based on simplified assumptions
and carries inherent uncertainties. The uncertainty associated
with fatigue load estimation using this model is discussed in
a few examples by Frandsen (2007). Several limitations of
the Frandsen model have also been identified. For instance,
Bayo and Parro (2015) and Argyle et al. (2018) highlight
issues such as the lack of a defined method for account-
ing for wake interactions among multiple turbines and the
potential for under-conservative predictions when the wind
farm significantly affects the mean wind speed. Therefore,
in wind farms with compact and/or irregular layouts, verify-
ing the Frandsen model’s performance for conservative site-
suitability assessments is crucial. Although prior studies have
examined the model’s general performance, its applicability
in high-wake-interaction conditions — particularly those re-
sulting from tight turbine spacing (e.g., less than five rotor di-
ameters) and irregular configurations — remains unexplored.
The current work compares turbulence estimates from the
Frandsen model with actual measurements at the Lillgrund
wind farm, as an example of compact layout, to assess the
accuracy of the model under various waked flow conditions.

A challenge in scenario 2 for assessing site-specific life-
time is the limitation of available data and the need to extrap-
olate short-term load measurements to cover longer periods
for fatigue damage estimation. Determining turbine-specific
fatigue accumulation throughout the operational lifetime un-
der such constraints remains a critical open question. This is-
sue is particularly significant for offshore wind farms, where
the high variability and scatter in environmental conditions
adds to the complexity of accurate fatigue lifetime assess-
ment. Some studies, including Amiri et al. (2019) and Ziegler
and Muskulus (2016), assess lifetime extension by assuming
a linear increase in fatigue damage over time. However, this
approach can introduce significant errors when the available
data are insufficient to accurately estimate the damage equiv-
alent load (DEL). Although DEL is an averaged metric and
therefore generally more robust to individual outliers (Moza-
fari et al., 2023b), it can still exhibit considerable variabil-
ity depending on the length of the dataset — particularly for
components with high fatigue exponents. As an example, the
results of Mozafari et al. (2023a) show that the conventional
approach of assuming a constant DEL — implying a linear
increase in damage accumulation over time — can introduce
high bias in long-term fatigue damage assessments, partic-
ularly for blades. This is due to the high fatigue exponent
associated with composite materials used in blade structures.

Some studies, such as Dimitrov and Natarajan (2019)
and Natarajan et al. (2020), have employed machine learn-
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ing techniques and Monte Carlo simulations to generate
long-term fatigue load estimates from mid-term response
measurements. Other studies, including Ling et al. (2011),
Hiibler et al. (2018), and Natarajan (2022), have applied
stochastic methods to predict long-term fatigue behavior
based on shorter-term load data. Despite different statistical
approaches and the guidelines given in International Elec-
trotechnical Commission (2019), the best procedure to statis-
tically extrapolate fatigue loads remains unclear. The current
work presents a procedure capturing the multimodality of fa-
tigue load data — as demonstrated to be effective in Mozafari
et al. (2023a) — and extrapolates it over the full assessment
duration.

The current study assesses the feasibility of extending the
operational lifetime of the wind turbine blades by 10 years at
the edge of the Lillgrund wind farm while ensuring that ac-
ceptable safety margins are maintained. In the current study,
the turbulence data in a location close to the wind turbine are
available and are utilized for validation purposes and to il-
lustrate the extent of error associated with the generic model
used in the study.

First, demonstrating scenario 1, using the available
SCADA data and the generic model of the turbine, we eval-
uate the performance of the Frandsen model in conserva-
tively estimating fatigue loads at the case study wind farm.
To enable a more detailed assessment of the model’s turbu-
lence predictions, we classify and bin different wake scenar-
ios affecting the case study wind turbine. Second, demon-
strating scenario 2, we employ a gamma mixture model to
represent the bi-modally distributed mid-term DEL data, de-
rived from 10 min strain measurements at the blade root, and
extrapolates them to a 30-year operational lifetime. Finally,
we show the annual fatigue reliability levels of the blade in
different scenarios versus design (simulated via the generic
model) to highlight potential differences in the lifetime ex-
tension feasibility. In addition, the relative influence of three
key factors on fatigue reliability estimation across scenarios
1 and 2 is studied: the applied loads, the material’s fatigue
strength, and the chosen damage accumulation rule. Differ-
ent scenarios and the corresponding simulations used in the
current study are shown in Fig. 1.

Awareness of the effects of different sources of uncertainty
on lifetime extension assessment is valuable and can help im-
prove the accuracy and robustness of such evaluations. The
presented procedure for extrapolating fatigue loads can help
stakeholders and wind farm owners obtain a more accurate
assessment of fatigue damage in cases where strain gauge
measurements are unavailable or only available for a limited
period of the turbine’s lifetime. To make the life extension re-
sults interesting for this specific example, the material prop-
erties are calibrated to achieve a target reliability index of
3.7 (International Electrotechnical Commission, 2019) after
20 years, based on the design class (as would result from ap-
plying the recommended safety factors from the standard).
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Thus, while the comparisons of reliability levels are valid,
their absolute magnitudes are not.

In the next sections, first, we present the methods and mod-
els we use for modeling and reliability assessment (Sect. 2).
Then we present the results and corresponding discussions
of the Frandsen performance check and lifetime extension
assessments in Sect. 3. Finally, in Sect. 4, we present the con-
clusions of both studies and suggestions for future work. The
main codes used in the study can be accessed through Moza-
fari (2026).

2 Methodology

First, we introduce the case study wind turbine and the corre-
sponding wind farm in Sect. 2.1 and 2.2, respectively. Then,
in Sect. 2.3, we present the setup and features of the aeroelas-
tic simulations and site load measurements. In addition, we
introduce the methods we use for assessing and filtering data
for the current study. Finally, in Sect. 2.4, we introduce the
mathematical formulas and the procedures we use for post-
processing the simulation results and load measurements.

2.1 The case study wind turbine

The wind turbine under study in the current research is SWT-
2.3-93, manufactured by Siemens Energy. The turbine has
a 92.6 m rotor diameter, a hub height of 65m, and a rated
power of 2.3 MW. The cut-in and cut-out mean wind speeds
are 3 and 25 ms™!, respectively, reaching the nominal power
at approximately 1213 ms~!. The turbine belongs to class
1A based on the IEC 61400-1 standard’s classification. A
generic model of this turbine is used for the assessments
(Dahlberg , 2009).

2.2 The case study wind farm

The strain gauge and environmental measurements belong
to one of the turbines at the edge of the Lillgrund offshore
wind farm. Lillgrund wind farm is located about 10 km off
the coast of Sweden in the Oresund region and consists of
48 Siemens SWT-2.3 93 wind turbines (total capacity of
110 MW). The turbines are arranged as shown in Fig. 2. The
circles in Fig. 2 represent different turbines, and the red cir-
cle is the case study wind turbine, denoted as CO8 (row ¢ and
column 8). We bin the wind directions around the case study
wind turbine to roughly distinguish between different wake
conditions. The binning facilitates assessing the performance
of the Frandsen model and IEC NTM assumptions in charac-
terizing turbulence in different wake scenarios. The dashed
lines in Fig. 2 show the bins. For the rest of the study, we
refer to the wind direction bins as “wind bins” for simplicity.

As illustrated in Fig. 2, wind bin 1 accounts for non-waked
conditions. In wind bins 2, 3, and 7, the stream mainly passes
by a single turbine, with bin 3 representing a relatively long
distance between the turbine generating the wake and the
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Figure 1. Overview of site-specific assessment scenarios (studied in the present work) with corresponding data availability, simulation
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Figure 2. Arrangement of the wind turbines in the Lillgrund wind farm and the wind direction bins around the turbine CO8 used in the

current study.

CO08 wind turbine. Wind bin 5 is an intense condition, with
the case study turbine being very deep in the row and a very
short distance between the closest wind turbine (4.3 times the
rotor diameter). Bin 4 is a similar arrangement of a single row
with a relatively long distance, and bin 6 is a mixed waked
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flow condition. One should note that the binning and the cor-
responding conditions described are qualitative and are only
used for general comparison.
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2.3 Measurement data and aeroelastic simulations

In the present study, we use SCADA and 10 min DEL evalua-
tions extracted from a strain gauge installed at the blade root.
The data represent long-duration measurements over a span
of 5 years in the Lillgrund wind farm. We also perform aeroe-
lastic simulations in HAWC?2 software (Larsen and Hansen,
2007). In the following, first, we introduce the available mea-
surement data (from the strain gauge and SCADA). Then, we
present the specifications of the three groups of aeroelastic
simulations used.

2.3.1 Measurement data

The available data include strain gauge measurements and
SCADA records, comprising wind speed, wind direction,
power output, and rotor speed. The mean and standard devi-
ation of wind are derived based on an anemometer mounted
on a meteorological mast located in close proximity to the
case study wind turbine (black dot in Fig. 2). The meteoro-
logical mast is placed on a pole on top of the tower at a height
of 65 m (for more information, see Bergstrom, 2009). In ad-
dition, the strain gauge is installed 1.5 m away from the blade
root. All data are measured in time intervals of 10 min dur-
ing the years 2008 to 2012. The strain gauge measurements
are transformed into 10 min DELs using the Palmgren—Miner
approach, considering a Wohler exponent equal to 10 for
the composite structure of the blade. The measurement cam-
paign has been running for over 5 years but not continuously.
The data span approximately 2 years in total duration. How-
ever, the data are distributed across 3 months in 2008 and
all months of 2009, 2010, 2011, and 2012. As a result, the
measurements may include events with a return period of 5
years. Although the non-operational conditions should also
be considered for fatigue assessments, in the current study,
we only focus on normal operating conditions in the simu-
lations (DLC 1.2 in the IEC standard). We use the provided
DEL data to estimate the site-specific fatigue loads for the
comparison study after filtration. We use the power curve of
the turbine and utilize the data from SCADA, including mean
wind speed, mean rotor speed, and the mean power produc-
tion for the same points of time to filter the correspond-
ing DEL data. Thus, the wrong measurements and the ones
that do not represent the operational conditions are omitted
(Fig. A3 in the Appendix shows the power curve after such
filtration). A total of 88 031 data points remain after the fil-
tration.

Table 1 shows the normalized number of data available in
different wind direction bins around the CO8 wind turbine
(see the bins in Table 2) after filtration. In addition, Table 1
shows the probability of occurrence of each bin based on the
wind rose of the site (Vitulli et al., 2019).

As illustrated in Table 1, the available data percentage af-
ter filtration does not fully match the wind direction proba-
bilities. This is partly because in some heavily waked condi-
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tions the turbine has been shut down and partly because of
the short duration of the data gathering. In the current work,
we keep the mentioned observation in mind as a limitation.
Thus, we proceed by assessing all DEL data collectively for
the purposes of fitting, extrapolation, and bootstrapping. Fig-
ure A5 (in the Appendix) shows the separate analysis of the
DEL data in each wind direction bin. This analysis ranks
each bin based on both the highest observed and the expected
DEL values. Such ranking should be considered when per-
forming fatigue assessments per bin to ensure more accurate
evaluations. However, in this study, we estimate damage ac-
cumulation based on the overall dataset. This limitation is
further discussed in Sect. 4.

In the current case, different distributions best describing
the turbulence in each wind speed in the freestream are used.
However, we do not present the details of those fits to be con-
cise. We sample from the distributions and use them as input
for aeroelastic simulations in the second part of the study (see
Sect. 2.3.2).

2.3.2 Aeroelastic simulations

As mentioned before, a generic model of the SWT-2.3 tur-
bine is used in the present study. In this model, the struc-
tural and aerodynamic properties were supplied by Siemens
Energy, whereas the controller is a tuned version of the
DTU 10MW controller. We conduct all simulations using
this model. The benchmark simulations are based on inputs
from IEC 61400-1 (International Electrotechnical Commis-
sion, 2005) requirements for the design of wind turbine class
A. Group “A” is based on the IEC 61400-1 recommenda-
tion for site-suitability checks (i.e., the Frandsen model, ex-
plained in Sect. 2.4). Group “B” is based on the site-specific
inputs in terms of turbulence and wind shear exponents from
the freestream (wind bin 1 in Fig. 2). This group of simula-
tions is used solely for the validation of the generic HAWC2
turbine model. The validation results are provided in the Ap-
pendix. Groups A and B have 11 mean wind speed bins (from
4 up to 24ms~! with 2ms~! intervals). Group B only in-
cludes the mean wind speeds up to 20ms~! as the number
of data points and probability of occurrence for the higher
mean wind speeds are very low. The first two groups of simu-
lations have one representative turbulence level in each mean
wind speed bin. This level equals the 90 % percentile value in
group A and the Frandsen waked turbulence level in group B
(more details are provided in the next section). We consider
100 seeds for each wind condition to account for the vari-
ability of the wind (Mozafari et al., 2023b) and have enough
data to fit distributions to the resulting DELs. The third group
includes 20 samples from the site-specific turbulence stan-
dard deviation distribution in each mean wind speed in the
freestream directions (wind bin 1). In this group, having nine
mean wind speeds in the related wind directions and 100 tur-
bulence seeds for each turbulence level resulted in a total
of 22 000 simulations of 10 min duration for the site-specific
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Table 1. Binning of wind directions and their corresponding probability in the Lillgrund wind farm site based on Vitulli et al. (2019).

Bin Wind direction bounds ~ Wind rose probability  Data percentage in 5 years
number (degrees) (%) SCADA (%)
1 135-285 (non-waked) 55.5 56.56
2 285-315 9.6 7.41
3 315-345 5.0 7.15
4 345-360, 0-15 5.4 2.98
5 15-60 6.9 6.23
6 60-105 9.3 12.61
7 105-135 83 8.51

aeroelastic simulations (group B). Considering the power law
for modeling the wind profile in all simulations, we consider
the shear exponent equal to 0.2 in the first two groups and
equal to 0.1 in group B as an estimation of the shear exponent
in smooth terrain (open water) (Yan et al., 2022). This value
is also close to the lidar measurements in the site (Liew et
al., 2023). We use the Mann turbulence model (Mann, 1998)
to generate the simulation turbulence boxes. The boxes con-
tain 8192 evaluation points alongside the wind direction for
higher resolution and 32 points in the other two directions.
Table 2 shows the specifications of each group of aeroelastic
simulations.

It should be noted that group 1 is based on Edition 1 of the
IEC standard, which represents the common design frame-
work used for the previous generation of wind turbines —
and is therefore particularly relevant for lifetime extension
assessments today. Alternatively, when a full lognormal or
Weibull distribution is used — corresponding to Editions 3
and 4, respectively — the results of the study differ (see Moza-
fari et al., 2024, for differences).

The following section outlines the mathematical formula-
tions and procedures used in the present study.

2.4 Mathematical formulations

In the current section, first, we introduce the wind charac-
teristics, and then we briefly present the relations for fatigue
load assessment and methods for the reliability and impor-
tance ranks. Finally, we explain the procedure for forming the
database for statistical extrapolation of DEL measurements
via bootstrapping.

2.4.1 Probabilistic modeling of wind

In the current study, we only observe two random parameters
of the wind field: the mean wind speed and the wind speeds’
standard deviation (i.e., turbulence). Following the IEC stan-
dard (International Electrotechnical Commission, 2019), we
assume the distribution of the mean wind speed at hub height
to be Rayleigh for both cases of design-level assessment and
site-suitability check (the Frandsen model). In the latter, the
mean wind speed in the waked area is assumed to be the same
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as the freestream. For site-specific assessments under non-
waked conditions, the measured distribution of wind speed is
used directly, as it more accurately reflects the actual condi-
tions at the site. In the case of design-based assessment, we
use the 90 % quantile of the lognormal distribution as sug-
gested by the normal turbulence model in International Elec-
trotechnical Commission (2005) as the representative turbu-
lence. Equation (1) presents this level.

Otep. design = T1e£(0.75vpyp + 5.6) (D

In Eq. (1), I is the reference turbulence intensity equal to
0.16 for the standard class 1 wind turbines (the current case
study). In addition, Vi, is the hub height wind speed.

In the Frandsen model, the freestream standard deviation
is assumed to be the 90 % quantile of a normal distribution,
as in Argyle et al. (2018). In the waked conditions, the turbu-
lence is described as a function of the thrust coefficient and
the normalized distance of the closest wind turbine. Equa-
tions (2) and (3) present the freestream standard deviation
formulations and enhanced turbulence due to wakes in the
Frandsen model.

Otrep. Frandsen = Mo +1.28 x 0, (2)

In Eq. (2), o is a random variable representing the standard
deviation of the freestream wind. In addition, u, and o, refer
to the mean and standard deviation of the turbulence, respec-
tively. In scenario 1 of the present study, these values are ob-
tained from measurements corresponding to the freestream
wind direction bin.

2

v
Tywaked(0) = hUbd " 2 + Grzep. Frandsen ©)
(15+08(%2))

JCr

In Eq. (3), 0 is the (wind) direction in which the waked turbu-
lence is estimated, d;(0) is the distance of the closed turbine
in that direction normalized by the rotor diameter, and Cr is
the characteristic value of the wind turbine thrust coefficient
for the corresponding hub height wind velocity (International
Electrotechnical Commission, 2019). We use the thrust coef-
ficient data provided in Montavon et al. (2009) for the current
study.
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Table 2. Specifications of wind modeling in three groups of HAWC2 simulations, corresponding to three study cases.

Parameter Benchmark (design)  Group A (Frandsen)  Group B (Validation)

Turbulence in each MWS 90 % quantile in Frandsen’s effective ~ Ambient turbulence
NTM turbulence distribution (freestream bin)

Reference turbulence intensity 0.16 0.11 -

Wind shear exponent 0.2 0.1

Turbulence levels in each MWS bin 1 20s

Realizations per wind condition 100

Turbulence model Mann

Cut-in MWS (ms™!) 3

Cut-out MWS (ms~1) 25

Rated wind speed (m sfl) 114

Size of wind speed bins (m sfl) 2

Yaw misalignment (degrees) 0

Mann box grids along the wind 8192

Mann box grids in other dimensions 32

Mann turbulence length scale (m) 29.7

Mann turbulence anisotropy factor 3.7

Simulation length (s) 700

Transient time (s) 100

Time steps of the simulations (s) 0.01

The Frandsen model’s turbulence is the same in all wind
directions (like in IEC design assessments). This indepen-
dence from wind direction is obtained by effective turbu-
lence. Equation (4) shows the effective turbulence used for
site-suitability checks (International Electrotechnical Com-
mission, 2019).

2 m
Tett(Vib) = <Z Pe(vhubXTwaked(e))’") )

0=0

In Eq. (4), Po(Vhup) is the probability of occurrence of the
hub height mean wind speed in each direction (6), and m is
the fatigue (Wohler) exponent (Basquin, 1910).!

2.4.2 DEL estimation

In the present research, we use the Basquin relation (Basquin,
1910) to model the fatigue resistance of the composite ma-
terial and Palmgren—Miner’s (or Miner’s) rule (Palmgren,

IFor further details and the derivation of Egs. (3) and (4), see
Frandsen (2007) and International Electrotechnical Commission
(2019).
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1924; Miner, 1945) to model the damage accumulation.
These models describe the lifetime and damage as functions
of stress, while the outputs of the aeroelastic simulations that
we use are flapwise bending moments in the blade root. Since
the location of interest (the strain gauge installation location)
is close to the root and nearly circular, we use Eq. (5) to ob-
tain the stresses based on the moment time series.

§= 120 5)

In Eq. (5), M,, denotes the bending moment corresponding
to the stress level S;. We evaluate the moments (M, ) account-
ing for flapwise moments in the blade root. The section pa-
rameters ¢ and /, represent the maximum distance from the
neutral axis and the second moment of inertia about the axis
perpendicular to the moment direction, respectively. Due to
confidentiality constraints, the specific values of these pa-
rameters are not disclosed.

Using rainflow counting (Endo et al., 1967) of the mo-
ments in each 10 min simulation and the models mentioned
(Basquin and Palmgren—Miner), we estimate the 10 min fa-
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tigue damage via Eq. (6).

¢\ o5 i X (M )"
D= <—> ;T (6)

In Eq. (6), N; is the total number of rainflow-counted bins.
In addition, m is the fatigue exponent, and & is the Basquin
coefficient (see Basquin, 1910). Reformulation of Eq. (6) us-
ing the concept of DEL (see Mozafari et al., 2023b, for more
information) results in Eq. (7). We use this expression in the
current study to simplify the comparisons.

lifetime

k

7 (N

D— Neq(DELY )(c>m
In Eq. (7), Neq is the reference number of cycles. We set
Neq equal to 600 cycles, corresponding to an average of 1 Hz
cyclic loading. In addition, DELjifetime (the expected value of
the fatigue damage equivalent load through lifetime) can be
derived from 10 min DEL estimations via Eq. (8).

Oy Vu Ty

E (DELglfetime) = Z Z Z

0=0 Vo=V Tie,v)=TL

x [(DEL o min,0)" IP(T, V|©)P(®) ®)

In Eq. (8), the parameters @, and Oy represent the lower and
upper bounds of wind direction bins, respectively. Similarly,
VL and Vy denote the lower and upper bounds of the mean
wind speed, while 71, and Ty correspond to the lower and
upper bounds of turbulence intensity within each wind di-
rection bin. Furthermore, P(T, V |®) denotes the joint prob-
ability of turbulence intensity and mean wind speed within a
given wind direction bin ®. Since we consider the marginal
probability of turbulence conditioned on mean wind speed,
P(T|V), and the probability of mean wind speed conditioned
on wind direction, P(V|®), the joint probability can be ex-
pressed as the product of these conditional probabilities.

In assessments where a constant turbulence level is as-
sumed for each mean wind speed (i.e., Frandsen effective
turbulence and IEC representative turbulence characteriza-
tions), the probability of the single turbulence value is set to
1. In contrast, for group 3 simulations, the probability dis-
tribution of turbulence within each wind speed bin is explic-
itly accounted for, while the probability of the wind direc-
tion bin is set to 1, since only wind direction bin 1 is con-
sidered for model validation. In measurement-based assess-
ments, the lifetime DEL is estimated using the unweighted
average of DEL g iy, under the assumption that the dataset
is sufficiently large for the underlying wind condition proba-
bilities to be implicitly captured. In other words, the distribu-
tion of 10 min DEL values inherently reflects the probability
distribution of the wind conditions.

Equation (9) defines the relationship between the available
n values of DELgpmin and the corresponding lifetime DEL,
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DELlifetime-
n
(DEL 0 min, )"
DEL{’;fetime = Z n ®

i=1

In Eq. (9), in the case of DEL in 1 year, n would be the num-
ber of 10 min occurrences within the timeline of 1 year. If
enough DEL g, data are not available, one has two op-
tions: statistical extrapolation (as in the current study) or as-
suming that the same observations repeat during the longer
time spans (for a reference to the importance of statistical
extrapolation in the estimation of DELjjfetime, See Mozafari
et al., 2023a, and Mozafari et al., 2023b).

2.4.3 Forming the DEL database based on
measurements and statistical extrapolation

For the site-specific (measurement-based) assessment of reli-
ability, we need to obtain the distribution of log(DELjifetime)
in each year to put in Eq. (14) to be able to estimate the an-
nual reliability level up to year 30 using Eq. (16). We prepare
the data for such assessments for up to 30 years. The below
steps show the procedure:

1. fitting a distribution to the 10 min DEL measurements

2. extrapolating the fitted distribution from step 1 to esti-
mate higher quantiles representative of a 30-year return
period (Egs. 10 to 12)

3. taking 500 (more than sufficient according to Mozafari
et al., 2023b) random samples of size 365 x 24 x 6 x N
from the database with replacement, where N accounts
for the number of years, and repeating from year 1 to 30

4. calculating the mean of (DEL g nmin)™ in each of the 500
samples and estimating the corresponding DELjifetime
based on Eq. (9)

5. calculating the logarithm of all generated data and fit-
ting the probability distribution to the 500 realizations
of log(DELjieime) in each year.

To form the database (step 2 above), first, we find the prob-
ability of exceedance corresponding to the 30-year return
period using Eqs. (10) and (11). The extrapolation is used
to complete the tail of the DEL g, distribution to account
for the highest values that might change the weighted mean
value (DELiifetime) if included. As we are aiming at adding
these low-probability high-magnitude occurrences, extreme
value theory can be a suitable model to use. These values can
have a large effect due to the high fatigue exponent of the
composite (Mozafari et al., 2023b).

CDF(LR) =exp <_—1> (10)
Trx
Prexc.(Lr) = (1 — CDF(LR)) (11)

In Egs. (10) and (11), CDF accounts for the cumulative dis-
tribution function, and LR accounts for the return load level.
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Additionally, Ty, in Eq. (10) accounts for the ultimate time
of interest for which the corresponding load is estimated.
Equation (10) is extracted from the formula of probability of
exceeding a threshold level (here the load with a frequency
of occurrence of every 30 years), assuming a Poisson pro-
cess for describing the peak-over-threshold problem (for fur-
ther information, see de Oliveira, 1984). In the current case,
the frequency of exceedance is 1/77;. It has to be noted that
Eq. (10) is correct when T} is relatively large (here, equal
to the number of 10 min occurrences in 30 years). We set
the time in terms of the number of 10 min occurrences be-
cause we consider the DEL to be the load, and in this case,
each DEL is an occurrence of a 10 min duration. Prexc (LR)
in Eq. (11) is the probability of exceeding such a load, mean-
ing the probability that a load higher than that level occurs. In
the case of return loads, this probability is normally very low.
We use the CDF corresponding to the return period, obtained
from Eq. (10), to find the return load in our case. This load
can be derived by finding the inverse CDF of the distribution
of our 10 min data (step 1 above). After finding the higher
load, we can find the number of occurrences of each DEL
level in our database based on Eq. (12). In other words, first,
the loads with a certain reference return period are defined,
and the frequency of lower loads is derived accordingly.

. 1
"~ Pr(Lp)

12)

In Eq. (12), i is the number of occurrences of each 10 min
DEL level (DELjgmin; *), and Pr(LR) is the probability of
occurrence of the return load based on the distribution of
DEL gmin (distribution in step 1 above). Equation (12) is
based on the assumption that the probability density func-
tions of DEL g min remain the same when more observations
are added to the tail through time. The more data involved in
fitting the distribution of DEL (i, the more accurate this
assumption is.

2.4.4 Fatigue reliability estimation

Fatigue reliability assessment is performed to obtain an esti-
mation of the probability of the survival of a structure. Equa-
tion (13) presents a mathematical representation of this con-
cept.

Rt)=1-— Pi(t) (13)

In Eq. (13), Pr(¢) is the probability of failure at time . Com-
monly, this problem is referred to with a function named limit
state function (g(x, t)), and the safe region is where this func-
tion is positive. Thus, the probability of failure would be the
probability of lying in a region in the space of random vari-
ables where the limit state function is negative or equal to
zero. We fully follow the methods and procedures used in
our previous work (Mozafari et al., 2024) for reliability esti-
mation. Here, we present a brief introduction and the general
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approach. We recommend that readers check Mozafari et al.
(2024) for further details. Following Miner’s rule, failure is
predicted to happen when damage is higher than a thresh-
old level (commonly 1). This rule contains uncertainty due
to simplified assumptions like linear damage accumulation
without a sequence effect. To account for the uncertainty in
Miner’s rule, we assume the threshold (A) as a random vari-
able with a mean value equal to 1. Thus, the reliability (be-
ing the probability of survival) would be the probability of
damage being less than A. Equation (14) describes the limit
state function considering DEL, K, and A as random inputs
for the case of flapwise bending moments in the blade root
with a circular cross section and structural properties of Iy
and ¢ (moment of inertia and radius of the cross section, re-
spectively). The time is omitted from Eq. (14) for simplicity,
with the assumption that all variables refer to a certain time
(t = lifetime).

g(X, lifetime) = log(A) — log(Neq) —m x log <Ii>
y

+log(K) — m x log(DELiifetime) (14)

The parameters log(Neq) and m x log(l%) in Eq. (14) are con-

stants. Thus, the above equation consists of three random pa-
rameters:

— the linear damage accumulation model (log(A))
— material resistance (log(K))
— load (log(DELiifetime))-

We perform the probabilistic reliability assessment using a
first-order reliability method (FORM) in the current work to
find the probability that the function g in Eq. (14) can be pos-
itive (fatigue reliability). The same approach also provides
the importance rank of the random variables (sensitivity of
the reliability to each) and is used here (see Mozafari et al.,
2024, for details and formulations). We use the reliability in-
dex (shown in Eq. 15) as a commonly used measure of struc-
tural reliability.

B=—-o"'(P (15)

The operator ®~!, shown in Eq. (15), corresponds to the in-
verse CDF of the standard normal distribution.

We consider the stress ratio R = 10 for fatigue properties
(SN curve) of the composite (Mikkelsen, 2020). Although
the variability of data is included as the coefficient of varia-
tion (CoV) of such a curve, a calibration is added at the end
to set the mean value of material strength to a certain level at
which the target level of reliability is obtained at year 20.

To apply FORM analysis, first, we fit distributions to the
estimations of 1og(DELjifetime) calculated based on 10 min
simulations using Eq. (9) for the measurement-based as-
sessment and Eq. (8) for the simulation-based scenarios. To
model the uncertainty in the model and material properties in
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the current study, we gather information regarding the distri-
butions and statistical parameters from the literature. Table 3
shows this information together with the references for the
coefficients of variation. The mean of the material resistance
is found through calibration. The calibration process entails
finding a resistance mean value for which the target reliabil-
ity is achieved at the end of the design lifetime.

Equations (16) and (17) present the formulations for calcu-
lating the probability of failure and reliability index at time ¢
(Pe(X,t) and B(X, 1), respectively) conditional on survival in
the previous point of time (f — At) considering a time interval
of At. The parameter X is a vector of all random variables
(the above-mentioned parameters for the current case study).
For further information regarding the derivation of Egs. (16)
and (17), see Faber (2012).

APKX.1) = Pe(X,t)— Ps(X,t — At) (16)
R = AT P(X, 1 = Ar))

AB(X,t)=—D N (APK(X, 1)) 17

In the current work, we consider At to be equal to 1 year,
and thus the parameters A Pr(X,?) and AB(X,t) correspond
to the annual probability of failure and annual reliability in-
dex and are referred to as such in the continuing discussion.
It must be noted that the Frandsen and IEC turbulence mod-
els, together with partial safety factors, are intended for semi-
deterministic design and not for probabilistic design and reli-
ability analysis. However, since the partial safety factors are
calibrated based on achieving a certain reliability level at the
end of the design lifetime, the results are comparable. Such
comparisons are presented in the next section.

3 Results and discussions

We validate the model of the turbine before performing the
study (see the Appendix for validation results). The current
section presents the results in three parts: turbulence com-
parison (Sect. 3.1), fatigue load comparison (Sect. 3.2), and
fatigue reliability comparison (Sect. 3.3). The reliability as-
sessment also includes the sensitivity of the reliability level
to different random inputs at the target extended life (30
years) in all approaches. Finally, we present the overall dis-
cussions on the results in Sect. 3.4.

3.1 Comparison of turbulence levels

Figure 3 presents the comparison between site-specific tur-
bulence based on met-mast anemometer measurements clas-
sified in different direction bins, the Frandsen model, and the
IEC design class in different wind direction bins. The plot of
each direction bin only includes the mean wind speed bins in
which there are enough available data to cover the compar-
ison (more than 20 points). The boxes in the whisker plots
in Fig. 3 represent the data between the 25th and 75th per-
centiles, while the dashed black lines indicate the Sth and
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95th percentiles. The red plus signs denote data points in the
upper and lower tails, as well as potential outliers.

The scatter of turbulence versus the corresponding 10 min
DEL measurements across different direction bins is pro-
vided in the Appendix (see Fig. A4 for an overview of the
high-turbulence points relative to the main data clusters).
It should be noted that the location of the turbulence mea-
surements differs slightly from the turbine location. Conse-
quently, in some directions, greater deviations may occur be-
tween measured turbulence and what the turbine actually ex-
periences due to specific wake effects. Such errors are negli-
gible in freestream directions and higher in other directions.
Assuming no outliers in the turbulence measurements and ac-
cepting the data as presented, Fig. 3 shows that, in wind bin
1 (freestream conditions), the IEC design turbulence is lower
than some of the measurements in low wind speeds but is
higher than almost all measurements at higher wind speeds.
In addition, Frandsen model estimations are lower than de-
sign in high mean wind speeds while being the same as IEC
representative values in low mean wind speeds. Emeis (2014)
claims the same results for the case of design-level turbu-
lence. This trend remains the same in almost all other wind
direction bins. Direction bins 2 and 4 include very high wake
effects and high turbulence levels and show less conserva-
tive assumptions by the IEC class and the Frandsen model,
even in high mean wind speeds. Figure 3 reveals that in some
cases, the IEC design turbulence for the class does not lead to
much higher levels compared to the Frandsen model. In the
following section, we investigate the differences in terms of
fatigue loads and fatigue reliability as more accurate param-
eters to estimate the lifetime extension based on each turbu-
lence estimation approach.

3.2 DELjtetime distributions

As shown in Eq. (14), finding the distribution of
log(DELljifetime) is @ necessity for estimating the probabil-
ity of failure. The current section presents the distribution of
DELijifetime and log(DELjjfetime) based on measurement data
(DEL10min)- First, we observe the empirical probability dis-
tribution of the 10 min DEL measurements, from which we
evaluate DELjjfetime realizations. Figure 4 shows the empiri-
cal probability density of the 10 min damage equivalent flap-
wise moment from what is measured at the site.

As revealed by Fig. 4, the distribution of the 10 min DEL
data is multimodal and cannot be represented fully by uni-
modal distributions. The multimodality of the DEL can be
a result of having both stratified and unstratified winds dur-
ing the observation time, as the same behavior can be seen in
each wind direction bin (see Fig. A5 in the Appendix). We
investigate the mixture of two or three gamma distributions,
as well as a mixture of two or three Gaussian distributions,
as multimodal distributions have shown good candidacy for
modeling of fatigue loads (see Mozafari et al., 2023a; Zhang
et al., 2022). Among all, the mixture of two gamma distri-
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Table 3. Characteristics of the random variables.

631

Variable Distribution  Mean CoV  Reference
log(A) Normal —0.1116 0.31 Toft and Sgrensen (2011); Toft et al. (2016)
log(K) Normal Calibrated (8 = 3.7 at year 20)  0.528  Fraisse and Brgndsted (2017)
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Figure 3. The enhanced turbulence (ms™ 1) based on Frandsen estimation (blue squares) compared with IEC design representative turbulence

(black circles) and the site turbulence measurements (box plots).

butions appears to be the best fit for describing the statistical
behavior of the 10 min damage equivalent flapwise moments
in the case study wind turbine’s blade root in all direction
bins combined. Figure 5 shows this fit on the empirical CDF
of data combined.

As presented in Fig. 5, the gamma mixture model fits the
data well, with fair accuracy in the higher tail. We use the
probability of exceedance from this model and follow the
steps presented in Sect. 2.4.3 to find the return load corre-
sponding to 30 years. We use Eqgs. (10) and (11) to extrap-
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olate the distribution to the load with a 30-year return pe-
riod. The slow growth of the tail from year 5 (correspond-
ing to the probability of the largest data point observed) to
year 30 shows that the distribution is fairly converged, and
a 5-year return period is enough for the main assumption in
Sect. 2.4.3 (extreme value theory) to hold. Continuing the
procedure with bootstrapping, as outlined in Sect. 2.4.3, the
realization of DELjjfeiime in different years is shown in Fig. 6.

As shown in Fig. 6, the mean value of the DELjifetime Te€-
alizations converges (with very small changes) as their stan-
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Figure 4. Empirical probability density of the 10 min DEL measurements in all directions combined.
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Figure 5. Probability of the exceedance of the DEL based on the
empirical cumulative distribution function (purple stars) and based
on the best distribution fit to the data (dashed black line).

dard deviation decreases. This complies with our expectation
according to the law of large numbers: the mean converges
to the “true” expected value of DELjife(ime as we gather more
observations (samples) throughout the years. The change in
the standard deviation with a slight change in the mean value
allows for the assumption of nonlinear damage accumulation
through time (variable DEL through time). We use the con-
verged distribution of DELjjfetime at year 30 for the estimation
of the annual reliability index.
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Figure 6. The realizations of DELjjfetime generated via bootstrap-
ping of available 10 min DEL estimates derived from measurement
data.

Figure 7 presents the probability density function (PDF)
of DELjifetime 1n two different turbulence scenarios of the
IEC 61400-1 representative design value and the Frandsen
estimation using bootstrapped data among simulations. The
uncertainty in log(DELjjfeime) at the site is modeled by a fre-
quentist approach (maximum likelihood) based on observa-
tions and includes all sources of uncertainty. However, in the
case of the other two approaches, the uncertainty in this pa-
rameter is assessed based on bootstrapping, and thus it only
includes epistemic uncertainty. The data in Fig. 7 are normal-
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Figure 7. Probability density function (PDF) of DELjjfetime in two
different scenarios of the IEC standard for design and site-suitability
checks (based on the Frandsen model) normalized by the mean
DELjjfetime €stimation based on the site’s measurements.

ized by the converged mean of DELjjfeime Obtained above
using gathered data.

As shown in Fig. 7, the estimations of DELjifeime based
on representative design turbulence and the Frandsen method
are conservative compared to the site-specific assessment de-
rived from measured turbulence. This is evident from the
mean values of the corresponding distributions, which are
normalized by the site-specific DELjjfetime- The Frandsen
model, in this case, leads to respectively less conservative
fatigue loads than the design-based approach, as expected. In
addition, the DEL realizations based on the Frandsen model
are more spread out, showing a higher variability. In the fol-
lowing section, we use the DELjjfeiime distribution to assess
the fatigue reliability at the end of the design service life and
the possible extended life in the above-mentioned scenarios.

As shown in Fig. A2, the resulting 10 min DEL values
from simulations in the freestream cover a lower bound of
the load measurements at the site. As a consequence, there
is bias in lifetime DEL when using the generic aeroelastic
model. However, we use the data for estimating the relia-
bility in the next section to illustrate the combined effect of
using the Frandsen model and the generic model.

3.3 Reliability and importance ranks

As the turbine model in HAWC?2 simulations is generic and
the material properties are not defined accurately, we assess
the lifetime extension after calibrating the material’s mean
strength. The calibration is made such that we achieve the
target annual reliability index level for a moderate conse-
quence of failure of a structural component (equal to 3.3)
(IS0, 2015) at the end of the design life (25 years). Figure 8
presents the annual reliability index for 35 years in all case
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Figure 8. Annual reliability of the case study wind turbine in sce-
nario 1 using the Frandsen model (black square) and in scenario 2

with site load measurements (blue star) versus the IEC design class
(red circle).

scenarios based on the calibrated material properties (mean
value of strength (K) is multiplied by a factor).

The difference in the annual reliability levels in different
scenarios in Fig. 8 can involve different sources, including
the difference in the turbulence (observed in Sect. 3.1), strain
gauge calibration, possible missed controlling strategies for
the neighboring turbines, and generic model errors. Thus,
while the numerical results may not be quantitatively exact,
they illustrate an important qualitative principle: with reliable
site measurements, the probability of fatigue failure can be
continuously updated as operating experience accumulates.
The reliability of 3.7 at year 35 for the Frandsen model means
that there is a possibility of a lifetime extension of up to 10
years for the turbine under study when using this model. Us-
ing the site data, this level is reached in more years, showing
the conservative results from the Frandsen model. The steep
decline in the design-based annual reliability curve in Fig. 8
represents the high mean value of the design DEL compared
to the Frandsen model and site. The big difference between
the reliability in the two scenarios is due to the high fatigue
exponent of the composite, increasing the effect of the mean
of fatigue loads on the reliability. Table 4 shows the impor-
tance rank of the random variables in the limit state function
(see Eq. 14) based on FORM analysis.

As revealed in Table 4, the relative importance of the load
is low in all three scenarios. The relative importance of the
fatigue load is higher in the case of the Frandsen model be-
cause of the high coefficient of variation of the DEL in this
case. Its sensitivity to loads is almost zero when it comes to
the site-specific lifetime DEL. The effects of the uncertainty
in the material properties are the highest in all cases because
of the very high coefficient of variation. In the site assess-
ment, the reliability is highly sensitive firstly to the material
uncertainty and secondly to the damage accumulation rule.
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Table 4. The sensitivity of the reliability to different random variables (%) based on scenario 1 and 3 approaches versus design at year 30.

Random variables/Assessment basis  Frandsen model  IEC design level  Site load measurements
log(A) 38.29 41.70 44.46
log(K) 47.84 52.09 55.54
1og(DELjifetime) 13.87 6.21 7.62 x 1073

In other words, the uncertainty in loads almost disappears
relative to the other variables when based on measurements
on the actual machine.

3.4 Discussion

The data show the conservative estimations of turbulence
based on the Frandsen model in high mean wind speeds. The
overall DEL estimations using this method are thus conser-
vative when considering the blade’s flapwise bending mo-
ments. This is despite the aeroelastic model underestimating
loads and their variability in freestream conditions (see Ta-
ble Al). The reliability assessments show the possibility of
a lifetime extension for more than 35 years while maintain-
ing safety margins when using the Frandsen method and a
generic model.

The difference between the results of the two approaches
(Frandsen model and load measurements) stems not only
from differences in turbulence inputs, but also from possi-
ble generic model errors and strain gauge calibration errors.
In this study, the generic model differs from the original only
in controller settings, not in structural parameters. Moreover,
according to Robertson et al. (2019), the model parameters
most relevant to fatigue loads are yaw angle error and certain
structural parameters. Therefore, we do not expect generic
model uncertainty to account for the majority of the observed
error.

The very low sensitivity of the reliability to the fatigue
loads in the case of site-specific assessment (using loads
measurements) is due to the relatively low coefficient of
variation of this variable compared to material strength and
Miner’s rule. This shows the robustness of DELjifetime as an
accumulated/averaged random variable. The results comply
well with the results shown in Mozafari et al. (2023b), show-
ing how the accumulation decreases the coefficient of varia-
tion of DELjjfetime. Another possible reason for low variation
of this parameter is not considering the uncertainty of the fit-
ting in the current work.

There are some limitations and simplifications in the
present study that must be considered and improved in future
work. As an example, there is a potential difference in the re-
sults of the simulation-based approaches if the model was not
generic and the simulations were offshore (considering wave
loads). The results of the model validation (presented in the
Appendix) show that the small differences in load can lead to
underestimation of DELjjfetime 1in simulation-based scenarios
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and thus the remaining service life. This is especially impor-
tant in the assessment based on the Frandsen model and the
generic model and as the sensitivity studies show that the re-
liability of the Frandsen-based approach is sensitive to the
loads.

In addition, the results of the current study are performed
on the blade flapwise load channel as a case study. However,
all the load channels should be investigated when assess-
ing lifetime extension. Specifically, load channels with de-
terministic behavior (for example blade edgewise moments)
often have lower design margins and are thus the critical
components deriving the lifetime extension of the wind tur-
bine. The current study does not focus on the actual life-
time of the turbine and but instead focuses on showing the
difference between the Frandsen site-suitability assessment
and assessments based on site load measurements when it
comes to fatigue reliability. Such comparison is more clear
on a turbulence-driven fatigue load like flapwise bending mo-
ments.

Furthermore, it has to be considered that the data with a re-
turn period of 5 years are only referring to the winter season,
and thus the tail shape of the distribution might be different if
seasonal variability is also included and the data are collected
continuously.

Finally, although the turbulence levels from the site and the
Frandsen estimation are directly compared, the fatigue load
results based on the two are derived differently. The former is
based on post-processing of strain gauge data, and the latter
is based on aeroelastic simulations. Thus, the possible bias
and errors of the turbine model and aeroelastic simulations
can affect the DEL and reliability comparison results.

For future work, we recommend the following studies:

1. performing the same study on the performance of the
Frandsen model in deeper locations within the wind
farm, as they usually include more intense/complicated
wake conditions;

2. comparing the use of ambient wind data (using Frand-
sen) with location-specific measurements of the turbu-
lence considering all the load channels (lifetime exten-
sion assessment as a whole) and performing offshore
simulations;

3. considering other sources of uncertainty in the reliabil-
ity assessment framework, e.g., including uncertainty
due to range-counting methods or uncertainty in sim-
ulations;
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4. investigating the reasons behind the multimodality of
the 10 min DEL distribution;

5. performing the same study using independent fittings
and extrapolations of DEL in each wind bin for higher
certainty and accuracy in the assessment;

6. considering the uncertainty of fitting in defining site-
specific lifetime DEL and its variability;

7. investigating the sensitivity of the outcome to model
parameters under varying environmental conditions (al-
though Robertson et al., 2019, conducted a sensitivity
study on how aeroelastic model parameters affect fa-
tigue loads, results for lifetime extension assessments
may differ due to their comparative nature);

8. joining the study with inspection and health-monitoring
data coupled with risks and cost analysis to obtain a
complete set of tools for decision-making regarding
lifetime extension.

4 Conclusions

The objective of this study is to demonstrate the significant
benefits of collecting and utilizing load/displacement mea-
surements, which can outweigh the challenges of such as-
sessments by extending the project lifetime of wind turbines.
The research mainly compares two different data availabil-
ity scenarios — one with structural response measurements
and one without. In addition, it addresses two common chal-
lenges in fatigue reliability assessments. First, it evaluates
the performance of the Frandsen model in estimating waked
turbulence and corresponding fatigue loads at Lillgrund, a
compact wind farm with mixed wake conditions. Second,
it presents a methodology for extrapolating fatigue loads,
showcasing an example application using strain gauge mea-
surements in Lillgrund.

The results indicate that the Frandsen model provides con-
servative estimates of fatigue loads at the investigated loca-
tion, despite the compact layout of Lillgrund. This conser-
vatism persists even though the generic model used tends to
underestimate fatigue loads relative to the site-specific con-
ditions in the freestream directions.

Additionally, the relative importance of load estimates in
assessments based on the Frandsen model is greater than in
those based on site load measurements. Due to the way fa-
tigue reliability decreases very slowly over the later years of
project lifetime, the reduction in uncertainty created by load
measurements at the site can provide the knowledge basis for
many additional years of turbine operation within an accept-
able reliability target.

The extrapolation approach presented in the current re-
search facilitates the use of data when strain gauge measure-
ments are unavailable for part or all of the turbine’s lifespan.
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The assessment of the Frandsen model in this case study, rep-
resenting a wind farm with short spacing, contributes valu-
able insights into ongoing research on the performance of
this model in intense and mixed wake conditions. Moreover,
the findings on the robustness of reliability based on the load
estimation approach are crucial for incorporating uncertainty
into lifetime extension assessments.

Above all, the comparison between scenarios with and
without load measurement and accurate environmental data
shows the importance of having such information coupled
with accurate models updating in real time (digital twins).

Appendix A: Model validation

As mentioned in Sect. 2.3.2, simulations in the freestream
direction are used for validation of the model. The input is
based on site-specific inputs from the non-waked freestream
(wind direction bin 1). First, we compare the mean load lev-
els from site measurements in wind bin 1 to the results of the
group 3 simulation. Then, we compare the 10 min DEL eval-
uations and investigate the differences in DELjifetime formed
via bootstrapping.

Figures A1 and A2 show the comparison of the mean load
levels and 10 min DELSs in the measurements versus simula-
tions, respectively.

The data shown in Figs. Al and A2 reveal the high varia-
tion in the measured mean load and damage equivalent flap-
wise moment around rated mean wind speed. The high differ-
ence in this area can introduce some errors in the estimations
based on simulations (groups 1 and 2) based on dominant
(high-probability) wind speeds. However, generally, the data
show fair coverage of the site load behaviors.

Figure A3 represents the power production versus mean
wind speed compared with the nominal power curve after
filtration.

Figure A4 shows that the high tail of turbulence observa-
tions mostly belongs to the cluster of data, and the possibility
of having a high number of outliers is low. The probability of
exceedance of the 10min DEL measurements within each
wind direction bin is shown in Fig. A5 using both the empir-
ical CDF and the best distribution fit to each cluster of data.

Figure A5 shows that the highest DEL observations occur
in wind bin 5.

In addition, the data in Table A1 reveal that the load fluctu-
ations in the simulations are very small compared to reality.
This is partly because of the integration over turbulence dis-
tribution (see Mozafari et al., 2024, for details) and partly
due to the variability in the environmental condition (see
Sect. 3.1). Although the validations show overestimations of
the load and DEL in high mean wind speeds, we proceed
with the study using the available HAWC2 model because
the differences in the overall DELs shown in Table Al are
less.
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Different distributions shown in Table A2 are fitted to the

mean wind speed data of the wind turbine. As can be

seen,

the best fit is the Rayleigh distribution. The maximum like-
lihood method is used for fitting, and the prediction error is

measured by the Akaike information criterion (AIC).
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Table A1. Statistical parameters of DELjjfe(ime according to the non-waked aeroelastic simulations using site-specific turbulence and shear
exponent versus the same parameters from measurements.

Source Mean DEL normalized by the mean SD of

based on measurements  the DELifetime
Site-specific simulations for non-waked area 1 0.014
Measurements for non-waked area 1.04 0.031

Wind Energ. Sci., 11, 621-641, 2026 https://doi.org/10.5194/wes-11-621-2026



S. Mozafari et al.: Added value of site load measurements

639

Table A2. Different distributions fitted using the maximum likelihood method to the wind speed measurements, including statistical param-

eters of the fits (shown as Parl, Par2, and Par3).

Distribution Parl Par2 Par3 Log likelihood AIC
Rayleigh 5.90 —723x10°  1.45x10°
Gev —0.12 370 547 —725%x10°  1.45x10°
Normal 723 4.17 —732x10°  1.46 x 10°
Gamma 3.00 241 —7.40x 100  11.48 x 10°
Exponential ~ 7.23 —7.65%x10°  1.53 x 10°
Ev 939 456 —7.68x10°  1.54 x 10°
Uniform 0.00 281 —875x 105  1.71 x 100

Table A3. The best distribution fits to log(DELjjfetime) in case scenarios

turbulence for the freestream direction.

of Frandsen turbulence and the IEC standard’s representative

Case Distribution of Parameter 1  Parameter 2  Parameter 3
log(DEL jfetime)

[EC-design-based model =~ Normal 0.2878 0.0143

Frandsen-based model Gev —0.2536 0.0298 0.3772
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