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Abstract. The effect of intermittent and Gaussian inflow conditions on wind energy converters is studied ex-
perimentally. Two different flow situations were created in a wind tunnel using an active grid. Both flows exhibit
nearly equal mean velocity values and turbulence intensities but strongly differ in their two point statistics,
namely their distribution of velocity increments on a variety of timescales, one being Gaussian distributed, and
the other one being strongly intermittent. A horizontal axis model wind turbine is exposed to both flows, isolating
the effect on the turbine of the differences not captured by mean values and turbulence intensities. Thrust, torque
and power data were recorded and analyzed, showing that the model turbine does not smooth out intermittency.
Intermittent inflow is converted to similarly intermittent turbine data on all scales considered, reaching down to
sub-rotor scales in space. This indicates that it is not correct to assume a smoothing of intermittent wind speed
increments below the size of the rotor.

1 Introduction

Wind energy converters (WECs) work in a turbulent environ-
ment and are therefore turbulence-driven systems. The turbu-
lent wind interacts with the system dynamics, resulting in the
output parameters of a wind energy converter system such as
power, mechanical loads or other quantities of interest.

Generally, the characteristics of the output dynamics of a
WEC need to be understood in detail for multiple reasons.
Power fluctuations have been reported in numerous studies,
causing challenges in grid stability (e.g., Chen and Spooner,
2001; Carrasco et al., 2006; Sørensen et al., 2007). Drive-
train and gearbox failure rates remain high, adding to the
cost of energy since gearboxes are among the most expen-
sive parts of WECs. These types of failures are likely to be
linked to torque fluctuations (e.g., Musial et al., 2007; Feng
et al., 2013). Next, turbulent wind affects extreme and fa-
tigue loads, which is clearly related to the lifetime of WECs
(Burton et al., 2001).

Wind dynamics in the atmospheric boundary layer have
been investigated extensively. Here, one has to differentiate

between analyses concerning the statistics of the wind speed
values and velocity increments. The wind velocities might
become anomalously distributed due to large-scale meteoro-
logical events like downbursts or thunderstorms (De Gaetano
et al., 2014). Velocity increments, on the other hand, statisti-
cally characterize the temporal aspect of fluctuations, whose
non-Gaussian statistics are well-known from small-scale tur-
bulence (Frisch, 1995). Active systems, like wind turbines
discussed here, adapt to actual wind situations. Thus, in this
paper we focus on wind speed changes within seconds, i.e.,
by the corresponding increments. Numerous studies have re-
ported on non-Gaussian characteristics of wind speed incre-
ments; see, e.g., Boettcher et al. (2003), Liu et al. (2010),
Morales et al. (2012), and Wächter et al. (2012). Further-
more, findings of non-Gaussian wind statistics have been im-
plemented in simulations by a variety of methods; see, e.g.,
Nielsen et al. (2007), Mücke et al. (2011), and Gong and
Chen (2014).

In the field of wind energy research, it is still unclear to
what extent wind dynamics transfer to the parameters of a
WEC such as loads, power etc. This most likely depends on

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



2 J. Schottler et al.: On the impact of non-Gaussian wind statistics on wind turbines

the relevant timescales, which change with the system dy-
namics. Therewith, the conversion from wind to power, loads
etc. vary with the turbine type. Consequently, it is important
what scales in time and space are relevant to quantify the im-
pact of turbulent wind on WECs (van Kuik et al., 2016), and
scale-dependent analyses become necessary.

Mücke et al. (2011) found that intermittent inflow con-
ditions do not significantly affect rain flow distributions of
the torque. However, similarly intermittent torque increments
based on a numeric wind turbine model used in the aeroe-
lastic tool FAST (Jonkman and Buhl Jr., 2005) in combi-
nation with AeroDyn (Moriarty and Hansen, 2005) were
found. Gong and Chen (2014) investigated the short- and
long-term extreme response distributions of a wind turbine
during Gaussian and non-Gaussian inflow conditions using
FAST. The extreme turbine responses to non-Gaussian in-
flow were considerably larger than the responses to Gaus-
sian wind. However, Berg et al. (2016) recently reported
a vanishing effect of non-Gaussian turbulence on extreme
and fatigue loads based on wind fields generated by large-
eddy simulation (LES) in combination with aeroelastic load
simulations using HAWC2 (Larsen and Hansen, 2007). It
was concluded that non-Gaussianity in sub-rotor-sized ed-
dies is filtered by the rotor. Using field data, Milan et al.
(2013) showed that multi-MW WECs convert intermittent
wind speeds to turbulent-like intermittent power with fluctu-
ations down to the scale of seconds. Even on the scale of an
entire wind farm, intermittent power output was reported. To
summarize, different simulations and data from real turbines
deliver an inconclusive answer to our question about the con-
version from turbulent inflow to wind turbine data. It is not
clear to what extent non-Gaussian flow conditions transfer to
turbine parameters. At the same time, this is a very important
aspect in the design process of wind turbines and in the wind
field models used. Wrong assumptions about the conversion
from turbulence characteristics to turbine data might lead to
faulty dimensions and problems in the integration of wind
energy in the power grid.

Using wind tunnel experiments, we contribute to the on-
going discussion on the conversion process of non-Gaussian
wind statistics to wind turbine data such as power, thrust and
torque. A model wind turbine and an active grid for flow
manipulation were used in order to examine to what extent
Gaussian-distributed and highly intermittent wind speeds af-
fect the model turbine dynamics differently.

This paper is organized as follows: Sect. 2 gives an
overview of commonly used methods for characterizing wind
speed time series, parts of which are applied to offshore mea-
surement data and simulated wind speed time series. Mathe-
matical tools used throughout this paper are introduced here.
Next, Sect. 3 describes the experimental methods used, in-
cluding the setup, the definition of examined quantities and
their processing. Section 4 shows the results of the experi-
ments, which are discussed in Sect. 5. Finally, Sect. 6 gives
the conclusion of the findings.

2 Atmospheric flows

Since WECs work in turbulent wind conditions, a proper
characterization of these conditions becomes necessary (van
Kuik et al., 2016). The industry standard IEC 61400-1 de-
fines procedures for wind field description (International
Electrotechnical Commission, 2005). Power spectral densi-
ties, along with 10 min mean values and turbulence intensi-
ties, are considered. Therewith, only the first two statistical
moments of a velocity time series are taken into account.

In this section, we give a brief overview of the methods
used in the industry standard and beyond, along with their
mathematical background, without claims of completeness.
Furthermore, the methods of data analysis used in this study
are introduced. We refer to Morales et al. (2012) for a more
detailed elaboration.

A general first step in characterizing a time series of wind
velocities, u(t), is the definition of velocity fluctuations (Bur-
ton et al., 2001),

u′(t)= u(t)−〈u〉 , (1)

where 〈u〉 denotes the mean value of u(t). A commonly used
quantification of the general level of turbulence is the turbu-
lence intensity (TI),

TI=
σT̃

〈u〉T̃
, (2)

with σT̃ being the standard deviation of u(t) during the time
T̃ (Burton et al., 2001). Accordingly, 〈u〉T̃ denotes the mean
value over the same time span, which is typically 10 min in

industry standards. Notice, since
√
〈u′2(t)〉T̃ = σT̃ , only the

first two statistical moments of the one point quantity u′ are
considered when describing a velocity time series by its fluc-
tuations and/or turbulence intensity as previously defined.

Going one step further in the sense of two point quantities,
we will consider velocity changes during a time lag τ and
refer to them as velocity increments,

uτ (t)= u(t + τ )− u(t), (3)

throughout this paper. It is important to distinguish between a
statistical description of the fluctuations and the increments.
In stationary turbulence, u′(t) is close to a Gaussian distribu-
tion, whereas increment statistics increasingly deviate from
Gaussianity (Frisch, 1995), which is also shown by Morales
et al. (2012) for offshore data. The nth-order moments of
uτ (t) are commonly referred to as nth-order structure func-
tions (Wächter et al., 2012). The second-order structure func-
tion

〈uτ (t)2
〉 = 〈(u(t + τ )− u(t))2

〉 (4)
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is directly linked to the autocorrelation function Ruu(τ ),

〈uτ (t)2
〉 = 2〈u(t)2

〉− 2〈u(t)u(t + τ )〉 (5)

= 2〈u(t)2
〉(1−Ruu(τ )), (6)

with the assumption that 〈u(t)2
〉 = 〈u(t + τ )2

〉. The autocor-
relation function

Ruu(τ )=
1
σ 2
u

〈u(t)u(t + τ )〉 (7)

is connected to the power spectral density (PSD) by the
Fourier transformation.1 Therewith, the PSD, which is used
broadly in wind field models such as the well-known Kaimal
model (Kaimal et al., 1972), comprises the same information
as the second-order structure function.

In order to include all higher-order structure functions,
〈unτ 〉, we will consider the probability density functions
(PDFs) of velocity increments, p(uτ ), for different time lags
τ and refer to them as increment PDF. We normalize uτ by
its standard deviation,

στ =

√√√√ 1
N − 1

N∑
i=1

(uτi −〈uτ 〉)
2 , (8)

for better visual comparison. The statistical error of each bin
of the PDF is estimated by 1/

√
ñ, where ñ is the number of

events in the respective bin. Throughout our analyses, values
with a statistical error exceeding 10 % are marked with a red
×.

For design load calculations, different turbulence models
are used. One, which is suggested by the IEC standard, is the
Kaimal model, which considers power spectral densities and
features merely Gaussian statistics. In this paper, we investi-
gate to what extent wind characteristics not captured by stan-
dard models impact wind turbines. Furthermore, we consider
a synthetic wind speed time series based on the Kaimal turbu-
lence model, created using the software TurbSim (Jonkman,
2009), and compare it to offshore wind speed measurements
taken from the FINO1 offshore measurement platform at
80 m height. The offshore data set is documented by West-
erhellweg et al. (2012). We considered 10 Hz data for 1 year,
and 10 min records of 7 m s−1

≤〈u(t)〉10 min ≤ 8 m s−1 were
selected. The approximately 3700 records were then com-
bined and used in this analysis in order to ensure close-to-
stationary conditions. It was shown by Morales et al. (2012)
that such a constraint filters out intermittency effects caused
by nonstationary conditions on large scales and thus enables
us to more properly study small-scale turbulence effects. It
should be noted that only the mean value of one 10 min block
is within 7.5± 0.5 m s−1. During this time span, samples out-
side of this interval are included. Table 1 shows the mean

1F {Ruu(τ )} = S(f ), with σ 2
u =

∫
S(f )df and S(f ) being the

power spectral density (Press et al., 1992).

Table 1. First two statistical moments and turbulence intensities of
a synthetic wind speed time series based on the Kaimal model and
offshore data (FINO1). Values are rounded to two decimal places.

Time series 〈u〉 [m s−1] σu [m s−1] TI [%]

Kaimal 7.51 0.54 7.21
FINO1 7.50 0.54 7.18
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Figure 1. p(uτ ) for data sets based on the Kaimal model (dashed
black line) and for offshore measurements, conditioned so that
〈u〉 = 7.5± 0.5 m s−1 (solid black). The PDFs for each scale are
shifted vertically for better comparison, which is done throughout
this paper. Scales from top to bottom τ = {1,5,10,30,60 s}.

values, standard deviations and turbulence intensities of both
data sets. As can be seen, the synthetic time series and the
field measurements are very similar regarding their mean val-
ues and turbulence intensities (see Table 1). Going further,
Fig. 1 shows p(uτ ) of both data sets, showing distinct differ-
ences regarding their distributions of increments. The Kaimal
model comprises purely Gaussian statistics, while the off-
shore data features intermittent increment distributions. As
shown in Fig. 1, certain characteristics of a wind speed time
series, in particular extreme velocity increments, are not re-
flected correctly using standard methods. In this paper, we
elaborate if and to what extent flow characteristics that are
not captured by the standards (e.g., the first two statistical
moments) impact wind turbines. We follow an experimen-
tal approach using a model wind turbine in a wind tunnel
equipped with an active grid, allowing the generation of var-
ious turbulent inflow conditions. By tuning the intermittency
while preserving mean wind speeds and turbulence intensi-
ties, the effect of intermittency is isolated.
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Figure 2. Schematic drawing of the experimental setup, side view. Scales do not match, D = 0.58 m.

3 Methods

3.1 Experimental setup

3.1.1 Wind tunnel and active grid

The experiments were conducted in a wind tunnel of the Uni-
versity of Oldenburg in open jet configuration. The outlet
of 0.8 m× 1 m (height×width) was equipped with an active
grid for turbulence generation with a similar design as de-
scribed by Weitemeyer et al. (2013). The grid is made of
nine vertical and seven horizontal axes with square metal
plates attached. To allow an individual motion of the axes
and thus flow manipulation, 16 stepper motors were used.
However, throughout the experiments, all axes were excited
simultaneously. We define a flap angle α, whereas α = 0◦ is
in alignment with the main flow direction (open) and ±90◦

corresponds to maximum blockage. At α = 0◦, the block-
age of the grid is approximately 6 %, considering the cross-
sectional area of the grid in relation to the wind tunnel outlet.

The excitation protocols of the motors were designed so
that two different flow situations with the same mean wind
velocities and comparable turbulence intensities were real-
ized. At the same time, they strongly differ in their distribu-
tions of increments: one flow (A) being Gaussian distributed,
the other one (B) being highly intermittent on a broad range
of timescales, which shows a distinctly heavy-tailed distribu-
tion of velocity increments. The resulting time series are dis-
cussed in Sect. 4.1. The excitation protocol resulting in the
intermittent flow featured an active flow modulation, where
α was changed appropriately at a maximal rate of 50 Hz. For
the Gaussian flow, the axes were not moved dynamically so
that α̇ = 0◦.

The flows considered were characterized using three
single-wire hot-wire probes simultaneously in one plane nor-
mal to the main flow direction. The probes were arranged

so that one was located at the position of the model wind
turbine’s hub and the other two in 0.6 D distance displaced
in y and z directions (see Fig. 2). It should be noted that
the turbine was not installed during flow characterization.
The hot wires are 1.25 mm long with a diameter of 5 µm.
A constant-temperature anemometry (CTA) module (Dantec
9054N0802) with a built-in low-pass filter set to 5 kHz was
used. Data were recorded at 10 kHz for 25 min using a Na-
tional Instruments cRIO-9074 real-time controller with in-
house built LabVIEW software. When analyzing the flows,
spatially averaged mean values of the three simultaneous
measurements,

u(t)=
1
3

3∑
i=1

ui(t) , (9)

are considered, where the index i denotes the respective hot
wire. Following the concept of a rotor-effective wind speed
as used by Schlipf et al. (2013), this approach is more appro-
priate for describing the wind speed affecting the rotor than
a single-point measurement. It should be noted that our re-
sults are hardly affected by using averaged measurements as
opposed to data of the central hot wire. The distance from
the active grid to the rotor and hence the hot wires was
1.1 m, which was set as a compromise between two aspects:
first, the further away from the outlet, the greater the influ-
ence of the emerging shear layer (Mathieu and Scott, 2000),
which should be limited. Second, the interaction of the ro-
tor’s blockage with the active grid increases with shorter dis-
tances. The evolution of the turbulence intensity and inter-
mittency was also found to decay constantly around 1 m be-
hind the grid (Weitemeyer et al., 2013). Consequently, a dis-
tance of 1.1 m was chosen to balance the effects described.
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Figure 3. The model wind turbine and the active grid installed in a
wind tunnel of the University of Oldenburg.

3.1.2 Model wind turbine

A three-bladed horizontal-axis model wind turbine with a ro-
tor diameter of D = 0.58 m was used. The vacuum-casted
rotor blades are based on a SD7003 airfoil profile. The tur-
bine is dynamically controlled with an operating tip speed
ration (TSR) comparable to modern full-scale turbines. Fur-
ther details on the turbine design are described by Schottler
et al. (2016). For details about the blade design, see Odemark
(2012). We consider the electrical power

P = Pel = Ugen · I, (10)

where Ugen is the generator voltage and I is the electric
current of the circuit. I is obtained by measuring the volt-
age drop Ush across a shunt resistor of Rsh = 0.1�, so that
Eq. (10) becomes

P = Ugen ·
Ush

Rsh
. (11)

According to the generator’s specifications, the torque T is
proportional to the electric current I ,

T = k · I, (12)

with k = 79.9 mN A−1. The turbine features an automatic
load control, with the process variable of the controller be-
ing the TSR based on hub-height wind speed measurements
using a hot-wire probe two-thirds ofD upstream of the rotor;
see Fig. 2. The generator’s load is controlled using an exter-
nal voltage applied to a field-effect transistor (FET) within
the electric circuit; see Schottler et al. (2016) for details.
Throughout this study, the TSR was set to λset = 7 to ensure a
stable point of operation (not in stall) during the experiments.

To measure the thrust force acting on the turbine, it
was placed on a three-component force balance (ME-
Meßsysteme K3D120-50 N). Only the thrust force in main
flow direction is considered; thus,

F = Fthrust, x . (13)

Figure 4. Original (black) and filtered (red) example time series of
the wind speed (a), power (b), thrust force (c) and torque (d). The
wind speed was filtered using a sixth-order Butterworth low-pass
filter at 2 kHz. In a similar way, the power and torque signals were
filtered at 45 Hz and the thrust force at 15 Hz.

The setup is sketched in Fig. 2; Fig. 3 shows a photograph.
As shown in Fig. 2, three hot wires were installed upstream
of the rotor during turbine operation. In contrast to the flow
characterization, only the center hot-wire signal at hub height
was used when comparing inflow data to turbine data as done
in Sect. 4.2.

3.2 Data processing

For each experiment, data were recorded simultaneously.
During flow characterization the three hot-wire probes were
synchronized and during turbine data acquisition the thrust
force, power, torque and hot-wire signals were recorded syn-
chronously. Generally, all data sets are superimposed with
some kind of measurement noise, which we generally want
to exclude from our analyses, while preserving the fluctua-
tions of the turbine signals resulting from the inflow. The data
sets are filtered using a sixth-order Butterworth low-pass fil-
ter at a cutoff frequency of 15 Hz for the thrust data and 45 Hz
for the power and torque data. Further details about the ap-
proach are shown in Appendix A. Figure 4 shows examples
of the time series of the four different signals, filtered and
unfiltered. The graph in Fig. 4a shows the wind speed dur-
ing the intermittent inflow upstream of the turbine. The other
graphs show the simultaneously recorded signals of the tur-
bine. Only the filtered data sets are used for further analyses.

3.3 Choice of scales

As previously described, we will consider increment PDF
of different timescales, p(uτ ). Defining relevant scales for
WECs is not trivial and is the subject of discussion through-
out the research community (van Kuik et al., 2016). There-
fore, a broad spectrum of timescales were chosen, ranging
from the order of seconds to the smallest scale possible while
applying the described filtering. By using Taylor’s hypothesis
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Figure 5. Velocity time series as defined in Eq. (9) of the two inflows considered, A (Gaussian, a) and B (intermittent, b). Further information
is shown in Table 3. Solid red lines mark 〈u(t)〉 and dashed red lines indicate 〈u(t)〉± σu.

Figure 6. Excerpts of both time series shown in Fig. 5.

of frozen turbulence (Mathieu and Scott, 2000), the chosen
timescales are related to length scales of the model turbine,
with 〈u〉 ≈ 7 m s−1. The largest scale considered is τ = 2 s.
Thus, the turbine experiences a flow situation correspond-
ing to a 14 m structure in the wind field impacting the model
turbine. Smaller timescales are based on turbine dimensions
and the filter frequencies. Table 2 gives an overview of the
different scales considered. When analyzing thrust data, the
smallest timescale, τ = 25 ms, was excluded due to the filter-
ing of the data.

4 Results

4.1 Inflow

Throughout the following analyses, two different flow situ-
ations will be considered and used as inflow conditions for
the model wind turbine. Figure 5 shows the two wind speed
time series as defined in Eq. (9) with 〈u(t)〉± σu indicated.
Additionally, Table 3 lists the mean values, standard devia-
tions and turbulence intensities for the two cases and Fig. 6
shows a 30 s excerpt. We refer to the time series as inflow A
and inflow B, according to Fig. 5. It is noteworthy that in de-
scribing the wind fields by their mean values and turbulence
intensities, as it is widely done, both conditions A and B are
virtually equivalent, as can be seen in Table 3.

However, just by looking at the time series, a difference
becomes obvious, which will be investigated further. There-
fore, Fig. 7 shows the increment PDF p(uτ ) of both time
series for the scales listed in Table 2. Clearly, both flows are
significantly different regarding intermittency. While inflow
A follows a Gaussian trend, inflow B shows a strongly heavy-
tailed, highly intermittent distribution of increments. There-
fore, extreme events occur significantly more frequently in
inflow B as compared to inflow A. Similar discrepancies as
shown in Fig. 1 for offshore measurements and simulated
data become obvious. It should be noted that the flows do
not aim to reproduce atmospheric wind speed time series.
We focus on the statistical properties for chosen timescales
as shown in Fig. 7.

4.2 Turbine reaction

Next, we investigate the performance data of the model wind
turbine when exposed to both A and B flows. To begin with,
we consider the thrust force in main flow direction, p(Fτ ),
in Fig. 8. Clearly, the difference between Gaussian and non-
Gaussian inflow conditions remains present in the thrust data
for all timescales considered. Non-Gaussian increments are
not filtered by the rotor. Going further, we directly compare
the normalized quantities, p(Fτ ) and p(uτ ), separately for
both flow conditions in Fig. 9. Neither for the Gaussian nor
for the intermittent case can a change in the forms of the
increment PDF be observed. Thus, we conclude that the non-
Gaussian character of the inflow is not averaged out by the
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Table 2. Overview of scales considered in relation to certain characteristic turbine lengths. The timescales τ were used in the analyses. To
get an idea of the spatial dimension, Taylor’s hypothesis is used to transfer from time to space with 〈u〉 ≈ 7 m s−1. The obtained length scales
are expressed as multiples of the rotor diameter for better comparison. The lengths are further related to physical objects of the turbine to get
a sense of the dimensions.

Scale 1 Scale 2 Scale 3 Scale 4

Timescale τ [s] 2 0.08 0.067 0.025
Length/D [–] ≈ 24 1 ≈ 0.8 0.3
Physical object – rotor diameter – order of blade length

uτ/στ
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B (intermittent)

Figure 7. p(uτ ) of both velocity time series shown in Fig. 5, A
(dashed) and B (solid), for τ = {25,67,80 ms,2 s} from top to bot-
tom. The different scales are shifted vertically for presentation. A
Gaussian fit (dashed red line) of p(uτ=2 s) for inflow A is added to
guide the eye.

Table 3. First two statistical moments of the time series shown in
Fig. 5 and their turbulence intensities. Values are rounded to two
decimal places.

Time series 〈u(t)〉 [m s−1] σu [m s−1] TI [%]

A 6.92 0.39 5.59
B 6.96 0.38 5.50

rotor. In Figs. 8 and 9, the smallest timescale of τ = 25 ms
is not shown for the thrust data since that scale interferes
with the previously applied low-pass filter as described in
Sect. 3.2.

So far, we have considered the thrust force of the turbine
as an example, showing a transfer of intermittency from uτ
to Fτ by the system dynamics of the turbine. For the power
and torque we obtain similar results as for the thrust; thus,
we present all quantities for the intermittent inflow together
in Fig. 10. None of the quantities smooth out the intermittent
inflow to a close-to-Gaussian distribution. Minor deviations
of the respective increment PDFs are discussed in Sect. 5.

Fτ/στ
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10
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B (intermittent inflow)

Figure 8. p(Fτ ) of the turbine’s thrust force (in main flow direc-
tion) exposed to the inflow conditions A (dashed) and B (solid)
for τ = {67,80 ms,2 s} from top to bottom. The different scales are
shifted vertically for presentation.

5 Discussion

To what extent non-Gaussian wind statistics impact WECs is
an ongoing discussion throughout the wind energy research
community. Using an active grid to create different turbulent
inflow conditions allows experimental investigations of the
impact of turbulence on wind turbines. This study can there-
fore supplement present approaches in the literature that in-
vestigate the impact of non-Gaussianity based on numerical
simulations (e.g., Mücke et al., 2011; Gong and Chen, 2014;
Berg et al., 2016) or field measurements (Milan et al., 2013).
However, when using the model wind turbine to grasp the im-
pact of the different inflows considered, we do not claim full
scalability. There is a Reynolds number mismatch between
the scaled laboratory model and full-scale turbines. Further-
more, the model is not aero-elastically scaled. Therefore, a
detailed study of the (time-) scale dependency of the results
is not included here, but chosen timescales as described in
Sect. 3.3 are analyzed. The flows described in Sect. 4.1 were
generated with a focus on their statistical properties on those
scales. The focus is not on details of the time sequences or
spectral properties. They aim to reproduce the discrepancy
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Figure 9. p(uτ ) (lines) and p(Fτ ) (circles) for both Gaussian (a) and intermittent (b) inflow conditions. Scales as in Fig. 8 from top to
bottom, τ = {25,67,80 ms,2 s}, shifted vertically for presentation.
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Figure 10. p(xτ ) for the intermittent inflow condition (line, see
Fig. 5a), thrust (circles), power (triangles) and torque (crosses).
Scales as in Fig. 8 from top to bottom, τ = {25,67,80 ms,2 s},
shifted vertically for presentation.

between industry standards and atmospheric wind data in
terms of increment statistics.

When processing the experimental data, signal fluctua-
tions not resulting from the inflow are excluded from the
analysis by previously applied low-pass filters. While noise
is only a minor issue considering the power and torque, the
thrust data from the force balance are significantly super-
imposed by signal fluctuations resulting from the setup it-
self; see Fig. 4c. These most likely arise from vibrations of
the whole setup during turbine operation, ranging from the
turbine itself and the support to the fixation in the ground.
These fluctuations are of an amplitude that would influence
the analysis; however, they are of a higher frequency than
the cutoff frequency of the applied low-pass filter. Therefore,

they are indeed excluded from the analysis. At the same time,
the procedure described in Appendix A might filter fluctu-
ations of higher frequency than the respective cutoff, which
are actually directly related to wind speed variations. As a re-
sult, minimal timescales have to be set, potentially excluding
interesting results for smaller scales. Considering Fig. A2a,
the coherence of the hot-wire signal and the thrust data is al-
most lost completely at approximately 10 Hz. Since this cor-
responds to a timescale of τ = 0.1 s or a length scale of 0.7 m
(≈ 1.2 D), a cutoff frequency of 15 Hz was chosen in order
to include a scale between the rotor diameter and the blade
length. From the analysis of other intermittent data, it can be
shown that our filtering does not affect the intermittency ef-
fects in a significant way. Thus, the filtering only suppresses
noise effects.

There might also be aerodynamic effects that are of even
higher frequency than the inflow fluctuations and are there-
fore not captured due to the filtering. Such effects at the ro-
tor are possibly excluded by the low-frequency filtering. This
study, however, focuses on dynamics caused by the inflow
turbulence.

Considering Fig. 10, some minor deviations between the
increment PDF of the inflow and the turbine data can be ob-
served. The torque and the power as defined in Eqs. (12) and
(11) are part of the electrical circuit and are therefore directly
linked to the manipulative variable of the controller, being
the voltage applied to the FET, UFET. Thus, an analysis of
those quantities includes not only fluctuations caused by the
inflow but also those resulting from the controller. As over-
shoots are typical for closed-loop control systems (Ogun-
naike and Ray, 1994; Chien and Chung, 2003), they likely
bias the present analysis, especially for small timescales re-
garding the power and the torque. This most likely causes the
asymmetric distributions of power and torque increments in
Fig. 10. Because of this, the focus of the analysis is on the
thrust data. Nonetheless, the main finding that all quantities
feature strongly intermittent distributions of increments re-
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mains, despite differences among the parameters, as Fig. 10
shows.

6 Conclusions

In this study, an experimental setup that allows the investi-
gation of interactions between various turbulent flows with
a model wind turbine was realized. Experiments were per-
formed in order to elaborate on the impact of non-Gaussian
wind statistics on WECs. Our results do not show any filter-
ing of the intermittent features of wind fields found in the at-
mosphere by the turbine. Consequently, one should be aware
that wind characteristics, which are not reflected in standard
wind field descriptions, the IEC 61400-1 for example, have
a significant impact on wind turbines. Intermittent inflow is
converted to similarly intermittent turbine data on all scales
considered, ranging down to sub-rotor scales. Thus, statis-
tical properties of the inflow time series that are not cap-
tured by describing them using one-point statistics are of rel-
evance and should be included in standards characterizing

inflow conditions. If intermittent inflows lead to intermittent
loading, including extreme loads that occur much more fre-
quently than currently modeled in the standards, then this has
implications for the use of the current standards in designing
wind turbines to withstand the wind conditions experienced.

7 Data availability

The offshore data analyzed in this paper was made available
by the DEWI and the Federal Maritime and Hydrographic
Agency (German Bundesamt für Seeschifffahrt und Hydro-
graphie). Access can be requested through http://fino.bsh.de/
(last access: 6 January 2017).

Furthermore, the experimental datasets are archived by the
University of Oldenburg. The data can be made available by
contacting the corresponding author.
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Appendix A: Data processing – coherence analysis

As described in Sect. 3.2, the raw data sets are superimposed
by measurement noise, which should be excluded from the
analyses. Since we analyze different parameters, an appropri-
ate filtering of the different raw signals should, nonetheless,
allow a comparison of their statistics. This section shows the
procedure of choosing appropriate filter frequencies. To be-
gin with, u(t) during the intermittent inflow B is filtered us-
ing a sixth-order Butterworth low-pass filter. The cutoff fre-
quency is set to 2 kHz since high-frequency noise, which is
typical for hot-wire anemometers (Jørgensen and Hammer,
1999), should be filtered. Furthermore, the resolved length
scales corresponding to 2 kHz (∼mm, using Taylor’s hypoth-
esis; Mathieu and Scott, 2000) are reasonably small for our
purposes. Figure A1 shows the PSD of both flows based on
raw and filtered data. Since we want to concentrate on the
fluctuations of turbine data caused by the inflow, we estimate
a maximal frequency for which the fluctuations of the respec-
tive turbine data are coherent with the fluctuations of the fil-
tered velocity signal. Therefore, we consider the magnitude-
squared coherence,

Figure A1. Power spectral density (PSD) of u(t) for the Gaussian inflow A (blue) and the intermittent inflow B (black). The effect of a
sixth-order Butterworth low-pass filter at fcut = 2 kHz is shown in gray. The dashed red line marks fcut = 2 kHz.

Figure A2. Magnitude-squared coherence of filtered hot-wire data and thrust (a) as well as power and torque (b). Used here were 500
Hanning windows with 50 % overlap, as suggested by Carter et al. (1973). Panel (b) shows regular drops of γ 2, which are caused by a filter
function within the control algorithm of the model turbine. Since the controller affects the electrical circuit, there is a direct connection to
the electrical current and therewith to the power and torque. Consequently, the effect of the filter is clearly visible in this graph.

γ 2
u′x′ =

|Pu′x′ (f )|2

Pu′u′ (f )Px′x′ (f )
, (A1)

of the filtered wind speed fluctuations of the intermittent
inflow (B) and the fluctuations of the respective turbine
quantity x′ (Carter et al., 1973), with x being the power,
torque or thrust. Pu′x′ denotes the cross-spectral density;
Pu′u′ and Px′x′ denote the autospectra. The results are shown
in Fig. A2. At the values indicated by the dashed red lines
in Fig. A2, the coherence of the signals is almost completely
lost. Therefore, we choose a cutoff frequency of 15 Hz for the
thrust data and 45 Hz for the power and torque data to filter
the raw data using a sixth-order Butterworth low-pass filter.
Hereby, higher frequencies are excluded, as only fluctuations
resulting from the inflow should be considered.

Wind Energ. Sci., 2, 1–13, 2017 www.wind-energ-sci.net/2/1/2017/
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Appendix B: Variances of increment PDF

For completeness, the variances σ 2
τ of every time series of

increments, xτ , are shown in Table B1 for the synthetic and
offshore data (see Fig. 1) and for the experimental data in
Table B2.

Table B1. Variances of each increment time series, uτ (t), for synthetic data based on the Kaimal model and field data.

Timescale τ [s] 1 5 10 30 60

var(uτ ), Kaimal [m2 s−2] 0.25 0.47 0.53 0.58 0.58
var(uτ ), FINO1 [m2 s−2] 0.04 0.11 0.15 0.24 0.31

Table B2. Variances of each increment time series for the experimental data. var(uτ ) corresponds to the graphs shown in Fig. 7, var(Fτ ) to
the graphs in Fig. 8, var(Pτ ) and var(Tτ ) to p(Pτ ) and p(Tτ ), respectively, as shown in Fig. 10.

Timescale τ [s] 0.025 0.067 0.08 2

var(uτ ), Inflow A [m2 s−2] 0.30 0.30 0.30 0.30
var(uτ ), Inflow B [m2 s−2] 0.06 0.08 0.09 0.252

var(Fτ ), Inflow A [m2 s−2] – 0.03 0.06 0.13
var(Fτ ), Inflow B [m2 s−2] – 0.11 0.14 0.86

var(Pτ ), Inflow A [m2 s−2] 0.03 0.12 0.16 3.31
var(Tτ )∗, Inflow B [m2 s−2] 1.17 6.28 8.48 133.72

∗
× 10−5.

www.wind-energ-sci.net/2/1/2017/ Wind Energ. Sci., 2, 1–13, 2017
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