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Abstract. We present two methods to characterize turbulence in the turbine inflow using radial velocity mea-
surements from nacelle-mounted lidars. The first uses a model of the three-dimensional spectral velocity tensor
combined with a model of the spatial radial velocity averaging of the lidars, and the second uses the ensemble-
averaged Doppler radial velocity spectrum. With the former, filtered turbulence estimates can be predicted,
whereas the latter model-free method allows us to estimate unfiltered turbulence measures. Two types of forward-
looking nacelle lidars are investigated: a pulsed system that uses a five-beam configuration and a continuous-
wave system that scans conically. For both types of lidars, we show how the radial velocity spectra of the lidar
beams are influenced by turbulence characteristics, and how to extract the velocity-tensor parameters that are
useful to predict the loads on a turbine. We also show how the velocity-component variances and co-variances
can be estimated from the radial-velocity unfiltered variances of the lidar beams. We demonstrate the methods
using measurements from an experiment conducted at the Nørrekær Enge wind farm in northern Denmark, where
both types of lidars were installed on the nacelle of a wind turbine. Comparison of the lidar-based along-wind
unfiltered variances with those from a cup anemometer installed on a meteorological mast close to the turbine
shows a bias of just 2 %. The ratios of the unfiltered and filtered radial velocity variances of the lidar beams to the
cup-anemometer variances are well predicted by the spectral model. However, other lidar-derived estimates of
velocity-component variances and co-variances do not agree with those from a sonic anemometer on the mast,
which we mostly attribute to the small cone angle of the lidar. The velocity-tensor parameters derived from
sonic-anemometer velocity spectra and those derived from lidar radial velocity spectra agree well under both
near-neutral atmospheric stability and high wind-speed conditions, with differences increasing with decreasing
wind speed and increasing stability. We also partly attribute these differences to the lidar beam configuration.

1 Introduction

Recently, lidars have been mounted on the nacelle of wind
turbines to investigate wake characteristics (Bingöl et al.,
2010; Machefaux et al., 2016; Trujillo et al., 2016) and to-
day are extensively used in a forward-looking (FL) mode
to scan the turbine inflow for many purposes. One of such
is power-performance measurements; FL nacelle lidars de-
crease the statistical uncertainty of the measured power curve
when compared to that based on mast measurements (Wag-
ner et al., 2014). The statistical uncertainty associated with
load validation can potentially also be reduced (Dimitrov and
Natarajan, 2016). Another important use of FL nacelle li-

dars is turbine control; they have the potential to reduce loads
and increase energy capture (Mikkelsen et al., 2013; Schlipf
et al., 2015). Irrespectively of the application, FL nacelle li-
dars are primarily aimed to characterize the inflow in front of
the turbine. Inflow characterization has been performed using
lidars of different types and configurations for several years
(Hardesty et al., 1981; Peña et al., 2010b; Aitken et al., 2012).
However, FL nacelle lidars have the advantage of measuring
the inflow in front of the turbines more “effectively” than
other types of lidars because they scan over the area in front
of the turbine and yaw with it. Therefore, they can potentially
be used for measuring the yaw misalignment of wind tur-
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bines (Fleming et al., 2014). If they become widely applied
in the wind-energy industry, they could be used to charac-
terize wind resources in regions where measurements from
meteorological towers are scarce or non-existent.

Similar to ground-based lidars, there are two main types of
FL nacelle lidars, pulsed and continuous-wave (CW), which
mainly differ, for the purpose of turbulence estimation, on the
measurement probe volume and the scanning strategies (spe-
cific details are given later). As with any other Doppler lidar,
they only measure the radial velocity along the laser beam or
line-of-sight velocity. As their measurement probe volumes
are generally larger than those of cup and sonic anemome-
ters, they might not be able to measure small turbulent ed-
dies, which leads to “filtered” turbulence estimates; however,
as they scan the atmosphere with laser beams in different di-
rections, there might be contributions (contamination) from
different velocity components that can lead, for some scan-
ning configurations and under certain turbulence conditions,
to turbulence estimates that might be even higher than those
from cup or sonic anemometers. A detailed analysis on how
lidar-based turbulence estimates can be assessed, filtered, and
contaminated is presented in Sathe and Mann (2013).

Here we use time series of radial velocity measurements
from different beams emitted by a FL nacelle lidar to es-
timate the turbulence parameters of the three-dimensional
spectral velocity tensor model by Mann (1994) (hereafter
the Mann model). This model is chosen because it fits the
atmospheric-turbulence velocity spectra for different surface,
wind, and atmospheric-stability conditions within the first
≈ 100 m from the ground well (Peña et al., 2010a; Chougule
et al., 2015) and is widely used to perform aeroelastic simula-
tions of wind turbines. The ultimate objective of this study is
to find out whether nacelle lidars can be used independently
(i.e., without the need of extra measurements, e.g., from in-
struments on meteorological masts) to extract turbulence in-
formation from the inflow. Nacelle lidars can potentially in-
fer the inflow characteristics that actually impact the turbines
better than traditional nacelle or mast anemometry because
they can scan over an air volume, which is more representa-
tive of the flow entering the rotor plane. We also use, when
possible, information of the Doppler radial velocity spectrum
to estimate the “unfiltered” lidar beam variances and, from
those, we estimate the velocity-component variances and co-
variances (Mann et al., 2010).

This paper is organized as follows. In Sect. 2, we introduce
shortly the characteristics of the wind field, how this is repre-
sented by the Mann model, and how to extract the turbulence
characteristics from velocity spectra. Section 3 shows the two
types of nacelle lidars investigated here, Sect. 3.1 illustrates
how to derive the radial velocity spectra from the different
lidar configurations and how these spectra are influenced by
both the lidar configuration and the turbulence characteristics
of the Mann model, and Sect. 3.2 shows how to extract tur-
bulence information from the lidars’ radial velocity spectra.
Section 4 introduces the Nørrekær Enge wind farm and the

measurements of the experimental campaign. Section 5 pro-
vides the details on the way the measurements are analyzed,
and Sect. 6 shows the comparison of turbulence character-
istics extracted from nacelle-lidar measurements and those
from sonic- and cup-anemometer measurements. Finally, we
provide some discussion and conclusions in the last two sec-
tions.

2 Turbulence background

The wind field is described by a vector field u(x), where the
time argument is eliminated because Taylor’s frozen turbu-
lence hypothesis is assumed (Mizuno and Panofsky, 1975)
and x is the position vector in space, x = (x,y,z). The mean
value of the homogeneous velocity field is 〈u(x)〉 = (U,0,0),
so the coordinate x is in the mean wind direction. The wind
field can also be written as a Fourier integral,

u(x)=
∫

u(k)eik·xdk⇔ u(k)

=
1

(2π )3

∫
u(x)e−ik·xdx, (1)

where k is the wave vector (Batchelor, 1953; Mann, 1994).
The ensemble average of the absolute squared Fourier coef-
ficients is the spectral tensor:〈
u∗i (k)uj (k′)

〉
=8ij (k)δ(k− k′). (2)

The spectral velocity tensor, 8ij , is assumed to be de-
scribed by the Mann model, which, besides k, only contains
three parameters: αε2/3, L, and 0, where α is the spectral
Kolmogorov constant, ε the specific rate of destruction of
turbulent kinetic energy, L a length scale related to the size
of the turbulent eddies, and 0 a parameter describing the
anisotropy of the turbulence. From the spectral tensor, the
one-point spectra are calculated by

Fij (k1)=
∫∫

8ij (k)dk2dk3, (3)

and typically, the three auto-spectra of the u, v, and w com-
ponents of the wind velocity, F11, F22, and F33, respectively,
together with the one-point cross-spectrum, F13, are fitted
simultaneously to measured or theoretical spectra in order
to obtain the Mann-model parameters (hereafter referred to
as Mann parameters). This procedure is described in Mann
(1994). In order to facilitate the fitting, a two-parameter look-
up table (LUT) with values of Fij (k1)= Fij (k1;αε

2/3
=

1,L= 1,0) is precomputed. The mathematical identity

Fij (k1;αε
2/3,L,0)= L5/3αε2/3Fij (k1L;1,1,0) (4)

is used to calculate the spectra for arbitrary values of k1,
αε2/3, L, and 0.
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3 Nacelle lidars

Two types of FL nacelle lidars are investigated: a CW and
a pulsed lidar. The lidars are assumed to be mounted close
to the center of the rotor with N beams pointing in differ-
ent directions (see Fig. 1). For the CW lidar studied here, the
beams point on a cone with the symmetry axis pointing up-
stream; Fig. 1’s left panel shows a configuration with an ar-
bitrary number of beams,N = 13, of which 12 beams draw a
conical surface and 1 is perpendicular to the rotor plane. The
half opening angle of the cone is ϕ. The beams of the CW
lidar are focused at some distance, df. If other measurement
planes are required, refocusing of the laser beam is necessary.
For the pulsed lidar studied here (N = 5), the beam directions
also form a cone where four positions are within the conical
surface and one is perpendicular to the rotor plane (Fig. 1,
right panel).

The ith lidar beam points to the direction defined by the
unit vector ni (i = 1, . . .,N ). The unit vector can be ex-
pressed as n= (−cosϕ,sinϕ cosθ,sinϕ sinθ ), where θ is
the angle between the y axis and n projected onto the
y–z plane. For the beam perpendicular to the rotor, n=

(−1,0,0). If we assume that the lidars measure at a point, in-
stead of over a probe volume, and that the u, v, andw compo-
nents do not change over the scanned area, the radial velocity
of the lidar beams over the scanned circle can be estimated
as

vr(θ )=−ucosϕ+ v sinϕ cosθ +w sinϕ sinθ. (5)

3.1 Lidar radial velocity spectra and beam variances

Mann et al. (2009) and Sjöholm et al. (2009) show an expres-
sion for the spectra measured by a lidar beam

Fvr (k1)= ninj

∫∫ ∣∣∣φ̂(k ·n)
∣∣∣28ij (k)dk2dk3, (6)

where φ̂ is the Fourier transform of the lidar weighting func-
tion that considers the probe volume. For a CW lidar, this is
typically approximated by

φ̂(k1)= exp(−|k|zR), (7)

where zR is the Rayleigh length (Sonnenschein and Horrigan,
1971) that can be estimated as

zR =
λd2

f

πr2
b
, (8)

where λ is the laser wavelength and rb the beam radius at the
output lens. For the pulsed lidar

φ̂(k1)= sinc2 (kzR/2) . (9)

In Eq. (9) zR is not the Rayleigh length as in Eq. (7), but
rather half the length of a rectangular pulse (Mann et al.,
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Figure 1.

determined by the unit vectors ni. For the CW lidar (left frame) we include a beam perpendicular to the rotor for comparison only. For the

pulsed lidar (right frame) we show a 5-beam configuration where beam 0 is perpendicular to the rotor. Beams perpendicular to the rotor are

shown in green (beam 0), top beams in blue and magenta (beams 1 and 2), bottom beams in red and cyan (beams 3 and 4), and other beams

in grey

The ith lidar beam points to the direction defined by the unit vector ni (i = 1, ...,N ). The unit vector can be expressed as

n = (−cosϕ,sinϕcosθ,sinϕsinθ), where θ is the angle between the y-axis and n projected onto the y-z-plane. For the beam

perpendicular to the rotor n = (−1,0,0). If we assume that the lidars measure at a point, instead of over a probe volume, and

that the u-, v-, and w-components do not change over the scanned area, the radial velocity of the lidar beams over the scanned

circle can be estimated as5

vr(θ) =−ucosϕ + v sinϕcosθ + w sinϕsinθ. (5)

3.1 Lidar radial velocity spectra and beam variances

Mann et al. (2009) and Sjöholm et al. (2009) show an expression for the spectra measured by a lidar beam

Fvr (k1) = ninj
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where φ̂ is the Fourier transform of the lidar weighting function that considers the probe volume. For a CW lidar, this is10

typically approximated by

φ̂(k1) = exp(−|k|zR), (7)

where zR is the Rayleigh length (Sonnenschein and Horrigan, 1971) that can be estimated as
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4

Figure 1. Geometry of the rotor and nacelle lidars. The x axis is
in the mean wind direction. The lidar beams point upwind in the
directions determined by the unit vectors ni . For the CW lidar (left
frame) we include a beam perpendicular to the rotor for compari-
son only. For the pulsed lidar (right frame) we show a five-beam
configuration where beam 0 is perpendicular to the rotor. Beams
perpendicular to the rotor are shown in green (beam 0), top beams
in blue and magenta (beams 1 and 2), bottom beams in red and cyan
(beams 3 and 4), and other beams in grey.

2009). Despite this discrepancy, we use the same symbol be-
cause zR is the parameter that characterizes both weighting
functions. Notice that Fvr is not a function of df/L because
the turbulence is assumed homogeneous.

Examples of radial velocity spectra of the CW and pulsed
lidars calculated from Eq. (6) with a half opening angle of
ϕ = 15◦, which are compared with the “ideal” sonic u spec-
trum, are shown in Figs. 2 and 3, respectively (within the
range of wave numbers that we are interested in, sonic
anemometers resolve the u spectrum well). As explained in
Mann et al. (2010), the negative correlation between the ver-
tical and horizontal velocities causes the variance of the up-
ward (and forward) pointing beam to generally be the high-
est of all beams, while the variance is generally the lowest
for the downward beam. The difference between the down-
ward and upward pointing beam spectra is smaller than the
differences between u, v, andw spectra and deteriorates with
increasing zR/L. This ratio indicates the amount of filtering
of eddies due to the probe volume. We can also see that for
the pulsed lidar the radial spectra of the top beams (1 and
2) are above the sonic u spectrum for zR/L= 0.25, which is
due to contributions from different components of the spec-
tral tensor. Similar mechanisms can result in a middle beam
radial velocity spectrum above the top beam one, particularly
for zR/L≥ 1.

Figure 4’s left panel shows the behavior of the ratio of the
lidar beam radial velocity variance, σ 2

vr
, to the variance of

the u component, σ 2
u , for a number of zR/L values and for

both types of lidars based on the Mann model with 0 = 3.
As expected from the results in Figs. 2 and 3, the ratio in-
creases with decreasing zR/L and for the 0/middle beam of
the pulsed/CW lidars, σ 2

vr
/σ 2
u = 1 at zR/L= 0 as no aver-

aging due to probe volume occurs. Furthermore, both lidars’
top beams variances can be higher than σ 2

u for zR/L≈ 0. An-
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Figure 2. Sonic and CW lidar velocity spectra from Eqns. (3) and (6) corresponding to the beams shown in Fig. 1-left. Values of zR/L are

indicated, ϕ= 15◦, Γ = 3, and αε2/3 = 0.1 m4/3 s−2

6

Figure 2. Sonic and CW lidar velocity spectra from Eqs. (3) and (6), corresponding to the beams shown in Fig. 1 (left panel). Values of
zR/L are indicated, ϕ = 15◦, 0 = 3, and αε2/3

= 0.1 m4/3 s−2.

other way to study the contributions of the different velocity
components to σ 2

vr
is shown in Fig. 4 right panel. There we

illustrate the ratio of the variance of the other two compo-
nents, σ 2

v and σ 2
w, as well as σ 2

u to σ 2
vr

as a function of the
beam azimuthal position for zR/L= 0. With ϕ = 15◦ and
such turbulence characteristics, we can only measure a por-
tion of σ 2

v and σ 2
w, and σ 2

vr
≈ σ 2

u at θ ≈ 11◦/169◦ (also if a
middle beam is used, no matter the turbulence characteris-
tics). For the same turbulence characteristics as those used in
Fig. 4, if we use a lidar with ϕ = 60◦, σ 2

vr
< σ 2

u for all az-
imuthal positions, whereas σ 2

vr
≈ σ 2

v at θ ≈ 200◦/340◦ and
σ 2
vr
≈ σ 2

w at θ ≈ 237◦/303◦ (not shown). It is also observed
that for the same zR/L value, the averaging by the CW lidar
has a stronger effect on the variance than the pulsed lidar.

Unfiltered lidar radial velocity variance

The unfiltered variance of the lidar beams, σ 2
vr,unf

, can be
estimated by using the information of the instantaneous
Doppler radial velocity spectrum. Following the steps in
Mann et al. (2010) or Branlard et al. (2013), the ensemble-
average Doppler spectrum of the radial velocity 〈S (vr)〉 can
be assumed to be equal to the probability density function
of vr, i.e., 〈S (vr)〉 = p(vr). This is because the average of vr

along the beam does not change highly with radial distance,
as FL nacelle lidars use a small cone angle and so the ve-
locity gradient along the probe volume is negligible. There-
fore, σ 2

vr,unf
can be estimated as the second central moment of

p(vr).
Assuming homogeneous turbulence, once σ 2

vr,unf
is com-

puted, the scanning pattern can be used to extract the
velocity-component variances by taking the variance of vr
in Eq. (5),

σ 2
vr,unf

(θ )= σ 2
u cos2ϕ+ σ 2

v sin2ϕcos2θ + σ 2
wsin2ϕsin2θ

− 2u′w′ cosϕ sinϕ sinθ, (10)

where u′w′ is the uw covariance, the primes denote fluctu-
ations, and the overbar a time average, and we ignore the
terms where u′v′ and v′w′ appear because these two are usu-
ally small (u fluctuations are in the mean wind direction). In
the case of misalignment of the lidar beams with respect to
the wind, because of either misalignment of the turbine with
the wind (yaw misalignment), lidar misalignment with the
turbine, or both, it is not difficult to derive an expression for
σ 2
vr,unf

that accounts for the misalignment angle β.
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Figure 3. Sonic and pulsed lidar velocity spectra from Eqns. (3) and (6) corresponding to the beams shown in Fig. 1-right. Values ofzR /L

are indicated,ϕ = 15 ◦, Γ = 3, andαε2/ 3 = 0 .1 m4/ 3 s− 2

7

Figure 3. Sonic and pulsed lidar velocity spectra from Eqs. (3) and (6) corresponding to the beams shown in Fig. 1 (right panel). Values of
zR/L are indicated, ϕ = 15◦, 0 = 3, and αε2/3

= 0.1 m4/3 s−2.

3.2 Turbulence characterization from nacelle-lidar
measurements

The strategy is to calculate theoretical spectra (in the form
of a LUT) that include both the effect of pointing the lidar in
the direction ni and of averaging. Then, the measured spectra
are fitted to the LUT to get the turbulence parameters. One
can expect this procedure to be unsuccessful for zR > L, i.e.,
if the lidar is averaging out most eddies as shown in Figs. 2
and 3.

The computational burden of creating a lidar-based LUT
using Eq. (6) is larger than in the standard case, i.e., using
Eq. (4), because Fvr is not only a function of the two pa-
rameters k1L and 0 but also of zR/L, ϕ, and θ . Furthermore,
lidar beam misalignment can be an issue. Therefore, we need
to add an extra dimension to the LUT because such misalign-
ment has a large effect on the lidar radial velocity spectrum.

Figure 5 illustrates the effect of misalignment (β =−2◦)
on the pulsed lidar radial velocity spectra for a set of Mann
parameters. The effect of the relatively small misalignment is
noticeable; the spectrum of the beams that become more par-
allel to the wind is clearly above that of those that become
less parallel at the same height. For this particular pulsed li-
dar configuration, misalignment can result in a similar spec-

trum for the beams 0 (middle) and 1/2 (depending on the
sign of the misalignment).

4 Site and measurements

4.1 Site

The Nørrekær Enge wind farm is located in the Himmerland
region in northern Jutland, Denmark, ≈ 300–400 m south-
east of the waters of Limfjorden (see Fig. 6). It comprises 13
Siemens 2.3 MW-93 wind turbines with hub height of 81.8 m
and a rotor diameter D of 92.6 m. They are aligned on a row
at a direction 73.9◦ with the north. The distance between the
turbines is 487 m (5.2D). A meteorological mast was located
at 101.2◦, at a distance of 232 m (2.5D) from turbine num-
ber 4 (from left to right on the row). The wind farm is located
over flat terrain and the surface is characterized by a mix be-
tween croplands and grasslands, and the fjord to the north. At
≈ 2 km southwest of turbine 4, the terrain is no longer flat.

4.2 Measurements

The measurements here analyzed correspond to the period
27 October 2015 to 7 January 2016. There are three types
of measurements: supervisory control and data acquisition

www.wind-energ-sci.net/2/133/2017/ Wind Energ. Sci., 2, 133–152, 2017
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parameters. The effect of the relatively small misalignment is noticeable; the spectrum of the beams that become more parallel

to the wind is clearly above that of those becoming less parallel at the same height. For this particular pulsed lidar configuration,5

misalignment can result in a similar spectrum for the beams 0 (middle) and 1/2 (depending on the sign of the misalignment).
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Figure 5. Effect of lidar beam misalignment (with respect to the wind) on the radial velocity spectra of a pulsed lidar for ϕ= 15◦, Γ = 3,
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4 Site and measurements

4.1 Site

The Nørrekær Enge wind farm is located in the Himmerland region in northern Jutland, Denmark, ≈300–400 m south-east

of the waters of Limfjorden (see Fig. 6). It comprises 13 Siemens 2.3 MW-93 wind turbines with hub height of 81.8 m and a10

rotor diameter D of 92.6 m. They are aligned on a row at a direction 73.9◦ with the north. The distance between the turbines

is 487 m (5.2D). A meteorological mast was located 101.2◦ at a distance of 232 m (2.5D) from turbine number 4 (from left to

right on the row). The wind farm is located over flat terrain and the surface is characterized by a mix between croplands and

grasslands, and the fjord to the north. At ≈2 km south-west of turbine 4, the terrain is not longer flat.

9

Figure 5. Effect of lidar beam misalignment (with respect to the
wind) on the radial velocity spectra of a pulsed lidar for ϕ = 15◦,
0 = 3, αε2/3

= 0.1 m4/3 s−2, zR/L= 0.5, and β =−2◦.

(SCADA) on turbine 4, FL nacelle-lidar measurements from
systems mounted on the nacelle of turbine 4, and meteoro-
logical mast observations. Both lidars were pre-tilted down
≈ 0.30◦ so that their axes pointed at hub height, at a position
2.5D from the turbine for maximum power–performance
operating conditions, based on aeroelastic simulations of
the tower bending (A. Vignaroli, personal communication,
2016).

4.2.1 Turbine measurements

For this analysis we use the following SCADA 10 min means
of turbine 4: yaw, power, and turbine and grid status. The yaw
and power signals provide measurements of the position of
the turbine and the converted power, and the grid and turbine
status signals show whether the turbine was grid-connected
(yes/no) and available (yes/no).
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Figure 6. The Nørrekær Enge wind farm in northern Denmark on
a digital surface elevation model (UTM32 WGS84). The wind tur-
bines are shown in circles, that with the nacelle lidars in red and the
mast in a triangle. The sector used for the analysis is also indicated.
The waters of Limfjorden are shown in light blue.

4.2.2 Pulsed lidar

A five-beam Avent pulsed lidar (hereafter known as Avent)
was mounted on the nacelle of turbine 4. Ten different ranges
were measured simultaneously per beam position (49, 72, 95,
109, 121, 142, 165, 188, 235, and 281 m). The beam config-
uration is exactly as that in the right panel of Fig. 1 (and
we will use the same beam numbering), with ϕ = 15.08◦ and
zR = 24.75 m (Borraccino et al., 2015). The lidar accumu-
lated radial velocity spectra per beam position for 1 s before
it moved to the next beam position; thus, radial velocity time
series can be analyzed at 0.2 Hz. Each radial velocity esti-
mate from the average Doppler spectrum was performed by
the instrument using a maximum-likelihood-estimator algo-
rithm (Peña et al., 2015).

Wind Energ. Sci., 2, 133–152, 2017 www.wind-energ-sci.net/2/133/2017/



A. Peña et al.: Turbulence characterization from nacelle lidars 139

4.2.3 Continuous-wave lidar

A ZephIR dual-mode CW lidar (hereafter known as ZephIR)
was also mounted on the nacelle of turbine 4. Five differ-
ent ranges were considered (10, 30, 95, 120, and 235 m);
for each range ≈ 50 azimuthal positions on the circle formed
with a cone with ϕ = 15.05◦ were measured during 1 s; the
system averaged Doppler radial velocity spectra within az-
imuthal ranges of ≈ 7.38◦ to get an estimate of the radial ve-
locity per azimuth by computing the centroid of the average
Doppler spectrum (Borraccino et al., 2015). The system also
kept a record of each average Doppler radial velocity spec-
trum, which is used here to estimate the unfiltered variance.
The lidar characteristics λ= 1.56× 10−6 m and rb = 28 mm
(M. Harris, personal communication, 2016) can be used to
estimate zR with Eq. (8). Each range was sampled three times
before focusing to the next one; thus, radial velocities for
the same range and azimuthal position can be found every
≈ 18 s.

4.2.4 Mast measurements

We use measurements from cup anemometers (P2546A) at
80, 78, and 57 m height, mounted on 3 m long booms 250◦

from the north; from a 3-D sonic anemometer (CSAT3) at
76 m on a 2 m boom 190◦ from the north; and a wind vane
(Vector W200P) at 78 m on a 3 m boom 70◦ from the north,
all mounted on the meteorological mast. The mast is an equi-
lateral triangular lattice structure with a width of 0.4 m at
80 m.

5 Data analysis

5.1 Data selection and filtering

We analyze the time series of all data and their statistics in
10 min periods. The total number of 10 min periods available
for analysis is 9586. The next steps are followed in the anal-
ysis:

1. We use the 10 min vane measurements to concentrate
the analysis on a wake-free sector covering the mast
location (88.85–238.85◦) that takes into account the
obliquity of the wind farm row and a 15◦ wake ex-
pansion (see Fig. 6). A total of 5825 10 min measure-
ments are available for analysis where both lidars are
also working (based on a 10 min status signal of both
lidars) and turbine 4 is grid-connected and available.

2. The availability of the Avent data is highest at the range
121 m because this range is the closest to the focusing
distance. Therefore, we focus all our lidar-data analysis
at this range, although the mast is at 232 m from turbine
4. Furthermore, when a carrier-to-noise (CNR) filter is
applied to the 5 s time series, the two lowest beams (3
and 4) return fewer data than the others due to, among

other things, obstruction from the blades (the availabil-
ity of beam 3 is lower than that of beam 4). A total of
3236 10 min periods are available for analysis after fil-
tering the 5 s Avent data so that for each 10 min period
there are a minimum of 110 samples for beams 0, 1, 2,
and 4 with CNR>−22 dB.

3. We then extract all radial velocities for all azimuthal po-
sitions of the ZephIR for the range 120 m when no rain
was detected by the instrument. The azimuthal position
of the ≈ 50 points over the scanned circle changes af-
ter each revolution. A total of 2590 10 min periods are
available for analysis in which there are a minimum of
4500 radial velocities samples per 10 min period at the
120 m range.

4. Finally, we extract the 1 Hz data of the sonic anemome-
ter and cup anemometer at 80 m, in which there are a
minimum of 600 samples per 10 min period. The final
dataset thus contains 2273 10 min samples of concur-
rent turbine–lidars–mast data.

Furthermore, each 10 min time series has been post-
processed. For the Avent data, we linearly detrend each ra-
dial velocity time series for each beam before applying a de-
spiking filter, where values above and below 3 standard de-
viations from the mean are filtered out. The missing values
are then filled in using linear interpolation. The top left panel
of Fig. 7 shows an example of a 10 min time series of the
Avent beams’ radial velocity. The solid lines show the final
interpolated time series and the markers show original radial
velocities before post-processing.

For the ZephIR data, we construct time series of radial ve-
locities at azimuthal positions similar to those of the Avent.
Since the azimuthal positions of the ZephIR change from
revolution to revolution, we extract radial velocities within
azimuthal position bins of 7.2◦ on a fixed frame of refer-
ence. Three of such bins, 43, 6, and 31, are “aligned” with
the Avent beams 1, 2, and 4, respectively. The time series per
bin is then threshold-filtered with a minimum radial veloc-
ity of 2 m s−1, and detrended and despiked as with the Avent
data. The top right panel of Fig. 7 shows the time series per
bin; we include four more bins (0, 12, 18, and 37) than those
aligned with the Avent beams and their positions can be in-
ferred by color coding using the bottom left panel of Fig. 7
which shows the radial velocities in a polar plot. In the top
panels in Fig. 7 the effect of despiking is noticeable (the fil-
tered time series are shown in solid lines and the original are
shown in markers), and in the bottom left panel of Fig. 7,
all the radial velocities estimated from the Doppler spectrum
within the 10 min period at the 120 m range by the ZephIR
are shown. Since the lidars were mounted behind the rotor,
the rotating blades sometimes interfered with the beam and
the estimated radial velocity became the projection of the ra-
dial velocity of the blade onto the beam direction; the result
is the figure of eight close to zero radial velocity shown in
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the bottom-right panel, we show a comparison of the 2273 10-min mean radial velocities of the Avent (beam 2) and ZephIR (bin 6) with the

results of a linear regression through the origin and coefficient of determination R2 . Measurements from beam 3 of the Avent are omitted

due to low availability
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Figure 7. An example of a 10 min time series of the radial velocity of different beams for the Avent (top left) and the ZephIR (top right)
lidar. The radial velocities of the two lidars at all azimuthal positions are illustrated in the bottom-left panel (see text for details). In the
bottom-right panel, we show a comparison of the 2273 10 min mean radial velocities of the Avent (beam 2) and ZephIR (bin 6) with the
results of a linear regression through the origin and coefficient of determination R2. Measurements from beam 3 of the Avent are omitted
due to low availability.

the bottom left panel of Fig. 7. In this latter plot, we also
include the radial velocities of the three Avent beams that
are aligned with the ZephIR bin positions. At these three po-
sitions, both lidars show good agreement; a comparison of
all 10 min mean radial velocities estimated by the Avent and
ZephIR for one of these “aligned” positions, beam 2 and bin
6, respectively, is shown in the bottom right panel of Fig. 7.
The top right panel of Fig. 7 also shows that it is possible
to get more than one radial velocity value within the same
azimuthal bin (sometimes up to three values). Finally, the
ZephIR’s time series are “completed” using linear interpo-
lation.

For each 10 min period, the 1 Hz sonic and cup anemome-
ter data are detrended and despiked as with the lidar data,
and mean and turbulence statistics are computed. The sonic-
anemometer wind-speed components are rotated so that u is
aligned with the mean wind. We estimate the friction veloc-
ity, from the sonic wind speed and temperature fluctuations,
as

u∗ =
(
u′w′

2
+ v′w′

2
)1/4

, (11)

and the Obukhov length estimated as

LO =−
u∗

3

κ(g/T )w′2′v
, (12)

where κ is the von Kármán constant (≈ 0.4), g the gravita-
tional acceleration, T a reference temperature, and 2v the
virtual potential temperature. Spectra of all lidar radial ve-
locities, sonic-anemometer wind speed components and cup-
anemometer horizontal wind velocity are computed for each
10 min period. All 10 min turbulence statistics and spectra
from the sonic anemometer are also computed on a 5 and a
18 s basis, mimicking the lidar sampling frequencies.

5.2 Sonic-anemometer measurements

When compared to the measurements from the 80 m cup
anemometer, the sonic-anemometer mean horizontal wind
speeds are 2.6 % lower (see Fig. 8 left panel). This bias is
higher than 0.6%, which is the estimation that results from
assuming, between the two instruments’ heights, the loga-
rithmic wind profile

U =
u∗

κ
ln
(
z

z0

)
, (13)

where z0 is the roughness length, ≈ 0.012 m, which is a typ-
ical value of these surface conditions (Peña et al., 2016).
When looking at variances, the bias is 12 % (Fig. 8, right
panel) if we use the u component or the combined u and
v components for the estimation of the sonic-anemometer
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Figure 8. Comparison of sonic and 80-m cup anemometer statistics: mean wind speed (left frame) and horizontal wind variance (right frame).
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αε2/3 = 0.14 m4/3 s−2, and L = 35.38 m) are similar to those observed at a site with similar surface and turbulence char-

acteristics (Peña et al., 2010), but it should be noticed that these are the average of spectra for a number of atmospheric and

turbulence conditions and that the Mann-model fitting procedure is normally performed over specific wind-speed, turbulence,

or atmospheric-stability ranges.

Due to the uncertainty on the sonic-derived statistics, we will use the cup-anemometer variance as a proxy for σ2
u. However,5

we will use the sonic-based Mann parameters for comparison with the lidar-based Mann parameters (and for estimations of

σ2
v,w and u′w′) because it is the only reference we have for three-dimensional turbulence measurements.

5.3 Undersampling and noise removal

Although the variances of a velocity time series sampled over a 10-min period at a frequency fs of 0.2 or 0.06 Hz are not statis-

tically different from those estimated from 1 or 10 Hz records, aliasing and noise might appear both in the sonic-anemometer10

and the lidar radial velocity spectra. Figure 10-left shows the Avent radial velocity spectrum that has been ensemble-averaged

from all the 10-min observed spectra for each of the beams. We conjecture that the increase in the spectral densities at high

15

Figure 8. Comparison of sonic and 80 m cup anemometer statistics: mean wind speed (left frame) and horizontal-wind variance (right frame).
Each 10 min sample is shown in grey markers, a 1 : 1 line is shown for guidance in black, and the results of a linear regression through the
origin and R2 are given.

variance. The latter means that for this site and at this height,
the v variance has a low contribution to the horizontal veloc-
ity variance (which is what a cup anemometer does theoreti-
cally measure) and so we could assume the cup-anemometer
variance to give a good estimate of the u variance. On the
other hand, the bias between both instruments’ variances can-
not be explained simply; a 4 % bias is expected, assuming the
2 % bias of the mean wind speed.

The behavior of the sonic-derived velocity spectra does not
correspond well with the notion of turbulence local isotropy
within the inertial subrange, where we expect the same spec-
tral density for the v and w components and the u com-
ponent is 25 % lower (Wyngaard, 2010). Figure 9 shows
that within the inertial subrange the ensemble-average sonic
u spectrum (of all 10 min observed spectra) is indeed≈ 25 %
lower than the v spectrum but so is the w spectrum. Possi-
ble explanations for this are path-averaging errors and trans-
ducer shadowing mainly attenuating the w spectrum mea-
sured by the CSAT3 (Horst and Oncley, 2006). Figure 9 also
illustrates the fit to the three auto-spectra and cross-spectrum
using the Mann model (see Sect. 2), which shows the ex-
pected behavior within the inertial subrange (k1'0.03 m−1

for this case). The fit is performed on the ensemble-average
spectra that have been logarithmically-averaged on the ba-
sis of the wavenumber (we will use such logarithmically-
averaged spectra when fitting Mann parameters). These “av-
erage” Mann parameters (0 = 3.00, αε2/3

= 0.14 m4/3 s−2,
and L= 35.38 m) are similar to those observed at a site with
similar surface and turbulence characteristics (Peña et al.,
2010a), but it should be noticed that these are the average
of spectra for a number of atmospheric and turbulence con-
ditions and that the Mann-model fitting procedure is nor-
mally performed over specific wind speed, turbulence, or
atmospheric-stability ranges.

Due to the uncertainty on the sonic-derived statistics, we
will use the cup-anemometer variance as a proxy for σ 2

u .
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frequencies is due to noise. Figure 10-right shows the effect of a noise filter, which is based on the method by Kirchner (2005),

on the ensemble-average Avent radial velocity spectra.
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16

Figure 9. Power spectrum for different velocity components. The
solid lines show the ensemble-average spectra of all 10 min sonic-
anemometer spectra; the markers, the k based logarithmically-
average spectra of all 10 min spectra; and the dotted lines, a fit to
the spectra using the Mann model.

However, we will use the sonic-based Mann parameters for
comparison with the lidar-based Mann parameters (and for
estimations of σ 2

v,w and u′w′) because it is the only reference
we have for three-dimensional turbulence measurements.

5.3 Undersampling and noise removal

Although the variances of a velocity time series sampled over
a 10 min period at a frequency fs of 0.2 or 0.06 Hz are not
statistically different from those estimated from 1 or 10 Hz
records, aliasing and noise might appear both in the sonic-
anemometer and the lidar radial velocity spectra. The left
panel of Fig. 10 shows the Avent radial velocity spectrum that
has been ensemble-averaged from all the 10 min observed
spectra for each of the beams. We conjecture that the increase
in the spectral densities at high frequencies is due to noise.
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on the ensemble-average Avent radial velocity spectra.
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Figure 10. Ensemble-average spectrum of all 10 min Avent radial velocity spectra (per beam), sonic-anemometer u spectrum, and 80 m
cup-anemometer spectrum. Original (left) and noise-filtered lidar radial velocity spectra (right).

The right panel of Fig. 10 shows the effect of a noise filter,
which is based on the method by Kirchner (2005), on the
ensemble-average Avent radial velocity spectra.

The noise filter seems to recover the shape of the Avent
radial velocity spectra. However, when tested on the 18 s
sonic ensemble-average u spectrum (not shown), the filter
highly distorts the shape and the peak of the spectrum. There-
fore, we focus the spectra analysis on the measurements per-
formed at fs ≥ 0.2 Hz, i.e., we exclude the ZephIR radial ve-
locity spectra for the analysis. For the results presented here-
after, the noise filter is only applied to the Avent radial veloc-
ity spectra.

Figure 10 also shows that for these ensemble-averages, the
spectral density of beam 2 is the highest, followed by that of
beams 0 and 1, and then that of beam 4. This behavior might
be due to three reasons: Excessive rolling of the Avent, so
that beam 2 points higher than beam 1; that the turbulence
characteristics at the position of beam 2 are rather different
than those at the position of beam 1; or that there is yaw mis-
alignment so that beam 2 points closer to the direction of the
mean wind compared to beam 1 (see Fig. 5). Both ZephIR
and Avent have tilt and roll signals, and for the 10 min sam-
ples analyzed here the maximum absolute 10 min mean tilt
and roll are only 0.56 and 0.31◦, respectively. Also, the very
flat terrain characteristics should not have such an impact on
the ensemble-average spectrum of two beams that point at
the same height, like beams 1 and 2 in this particular case.
So, the most plausible explanation is that beams 2 and 3 are
more aligned with the mean wind than beams 1 and 4.

In the right panel of Fig. 10, we can see that the spec-
trum of beam 2 is slightly higher than that of the 80 m cup
anemometer and higher than that of the sonic anemometer
(up to f ≈ 0.04 and 0.07 Hz, respectively). Such behavior
is expected for low zR/L values (see Fig. 3 top left panel) or
under lidar misalignment conditions (see Fig. 5). We can also
see that the cup-anemometer spectrum is higher than that of
the sonic anemometer, as expected from the variance results
in the right panel in Fig. 8.

5.4 Horizontal wind-speed reconstruction

For both lidars we need to reconstruct the horizontal wind
speed at the specific range of the lidars, which can later be
used for spectral analysis and for filtered along-wind vari-
ance estimates. We use a simplified version of the linear-
gradient model of Hardesty et al. (1981),

vr(θ )=−cosϕ
(
u+Rd

du
dz

sinθ
)
+ v cosθ sinϕ, (14)

where Rd is the radius of the disc formed by the scanning
pattern at the given range, to estimate u, v, and the vertical
gradient of the along-wind component, du/dz. In Eq. (14),
we ignore w and other vertical and horizontal gradients of
the wind components because their contribution is small. For
both lidars, the beams selected in Sect. 5.1 are used for the
reconstruction, which can be done on the time-series basis or
the 10 min averages. Figure 11 shows the results of the lidar-
based reconstruction on all 10 min means compared to the
80 m cup anemometer and between the lidars; for both lidars
we show the horizontal wind-speed magnitude but when us-
ing the mean wind speed we obtain the same results. The
same results, regarding the linear regression and R2 (not
shown), as those given in the left panel of Fig. 11 are found
when comparing the radial velocity of beam 0 with the 80 m
cup-anemometer wind speed on a 10 min basis.

5.5 Ensemble-average Doppler radial velocity spectrum

The Doppler-spectrum analysis is performed over all the
2273 10 min periods using the ZephIR data (the Doppler
spectrum information is not available for the Avent). While
each of the 10 min radial velocity time series per bin posi-
tion is thresholded and despiked (see Sect. 5.1), we extract
the normalized Doppler radial velocity spectrum for each of
the samples within that 10 min and bin position. We then
sum all the normalized Doppler spectra within the 10 min
period and the resulting Doppler spectrum is normalized to
unit area before we estimate the variance in two ways: by
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Figure 11. Comparison of reconstructed and 80-m cup anemometer horizontal wind speeds. (Left frame) cup anemometer against Avent.

(Right frame) Avent against ZephIR. Each 10-min sample is shown in grey markers, a 1:1 line is shown for guidance in black, and the results

of a linear regression through the origin andR2 are also given

5.5 Ensemble-average Doppler radial velocity spectrum

The Doppler-spectrum analysis is performed over all the 2273 10-min periods using the ZephIR data (the Doppler spectrum

information is not available for the Avent). While each of the 10-min radial velocity time series per bin position is thresholded

and despiked (see Sect. 5.1), we extract the normalized Doppler radial velocity spectrum for each of the samples within that

10-min and bin position. We then sum all the normalized Doppler spectra within the 10-min period and the resulting Doppler5

spectrum is normalized to unit area before we estimate the variance in two ways: by computing the second moment from the

spectrum and by fitting a normal distribution to the spectrum to extract its variance (Mann et al., 2010; Branlard et al., 2013).

Figure 12 illustrates examples of ensemble-average Doppler spectra for different 10-min periods for the positions of bins 0

and 31, where we intentionally show 10-min radial velocity distributions with high and low mean values, and high and low

variances, including double-peak distributions (there are only a few of them). These few distributions give us an idea of the10

variety of turbulence characteristics of the dataset. Distributions with high and low radial velocities generally show high and

low variances, respectively, as expected. Particularly in the examples, there is a 10-min period with very low variance for both

bin positions with clear larger radial velocities for bin 0 compared to those for bin 31, indicating very high wind shear, which
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Figure 11. Comparison of reconstructed and 80 m cup anemometer horizontal wind speeds. (Left) Cup anemometer against Avent.
(Right) Avent against ZephIR. Each 10 min sample is shown in grey markers. A 1 : 1 line is shown for guidance in black, and the results of a
linear regression through the origin and R2 are also given.

computing the second moment from the spectrum and by fit-
ting a normal distribution to the spectrum to extract its vari-
ance (Mann et al., 2010; Branlard et al., 2013). Figure 12 il-
lustrates examples of ensemble-average Doppler spectra for
different 10 min periods for the positions of bins 0 and 31,
where we intentionally show 10 min radial velocity distribu-
tions with high and low mean values, and high and low vari-
ances, including double-peak distributions (there are only a
few of them). These few distributions give us an idea of the
variety of turbulence characteristics of the dataset. Distribu-
tions with high and low radial velocities generally show high
and low variances, respectively, as expected. Particularly in
the examples, there is a 10 min period with very low vari-
ance for both bin positions with clear larger radial velocities
for bin 0 compared to those for bin 31, indicating very high
wind shear, which is normally associated with atmospheric
stable conditions. This is an early morning 10 min period in
late October, in which the sonic-derived LO value is 1.82 m,
corresponding to extremely stable conditions.

6 Results

The results are divided into five parts. In Sect. 6.1, we illus-
trate the main turbulence characteristics of the site, which we
use to classify the data in a number of atmospheric-stability
and wind-speed ranges. In Sect. 6.2, we intercompare the
ZephIR estimates of variances and co-variances using the
unfiltered lidar radial velocity variances with the cup- and
sonic-anemometer estimates. Section 6.3 shows the effect of
the noise filter on the Avent radial velocity variance for the
atmospheric-stability and wind-speed ranges. In Sect. 6.4, we
explore the effect of atmospheric stability on both the sonic
and the lidar radial turbulence spectra and intercompare the
Mann parameters derived from both types of spectra. Finally,
in Sect. 6.5, we perform the same exercise as in Sect. 6.4 but
on the basis of the wind-speed ranges.

6.1 Turbulence characteristics

Figure 13 shows the overall turbulence characteristics of the
site based on cup- and sonic-anemometer observations, us-
ing the 2273 10 min concurrent data. In the left frame, we
illustrate the behavior of the turbulence intensity, σU/U ,
with wind speed, using the 80 m cup-anemometer measure-
ments; wind speeds are in the range ≈ 5–23 m s−1 with low
σU/U values within the low wind-speed range and σU/U
increasing with wind speed. In the right frame, we illus-
trate the behavior of the dimensionless wind shear, φm =
(κz/u∗)∂U/∂z, with dimensionless atmospheric stability,
z/LO; we use the cup-anemometer wind-speed measure-
ments at 78 and 56 m to estimate ∂U/∂z (≈1U/1z) and the
sonic-derived u∗ to compute LO and φm. Figure. 13, in the
right panel, shows that the atmosphere during the analyzed
period is mostly stable (z/LO > 0) and that, as expected,
φm increases with increasing z/LO. Such atmospheric con-
ditions explain the low σU/U values for low wind speeds. In
the left panel of Fig. 13, we include a prediction of σU/U , us-
ing Eq. (13) with σU = 2.5u∗ and zo = 0.012 m, which fairly
agrees with the data for high wind speeds only, as expected.
In Fig. 13 (right panel), we include, for comparison only,
the prediction φm = 1+ 4.7z/LO from surface-layer theory
(Högström, 1988) that is offset with the data because φm, and
so z/LO, is estimated at a mean height of z= 67 m with only
two wind-speed observations that were 22 m apart, whereas
the turbulence estimates are from the sonic anemometer at
76 m.

Based on the observed turbulence characteristics and
knowing that we need to average a number of 10 min spec-
tra to be able to robustly extract the Mann parameters
(Peña et al., 2010a), we classify the concurrent data into
10 classes as illustrated in Table 1, ensuring that there are
a close to 100 10 min samples per class as a minimum.
From the atmospheric-stability classes, we can see that the
data comprise mainly stable conditions, with stability 1 be-
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Figure 12. Examples of normalized Doppler radial velocity spectra measured over five 10 min periods with the ZephIR at the positions of
bin 0 (left) and bin 31 (right). The markers show the observed distributions and the solid lines show a normal fit.
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shows that the atmosphere during the analyzed period is mostly stable ( ) and that, as expected, increases with

increasing . Such atmospheric conditions explain the low values for low wind speeds. In Fig. 13-left, we include

a prediction of using Eqn. (13) with and m, which fairly agrees with the data for high wind

speeds only, as expected. In Fig. 13-right, we include, for comparison only, the prediction from surface-5

layer theory (Högström, 1988) that is offset with the data because , and so , are estimated at a mean height of
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Based on the observed turbulence characteristics and knowing that we need to average a number of 10-min spectra to be

able to robustly extract the Mann parameters (Peña et al., 2010), we classify the concurrent data into ten classes as illustrated in10

Table 1, ensuring that there are a close to 100 10-min samples per class as a minimum. From the atmospheric-stability classes,

we can see that the data comprise mainly stable conditions with stability 1 being the only close-to-neutral class (

, with m). The more stable the atmospheric conditions the lower the wind speed and the friction velocity, as

expected. Most of the data range within the stability 2 class ( ), i.e. most of the observations are nearly stable.

From the wind-speed classes, we observe most of the data within a high-speed range (11–13 m s ) and, similarly to the15

stability classification, the lower the wind speed the more stable the atmosphere (except for the speed 1 and 2 classes) and so

the lower the friction velocity. Interestingly, for the speed 1 and 2 classes and , respectively (where
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Figure 13. (Left) Turbulence intensity σU /U as a function of mean wind speed U from the 80 m cup-anemometer observations. (Right) Di-
mensionless wind shear φm as a function of dimensionless stability, z/LO, based on the sonic- and cup-anemometer observations. The grey
markers show 2273 10 min concurrent samples and the solid lines are theoretical predictions (see text for details).

ing the only close-to-neutral class (〈z/LO〉 = 0.0625, with
z= 67 m). The more stable the atmospheric conditions the
lower the wind speed and the friction velocity, as expected.
Most of the data range within the stability 2 class (〈z/LO〉 =

0.1489), i.e., most of the observations are nearly stable. From
the wind-speed classes, we observe most of the data within a
high-speed range (11–13 m s−1) and, similarly to the stability
classification, the lower the wind speed the more stable the
atmosphere (except for the speed 1 and 2 classes), and so the
lower the friction velocity. Interestingly, for the speed 1 and
2 classes z̃/LO = 0.5084 and 0.7196, respectively (where˜
indicates the median value), which are higher values than the
mean dimensionless stability of the most stable class (sta-
bility 5). We use the median for the speed classes since the
LO values highly fluctuate within those speed ranges.

6.2 Unfiltered lidar turbulence

Based on the ZephIR configuration (ϕ = 15.05◦), we are able
to predict all variances’ ratios σ 2

vr
/σ 2
u,v,w, using the Mann

model with a given 0 parameter for the unfiltered lidar radial
velocity variances, i.e., using Eq. (6) with zR/L= 0. This is

a procedure similar to the one we use for the results in Fig. 4
(right panel). Figure 14 shows a comparison of the ZephIR
“unfiltered” radial velocity variances (for bins 0 and 31) with
the cup-anemometer variances for all the 2273 10 min data,
together with the Mann-model prediction, using 0 = 3. We
present variance estimations that are computed from the nor-
mal distribution fit to the average normalized Doppler spec-
trum, instead of those calculating the second moment from
the spectrum, since the latter method is more sensitive to
“spurious” data that appear far from the area where most ra-
dial velocities are concentrated. This is particularly seen for
the lower bins (18 and 31) and might be due to non-filtered
blade-obstructed data, noise, or sudden jumps in the radial
velocity within the 10 min period.

As expected, based on the results in Fig. 4, the top (bin
0) and a lower beam (bin 31) show a higher and lower vari-
ance, respectively, than that of the “u” component (in quo-
tation marks because we use the cup-anemometer measure-
ments). The Mann-model-based results slightly underpredict
the ratio σ 2

vr
/σ 2
u for these two beams compared to the raw

data. Reducing the value of0 or accounting for misalignment
improves the predictions; e.g., with 0 = 2.5 and β = 0◦ the
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Table 1. Atmospheric-stability and wind-speed classes and ranges based on the cup- and sonic-anemometers’ observations (see text for
details). The ensemble-average values of the dimensionless stability, wind speed, and friction velocity per range are also provided. For the
speed ranges we use the median of the dimensionless stability. z= 67 m is here the mean height used for the dimensionless atmospheric-
stability estimates.

Class z/L0 No. of 10 min samples 〈z/LO〉 〈U〉 (m s−1) 〈u∗〉 (m s−1)

stability 1 −0.1–0.1 225 0.0625 12.75 0.68
stability 2 0.1–0.2 629 0.1489 12.54 0.61
stability 3 0.2–0.3 350 0.2435 11.34 0.48
stability 4 0.3–0.4 225 0.3475 10.71 0.42
stability 5 0.4–0.5 153 0.4457 10.02 0.35

class U (m s−1) no. of 10 min samples 〈U〉 (m s−1) z̃/LO 〈u∗〉 (m s−1)

speed 1 5–7 93 6.65 0.5084 0.21
speed 2 7–9 516 7.98 0.7196 0.23
speed 3 9–11 506 10.07 0.3684 0.37
speed 4 11–13 741 11.94 0.2133 0.52
speed 5 13–15 278 13.82 0.1402 0.64
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Figure 14. Comparison of the 80-m cup-anemometer and the unfiltered ZephIR radial velocity variances for bins 0 (left frame) and 31 (right

frame). We show a 1:1 line for guidance and the predictions of the Mann model usingΓ = 3. Results of a linear regression through the origin

andR2 are also given. For bin 31,σ2
vr

> 11 m2 s−2 for two 10-min periods

(filtered) radial velocity variances for these two bins are 13% and 31% lower than the cup-anemometer measurements (not

shown) with slightly higherR2-values, 0.785 and 0.798, respectively.

Further, we can also estimateσ2
u,v,w andu′w′ for each 10-min period through a least-squares fit of Eqn. (10), that does not

depend on the Mann parameters but assume homogeneous turbulence within the scanned volume, using the unfiltered radial

velocity variances. Figure 15-left shows the estimate ofσ2
u based on the unfiltered radial velocity variances of all bins without5

accounting for misalignment compared toσ2
cup. The lidar-variance estimate is only 2% larger than the cup-anemometer value

and theR2-value is higher than that of any other comparison between cup-anemometer and lidar beam radial velocity variances

(filtered or not).

In Fig. 15-right we show a similar comparison to the plot in the left panel but for the ‘filtered’u-variance, which was

computed by reconstructing theu- andv-components, as described in Sect 5.4, using the ZephIR measurements on the seven10

bins, but from the 18-s radial velocity measurements. The comparison with the filtered values shows poor agreement with a

50% underestimation of the variance by the ZephIR. However, reconstructedu-velocities from the 18-s radial velocities and

averaged within 10-min periods compare well with the reconstructed values from the 10-min means; the mean bias is 0% and

R2 = 0.999 (not shown).
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Figure 14. Comparison of the 80 m cup-anemometer and the unfiltered ZephIR radial velocity variances for bins 0 (left) and 31 (right). We
show a 1 : 1 line for guidance and the predictions of the Mann model using 0 = 3. Results of a linear regression through the origin and R2

are also given. For bin 31, σ 2
vr > 11 m2 s−2 for two 10 min periods.

Mann-model results predict biases of 11 and −13 % for bins
0 and 31, respectively (not shown). It is important to mention
that the original (filtered) radial velocity variances for these
two bins are 13 and 31 % lower than the cup-anemometer
measurements (not shown) with slightly higher R2 values,
0.785 and 0.798, respectively.

Furthermore, we can also estimate σ 2
u,v,w and u′w′ for

each 10 min period through a least-squares fit of Eq. (10) that
does not depend on the Mann parameters but assumes homo-
geneous turbulence within the scanned volume, using the un-
filtered radial velocity variances. Figure 15 (left panel) shows
the estimate of σ 2

u based on the unfiltered radial velocity vari-
ances of all bins without accounting for misalignment com-
pared to σ 2

cup. The lidar-variance estimate is only 2 % larger
than the cup-anemometer value and the R2 value is higher
than that of any other comparison between cup-anemometer
and lidar beam radial velocity variances (filtered or not).

In Fig. 15 (right panel) we show a similar comparison to
the plot in the left panel but for the “filtered” u variance,
which was computed by reconstructing the u and v com-
ponents, as described in Sect. 5.4, using the ZephIR mea-
surements on the seven bins, but from the 18 s radial veloc-
ity measurements. The comparison with the filtered values
shows poor agreement with a 50 % underestimation of the
variance by the ZephIR. However, reconstructed u velocities
from the 18 s radial velocities and averaged within 10 min
periods compare well with the reconstructed values from the
10 min means; the mean bias is 0 % and R2

= 0.999 (not
shown).

We also compare the lidar-derived σ 2
v,w and u′w′ values

with the sonic-anemometer estimates; the biases are very
high and R2 values are very low (not shown). This is not
surprising given the weight of the σ 2

v,w and u′w′ terms in
Eq. (10) when using low ϕ values. With this lidar configura-

www.wind-energ-sci.net/2/133/2017/ Wind Energ. Sci., 2, 133–152, 2017



146 A. Peña et al.: Turbulence characterization from nacelle lidars

0 2 4 6 8 10

σ2
cup [m2 s−2]

0

1

2

3

4

5

6

7

8

9

10

σ
2 u

[m
2

s−
2
]

y = 1.022x, R2 = 0.852

0 2 4 6 8 10

σ2
cup [m2 s−2]

0

1

2

3

4

5

6

7

8

9

10

σ
2 u

[m
2

s−
2
]

y = 0.501x, R2 = 0.639

Figure 15. Comparison of the 80-m cup anemometer and the unfiltered (left frame) and filtered (right frame)u-variances from the ZephIR

estimated under the assumption of homogeneous turbulence within the measurement volume (see text for details). We show a 1:1 line for

guidance. Results of a linear regression through the origin andR2 are also given

We also compare the lidar-derivedσ2
v,w andu′w′-values with the sonic-anemometer estimates; the biases are very high and

R2-values are very low (not shown). This is not surprising given the weight of theσ2
v,w andu′w′-terms in Eqn. (10) when using

low ϕ-values. With this lidar configuration, the reconstruction of thev-component is not sound either, e.g. from Eqn. (14); the

yaw misalignment based on both the Avent and ZephIR reconstructedu- and v-components shows poor agreement when

compared to the difference between the wind-vane and the turbine-yaw 10-min signals.5

We can also estimateσ2
u through a least-squares fit of Eqn. (10) but using the unfiltered radial velocity variances of the

horizontal bins (12 and 37) only and the comparison withσ2
cup shows similar results (bias of 3% andR2 = 0 .842). This

indicates, firstly, the small but positive effect of adding the top and lower beams variances and, secondly, that the contributions

of other velocity components are not that significant for the estimation ofσ2
u with the actual lidar configuration. Accounting

for misalignment does not improve the variance comparison (the bias increases from 2% to 7%).10

6.3 Effect of the noise filter on the lidar variances

We also classify the 10-min 80-m cup anemometer variances and Avent radial velocity spectra into the classes given in Table 1,

ensemble-average the spectra within each class, and compute the variance of each ensemble-average spectrum. The comparison

of such variances, for each Avent beam, is illustrated in Fig. 16 (raw). We also show a similar comparison but for the noise-
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Figure 15. Comparison of the 80 m cup anemometer and the unfiltered (left) and filtered (right) u variances from the ZephIR estimated
under the assumption of homogeneous turbulence within the measurement volume (see text for details). We show a 1 : 1 line for guidance.
Results of a linear regression through the origin and R2 are also given.

tion, the reconstruction of the v component from, for exam-
ple, Eq. (14) is not sound either; the yaw misalignment based
on both the Avent and ZephIR reconstructed u and v com-
ponents shows poor agreement when compared to the dif-
ference between the wind-vane and the turbine-yaw 10 min
signals.

We can also estimate σ 2
u through a least-squares fit of

Eq. (10) but using the unfiltered radial velocity variances of
the horizontal bins (12 and 37) only and the comparison with
σ 2

cup shows similar results (bias of 3 % andR2
= 0.842). This

indicates, firstly, the small but positive effect of adding the
top and lower beams’ variances, and secondly, that the contri-
butions of other velocity components are not that significant
for the estimation of σ 2

u with the actual lidar configuration.
Accounting for misalignment does not improve the variance
comparison (the bias increases from 2 to 7 %).

6.3 Effect of the noise filter on the lidar variances

We also classify the 10 min 80 m cup anemometer variances
and Avent radial velocity spectra into the classes given in
Table 1, ensemble-average the spectra within each class,
and compute the variance of each ensemble-average spec-
trum. The comparison of such variances, for each Avent
beam, is illustrated in Fig. 16 (raw). We also show a simi-
lar comparison but for the noise-filtered Avent radial veloc-
ity ensemble-average spectra. Furthermore, we include the
prediction σ 2

vr
/σ 2
u based on the Avent lidar configuration us-

ing the Mann model with fixed Mann parameters (same as
those found in Sect. 5.2 using the ensemble-average sonic-
anemometer velocity spectra).

When the noise filter is applied, the ratio σ 2
vr
/σ 2

cup is well
predicted by the Mann model. The largest difference is ob-
served for beam 4 but this is because the noise filter highly
reduces the variance for one particular class only. For beams
1 and 2, the Mann model predicts the same σ 2

vr
/σ 2

cup value as
here we do not take into account lidar misalignment.

6.4 Effect of atmospheric stability on turbulence spectra

The ensemble-average sonic and Avent radial velocity spec-
tra are used separately to extract two independent sets of
Mann parameters for each of the atmospheric stability classes
in Table 1 by fitting the sonic- and lidar-based LUTs com-
puted through the use of Eqs. (3) and (6). Figure 17 shows
the results of the two stability classes farthest apart (stabili-
ties 1 and 5).

For the stability 1 class, the Mann model agrees well with
the sonic velocity spectra and for stability 5 the differences
between the model and the sonic-anemometer observations
are larger, as expected, since the Mann model was developed
for near-neutral atmospheric conditions. Both the sonic ob-
servations and the Mann model show the spectral peaks to
move to higher wave numbers with increasing stability be-
cause the size of the turbulence eddies decreases with sta-
bility in agreement with the study of Peña et al. (2010a).
The lidar radial velocity spectra also show similar features
to the sonic-based spectra: higher normalized spectral den-
sities for the most stable compared to the close to neutral
class and spectral peaks that move to higher wave numbers
with increasing stability. The former feature might be due to
the way we normalize the spectra: we make use of the 76 m
u∗ value instead of one close to the ground where surface-
layer scaling is more valid, particularly for stable conditions.
The agreement of the Mann-model-based spectra also dete-
riorates with stability but the lidar-based LUT seems to fol-
low the behavior of the radial velocity spectra for these two
classes fairly well.

In Fig. 18, we show the results of the Mann parameters
extracted from the ensemble-average sonic and lidar radial
velocity spectra for all atmospheric stability classes. There
is a slight decrease in 0 with stability (based on the sonic-
anemometer data) and the lidar-based value closely follows
the sonic-based one, with best agreement at the highest sta-
bility range. The sonic-based αε2/3–parameter slightly de-
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filtered radial velocity variance based on the Mann model using Γ = 3.00, L = 35 .38m, andβ = 0 ◦

25

Figure 16. Comparison of the 80 m cup anemometer with the Avent radial velocity variances for different beams for the 10 turbulence
classes (filled circles) in Table 1. Raw and noise-filtered data are shown as well as a 1 : 1 line (for guidance) and the prediction of the Avent
filtered radial velocity variance based on the Mann model, using 0 = 3.00, L= 35.38 m, and β = 0◦.

creases with stability and, for the near-neutral stability class,
the lidar-based value is close to the sonic-based one. A sim-
ilar feature is found for the L parameter; both types of data
show a very close value for near-neutral conditions and the
sonic-based value slightly decreases with stability as ex-
pected. The increasing differences between the sonic- and
the lidar-based αε2/3 and L parameters with stability are in-
terconnected. We cannot expect to measure eddies below the
size of the lidar probe volume, which in this case means that
we are not able to accurately estimate the length scale when
L/zR. This occurs already at the stability 3 class. These two
Mann parameters are, in practical terms, scaling factors in
the velocity spectra as seen from Eq. (4), and so an underes-
timation of L generally leads to an overestimation of αε2/3

when fitting the lidar-based LUT.
We also have to notice that when using this type of lidar

configuration, we are extracting turbulence information from
the radial velocity spectra of beams, whose spectral densities
are rather close (since all beams measure a close to u spec-
trum), whereas in the case of the sonic-anemometer observa-
tions we use three auto-spectra and a cross-spectrum that are
relatively far apart in terms of spectral densities. This issue
is discussed further in Sect. 7.

6.5 Effect of wind speed on turbulence spectra

We now perform a similar procedure as that in Sect. 6.4 but
for each of the wind-speed classes in Table 1, and the results
of the two wind-speed classes most far apart (speeds 1 and 5)
are shown in Fig. 19. For the speed 1 class, the Mann model
does not agree with the sonic velocity spectra as well as it
does when compared to the speed 5 class, as expected, since
the atmospheric conditions are closer to neutral for the latter
class. Both the sonic-anemometer observations and the Mann
model show spectral peaks that move to lower wave numbers
with increasing wind speed because of the combined effect
of stability and wind speed; the larger the turbulent eddies,
the higher the wind speed and the lower the stability.

The lidar radial velocity spectra also show similar fea-
tures to the sonic-based spectra; lower normalized spectral
densities for the high-wind compared to the low-wind class
and spectral peaks that move to lower wave numbers with
increasing wind speed. The agreement of the Mann-model-
based spectra deteriorates with decreasing wind speed, but
the lidar-based LUT also seems to follow the behavior of
the radial velocity spectra for these two classes fairly well
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Figure 17. Normalized power spectra of the different velocity components based on the sonic-anemometer observations (left frames) and of

the Avent radial velocity for different beams (right frames). The top panels show the results for the first stability range (stability 1) and the

bottom panels for the last stability range (stability 5)
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Figure 17. Normalized power spectra of the different velocity components based on the sonic-anemometer observations (left) and of the
Avent radial velocity for different beams (right). The top panels show the results for the first stability range (stability 1) and the bottom panels
for the last stability range (stability 5).
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Figure 18. Mann parameters for a number of atmospheric-stability
conditions (see Table 1) derived from sonic anemometer and lidar
radial velocity spectra.

(similarly as it does when comparing spectra for the range of
stability classes).

In Fig. 20, we show the results of the Mann parameters but
for the wind-speed classes. Based on the sonic-anemometer
data, 0, is rather constant with wind speed, a behavior al-
ready observed by Peña et al. (2010a) for the same height
and the lidar-based value agrees well with the sonic-based
one for all wind-speed classes, particularly the two low wind-

speed classes. Similar to the results from the atmospheric-
stability classes, the differences between the sonic- and the
lidar-based αε2/3 and L parameters are larger than those for
0, but for these wind-speed classes the αε2/3 parameter does
not differ largely under the classes where L differs the most,
i.e., speed classes 1 and 2, where the average conditions
are very stable. Turbulence characteristics under these two
classes are similar and L is higher within speed 1 compared
to the speed 2 class. The highest differences in the estima-
tions of L are also found for those classes in which L/zR
(speed classes 1–3).

7 Discussion

It is important to notice that some of the differences be-
tween turbulence statistics estimated from the sonic-, cup-
anemometer, and lidars’ measurements are not only due to
the way they probe the atmosphere but also because the li-
dar measurements are affected by optical and instrumental
noise (and by the blades, hard targets, and fog, among other
factors), the cup- and sonic-anemometers are inherently af-
fected by flow distortion from the mast structure and by the
instrument itself, which we do not take into account, and that
there are differences in the heights of the measurements. For
example, the axes of the lidars pointed close to hub height
when the wind turbine was operating, and the 80 m cup and

Wind Energ. Sci., 2, 133–152, 2017 www.wind-energ-sci.net/2/133/2017/



A. Peña et al.: Turbulence characterization from nacelle lidars 149

0.001 0.01 0.1 1

k1 [m−1]

–0.5

0

0.5

1

1.5

2

k
1
F

(k
1
)/
u

2 ∗

u

v

w

uw

0.001 0.01 0.1 1

k1 [m−1]

–0.5

0

0.5

1

1.5

2

k
1
F

(k
1
)/
u

2 ∗

Beam 2
Beam 1
Beam 4
Beam 0

0.001 0.01 0.1 1

k1 [m−1]

–0.5

0

0.5

1

1.5

2

k
1
F

(k
1
)/
u

2 ∗

u

v

w

uw

0.001 0.01 0.1 1

k1 [m−1]

–0.5

0

0.5

1

1.5

2

k
1
F

(k
1
)/
u

2 ∗

Beam 2
Beam 1
Beam 4
Beam 0

Figure 19. Similar to Fig. 17 but here the top panels show the results for the first wind-speed range (speed 1) and the bottom panels for the
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Figure 19. Similar to Fig. 17, but here the top panels show the results for the first wind-speed range (speed 1) and the bottom panels for the
last wind-speed range (speed 5).
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Figure 20. Mann parameters for a number of wind-speed ranges
(see Table 1) derived from sonic anemometer and lidar radial veloc-
ity spectra.

sonic anemometer are 1.8 and 5.8 m below hub height, re-
spectively. Also, the mast is 111 m from the range that we
use to extract the lidar measurements when the wind is di-
rectly from the mast to the turbine. Wind speeds, variances,
and velocity spectra from the mast and the lidars’ selected
range are expected to be comparable due to the topographic
conditions of the site for the selected wind directions, but not
equal. Further details regarding how cup anemometers, sonic
anemometers and lidars measure turbulence are provided in

Kristensen (2000), Horst and Oncley (2006), and Sathe and
Mann (2013), respectively.

We assume turbulence to be homogeneous within the li-
dar scanning area, both when extracting the Mann parameters
and when studying the unfiltered turbulence. This is a rather
simplistic assumption as shown in the study by Peña et al.
(2010a), in which the Mann parameters are extracted from
sonic-anemometer measurements at different heights. How-
ever, we expect that such an assumption results in turbulence
parameters that are more representative of the turbine oper-
ation as they are estimated from measurements over a larger
area.

In Sects. 6.4 and 6.5, we show normalized power spectra
for the two most “extreme” classes in order to understand
the spectra behavior for the changing atmospheric and wind-
speed conditions; spectra results for the other classes are not
shown, but lie in between, as illustrated from the derived
Mann parameters in Figs. 18 and 20. In Sect. 6.4, we men-
tion that part of the problem of extracting the Mann param-
eters from the current lidar measurements is the small dif-
ference between the beams’ radial velocity spectra, all being
relatively close to the u spectrum. The Mann model needs
more than one-component spectra to fit the LUT to mea-
surements/simulations, otherwise the Mann parameters are
ill-determined.

We find very good agreement between the along-wind
variance estimate of the ZephIR (when using the ensemble-
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component. Second, we do not need to reconstruct wind components to estimate variances but the radial velocity spectrum and

variance for each of the beams can be directly computed; this allows us to create a LUT useful to extract the Mann parameters.
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We characterize turbulence using measurements from two types of forward-looking nacelle lidars that were mounted on the
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we are able to estimate 10-min unfiltered radial velocity variances of the beams of a CW lidar. These unfiltered beam variances

are well predicted by the Mann model. Assuming homogeneous turbulence within the lidar scanned area,2
u,v,w andu w are

estimated from the unfiltered beam variances; comparison with the 10-min cup-anemometer variances reveals a 2% bias for10

theu-variance, whereas the biases are very high for the other velocity components.

We divide the 10-min time series and the sonic-anemometer and lidar beam radial velocity spectra into atmospheric-stability

and wind-speed classes based on the mast measurements. Most of the conditions are stable and relatively windy. We observe

that the pulsed lidar beam variances are affected by noise as clearly seen in the lidar radial velocity spectra. Therefore, we

noise-filter the lidar beam spectra and the resulting variances show very good agreement with the prediction using the Mann15
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Figure 21. (Left panel) Pulsed lidar radial velocity spectra for different beams. (Right panel) Contributions of the spectral velocity tensor
components to the lidar radial velocity spectrum for beams 2 (solid lines) and 3 (dashed lines). Values of β = 0◦, ϕ = 60◦, 0 = 3, αε2/3

=

0.1 m4/3 s−2, and zR/L= 0.5 are used for the computation.

average Doppler radial velocity spectrum) and the cup-
anemometer measurement, but for the other velocity-
component variances and co-variances, when compared to
those from the sonic anemometer, the biases are too large.
But, can we improve such estimates, e.g., increasing the cone
angle ϕ? On the one hand, one can make the theoretical ex-
ercise of predicting σ 2

u,v,w and u′w′ from the Mann model
(with a given set of Mann parameters). In parallel, we can
use Eq. (6) with zR = 0 to estimate the unfiltered σ 2

vr
for dif-

ferent beams and use Eq. (10) to estimate σ 2
u,v,w and u′w′

from the unfiltered beam variances. If we compare the for-
mer predicted with the latter estimated variances, e.g., using
a four-beam lidar (θ = 0, 90, 180, and 270◦), with ϕ = 15◦,
the result for the u-variance is a 2 % bias, whereas the v and
w variances show biases larger than 50 %. The result for the
v and w components improves when increasing ϕ; the biases
for both components’ variances are below 20 % for ϕ = 60◦

but the bias deteriorates for the u variance with increasing
ϕ. If a central beam is added and we are able to extract the
unfiltered variance of this beam, i.e., σ 2

u , the comparisons are
unbiased for all velocity components (no matter the value of
ϕ).

On the other hand, using a lidar with ϕ = 60◦ increases
the relative differences between the radial velocity spectra
densities of the beams, e.g., with the current Avent configu-
ration as it uses a central beam. Figure 21 shows that with
such a cone angle, the central beam spectrum peaks close to
the u spectrum peak, and the lower beams peak at ≈ 20 % of
the u spectrum peak (with ϕ = 15◦, the lower beams peak at
≈ 75 % of that of the central beam spectrum). This is mainly
due to the large negative contribution of 8uw for the lower
beams, as shown in Fig. 21 right panel. The difference be-
tween the u and w spectra is ≈ 60 % only.

It is also important to highlight to the reader that wind
turbine loads and power performance are directly impacted
by turbulence, in particular σ 2

u . The latter affects the tur-
bine’s power output differently, depending on the wind speed

(Clifton and Wagner, 2014). The Mann parameters add value
for understanding the behavior of loads but are not critical
(Dimitrov et al., 2017). In this study we demonstrate that σ 2

u

can be estimated by FL nacelle lidars, and current research
demonstrates that lidar-based σ 2

u values reduce the gap be-
tween loads and power measurements, as well as simulations.
It is difficult to compare our results with those from pre-
vious work on lidar turbulence measurements (Sathe et al.,
2015; Newman et al., 2016). First, with a FL lidar we are
able to point the beam in a direction close to the mean wind,
whereas most lidars use beams pointing closer to the verti-
cal wind component. Second, we do not need to reconstruct
wind components to estimate variances, but the radial veloc-
ity spectrum and variance for each of the beams can be di-
rectly computed; this allows us to create a LUT useful to
extract the Mann parameters.

8 Conclusions

We characterize turbulence using measurements from two
types of forward-looking nacelle lidars that were mounted
on the nacelle of a wind turbine. We compare such character-
istics with those from sonic- and cup-anemometer measure-
ments on a mast, which is 111 m from the lidar measurement
range when the turbine and mast are aligned with the wind
(thus this distance increases for other wind directions). By
using information of the 10 min ensemble average Doppler
radial velocity spectrum, we are able to estimate 10 min un-
filtered radial-velocity variances of the beams of a CW lidar.
These unfiltered beam variances are well predicted by the
Mann model. Assuming homogeneous turbulence within the
lidar scanned area, σ 2

u,v,w and u′w′ are estimated from the
unfiltered beam variances; comparison with the 10 min cup-
anemometer variances reveals a 2 % bias for the u variance,
whereas the biases are very high for the other velocity com-
ponents.

Wind Energ. Sci., 2, 133–152, 2017 www.wind-energ-sci.net/2/133/2017/



A. Peña et al.: Turbulence characterization from nacelle lidars 151

We divide the 10 min time series and the sonic-
anemometer and lidar beam radial velocity spectra into
atmospheric-stability and wind-speed classes based on the
mast measurements. Most of the conditions are stable and
relatively windy. We observe that the pulsed lidar beam vari-
ances are affected by noise as clearly seen in the lidar radial
velocity spectra. Therefore, we noise filter the lidar beam
spectra, and the resulting variances show very good agree-
ment with the prediction using the Mann and spatial averag-
ing models.

We also extract the Mann parameters from sonic-
anemometer and lidar beam radial velocity spectra and inter-
compare them for each of the classes. Under high wind and
near-neutral atmospheric conditions the agreement is good,
and the differences increase with higher stability and lower
wind speed, where the Mann model also has limitations fit-
ting the sonic-anemometer velocity spectra. This is partly
because increasing stability and decreasing wind speed re-
sults in turbulence length scales comparable to or lower than
the length of the lidar probe volume. We suggest to improve
lidar-based Mann-parameter estimations by increasing the li-
dars’ cone angle, always keeping a central beam, which will
also aid in the estimations of the non-wind-aligned velocity
variances and covariances, although the flow homogeneity
assumption becomes less valid.
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